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Abstract

Machine Learning surrogates have been developed to accelerate solving systems
dynamics of complex processes in different science and engineering applications.
To faithfully capture governing systems dynamics, these methods rely on large
training datasets, hence restricting their applicability in real-world problems. In
this work, we propose BayPOD-AL, an active learning framework based on an
uncertainty-aware Bayesian proper orthogonal decomposition (POD) approach,
which aims to effectively learn reduced-order models from high-fidelity full-order
models representing complex systems. Experimental results on predicting the
temperature evolution over a rod demonstrate BayPOD-AL’s effectiveness in sug-
gesting the informative data and reducing computational cost related to constructing
a training dataset compared to other uncertainty-guided active learning strategies.
Furthermore, we demonstrate BayPOD-AL’s generalizability and efficiency by
evaluating its performance on a dataset of higher temporal resolution than the
training dataset.

1 Introduction

Many real-world decision-making problems benefit from proper modeling of high-dimensional
complex systems dynamics. While traditional physics-principled computational models based on
differential equations provide high-fidelity solutions, their prohibitive computational cost hinders
their applications [Boluki et al., 2024]. With the abundance of data, from both high-fidelity simu-
lations and real-world measurements, machine learning (ML) surrogate models have become one
of the exciting emerging solutions to learn the underlying governing dynamics of many real-world
problems [Boluki et al., 2024, Verma, 2020]. These surrogates have enabled efficient modeling of
complex processes, instead of solely depending on solving their corresponding time-consuming,
computationally expensive Ordinary or Partial Differential equation systems (ODEs/PDEs). More
specifically, recent studies have been investigating the development of ML methods to accelerate
these computations, in a spectrum from purely data-driven ML surrogates, physics-informed neural
networks (PINNs), to more recent hybrid models such as ML-augmented reduced-order models
[Raissi et al., 2019, Swischuk et al., 2019, Guo et al., 2022, Hirsh et al., 2021, Lagaris et al., 1998].
For instance, Rudy et al. [2016] utilize sparse regression to learn a system’s governing PDEs while
Raissi et al. [2017], Raissi [2018], Zhu and Zabaras [2018] consider black-box neural network
models trained by “physics-informed” loss functions. Although these methods center their atten-
tion on providing accurate solutions, they often need retraining with a change of system settings,
including parameters as well as initial and boundary conditions. In DeGennaro et al. [2019], the
authors proposed a two-step method to infer the model parameter posterior enabling uncertainty
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quantification after differential equation system identification. A Bayesian framework for deriving
reduced-order models (ROMs), BayPOD [Boluki et al., 2024], has been recently developed in an
end-to-end manner based on proper orthogonal decomposition (POD), motivated by the idea of
developing ML-augmented ROMs with embedded physics constraints [Swischuk et al., 2019]. ROM
methods aim to derive physics-principled surrogates of high-fidelity complex models in significantly
reduced lower-dimensional space to reduce the computational load while maintaining the desired
accuracy [Hesthaven and Ubbiali, 2018]. By formulating ROM learning in a Bayesian framework,
BayPOD is capable of quantifying the uncertainty in addition to providing approximate high-fidelity
differential equation solutions. This is a pivotal feature in scenarios where there is little observed
data available, not atypical in science and engineering applications.

Although these endeavors have facilitated new ML surrogates for more efficient modeling and fore-
casting of complex processes, they often require considerably large training datasets to achieve
satisfactory performances. Acquiring such training data from high-fidelity full-order models (FOMs)
has heavy computational demands. To develop more data-efficient ML surrogates for ROM learning
of complex systems, inspired by recent advancements of Active Learning (AL) in the ML commu-
nity [Wang and Shang, 2014, Ash et al., 2020, Houlsby et al., 2011, Wu et al., 2022, Settles, 2009,
Ren et al., 2021], we here aim to bridge this gap by developing active learning for ROMs instead
of constructing ROMs based on large batches of randomly generated FOM data. More specifically,
via iteratively suggesting the most informative data we intend to improve sample efficiency while
preserving the underlying surrogate model’s performance, reliability, and interoperability.

