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ABSTRACT

The great success of deep learning is largely driven by training over-parameterized
models on massive datasets. To avoid excessive computation, extracting and
training only on the most informative subset is drawing increasing attention. Nev-
ertheless, it is still an open question how to select such a subset on which the
model trained generalizes on par with the full data. In this paper, we propose dy-
namic margin selection (DynaMS). DynaMS leverages the distance from candidate
samples to the classification boundary to construct the subset, and the subset is
dynamically updated during model training. We show that DynaMS converges
with large probability, and for the first time show both in theory and practice that
dynamically updating the subset can result in better generalization. To reduce
the additional computation incurred by the selection, a light parameter sharing
proxy (PSP) is designed. PSP is able to faithfully evaluate instances following the
underlying model, which is necessary for dynamic selection. Extensive analysis
and experiments demonstrate the superiority of the proposed approach in data
selection against many state-of-the-art counterparts on benchmark datasets.

1 INTRODUCTION

Deep learning has achieved great success owing in part to the availability of huge amounts of data.
Learning with such massive data, however, requires clusters of GPUs, special accelerators, and
excessive training time. Recent works suggest that eliminating non-essential data presents promising
opportunities for efficiency. It is found that a small portion of training samples 1 contributes a majority
of the loss (Katharopoulos & Fleuret, 2018; Jiang et al., 2019), so redundant samples can be left out
without sacrificing much performance. Besides, the power law nature (Hestness et al., 2017; Kaplan
et al., 2020) of model performance with respect to the data volume indicates that loss incurred by
data selection can be tiny when the dataset is sufficiently large. In this sense, selecting only the most
informative samples can result in better trade-off between efficiency and accuracy.

The first and foremost question for data selection is about the selection strategy. That is, how to
efficiently pick training instances that benefit model training most. Various principles have been
proposed, including picking samples that incur larger loss or gradient norm (Paul et al., 2021;
Coleman et al., 2020), selecting those most likely to be forgotten during training, as well as utilizing
subsets that best approximate the full loss (Feldman, 2020) or gradient (Mirzasoleiman et al., 2020;
Killamsetty et al., 2021). Aside from selection strategies, existing approaches vary in the training
schemes which can be divided roughly into two categories: static ones and dynamic (or adaptive)
ones. Static methods (Paul et al., 2021; Coleman et al., 2020; Toneva et al., 2019) decouple the subset
selection and the model training, where the subset is constructed ahead and the model is trained on
such a fixed subset. Dynamic methods (Mindermann et al., 2022; Killamsetty et al., 2021), however,
update the subset in conjunction with the training process. Though effectively eliminates amounts of
samples, it is still not well understood how these different training schemes influence the final model.

∗Corresponding author
1We use the terms data, sample, and instance interchangeably
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In this paper, we propose dynamic margin selection (DynaMS). For the selection strategy, we inquire
the classification margin, namely, the distance to the decision boundary. Intuitively, samples close
to the decision boundary influence more and are thus selected. Classification margin explicitly
utilizes the observation that the decision boundary is mainly determined by a subset of the data.
For the training scheme, we show the subset that benefits training most varies as the model evolves
during training, static selection paradigm may be sub-optimal, thus dynamic selection is a better
choice. Synergistically integrating classification margin selection and dynamic training, DynaMS
is able to converge to the optimal solution with large probability. Moreover, DynaMS admits
theoretical generalization analysis. Through the lens of generalization analysis, we show that by
catching the training dynamics and progressively improving the subset selected, DynaMS enjoys
better generalization compared to its static counterpart.

Though training on subsets greatly reduces the training computaiton, the overhead introduced by data
evaluation undermines its significance. Previous works resort to a lighter proxy model. Utilizing
a separate proxy (Coleman et al., 2020), however, is insufficient for dynamic selection, where the
proxy is supposed to be able to agilely adapt to model changes. We thus propose parameter sharing
proxy (PSP), where the proxy is constructed by multiplexing part of the underlying model parameters.
As parameters are shared all along training, the proxy can acutely keep up with the underlying
model. To train the shared network, we utilize slimmable training (Yu et al., 2019) with which a
well-performing PSP and the underlying model can be obtained in just one single train. PSP is
especially demanding for extremely large-scale, hard problems. For massive training data, screening
informative subset with a light proxy can be much more efficient. For hard problems where model
evolves rapidly, PSP timely updates the informative subset, maximally retaining the model utility.

Extensive experiments are conducted on benchmarks CIFAR-10 and ImageNet. The results show that
our proposed DynaMS effectively pick informative subsets, outperforming a number of competitive
baselines. Note that though primarily designed for supervised learning tasks, DynaMS is widely
applicable as classifiers have become an integral part of many applications including foundation
model training (Devlin et al., 2019; Brown et al., 2020; Dosovitskiy et al., 2021; Chen et al., 2020),
where hundreds of millions of data are consumed.

In summary, the contributions of this paper are three-folds:

• We establish dynamic margin select (DynaMS), which selects informative subset dynam-
ically according to the classification margin to accelerate the training process. DynaMS
converges to its optimal solution with large probability and enjoys better generalization.

• We explore constructing a proxy by multiplexing the underlying model parameters. The
resulting efficient PSP is able to agilely keep up with the model all along the training, thus
fulfill the requirement of dynamic selection.

• Extensive experiments and ablation studies demonstrate the effectiveness of DynaMS and
its superiority over a set of competitive data selection methods.

2 METHODOLOGY

To accelerate training, we propose dynamic margin selection (DynaMS) whose framework is presented
in Figure 1. Instances closest to the classification decision boundary are selected for training, and
the resulting strategy is named margin selection (MS). We show that the most informative subset
changes as the learning proceeds, so that a dynamic selection scheme that progressively improves
the subset can result in better generalization. Considering the computational overhead incurred by
selection, we then explore parameter sharing proxy (PSP), which utilizes a much lighter proxy model
to evaluate samples. PSP is able to faithfully keep up with the underlying model in the dynamics
selection scheme. The notations used in this paper are summarized in Appendix H

2.1 SELECTION WITH CLASSIFICATION MARGIN

Given a large training set T = {xi, yi}|T |
i=1, data selection extracts the most informative subset

S ⊂ T trained on which the model f(x) yields minimal performance degradation. Towards this end,
we utilize the classification margin, that is, the distance to the decision boundary, to evaluate the
informativeness of each sample. |S| examples with the smallest classification margin are selected.
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Figure 1: The overall framework of dynamic margin select with parameter sharing proxy (Dy-
naMS+PSP). The green model indicates the underlying model to be trained and the blue one is the
parameter sharing proxy which efficiently evaluates data. Instances are selected every Q epochs, then
the model is trained on the selected subset.

