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Abstract

Graph clustering is an important unsupervised learning technique for partitioning graphs
with attributes and detecting communities. However, current methods struggle to accurately
capture true community structures and intra-cluster relations, be computationally efficient,
and identify smaller communities. We address these challenges by integrating coarsening and
modularity maximization, effectively leveraging both adjacency and node features to enhance
clustering accuracy. We propose a loss function incorporating log-determinant, smoothness,
and modularity components using a block majorization-minimization technique, resulting
in superior clustering outcomes. The method is theoretically consistent under the Degree-
Corrected Stochastic Block Model (DC-SBM), ensuring asymptotic error-free performance
and complete label recovery. Our provably convergent and time-efficient algorithm seamlessly
integrates with Graph Neural Networks (GNNs) and Variational Graph AutoEncoders
(VGAEs) to learn enhanced node features and deliver exceptional clustering performance.
Extensive experiments on benchmark datasets demonstrate its superiority over existing
state-of-the-art methods for both attributed and non-attributed graphs.

1 Introduction
Clustering is an unsupervised learning method that groups nodes together based on their attributes or graph
structure, without considering node labels. This versatile approach has numerous applications in diverse
fields, such as social network analysis (Tang et al., 2008), genetics, and bio-medicine (Cheng & Ma, 2022;
Buterez et al., 2021), knowledge graphs (Hamaguchi et al., 2017), and computer vision (Mondal et al., 2021;
Caron et al., 2018). The wide range of applications has led to the development of numerous graph clustering
algorithms designed for specific challenges within these domains. State-of-the-art graph clustering methods
predominantly fall into cut-based, similarity-driven, or modularity-based categories.

Cut-based methods (Wei & Cheng, 1989; Shi & Malik, 2000; Bianchi et al., 2020), aiming to minimize the
number of edges (or similar metric) in a cut, may fall short in capturing the true community structure if the
cut’s edge count doesn’t significantly deviate from random graph expectations. This approach originated from
the Fiedler vector, which yields a graph cut with a minimal number of edges over all possible cuts (Fiedler,
1973; Newman, 2006a). Similarity-based techniques, reliant on pairwise node similarities, group nodes with
shared characteristics. These can be computationally intensive and susceptible to noise, yielding suboptimal
results, especially in sparse or noisy data scenarios. Modularity-based methods rely on a statistical approach,
measuring the disparity in edge density between a graph and a random graph with the same degree sequence.
These modularity maximization methods exhibit a resolution limit (Fortunato & Barthélemy, 2007), as they
may inadvertently lead to the neglect of smaller community structures within the graph. Each clustering
approach, whether cut-based, similarity-based, or modularity-based, bears its own set of limitations that
necessitates careful consideration based on the characteristics of the underlying graph data.

Moreover, graph reduction techniques such as coarsening, summarization, or condensation can also be utilized
to facilitate the clustering task (Dhillon et al., 2007; Kumar et al., 2023; Loukas & Vandergheynst, 2018;
Loukas, 2019). In the context of graph coarsening, the objective is to learn a reduced graph by merging
similar nodes into supernodes. While this coarsening process is traditionally employed for graph reduction, it
can be extended to clustering by reducing the original graph such that each class corresponds to a supernode.
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However, relying solely on coarsening may lead to suboptimal performance, particularly when the order of
the reduction from the original graph size to the number of classes is large and results in a significant loss of
information.

In this study, we introduce an optimization-based framework designed to enhance clustering by leveraging
both the adjacency and the node features of the graph. Our proposed framework strategically incorporates
coarsening and modularity maximization, refining partitioning outcomes and bolstering the effectiveness of
the clustering process. The algorithm minimizes a nuanced loss function, Q-MAGC objective, encompassing
a log det term, smoothness, and modularity components, to ensure efficient clustering. Formulated as a
multi-block non-convex optimization problem, our approach is adeptly addressed through a block majorization-
minimization technique, wherein variables are updated individually while keeping others fixed. The resulting
algorithm demonstrates convergence, showcasing its efficacy in efficiently solving the proposed optimization
problem.