To develop and evaluate active learning for ROMs, we focus on BayPOD as the learned surrogate
models by BayPOD come with their inherent uncertainty quantification capabilities in the adopted
Bayesian learning framework. Here we promote a robust AL framework, BayPOD-AL, designed to
showcase the feasibility and effectiveness of active learning for ROMs. With quantified uncertainty
in BayPOD, we explore different uncertainty-based active learning strategies to utilize the estimated
uncertainty for efficient guidance of the AL procedure. Recent studies in ML have suggested
that uncertainty-based AL (UAL) methods can be unreliable in improving sample efficiency while
optimizing the model’s performance under specific scenarios [Munjal et al., 2022, Saifullah et al.,
2022, Hacohen et al., 2022, Rahmati et al., 2024]. Exploring and evaluating different UAL strategies
for ROM learning is critical to help understand and prevent potential performance degradation under
the new ROM learning settings. In particular, as we focus on modeling complex systems behavior with
ROMs, there is an inherent mismatch between the ROM surrogates and the systems to approximate.
In Rahmati et al. [2024], the authors suggested error-based acquisition functions to alleviate the issues
caused by the model mismatch. When developing ROMs for differential equation systems, the Mean
Squared Error (MSE) is often considered as the target criterion. In this study, we propose and evaluate
BayPOD-UAL that is guided by an acquisition function depending solely on the estimated uncertainty
and BayPOD-EAL that relies on the estimated error. BayPOD-EAL, by taking advantage of the results
in Savvides et al. [2024], is expected to achieve higher sample efficiency due to its objective-driven
formulation directly targeting reducing MSE for ROM learning [Yoon et al., 2013, Boluki et al., 2019,
Yoon et al., 2021]. Throughout our experiments, we demonstrate the effectiveness of BayPOD-AL in
improving sample efficiency when learning a BayPOD surrogate predicting the temperature evolution
over a rod. Finally, by investigating its performance on a temporally high-resolution dataset, we
further show its efficiency and robustness.

2 Active Learning for Reduced-Order Models

Before delving into active learning for ROMs, we first briefly review ROMs, especially the family of
POD-based ROMs, including BayPOD.

2.1 Reduced-Order Models

As mentioned in Section 1, solving the full-order models (FOMs) to provide the high-fidelity solutions
of the governing ODEs/PDEs is prohibitively expensive. Reduced-order models (ROMs) are designed
with the objective of reducing the computational cost by estimating FOM solutions in a lower-
dimensional space, subject to keeping the information loss to a minimum [Benner et al., 2015,
Besselink et al., 2013, Penzl, 2006, Swischuk et al., 2019, Pant et al., 2021]. Compared to pure data-
driven “black-box” ML surrogates, learning ROMs of differential equation systems, naturally allows
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integrating the underlying scientific principles. We focus on proper orthogonal decomposition (POD),
one of the most widely used model reduction methods to derive low-dimensional representations of
the high-dimensional system states [Swischuk et al., 2019]. Following the notations from Boluki
et al. [2024], consider a function f : X × T × P → R, where X , the spatial domain, T , the time
domain, and P , the input domain are mapped to a physical field. Denoting a snapshot f(t;p) ∈ Rnx

as the discretized spatial domain at time t and input model parameters p, with nt different time
points and np different inputs, the POD bases can be obtained via singular value decomposition
(SVD). Specifically, defining F = [f(ti;pj)] ∈ Rns×nx with total ns = ntnp snapshots, the SVD
is F = V ΣW , which enables approximating field f by the K-dimension POD basis for any input
model parameters.

2.2 Bayesian POD (BayPOD)

BayPOD focuses on simultaneously deriving low-dimensional projection and mapping from input
parameters of the full-order model to latent projection coefficients. To learn the map α : P×T → A,
we consider neural network mappings. To account for physics constraints, BayPOD reformulates the
linear representation of each snapshot’s approximation, f̃ , constituting of the POD approximation
and a particular solution given the corresponding initial and boundary conditions f̃(t;p) = f̄ +∑K

k=1 v̄kαk(t;p), where αk(t;p) is the corresponding learnable POD expansion coefficient, and
v̄k ∈ Rnx is the k-th left singular vector of F as the POD bases that satisfy homogeneous boundary
conditions. Here f̄ is the particular solution given the set of potentially inhomogeneous initial and
boundary conditions for better embedding physics constraints [Swischuk et al., 2019, Boluki et al.,
2024]. The corresponding field value of snapshot s at the spatial point x, f̃sx, is modeled as a normal
random variable:

f̃sx ∼ N(u⊤
x αs, γ

−1
x ) (1)

with ux ∈ RK the K-dimensional POD basis at position x, and γ−1
x the variance at x. Using

mean-field variational inference, BayPOD finds the variational posterior of model parameters. Due
to its generative nature, it provides uncertainty estimates of predicted system dynamics in different
setups, which is the enabler of optimal and adaptive decision making, active learning for sample

Figure 1: A schematic illustration of the
proposed BayPOD-AL framework.

efficiency in this work.