Intuitively, these samples should be influential most to the model decision. Following (Mickisch
et al., 2020; Emam et al., 2021), the decision boundary between two classes c1 and c2 ∈ {1, . . . C} is
B := {x | fc1(x) = fc2(x)}, where fc(x) is the c entry of model output, indicating the probability
of x belonging to class c. The classification margin is then:

M(x, c1, c2) = min
δ

∥δ∥2 s.t. x+ δ ∈ B (1)

which is the minimal perturbation required to move x form c1 to c2. Directly computing the
margin is infeasible for deep neural networks, so scoring is conducted in the feature space instead
as in (Emam et al., 2021). Typically neural networks applies a linear classifier on top of the
features (Goodfellow et al., 2016), so the classification margin M(x, c1, c2) can be easily obtained
as: M(x, c1, c2) = (Wc1 −Wc2)

⊤h(x)/ ∥Wc1 −Wc2∥2, where W ∈ Rd×C is the weight of the
linear classifier 2 and h(x) is the feature of x. In this way, the classification margin of a labeled
sample (x, y) along class c is M(x, y, c) if y ̸= c or minc̸̃=y M(x, y, c̃) if y = c. The former
indicates the distance moving (x, y) to class c while the latter is the distance moving (x, y) to the
nearest class other than y. To keep the subset balanced, we evenly pick |S|/C samples with the
smallest classification margin along each class. The resulting strategy is named margin selection (MS),
denoted as MS(w, T , |S|). The procedure is detailed in Algorithm 1 in Appendix A.

2.2 DYNAMIC SELECTION
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Figure 2: (a) Overlap ratio of subsets extracted in two consecutive selections. A near 1 overlap
ratio means the selection is converged. (b) Generalization of static as well as dynamic data selection
according to classification margin. Selection budget γavg = γs = 60%. (c) The averaged gradient
alignment cos(g, gproxy) of parameter sharing proxy and an stand-alone proxy along model training.

Given the subset selected, model is subsequently trained on S. Conventional static training scheme
assumes that the optimal subset converges and is not related to the model training dynamic (Paul
et al., 2021; Coleman et al., 2020). Though effectively eliminate instances, the "converged optimal

2Without loss of generality, we omit the bias term for notation clarity
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subset" assumption may be too strong. To investigate whether the most informative samples vary
during training, we plot the overlap ratio of samples selected in two consecutive selections during
the training of ResNet models, shown in Figure 2(a). We train for 200 epochs and 120 epochs on
CIFAR-10 and ImageNet respectively, and conduct selection every 10 epochs. It can be observed that
the overlap ratio is on average 0.83 for CIFAR-10 and 0.73 for ImageNet rather than 1.0, meaning
that samples that most benefit model training vary as the model evolves. A fixed subset may be
outdated after parameter updates, thus yielding sub-optimal results.

We thus resort to a dynamic scheme where data selection is performed after each Q epochs training 3.
By selecting in conjunction with training, the informative subset gets updated according to the current
model status. For the kth selection, the informative subset Sk is constructed by picking portion γk
samples so that |Sk| = γk|T |. The selection ratio γk determines the critical margin κk, where only
samples with classification margin smaller than κk are kept. Sk will then be used for training Q
epochs. In the following, we provide a convergence analysis of DynaMS and show that DynaMS
achieves better generalization by constantly improving the selected subset.

Convergence Analysis We now study the conditions for the convergence of training loss achieved
by DynaMS. We use logistic regression (LR) to demonstrate and then show the conditions are well
satisfied when LR is used on top of deep feature extractors. We have the following theorem:
Theorem. Consider logistic regression f(x) = 1

1+e−w⊤x
with N Gaussian training samples x ∼

N (0,Σ), x ∈ Rd. Assume ∥w∥2 ≤ D and N
d < α. Let w∗ be the optimal parameters and λ be

the largest eigenvalue of the covariance Σ. For t ∈ {1, . . . T} and constants ε > D
√

λ
2 − 1, ζ >

1, µ >> α, select subset with critical margin κt = (1 + ε) log(ζT − t) and update parameters with
learning rate η = DN

E
√
T

. Then with probability at least 1− α
µ

min
t

L(wt)− L(w∗) ≤ DE

(
1

T
1
4

+
cε,ζ

T
3
4+ε

+
cε,ζ,λ
T β

)
(2)

where E =
√
dλ(1 + (2µ)

1
4 ), β = (1+ε)2

2D2λ − 1
4 , cε,ζ and cε,ζ,λ are constants depending on ε, ζ and

λ.

The proof is left in Appendix B. Theorem 2.2 indicates that dynamically selecting data based on
the classification margin is able to converge and achieve the optima w∗ with large probability. The
Gaussian input assumption is overly strong in general, but when the linear classifier is adopted on top
of a wide enough feature extractor, the condition is well satisfied because a infinitely wide neural
network resembles Gaussian process (Lee et al., 2019; Xiao et al., 2018; de G. Matthews et al., 2018).

Generalization Analysis Recently, (Sorscher et al., 2022) developed an analytic theory for data
selection. Assume training data xi ∼ N (0, I) and there exists an oracle model wo ∈ Rd which
generates the labels such that yi = sign

(
w⊤

o · xi

)
. Following static selection, when an estimator w

is used to pick samples that have a small classification margin, the generalization error takes the form
E(α, γ, θ) in the high dimensional limit. α = |T |

d indicates the abundance of training samples before

selection; γ determines the selection budget and θ = arccos
(

w⊤wo

∥w∥2·∥wo∥

)
shows the closeness of the

estimator to the oracle. The full set of self-consistent equations characterizing E(α, γ, θ) is given in
Appendix C. By solving these equations the generalization error E(α, γ, θ) can be obtained.

We then extend it to the dynamic scheme. For the kth selection, we use the model trained on Sk−1 as

the estimator wk, which deviates from oracle by angle θk = arccos
(

w⊤
k−1wo

∥wk−1∥2·∥wo∥2

)
, to evaluate

and select samples. The resulting subset Sk will be used for subsequent training of model wk+1,
which will later be used as an estimator at k + 1 to produce Sk+1. In this way, generalization of
dynamic scheme can be obtained by recurrently solving the equations characterizing E(α, γk, θk)
with updated keeping ratio γk and estimator deviation θk. Note that in each round of selection,
samples are picked with replacement, so the abundance of training samples α is kept fixed. The
keeping ratio γk, determining the subset size, can be scheduled freely to meet various requirements.

3For extremely large dataset case where training can be accomplished within just one or a few epochs, the
selection can be performed every Q iterations
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We compare the generalization of dynamic selection and its static counterpart in Figure 2(b). We
show the landscape of E(α, γ, θ) with different γ and θ by solving the generalization equations
numerically. α = 3.2 is kept fixed, which means the initial training data is abundant; We use static
training with θs = 40◦ and γs = 0.6 as control group. To make the comparison fair, we make sure
1
K

∑K
k=1 |γk| = γs, so that the averaged number of samples used in the dynamic scheme equals the

subset size used in the static scheme. From Figure 2(b), we see that in dynamic selection, the estimator
gets constantly improved (θk decreases), so that the subsets get refined and the model achieves better
generalization. Discussion on selecting with different α, γand θ is given in Appendix D.