To enhance the clustering performance, we embed our Q-MAGC objective function into various Graph
Neural Network (GNN) architectures, introducing the Q-GCN algorithm. This novel approach elevates the
quality of learned representations by leveraging the message passing and aggregation mechanisms of Graph
Convolutional Networks (GCNs), ultimately improving the clustering outcomes. An additional feature of
our technique is its capacity to explore inter-cluster relationships. The node attributes derived from the
coarsened graph at the conclusion of the process serve as cluster embeddings, shedding light on the distinct
characteristics of each cluster. Simultaneously, the edges within the coarsened graph unveil valuable insights
into the relationships and connections between different clusters, providing a comprehensive understanding of
the overall graph structure. This is a contributing factor to the improvement observed over existing methods
and is particularly significant for conducting first-hand analyses on large unlabelled datasets.

We introduce two additional algorithms, Q-VGAE and Q-GMM-VGAE, incorporating variational graph
auto-encoders to further enhance clustering accuracy. Through comprehensive experiments, we demonstrate
the effectiveness of our proposed algorithms, surpassing the performance of state-of-the-art methods on
synthetic and real-world benchmark datasets. Our approach showcases notable improvements in clustering
performance, solidifying the robustness and superiority of our proposed methods.

Key Contributions.

• We present the first optimization-based framework for attributed graph clustering through coarsening via
modularity maximization. Our approach demonstrates efficiency, theoretical convergence, and addresses
limitations of existing methods. The paper offers comprehensive analysis and provides theoretical guarantees
including KKT optimality, and convergence analysis which are often absent in prior research.

• We show that our method is theoretically (weakly and strongly) consistent under a Degree-Corrected SBM
(DC-SBM) and shows asymptotically no errors (weakly consistent) and complete recovery of the original
labels (strongly consistent).

• We demonstrate the seamless integration of the proposed clustering objective with GNN-based architectures,
leveraging message-passing to enhance our method, which is also backed up by experiments. 1

• We perform thorough experimental validation on a diverse range of real-world and synthetic datasets,
encompassing both attributed and non-attributed graphs of varying sizes. The results demonstrate the
superior performance of our method compared to existing state-of-the-art approaches. We want to highlight
that our method does not specialise for very large graphs, yet we present preliminary results in this regard.

• We conduct ablation studies to evaluate the behavior of the loss terms, compare runtime and complexities,
and perform a comprehensive evaluation of modularity.

Notations. Let G = {V, E, A, X} be a graph with node set V = {v1, v2, ..., vp} (|V | = p), edge set
E ⊂ V × V }(|E| = e), weight (adjacency) matrix A and node feature matrix X ∈ Rp×n. Also, let
d = A · 1p ∈ Zp

+ be the degree vector, where 1p is the vector of size p having all entries 1. Then, the graph
1Refer to Appendix K for the code
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Laplacian is Θ = diag(d)−A and the set of all valid Laplacian matrices is defined as: SΘ = {Θ ∈ Rp×p|Θij =
Θji ≤ 0 for i ̸= j, Θii =

∑p
j=1 Θij}.

2 Related Works

In this section, we review relevant existing works and highlight their limitations, thereby motivating the need
for an improved clustering formulation.

Graph Clustering via Coarsening. Graph coarsening can be extended to graph clustering by reducing
the size of the coarsened graph to the number of classes (k). However, in most graphs, the number of classes
is very small, and reducing the graph to this extent may lead to poor clustering quality. DiffPool (Ying et al.,
2018) learns soft cluster assignments at each layer of the GNN and optimizes two additional losses, an entropy
to penalize the soft assignments and a link prediction based loss. Next, SAGPool (Lee et al., 2019) calculates
attention scores and node embeddings to determine the nodes that need to be preserved or removed. Top-k
(Gao & Ji, 2019) also works by sparsifying the graph with the learned weights. MinCutPool (Bianchi et al.,
2020) formulates a differentiable relaxation of spectral clustering via pooling. However, Tsitsulin et al. (2023)
show that MinCutPool’s orthogonal regularization dominates over the clustering objective and the objective
is not optimized. Some disadvantages of these methods are instability and computational complexity in the
case of SAGPool and DiffPool and convergence in MinCutPool. To address these challenges, we need a better
loss function to perform the clustering task effectively.