2.3 BayPOD-AL

We now present our active learning framework, BayPOD-
AL, by exploring different uncertainty-based active learn-
ing (UAL) strategies, leveraging the inherent UQ capa-
bilities of BayPOD. Consider DL and DU the iteratively
updated ‘labeled’ and ‘unlabeled’ datasets correspond-
ing to collected snapshots from high-fidelity FOMs and
the FOM settings without actual simulated snapshots, re-
spectively. BayPOD-AL focuses on reducing the cost of
running FOM simulations to train BayPOD by choosing the most informative FOM settings in DU

to collect new BayPOD training data from FOM based on an acquisition function a. Specifically,
BayPOD-AL iteratively queries for snapshots, solutions to corresponding FOM differential equations,
with the considered most informative settings, the corresponding input FOM parameters in this
work p∗ = argmaxpU∈DU

a(q(·|DL),pU). Here the acquisition function a(q(·|DL),pU) guides
the AL procedure considering the potential uncertainty of iteratively updated BayPOD models. At
each AL iteration, with the currently learned BayPOD model, BayPOD-AL determines the most
informative input FOM parameter in DU, i.e. p∗, as the output to query additional training snapshots
from the FOM. Note that BayPOD directly provides the model posterior given the labeled data or
simulated snapshots, q(·|DL). Until the trained BayPOD model reaches a satisfactory performance,
BayPOD-AL continues to add new simulated FOM snapshots to DL.

In our BayPOD-AL framework, due to solving a homogeneous problem that frees us from worrying
about boundary/initial constraints, we only search for the most ‘informative’ input FOM parameters
p∗ ∈ DU ⊂ P . Assuming that DU contains np inputs, and for each input pU ∈ DU, we want to
query FOM solutions for np

t fixed time points. At each AL iteration, we compute the acquisition
function for a batch of np

t snapshots for each input. Finally, the most informative snapshots from
FOMs will be appended to DL for the next AL and model update iteration. This process continues
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until the model reaches the desired performance. Having access to the BayPOD’s variational
posterior q(·|DL), we define a measure function M (t)(q(·|DL,pU, x)) : U ×A → R estimating the
‘informativeness’ of snapshots at input pU, time t, and position x. By taking the average over all
snapshots given pU, we define the following acquisition function evaluating such ‘informativeness’
based on the adopted measure function:

a(i)
pU

=
1

np
t

np
t∑
t

1

nx

nx∑
x

M (i,t)(q(·|DL,pU, x)), i ∈ {0, . . . , np} (2)

BayPOD-AL then queries the corresponding FOM for snapshots by the most ‘informative’ input:

p∗ = pU
(i) = argmax

i
a(i)
pU

. (3)

Figure 1 provides a schematic illustration of BayPOD-AL. As discussed in Hino [2020], Zhao et al.
[2021], Rahmati et al. [2024], the acquisition function plays a critical role in achieving desired AL
efficiency. To derive efficient active learning for BayPOD, we evaluate two different choices by
considering: 1) BayPOD-UAL: the predictive model uncertainty based on the estimated posterior
predictive variance from BayPOD; and 2) BayPOD-EAL: the estimated approximation error, directly
targeting the ROM learning objective, for which we estimate the upper bound of the approximation
error and utilize that as the measure function in (2). Details of each strategy are provided in
Appendix B and C.

3 Experiments

Using the same example as in Boluki et al. [2024], we implement our BayPOD-AL on predicting
the evolution of temperature fields, f , with heat diffusivity parameter, κ, over a rod of length L with
time-dependent boundary conditions. In the following, we report the performance statistics of five
runs of experiments for each of AL algorithms. Each run is different only in the initial DL. We
compare the performance of BayPOD-UAL and BayPOD-EAL with the random sampling strategy
which selects the next κ for FOM simulations randomly at each iteration.
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Figure 2: Performance comparison of BayPOD-
EAL, BayPOD-UAL, and random sampling strate-
gies on ‘low’ (left) and ‘high’ (right) temporal
resolution test datasets.