2.3 PARAMETER SHARING PROXY

Kernel size

Model
input
channels

Model output channels

Proxy
input
channels

Proxy output channels

Figure 3: Parameter sharing proxy which is
constructed with part of model parameters.

With dynamic selection, the number of updates is re-
duced. However, the computational overhead incurred
by data selection undermines its significance, especially
when the model is complex and samples are evaluated
frequently. Aside from designing efficient selection
strategies, previous works explored utilizing a lighter
model as proxy to evaluate the instances so that the
problem can be ameliorated. Pretrain a separate proxy
and evaluate instances prior to model training (Cole-
man et al., 2020), however, is insufficient for dynamic
selection, as a static proxy can not catch the dynam-
ics of the underlying model. A proxy that fulfills the
requirements of dynamic selection is still absent.

We thus propose parameter sharing proxy (PSP), where part of the model is used as the proxy. Taking
convolutional neural network as an example, for a layer with kernel W ∈ Rci×co×u×u, where
ci, co and u are number of input filters, number of output filters and kernel size respectively, the
corresponding kernel of proxy is then: Wproxy = W1:pci,1:pco,:,:, where p ∈ [0, 1] is a slimming
factor. As shown in Figure 3, the proxy kernel is constructed with the first pci input channels and first
pco output channels. A p times thinner proxy can be obtained by applying p to each layer.

With separate batch normalization for proxy and model, PSP forms a slimmable network (Yu
et al., 2019), where multiple models of different widths are jointly trained and they all yield good
performance. As the parameters are shared, the proxy can acutely keep up with the model change,
thus applicable for dynamic selection. We further investigate the gradients alignment of the proxy
and the original model through their cosine similarity:

cos(g, gproxy) =
g⊤gproxy

∥g∥2 · ∥g∥2
, where g = ∇WL (W) , gproxy = ∇WL (Wproxy) (3)

A positive cosine value indicates gproxy stands in the same side with g, thus updates on proxy and the
model benefits each other. We compare the gradient alignment of PSP and a stand-alone proxy in
Figure 2(c) on ResNet-50. With p = 0.5, we see that cos(g, gproxy) for PSP is much larger than the
stand-alone proxy. Given the well-aligned gradients, PSP requires fewer training epochs. Overall
workflows of DynaMS and DynaMS+PSP is shown in Algorithm 2 and Algorithm 3 of Appendix A.
PSP is especially advantageous for large and hard problems. When the data is extremely large,
training PSP on a small subset is cheaper than evaluating the extremely large training set with the
original model, making it much more efficient. When the task is hard and model changes rapidly
during training, PSP can timely updates the informative subset, maximally retaining the model utility.

3 RELATED WORK

Accelerating training by eliminating redundant training instances has long been a research focus in
academia. This is accomplished by adopting an effective selection strategy and an appropriate training
scheme. We summarize the related literature from these two strands of research in the following.

Selection Strategy Sample selection can be accomplished with various principles. (Loshchilov
& Hutter, 2015; Jiang et al., 2019; Paul et al., 2021) tend to pick samples that incur large loss
or gradient norm (CE-loss, EL2N, GraNd). (Toneva et al., 2019) inspects the “unforgettable”
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Table 1: Computational and space complexity of dif-
ferent selection strategies. For GraNd, Craig and Grad-
Match, only gradients of the classification layer are
considered to avoid overly large complexity.

Strategy Time Complex. Space Complex.

CE-loss O((C · d+ log |S|) · |T |) O(|T |)
EL2N O((C · d+ log |S|) · |T |) O(|T |)
GraNd O((C · d+ log |S|) · |T |) O(|T |)
Craig O(C · d · |T | · |S|) O(|S| · |T |)
GradMatch O(C · d · |T | · |S|) O(C · d · |T |)
MS O(C · (d+ log |S|) · |T |) O(C · |T |)

examples that are rarely misclassified once
learned, and believes these samples can be
omitted without much performance degrada-
tion. Other works adopt uncertainty. Sam-
ples with the least prediction confidence are
preferred (Settles, 2010). Recently, (Mirza-
soleiman et al., 2020; Killamsetty et al.,
2021) select subset that best covers or ap-
proximates the full gradient (Craig, Grad-
Match). However, these requires per-sample
gradient as well as an additional optimiza-
tion which is expensive both in run-time and
in memory. Our work utilizes the classifica-
tion margin to identify informative samples,
which is efficient and can synergistically adapt to various training schemes. Comparison of these
strategies is given in Table 1, where d is the dimension of data feature. MS is slightly slower than
selection via loss (CE-loss and EL2N), but much more efficient than Craig and GradMatch. Here we
consider only the complexity of the selection strategy itself, time spent for feature extraction is not
included. Classification margin has been previously explored in the active learning literature (Ducoffe
& Precioso, 2018; Emam et al., 2021), here we utilize it for training acceleration.

Training Schemes Data selection brings more options to training. Under the conventional static
training scheme (Paul et al., 2021; Toneva et al., 2019; Coleman et al., 2020), data selection is
conducted prior to model update, and the informative subset is kept fixed. Contrastively, online batch
selection picks batch data each iteration (Loshchilov & Hutter, 2015; Alain et al., 2015; Zhang et al.,
2019; Mindermann et al., 2022). Though sufficiently considered the training dynamics, the overly
frequent sample evaluation incurs prohibitive computational overhead. Recently, (Killamsetty et al.,
2021) tried selecting after several epochs’ training, which is similar to our dynamic scheme. However,
the dynamic training scheme is just utilized as a compromise to avoid overly frequent selection. A
formal analysis of its advantage over the static scheme is absent.

By systematically considering the selection strategy, the model training, as well as the proxy design,
Our proposed DynaMS forms an effective data selection framework for efficient training.

4 EXPERIMENTS

In this section, we first analyse the effectiveness of each design ingredient in Section 4.2. Then
we compare to state-of-the-art algorithms in Section 4.3. Code is available at https://github.
com/ylfzr/DynaMS-subset-selection.

4.1 EXPERIMENTAL SETUP

We conduct experiments on CIFAR-10 Krizhevsky & Hinton (2009) and ImageNet Jia et al. (2009),
following standard data pre-processing in He et al. (2016). A brief summarization of the experimental
setup is introduced below, while complete hyper-parameter settings and implementation details can
be found in Appendix F.

CIFAR-10 Experiments For CIFAR-10, we train ResNet-18 (He et al., 2016) for 200 epochs.
Selection is conducted every 10 epochs, so overall there are 19 selections (K = 19). For subset
size, we adopt a simple linear schedule: γk = 1− k · a for k = 1, . . . ,K, where a determines the
reduction ratio. We make sure γavg = 1

K

∑K
k=1 γk = γs. In this way, the averaged number of data

used in the dynamic scheme (γavg) is kept equal to that of static training (γs) for fair comparison. For
0.6× acceleration, a = 0.042. We conduct experiments on a NVIDIA Ampere A-100.