Deep Graph Clustering. Previous literature can be classified based on contrastive and non-contrastive
methods. On the non-contrastive side, Pan et al. (2018) proposed ARGA and ARVGA, enforcing the latent
representations to align to a prior using adversarial learning. By utilizing an attention-based graph encoder
and a clustering alignment loss, Wang et al. (2019) propose DAEGC. Liu et al. (2022) design the DCRN model
to alleviate representation collapse by a propagation regularization term minimizing the Jensen Shannon
Divergence (JSD) between the latent and its product with normalized A. Contrastive methods include AGE
(Cui et al., 2020) which builds a training set by adaptively selecting node pairs that are highly similar or
dissimilar after filtering out high-frequency noises using Laplacian smoothing. Zhao et al. (2021) propose
GDCL to correct the sampling bias by choosing negative samples based on the clustering label.

VGAEs (Kipf & Welling, 2016a) are an increasingly popular class of GNNs that leverage variational inference
(Kingma & Welling, 2014) for learning latent graph representations in unsupervised settings. They reconstruct
the adjacency matrix after passing the graph through an encoder-decoder architecture. Many attempts have
been made to use VGAEs with k-means on latent embeddings, but it has been unsuitable for clustering.
This is primarily because embedded manifolds obtained from VGAEs are curved and must be flattened
before any clustering algorithms using Euclidean distance are applied. Refer to Appendix Section L for a
detailed explanation. VGAEs only use a single Gaussian prior for the latent space, whereas clustering requires
the integration of meta-priors. Additionally, the inner-product decoder fails to capture locality and cluster
information in the formed edges. Several clustering-oriented variants of VGAEs (Mrabah et al., 2022; Hui
et al., 2020) have been developed that overcome most of these challenges. GMM-VGAE (Hui et al., 2020)
partitions the latent space using a Gaussian Mixture Model and assigns a separate prior for each cluster
to better model complex data distributions. Despite the improvement in performance, it’s inner-product
decoder cannot capture locality information.

Modularity Maximization. Various heuristic algorithms have been established that solve the NP-hard
problem of modularity maximization including sampling, simulated annealing (Guimerà & Nunes Amaral,
2005; Guimerà & Amaral, 2005), and greedy algorithms (Louvain/Leiden) (Newman, 2004; Blondel et al.,
2008). These algorithms require intensive compute and don’t use node features. Modularity maximization
using GNNs has also garnered attention recently. DMoN (Tsitsulin et al., 2023) optimizes only for modularity
with a collapse regularization to prevent the trivial solution, but offers no theoretical guarantees about
convergence. Modularity-Aware GAEs and VGAEs (Salha-Galvan et al., 2022) use a prior membership matrix
using Louvain algorithm and optimize for modularity using an RBF kernel as a proxy for same-community
assignment. DGCLUSTER (Bhowmick et al., 2023) is a semi-supervised method that makes use of either a
subset of labels or pairwise memberships as Auxiliary Information coupled with modularity.
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3 Background

In this section, we introduce the concepts that play a key role in the formulation of our method.