We train BayPOD on the temporally low-
resolution training snapshots and report the AL
performances on both temporally low-(np

t =
50) and high-resolution (np

t = 200) test datasets.
Figure 2 compares the performance of BayPOD-
EAL, BayPOD-UAL, and random sampling
strategies. Table 1 summarizes the performance
statistics of our results after 5 AL iterations. It
is clear after 5 AL iterations (250 new snap-
shots), BayPOD-EAL leads to a model with the
best empirical performance. Over the first 10
AL iterations, on average it has 4.7× and 9×
lower MSE than BayPOD-UAL, and 6× and
6.5× lower MSE than random sampling when evaluated on low- and high-resolution datasets respec-
tively. This further demonstrates the robustness of BayPOD-EAL, in leading the model to optimal
performance even when the training data resolution differs from the test data, owing to it being
objective-driven. As mentioned in Section 1, due to the inherent model mismatch, uncertainty alone
cannot efficiently reduce the labeling cost for learning ROMs. On both datasets, BayPOD-UAL
grants an initial performance lead compared to random sampling, but it soon slows down with
comparable performance for the low-resolution dataset and worse performance for the high-resolution
dataset. After 15 to 20 AL iterations, both BayPOD-EAL and random sampling provide comparable
performance, meaning that BayPOD-AL reduces the computational cost related to training data by a
factor of 3 to 4, demonstrating its cost-effectiveness in learning ROMs.

4 Conclusion

To model the complex systems dynamics, ML surrogate models have shown promising performance.
However, the prohibitive cost of acquiring the solutions of the high-fidelity FOMs representing them
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Table 1: Mean and standard deviation (std) of approximation error at the 6th AL iterations from five
random runs of experiments. Best results are in bold.

Method Low Resolution High Resolution
mean std mean std

BayPOD-EAL 4.68× 10−3 1.3× 10−3 6.3× 10−3 1.79× 10−3

BayPOD-UAL 8.42× 10−2 1.08× 10−1 1.01× 10−1 1.01× 10−1

Random Sampling 3.29× 10−2 4.7× 10−2 3.8× 10−2 4.95× 10−2

hinders the applicability of these models in real-world scenarios. Inspired by recent advances in AL,
we present the BayPOD-AL framework, which iteratively suggests the most informative data that
can boost the surrogate model’s performance. The Bayesian framework explicitly updates the model
posterior, with which different objective-driven acquisition functions targeting ROM learning can
be adopted to achieve efficient AL. Our experiments demonstrate the robustness of the proposed
framework as well as its efficacy in reducing the cost of learning ROMs, thereby improving their
applicability in real-world problems.
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A BayPOD: Posterior Inference

As mentioned in Section 2.2 the response is modeled as a normally-distributed random variable,
f̃sx ∼ N(u⊤

x αs, γ
−1
x ), with αs,ux ∈ RK the K-dimensional POD basis vector at x, and K POD

coefficients for snapshot s. Considering zero-mean normal priors on POD basis and coefficients, i.e.,
ux ∼ N(0, I) and αs ∼ N(0, γ−1

α I), as well as conjugate gamma distributions over the precision
parameters, γα, γx ∼ Gamma(1, 1), the model is completed.

Using variational inference, the posteriors over parameters are inferred. More specifically, varia-
tional distributions q(·) is put over model parameters with the independence assumption, that is
q(u,α,γ) = q(u)q(α)q(γ). Since we consider using a neural network (NN) for coefficient map-
ping, the variational distribution over αs can be defined as q(αs) = N(αs;µw(p),Σw(p)), with
µw and Σw the mean and covariance matrix of NN form with weights w. Similar as in Boluki et al.
[2024], we employ the same NN architecture with two hidden layers, 50 nodes per layer, and using
rectified linear unit (ReLU) activation functions. To benefit from conjugate priors, the variational
posteriors for POD basis and precision parameters are set to be normal and gamma distributions.
Finally, by minimizing the Kullback-Leibler (KL) divergence between the variational posteriors and
the true posteriors, the optimal parameters are obtained.

B BayPOD-UAL: Uncertainty-guided AL

The acquisition function can be utilized by adopting any measure function in BayPOD-AL. More
specifically, due to the availability of parameter posterior distributions in BayPOD, there is flexibility
in defining uncertainty-based measure functions. For BayPOD-UAL, we define a measure function
dependent on each snapshot’s predictive posterior variance. Specifically, using Monte Carlo (MC)
sampling we estimate V̂ (t)(pU, x), the sample variance of each input pU at the specific time point t
and position x. Finally, by setting M = V̂ in (2), p∗ can be found by (3).
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C BayPOD-EAL: Error-guided AL