ImageNet Experiments For ImageNet, we choose ResNet-18 and ResNet-50 as base models.
Following the conventions, the total training epoch is 120. Selection is also conducted every 10
epochs, so altogether K = 11. For subset size, aside from the linear schedule, we also explore a
power schedule where γk decays following a power law: γk = m · k−r + b for k = 1, 2, . . . ,K.
For 0.6× acceleration, we set m = 0.398, r = 0.237 and b = 0.290. Please see Appendix F for
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more details. The power schedule reserves more samples in late training, preventing performance
degradation caused by over data pruning. We conduct experiments on four NVIDIA Ampere A-100s.

4.2 ABLATION STUDIES

Table 2: Comparison of different data se-
lection strategies. Except for DynaMS, all
the other methods conduct training in the
conventional static scheme.

Strategy Top1 Acc. Top5 Acc.

CE-loss 72.073 91.727
EL2N 72.032 91.778
MS 72.888 91.807
DynaMS 74.558 92.334

Table 3: Accuracy of utilizing parameter sharing
proxy (PSP) with different width configurations.
FLOPs↓ is the reduction of FLOPs required when use
proxy for sample evaluation.

Width Top1 Acc. Proxy Top1 Acc. FLOPs ↓
1.00× 74.558 - -
0.75× 73.694 72.882 43.75%
0.50× 73.401 70.720 75.00%
0.25× 73.390 62.349 93.75%

We use ResNet-50 on ImageNet to illustrate the effect of each ingredient in DynaMS, that is, the
classification margin criteria, the dynamic training scheme as well as the parameter sharing proxy.

The effect of classification margin selection To inspect the effect of classification margin selec-
tion (MS), we compare MS against two widely applied selection strategies CE-loss (Loshchilov &
Hutter, 2015; Jiang et al., 2019) and EL2N (Paul et al., 2021). CE-loss selects samples explicitly
through the cross-entropy loss they incur while EL2N picks samples that incur large L2 error. We
compare the three under the conventional static scheme so any other factors aside from the selection
strategy is excluded. Samples are evaluated after 20 epochs of pretraining. The model is then
reinitialized and trained on the selected subset, which contains 60% original samples. As shown in
Table 2, MS achieves the best accuracy among the three, validating its effectiveness.

The effect of dynamic training We then apply dynamic selection on MS, where the average subset
size is also kept to be 60% of the original dataset. From Table 2 we see that DynaMS outperforms
MS by 1.67%, which is significant on large scale dataset like ImageNet. The superiority of DynaMS
validates that by constantly improving the model and updating the subset, dynamic selection scheme
can result in better performance. Note that DynaMS can be more practical since it does not require
the 20 epochs training prior to selection as required in the static scheme.

The effect of parameter sharing proxy We now study the parameter sharing proxy (PSP). An
effective proxy is supposed to be faithful, and can agilely adapt to model updates. In Figure 4, we
plot the Spearman rank correlation as well as the overlap ratio of samples selected with the proxy
and the model. We see that all along the training, the rank correlation is around 0.68, and over 78%
samples selected are the same, indicating that the proxy and the model are fairly consistent. We then
investigate how will the complexity, measured by floating point operations (FLOPs), of proxy affect.
We enumerate over the slimming factor p ∈ {0.25, 0.5, 0.75, 1.0} to construct proxies of different
widths, the corresponding FLOPs are 6.25%, 25.00%, 56.25%, 100% respectively. In Table 3, we see
that significant computation reduction can be achieved with moderate performance degradation.

4.3 COMPARISONS WITH STATE-OF-THE-ARTS

Finally, we compare DynaMS against various state-of-the-art methods. Aside from CE-loss and
EL2N, Random picks samples uniformly at random. GraNd (Paul et al., 2021) select samples
that incur large gradient norm. Forget (Toneva et al., 2019) counts how many times a sample is
mis-classified (forget) after it is learned. Samples more frequently forgotten are preferred. We
evaluate the forget score after 60 epochs training. To avoid noisy evaluation, many of these static
selection approaches ensembles networks before selection. The number of ensambled models is given
by the subscription. Auto-assist (Zhang et al., 2019) select samples that incur large loss value on a
small proxy. Selection is conducted in each iteration thus forming an online batch selection (OLBS)
scheme. DynaCE and DynaRandom apply the corresponding selection strategy, but are trained in a
dynamic way. CRAIG and GradMatch propose to reweight and select subsets so that they best cover
or approximate the full gradient. In the experiments, we use the per-batch variant of CRAIG and
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Table 4: Comparison for ResNet-18 on Cifar-10.

Methods Types Budget Schedule Acc. Time(min)

Original - 100% - 95.52 28.6
Random Stat. 60% - 94.09 17.4
EL2N1 Stat. 60% - 94.55 17.4+2.9

EL2N10 Stat. 60% - 95.34 17.4+29.5

GraNd10 Stat. 60% - 95.21 17.4+29.5

Forget10 Stat. 60% - 95.29 17.4+88.5

OnlineMS OLBS. 60% Const. 95.21 9076.3
Auto-assist OLBS. 60% Const. 92.37 24.6

DynaRandom Dyna. 60% Linear 94.45 20.9
DynaCE Dyna. 60% Linear 94.96 21.0
Craig Dyna. 60% Const. 94.36 28.7
GradMatch Dyna. 60% Const. 94.84 26.7
DynaMS Dyna. 60% Linear 95.28 21.3

Figure 4: Correlation of proxy and model.
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GradMatch proposed in (Killamsetty et al., 2021) with 10 epoch warm start 4. The two approaches
utilize dynamic selection scheme, all the training settings are kept the same as our DynaMS.

In table 4, average accuracy from 5 runs on CIFAR-10 as well as their running time are reported.
Due to limited space, the standard deviation is given in Appendix E. We see that DynaMS achieves
comparable performance against the strongest baselines (EL2N10, GraNd10, Forget10) while being
more efficient. Note that the static methods require pretraining one or several models for 20 epochs
before selection. Considering this cost (subscript of the reported running time), the acceleration of
these methods is less significant. We also compare two online batch selection methods, OnlineMS and
Auto-assist (Zhang et al., 2019). OnlineMS picks samples with MS, but the selection is conducted
each iteration. OnlineMS didn’t outperform DynaMS, meaning more frequent selection is not
necessary. Rather, selecting at each optimization step incurs prohibitive computational overhead.
Auto-assist didn’t get good performance in this experiment. This may results from the overly simple
proxy. The logistic regression proxy adopted may not sufficiently evaluate the candidate samples.

Table 5: Comparison for ResNet-18 and ResNet-50 on ImageNet.

Types Budget Schedule ResNet 18 ResNet 50

Acc@1 Acc@5 Time(hrs) Acc@1 Acc@5 Time(hrs)

Original - 100% - 70.56 89.95 12.8 75.96 92.75 18.2
Random Stat. 60% - 67.16 87.50 7.6 72.4 90.85 10.9
EL2N1 Stat. 60% - 66.38 88.56 7.6+2.1 72.03 91.78 10.9+3.0

EL2N10 Stat. 60% - 66.46 88.73 7.6+21.1 72.18 92.02 10.9+29.7

GraNd10 Stat. 60% - 66.50 88.76 7.6+21.1 72.14 92.16 10.9+29.7

Forget10 Stat. 60% - 67.84 87.50 7.6+63.1 73.50 91.41 10.9+89.1

SVP+Forget Stat. 60% - - - - 72.90 91.37 10.9+12.8

SVP+Entropy Stat. 60% - - - - 73.00 91.52 10.9+12.8

DynaRandom Dyna. 60% Power 67.59 87.62 8.9 72.63 90.91 12.1
DynaCE Dyna. 60% Power 67.58 88.10 9.2 72.80 91.31 12.5
Craig Dyna. 60% Const. 65.32 86.92 12.1 70.69 90.72 16.0
GradMatch Dyna. 60% Const. 66.48 88.61 11.7 71.79 91.67 15.2
DynaMS Dyna. 60% Linear 68.12 88.93 9.6 74.10 92.25 12.9
DynaMS Dyna. 60% Power 68.65 89.21 9.6 74.56 92.33 13.0
DynaMS+PSP Dyna. 60% Linear - - - 73.59 91.79 12.8
DynaMS+PSP Dyna. 60% Power - - - 73.40 91.80 12.8

4For cifar-10, we use the published implementation from https: //github.com/decile-team/cords. For Ima-
geNet, we modify the implementation to the distributed setting.
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Figure 5: Comparison under different (on average) sample budgets.

For ImageNet, we also report the average accuracy from 5 runs as well as their running time. The
standard deviation is given in Appendix E DynaMS outperforms all the baselines. For instance,
it achieves 68.65% and 74.56% top-1 accuracy given on average 60% samples for ResNet-18 and
ResNet-50 respectively, surpassing the most competitive counterpart Forget by 0.81% and 1.06%.
Compared to the static methods which require additional pretraining, 60 epochs for Forget and 20 for
the others, DynaMS is much more efficient. CRAIG and GradMatch didn’t get good performance
on ImageNet. This might because we use the per-batch variant in (Killamsetty et al., 2021), and
set batch size 512 in order to fit the per-sample gradients into memory. The per-batch variant treats
each mini-batch as one sample and selects mini-batches during the gradient matching process. So a
larger batch size means more coarse grain selection which may lead to inferior performance. We also
compare a variant DynaRandom. DynaRandom adopts the dynamic selection scheme but a random
subset is constructed at each selection. DynaMS outperforms DynaRandom by 1.06% and 1.93% for
ResNet-18 and ResNet-50 respectively, indicating that the superiority of DynaMS over static methods
comes from effectively identifying informative samples instead of witnessing more data.

ResNet-50 is rather complex and the data evaluation time is non-negligible. We thus apply parameter
sharing proxy to reduce the evaluation time. The proxy is 0.5× width so the evaluation requires
around 0.25× computation compared to the original model. As the gradients of the proxy and the
underlying model are well aligned, we only train DynaMS+PSP for 90 epochs. From table 5, though
utilizing a proxy harms performance compared to DynaMS, it still outperforms all the other baselines.
Specifically, SVP also uses a proxy for sample evaluation. The proxy, however, is a statically fully
trained ResNet-18. The superiority of DynaMS+PSP over SVP shows the necessity of a dynamic
proxy that agilely keeps up with the change of underlying model. The advantages of DynaMS+PSP
over DynaMS on efficiency can be significant for extremely large scale problems where massive
data is available while only a small fraction of data is sufficient for training. To further demonstrate
DynaMS, we draw the accuracy curvature of ResNet-50 against different (on average) sample budgets
from 60% to 100% in Figure 5. It can be found that our DynaMS consistently outperforms all the
other data selection strategies on different budgets. Finally, To get a better understanding of how the
selected samples look like and how they change over time, we visualize samples picked in different
selection steps along the training. See G for more details.

5 CONCLUSION

In this paper, we propose DynaMS, a general dynamic data selection framework for efficient deep
neural network training. DynaMS prefers samples that are close to the classification boundary and the
selected "informative" subset is dynamically updated during the model training. DynaMS has a high
probability to converge and we pioneer to show both in practice and theory that dynamic selection im-
proves the generalization over previous approaches. Considering the additional computation incurred
by selection, we further design a proxy available for dynamic selection. Extensive experiments and
analysis are conducted to demonstrate the effectiveness of our strategy.
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A APPENDIX

A ALGORITHM PROCEDURE

Algorithm 1 outlines the procedure of margin selection (MS). In MS, distances of the current sample
(x, y) to each other class c are computed. If y ̸= c, the classification margin of (x, y) and class c is
M(x, y, c), which is the distance of moving x from class y to class c. If y = c, the classification
margin is minc̃ ̸=y M(x, y, c̃), which corresponds to the distance moving (x, y) to another class that
is the most close to x. For the whole candidate set T , this generates a |T | × C score matrix. After
the classification margins are obtained, |S|/C samples with the smallest classification margin along
each class are picked. This keeps samples collected in the subset balanced.

Algorithm 1 Margin selection: MS(w, T , γ)

Input:
Candidate set T , keeping ratio γ, number of classes C;
Network with weights w, including weights of the final classification layer W ;

Output:
Selected subset according to the classification margin S.

1: Compute the keeping budget |S| = γ · |T |, initialize the subset S = {}
// Evaluating: compute the classification margin.

2: for (x, y) ∈ T do
3: for c = 1 : C do
4: Compute the classification margin of the sample to the (y, c) boundary:

M(x, y, c) =

{
minc̸̃=y M(x, y, c̃) y = c

M(x, y, c) y ̸= c
(4)

5: end for
6: end for

// Selecting: pick the samples according to classification margin (Equation 4.)
7: for c = 1 : C do
8: Pick |S|/C samples which have the smallest classification margins (M(·)): Top|S|/C(c).
9: S = S

⋃
Top|S|/C(c)

10: Remove the already selected samples from the candidate set: T = T − Top|S|/C(c)
11: end for

Algorithm 2 Dynamic margin selection (DynaMS)
Input:

Training data T ;
Base network with weights W , learning rate η
Keep ratio of each selection γk where k = 1, ...,K, selection interval Q

Output:
Model efficiently trained on selected subsets.

1: k = 1; γk = 1 thus Sk = T
2: for epochs t = 1, ..., T do
3: if t % Q == 0 then
4: Select subset, Sk = MS(Wt, T , γk).
5: k = k + 1
6: else
7: Keep subset Sk.
8: end if
9: Update W via stochastic gradient descent on Sk.

10: end for
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Algorithm 3 Dynamic margin selection (DynaMS) with parameter sharing proxy (PSP)
Input:

Training data T ;
Base network with weights W , learning rate η
Keep ratio of each selection γk where k = 1, ...,K, selection interval Q
Slimming factor of the proxy r, thus the proxy weights Wproxy is determined.