Due to the potential mismatch between ROMs and their corresponding high-fidelity model solution,
BayPOD-UAL may lead to degraded AL performance as shown in other ML problems [Munjal
et al., 2022, Saifullah et al., 2022, Rahmati et al., 2024]. Consequently, we develop BayPOD-EAL,
which benefits from an error-dependent measure function. In this approach, to define the measure
function we aim to estimate the ROM approximation error by its bounds. Savvides et al. [2024]
approximates the error upper bounds following the assumption that the underlying ground-truth
function can be modeled based on a Gaussian Process (GP). We define a similar error-guided measure
function and name the corresponding approach BayPOD-EAL. Considering f̃

(t)
pUx as the model’s

prediction for unlabeled input pU, at time t and position x, the primary objective is to estimate
(f

(t)
pUx − f̃

(t)
pUx)2, where f

(t)
pUx is the ground truth or FOM solutions. To estimate the error upper

bound, Savvides et al. [2024] first considers that the ground-truth function f can be written as a GP
with a symmetric, positive definite kernel. Based on this reformulation of f , conditioned on DL,
the posterior distribution, F ′, over f , can be utilized to find U (t)(pU, x), the upper-bound of the
expected posterior loss L(t)(pU, x) = Ef∼F ′ [(f

(t)
pUx − f̃

(t)
pUx)2] by further assuming that kernels are

continuously twice differentiable and translation invariant and the governing function’s variance is
bounded. Utilizing the model’s posterior, q(·|DL), and by representing the model’s prediction with
its estimated mean via MC sampling, we set M = U in (2) which is then used in (3) to find p∗.

D Rod Temperature Evolution

Depending on the heat diffusivity parameter, κ, the heat diffusion over a rod is governed by:

∂f

∂t
= κ

∂2f

∂x2
, (4)

for which the initial condition and Dirichlet boundary conditions in our experiments are set as
f(x = 0, t) = 3 sin(2t), f(x = L, t) = 3, and f(x, t = 0) = 0, respectively. These constraints,
are incorporated through the particular solution, f̄ . f̄ can be derived by solving the problem with
boundary conditions f(x = 0, t) = 0 and f(x = L, t) = 1, and the problem with the boundary
condition f(x = 0, t) = 1 and f(x = L, t) = 0, which we denote as the steady-state solution
f̄L(x) and f̄0(x), respectively. Finally, the corresponding particular solution can be written as
f̄ = 3 sin(2t)f̄0(x) + 3f̄L(x) [Boluki et al., 2024]. This allows embedding physics when training
BayPOD by learning based on the modified snapshots with homogeneous boundary conditions that
are acquired by subtracting snapshots’ particular solutions from them. To accurately model dynamics
with inhomogeneous boundary conditions, the final approximation is constructed by adding back the
particular solution.

E Experiment Settings
In all our experiments, each snapshot is a nx-dimensional vector, with nx = 200, for a temperature
field over the rod with diffusivity κ at specific time t. We consider evaluating BayPOD-AL with 90
equidistant values as diffusivity parameters in [0.1, 0.9], K. For both AL algorithms, BayPOD-UAL
and BayPOD-EAL, we prioritize corresponding diffusivity parameter values in K based on the
experimental settings detailed below. During the AL process, by considering np

t = 50 fixed time
points that are randomly chosen from 628 equidistant temporal points in [0, 2π], which mimics the
case that coarse-grained FOM snapshots are used for ROM learning to further improve computational
efficiency. At each step of AL, the 50 new snapshots corresponding to previously chosen fixed time
points with the selected informative diffusivity parameter (κ∗) are added to DL. The performance
comparison experiments are based on random runs starting from a randomly chosen diffusive
parameter value in K, with an initial set DL that contains 50 snapshots.

We focus on an extrapolation setting for performance evaluation with respect to input diffusive
parameters, where the snapshots corresponding to the last 20 parameters in K are chosen as the
test dataset. To further investigate the robustness of BayPOD-AL methodologies, we report the
performance on two test datasets with different number of time points: 1) np

t = 50 (the same number
of time points as in training, 1000 snapshots in total), and 2) np

t = 200 (4000 snapshots in total)
randomly chosen from T , for which we refer to as ‘low’ and ‘high’ temporal resolution datasets

8



respectively. To account for the objective, the acquisition function (2) is calculated by considering
the low-resolution setting (np

t = 50 per unlabeled input) for experiments on the low-resolution
test dataset, and the high-resolution setting (np

t = 200 per unlabeled input) for experiments on the
high-resolution test dataset. In this work, the dimension of POD bases is set to 7.

All the experiments are performed using 10 GB memory on a 40 GB A100 GPU with each experiment
taking less than 7 hours.
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