Output:
Model efficiently trained on selected subsets.

1: k = 1; γk = 1 thus Sk = T
2: for epochs t = 1, ..., T do
3: if t % Q == 0 then
4: Select subset, Sk = MS(Wt

proxy, T , γk).
5: k = k + 1
6: else
7: Keep subset Sk.
8: end if
9: Update W via optimizing L(W) + L(Wproxy) on Sk. (Slimmable training)

10: end for

A full workflow of efficient training with the proposed dynamic margin selection (DynaMS) is shown
in Algorithm 2. The model is first trained on the full dataset T for Q epochs to warm up. Subset
selection kicks in each Q epochs, samples are evaluated with the current model so the informative
subset gets updated according to the distance of samples to the classification boundary. After selection,
the model is trained on the selected subset until the next selection. The workflow incorporating
parameter sharing proxy is shown in Algorithm 3. Different from naive DynaMS, samples are
evaluated and selected with the proxy instead of the underlying model. During the Q epochs’ training,
the proxy and the original model are updated simultaneously with slimmable training (Yu et al.,
2019).

B PROOF FOR THEOREM 2.2

To prove Theorem 2.2, we first inspect the norm of x. We get the following lemma.

Lemma 1. For Gaussian data x ∼ N (0,Σ), let µ > 0, T > 1 be constants, d the dimension
of x and λ the largest eigenvalue of the covariance Σ, then with probability at least 1 − 1

µTd ,

∥x∥2 <
√
dλ(1 + (2µ)

1
4 )T

1
4 .

Proof of Lemma 1. For x ∼ N (0,Σ), ∥x∥22 follows a generalized chi-squared distribution. The
mean and variance can be computed explicitly as E[∥x∥22] = trΣ =

∑
j λj and Var(∥x∥22) =

2trΣ2 = 2
∑

j λ
2
j . By Chebyshev’s inequality, we have

Pr

∥x∥22 <
∑

λj +
√
µTd

√
2
∑
j

λ2
j

 > 1− 1

µTd

where µ > 0 and T > 1 are constants and d is the dimension of x. Then

as
∑

λj +
√
µTd

√
2
∑

j λ
2
j ≤ (1 +

√
2µT )dλ where λ = maxj λj is the largest eigenvalue of the

covariance Σ, we have:

Pr
(
∥x∥2 <

√
dλ(1 + (2µ)

1
4 )T

1
4

)
> 1− 1

µTd
(5)

Then we can start proving Theorem 2.2.

Theorem. Consider logistic regression f(x) = 1

1+e−w⊤x
with N Gaussian training samples x ∼

N (0,Σ), x ∈ Rd. Assume ∥w∥2 ≤ D and N
d < α. Let w∗ be the optimal parameters and λ be
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the largest eigenvalue of the covariance Σ. For t ∈ {1, . . . T} and constants ε > D
√

λ
2 − 1, ζ >

1, µ >> α, select subset with critical margin κt = (1 + ε) log(ζT − t) and update parameters with
learning rate η = DN

E
√
T

. Then with probability at least 1− α
µ

min
t

L(wt)− L(w∗) ≤ DE

(
1

T
1
4

+
cε,ζ

T
3
4+ε

+
cε,ζ,λ
T β

)
(6)

where E =
√
dλ(1 + (2µ)

1
4 ), β = (1+ε)2

2D2λ − 1
4 , cε,ζ and cε,ζ,λ are constants depending on ε, ζ and

λ.

Proof of Theorem 2.2. For logistic regression f(x) = 1

1+e−w⊤x
with loss function

L =
1

N

N∑
i=1

ℓi =
1

N

N∑
i=1

−yi log ŷi − (1− yi) log(1− ŷi) (7)

Where ŷi is the predicted value. The gradient incurred training on the selected subset is then:

∂Lκ

∂w
=

1

N

N∑
i=1

(ŷi − yi)xi · I(|w⊤xi| < κ)

For those |w⊤xi| ≥ κ or "easy" samples, we have | sgn(yi − 1
2 ) ·w

⊤xi| ≥ κ and with probability at
least 1− 1

µTd ∥∥∥∥ ∂ℓi∂w

∥∥∥∥
2

≤

{
E·T

1
4

1+eκ if sgn(yi − 1
2 ) ·w

⊤xi ≥ κ

E · T 1
4 if sgn(yi − 1

2 ) ·w
⊤xi ≤ −κ

(8)

where E =
√
dλ(1 + (2µ)

1
4 ). Note that the condition sgn(yi − 1

2 ) · w
⊤xi ≤ −κ means xi is

misclassified by w as well as the margin is at least κ. Denote the portion of this kind of misclassified
sample in the whole training set by r, we have the estimate of the gradient gap

Errt =

∥∥∥∥∂Lκ

∂w
− ∂L

∂w

∥∥∥∥
2

=
1

N

∥∥∥∥∥∥
∑

|w⊤x|≥κ

∂ℓ

∂w
(x)

∥∥∥∥∥∥
2

≤ET
1
4 (1− γt)

1 + eκt
+ ET

1
4 (1− γt)rt

(9)

Where γt is the fraction of data kept by selecting with margin κt. The inequality holds with probability
at least (1− 1

µTd )
N > 1− α

µT because of Equation 8.

Note that Lemma 1 also suggest
∥∥ ∂ℓ
∂w

∥∥
2
≤ E · T 1

4 with large probability, therefore L is highly likely
to be Lipschitz continuous with parameter ET

1
4 . By setting a constant learning rate η = DN

E
√
T

, and

critical margin κt = (1+ε) log(ζT −t), ζ > 1, we have with probability at least
(
1− α

µT

)T ≥ 1− α
µ

min
t

L(wt)− L(w∗) ≤ DE

NT
1
4

+
D

T

T−1∑
t=1

Errt

≤ DE

NT
1
4

+
DE

T
3
4

T−1∑
t=1

1

(ζT − t)1+ε
+

DE

T
3
4

T−1∑
t=1

rt

≤ DE

T
1
4

(
1

N
+

cε,ζ

T ε
√
T

)
+

DE

T
3
4

T−1∑
t=1

rt

(10)

The first inequality follows the Theorem 1 in (Killamsetty et al., 2021). The last inequality holds
because

∑T−1
t=1

1
(ζT−t)1+ε ≤

∫ ζT

(ζ−1)T
1

s1+ε ds ≤ cε,ζ
T ε with cε,ζ = 1

ε(ζ−1)ε ,∀ε > 0 and ζ > 1.

To bound the sum of classification error (the last term of Equation 10), again we utilize the data
distribution prior. Note that the data points contribute to r are quantified by the following set:

E = {w⊤
o x > 0 ∧w⊤x < −κ} ∪ {w⊤

o x < 0 ∧w⊤x > κ} := E1 ∪ E2
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where wo is the oracle classifier such that the true label is generated according to y = sgn(w⊤
o x).

Let ϕ represent the probability density function of standard Gaussian, we see that

r =

∫
E

ϕ(x|Σ)dx = 2

∫
E1

ϕ(x|Σ)dx

≤2

∫
{w⊤·x<−κ}

ϕ(x|Σ)dx = 2Φ

(
− κ√

w⊤Σw

)
≤2Φ

(
− κ

D
√
λ

)

where λ is the largest eigenvalue of Σ. Therefore, we have the following estimation:

1

T
3
4

T−1∑
t=1

rt ≤
1

T
3
4

T−1∑
t=1

2Φ

(
− κt

D
√
λ

)

≤ 2

T
3
4

T−1∑
t=1

ϕ(κt/(D
√
λ))

κt/(D
√
λ)

(Gaussian upper tail bound)

=
2D

√
λ√

2π(1 + ε)

1

T
3
4

T−1∑
t=1

1

log(ζT − t)
e−

(1+ε)2

2D2λ
log2(ζT−t)

≤ 2D
√
λT

1
4

√
2π(1 + ε)

1

log((ζ − 1)T + 1)

1

((ζ − 1)T + 1)
(1+ε)2

2D2λ
log((ζ−1)T+1)

≤ cε,ζ,λT
−β

(11)

where β = (1+ε)2

2D2λ − 1
4 and we assume log((ζ − 1)T + 1) = Ω(1) with respect to T . Together we

prove the theorem 2.2.

C GENERALIZATION

Sorscher et al. (2022) analysed the generalization of static training scheme in the teacher-student
perceptron setting, where the teacher is an "oracle" generating labels. For the training set T =

{xi, yi}|T |
i=1, assume xi ∼ N (0, I) and there exists an oracle model wo ∈ Rd which generates the

labels such that yi = sign
(
w⊤

o xi

)
for all i. Without loss of generality, the oracle is assumed to be

drawn form a sphere. Sorscher et al. (2022) works in a high dimensional statistics where |T |, d → ∞
but the ratio α = |T |/d remains O(1).

Following the static training scheme, a lower fidelity estimator westimate which has angle θ relative
to the oracle wo is used to evaluate the candidate instances, and those with smaller classification
margin |w⊤

estimatexi| along the estimator westimate are picked. The selection results in a subset S. S
follows p(z), a truncated Gaussian distribution along westimate, while the other directions are still
kept isotropic. More specifically, given a keeping ratio γ, the corresponding selection margin is

κ = H−1
(
1−γ
2

)
and thus the subset distribution along westimate is p(z) = e−z2/2

√
2πγ

Θ(κ−|z|), where
Θ(x) is the Heaviside function and H(x) = 1 − Φ(x) where Φ(x) is the cumulative distribution
function (CDF) of standard Gaussian.

The generalization error of the model trained on the subset S takes the form E(α, γ, θ). That is, the
error is determined by γ the keeping ratio, α which indicates the abundance of training samples
before selection, and θ which shows the closeness of the estimator to the oracle model. The full set of
self-consistent equations characterizing E(α, γ, θ) is given as
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Where,

Λ =

√
sin2 θ −R2 − ρ2 + 2ρR cos θ

Γ(t, z) = z(ρR− cos θ)− τ(R− ρ cos θ)

∆(t, z) = z2
(
ρ2 + cos2 θ − 2ρR cos θ

)
+ 2τz(R cos θ − ρ) + τ2 sin2 θ

τ is an auxiliary field introduced by Hubbard-Stratonovich transformation. ⟨·⟩z denotes expectation on
p(z). By solving these equations the generalization error can be easily read off as E = cos−1(R)/π,
where R = w⊤wo

∥w∥2·∥wo∥ .

D MORE RESULTS ON GENERALIZATION
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(a) Smaller budget (γavg = 50%).
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(b) Less abundant data (α = 2.1).
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(c) Better estimator (θ = 30◦).

Figure 6: Effects of select ratio γavg, initial data abundance α and the closeness of the estimator to
the oracle model θ on the generalization.
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Figure 7: Generalization in a data
scarce regime (α = 1.7).

To better understand the generalization under classification
margin selection E(α, γ, θ), we provide more results to indi-
vidually inspect the effect of (on average) select ratio γavg,
initial data abundance α and the closeness of the estimator to
the oracle mode θ. As shown in Figure 6(a), we changed γavg
from 60% to 50%, thus constructing a smaller selection budget
case. In Figure 6(b), we use α = 2.1 instead of α = 3.2
to construct a less abundant data case, where the data before
selection is insufficient. In Figure 6(c), we start selecting sam-
ples using a better estimator θ = 30◦ instead of θ = 40◦. All
the other hyper-parameters aside from the inspected one are
kept consistent to those used Figure 2(b), that is, γavg = 0.6,
α = 3.2 and θ = 40◦. We see that with various γavg and θ,
DynaMS outperforms its static counterpart. The abundance of initial data, however, significantly
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affects. When data is insufficient, data selection, both static as well as dynamic cause obvious
performance degradation. Figure 7 shows a even more serious α = 1.7, the generalization landscape
is significantly changed and data selection is not recommended in this case.

E COMPARISON WITH STANDARD DEVIATION

We test each method in Table 4 and Table 5 5 times. The averaged accuracy and standard deviation
are reported below in Table 6 and Table 7.

Table 6: Comparison for ResNet-18 on Cifar-10 with standard deviation.

Methods Types Budget Schedule Accuracy.

Original - 100% - 95.52±0.09
Random Stat. 60% - 94.09±0.23
EL2N1 Stat. 60% - 94.55±0.15
EL2N10 Stat. 60% - 95.34±0.13
GraNd10 Stat. 60% - 95.21±0.15
Forget10 Stat. 60% - 95.29±0.12

OnlineMS OLBS. 60% Const. 95.21±0.18
Auto-assist OLBS. 60% Const. 92.37±0.24

DynaRandom Dyna. 60% Linear 94.45±0.17
DynaCE Dyna. 60% Linear 94.96±0.21
Craig Dyna. 60% Const. 94.36±0.19
GradMatch Dyna. 60% Const. 94.84±0.17
DynaMS Dyna. 60% Linear 95.28±0.15

Table 7: Comparison for ResNet-18 and ResNet-50 on ImageNet with standard deviation

Types Budget Schedule ResNet 18 ResNet 50

Top1 Acc. Top5 Acc. Top1 Acc. Top5 Acc.

Original - 100% - 70.56±0.04 89.95±0.02 75.96±0.04 92.75±0.02
Random Stat. 60% - 67.16±0.10 87.50±0.07 72.46±0.10 90.85±0.04
EL2N1 Stat. 60% - 66.38±0.09 88.56±0.05 72.03±0.12 91.78±0.04
EL2N10 Stat. 60% - 66.46±0.10 88.73±0.04 72.18±0.10 92.02±0.06
GraNd10 Stat. 60% - 66.50±0.06 88.76±0.03 72.14±0.06 92.16±0.03
Forget10 Stat. 60% - 67.84±0.08 87.50±0.03 73.50±0.06 91.41±0.04
SVP+Forget Stat. 60% - - - 72.90±0.10 91.37±0.04
SVP+Entropy Stat. 60% - - - 73.00±0.01 91.52±0.01

DynaRandom Dyna. 60% Power 67.59±0.05 87.62±0.03 72.63±0.12 90.91±0.08
DynaCE Dyna. 60% Power 67.58±0.10 88.10±0.04 72.80±0.08 91.31±0.03
Craig Dyna. 60% Const. 65.32±0.08 86.92±0.04 70.69±0.07 90.72±0.02
GradMatch Dyna. 60% Const. 66.48±0.11 88.61±0.04 71.79±0.07 91.67±0.03
DynaMS Dyna. 60% Linear 68.12±0.13 88.93±0.06 74.10±0.09 92.25±0.03
DynaMS Dyna. 60% Power 68.65±0.11 89.21±0.04 74.56±0.09 92.33±0.03
DynaMS+PSP Dyna. 60% Linear - - 73.59±0.09 91.79±0.07
DynaMS+PSP Dyna. 60% Power - - 73.40±0.08 91.80±0.01

F IMPLEMENTATION DETAILS AND HYPER-PARAMETERS

Subset size schedule Dynamic Selection admits more freedom in subset size schedule. In the
experiments we consider the linear schedule and the power schedule. For linear schedule, the keeping
ratio is determined by γk = 1− k · a for k = 1, 2, . . . ,K, where a determines the sample reduction
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ratio. γ is supposed to satisfy γavg = 1
K

∑K
k=1 γk = γs where γs is the selection ratio when a static

training scheme is applied. Thus 1
K

∑K
k=1 |Tk| = |S|, meaning the averaged number of data used in

the dynamic scheme is kept equal to that of static training.

Aside from the linear scheduler, we also explore a power schedule where γk = m · k−r + b for
k = 1, 2, . . . ,K. Power schedule reserves more samples in late training, preventing performance
degradation caused by over data pruning. Determining these hyper-parameters m, r, b is a bit tricky,
we just require γ1 = 1.0 to warm start and γavg = 1

K

∑K
k=1 γk = γs for fair comparison. γK should

not be overly small, we empirically find γK ≈ γ − 0.1 yield good results. For different budget
γs = {0.6, 0.7, 0.8, 0.9} the hyper-parameters are given in Appendix F, Table 8. Post process is
carried out to make sure the resulting subset size sequence satisfy the above requirements.
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Figure 8: Different schedules for γs = 0.6 budget.

(Killamsetty et al., 2021) utilize a constant
schedule, where in each selection the subset size
is kept constant as γs · |T |. This schedule how-
ever, do not admit selection without replacement.
Linear and power schedule are all monotonically
decreasing, thus are natural choices consider-
ing this. Figure 8 plots the three schedules on
γs = 0.6 budget. In this paper we just provide a
primary exploration on the subset size schedule,
in depth study on the relationship between the
subset size and the model performance as well
as an automatic way determining the optimal
subset size schedule is left for future work.

Hyper-parameters Finally, the detailed hyper-parameters for DynaMS on both CIFAR-10 and
ImageNet datasets are shown in Table 8. Note that for DynaMS+PSP, the Max Epochs is set to be 90
on ImageNet.

Table 8: Hyper-parameters of DynaMS for different models on CIFAR-10 and ImageNet.

Hyper-parameters CIFAR-10 ImageNet

ResNet-18 ResNet-18 ResNet-50

Batch Size 128 512 512
Init. Learning Rate of W 0.1 0.1 0.1
Learning Rate Decay Stepwise 0.2 Stepwise 0.1 Stepwise 0.1
Lr Decay milestones {60,120,160} {40,80} {40,80}
Optimizer SGD SGD SGD
Momentum 0.9 0.9 0.9
Nestrov True True True
Weight Decay 5e-4 1e-4 1e-4
Max Epochs 200 120 120
Selection interval 10 10 10

Power Scheduler -

60%: m = 0.3984, r = 0.2371, b = 0.2895
70%: m = 0.3476, r = 0.2300, b = 0.4275
80%: m = 0.3532, r = 0.1349, b = 0.4978
90%: m = 0.2176, r = 0.1035, b = 0.7078

Linear Scheduler

a = 0.041 60%: a = 0.073
- 70%: a = 0.055
- 80%: a = 0.036
- 90%: a = 0.018
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k=1

k=4

k=7

k=10

Figure 9: Images selected at different training stages of the model. As in (Sorscher et al., 2022), we
show results on ImageNet class 100 (black swan).

G VISUALIZATION OF DYNAMICALLY SELECTED IMAGES

To get a better understanding of how the selected samples look like and how they change over time,
we visualize samples picked in different selection steps along the training. For k = 1, k = 4, k =
7 and k = 10, which corresponds to the 1,4,7 and 10th selection, we randomly visualize selected
samples that are absent in the latter selection. E.g. the k = 4 row shows images picked in the 4th
selection but not in the 7th selection. From Figure 9, we see that in the early selections, amounts of
easy-to-recognize samples are kept. As the training proceeds, these simple images are screened out
and the model focuses more on harder samples that are atypical, blurred, or with interfering objects,
validating our hypothesis that samples most informative change as the model evolves. Dynamic
selection is thus indispensable.
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H SUMMARY OF NOTATIONS

Table 9: Summary of the notations used throughout this paper. Variables only used in theoretical
analysis including the convergence analysis and the generalization analysis are grayed for better
readability.

Topic Notation Explanation

Data (sub) Sets T The full training set
| · | Cardinality of a set
x data sample
y data label
S The extracted subset
C The number of classes
c The cth class

Models and Parameters f(·) The model used for classification
w Parameters of the model
w∗ Optimal model parameter
wo Oracle model parameter
W Parameter of the linear classifier
W Kernel of a convolutional layers
g gradient incurred by the model
gproxy gradient incurred by the proxy
d The dimension of data feature
h(·) Feature extractor part of the model f(·)
p Slimming factor, deciding the width of the proxy model

Selection schedule a Sample reduction ratio in the linear schedule
m, r, b Hyper-parameters controlling the power schedule

Loss Functions L Generic reference to the loss function

Data Selection B Decision boundary of linear classifiers
Q Selection interval
M The classification margin aka. distance of a sample to decision boundary
γk Selection budget, keep ratio of samples for the kth selection
γavg The averaged keep ratio of dynamic selection
γs Selection budget in static selection.
k Selection step
K The total number of selections along training
E The generalization error of model trained on selected subset
θ Relative angle of a model to the oracle model.
α Aboundance of data before selection
κ Selection margin.

Train t Training epoch
T The total number of training epochs, T = Q · (K + 1)

Data Distribution Σ Covariance of a Gaussian distribution
λ The largest eigenvalue of the covariance matrix

Hyper-parameters D Upper bound of model parameter norm
ε, ζ, µ Constants appear in the convergence bound.
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