3.1 Graph Coarsening

Graph coarsening is a graph dimensionality reduction technique used in large-scale machine learning to
construct a smaller or coarsened graph Gc from the original graph G = {V, E, A, X} while preserving
properties of the original graph G. Graph coarsening aims to learn a mapping matrix C ∈ Rp×k

+ , where p
is the number of nodes in the original graph and k is the number of nodes in the coarsened graph. Each
non-zero entry of the mapping matrix C, i.e., Cij , indicates that the i-th node of G is mapped to the j-th
supernode. Moreover, for a balanced mapping, the mapping matrix C belongs to the following set (Kumar
et al., 2023; Loukas & Vandergheynst, 2018; Loukas, 2019):

C =
{

C ∈ Rp×k
+ | ⟨Ci, Cj⟩ = 0 ∀ i ̸= j, ⟨Ci, Ci⟩ = di, ∥Ci∥0 ≥ 1 and

∥∥[C⊤]i
∥∥

0 = 1
}

(1)

For C ∈ C, the relationship between the original graph Laplacian Θ, the coarsened graph Laplacian Θc, and
the mapping matrix C is given by Θc = CT ΘC.

3.2 Spectral Modularity Maximization

Spectral Clustering is the most direct approach to graph clustering, where we minimize the volume of
inter-cluster edges. Modularity, introduced in Newman (2006b), is the difference between the number of
edges within a cluster Ci and the expected number of such edges in a random graph with an identical degree
sequence. It is mathematically defined as:

Q = 1
2e

k∑
i,j=1

[
Aij −

didj

2e

]
δ(ci, cj) (2)

where δ(ci, cj) is the Kronecker delta between clusters i and j. Maximizing this form of modularity is
NP-hard (Brandes et al., 2008). However, we can approximate it using a spectral relaxation, which involves a
modularity matrix B. The modularity matrix B and spectral modularity are defined as follows:

B = A− ddT

2e
, d = A · 1, Q = 1

2e
Tr(CT BC) (3)

B is symmetric and is defined such that its row-sums and column-sums are zero, thereby making 1 one of its
eigenvectors and 0 the corresponding eigenvalue. These spectral properties of the modularity matrix are also
observed in the Laplacian, as noted in Newman (2006b), which is a crucial element in spectral clustering.
Modularity is maximized when uT

1 s is maximized, where u are the eigenvectors of B and s is the community
assignment vector, i.e., placing the majority of the summation in Q on the first (and largest) eigenvalue of
B. Moreover, modularity is closely associated with community detection. These special spectral properties
make B an ideal choice for graph clustering. While modularity maximization has been extensively studied,
heuristic algorithms for it are computationally intensive, such as the Newman-Girvan algorithm with O(p3)
time complexity. The Louvain/Leiden algorithms (Newman, 2004; Blondel et al., 2008) improve on this.

3.3 Motivation and Proposed Problem Formulation

Current graph clustering methods often struggle to accurately capture both intra-cluster and inter-cluster
relationships, achieve computational efficiency, and identify smaller communities, thereby limiting their
effectiveness. These methods face significant challenges including instability and the lack of convergence
guarantees, especially when employing coarsening techniques. Modularity maximization, despite extensive
study, relies on computationally intensive heuristics and lacks theoretical convergence guarantees. To address
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these issues, we propose an optimization-driven framework that strategically integrates coarsening and
modularity. By incorporating both adjacency and node features, our approach aims to robustly capture
intra-cluster and inter-cluster dynamics. This framework ensures stability, guarantees convergence, and
consistently delivers superior clustering results with enhanced computational efficiency compared to existing
methods. Given original graph G(V, E, A, X), the proposed generic optimization formulation is:

min
C
LMAGC = f(C, X, Θ) + g(C, A) + h(C, Θ)

subject to C ∈ SC = {C ∈ Rp×k|C ≥ 0,
∥∥[CT ]i

∥∥2
2 ≤ 1} ∀ i = 1, 2 . . . p (4)

Here, C ∈ Rp×k
+ represents the clustering matrix to be learned, where each non-zero entry Cij indicates that

the i-th node is assigned to the j-th cluster. The term f(C, X, Θ) denotes the graph coarsening objective,
managing inter-cluster edges. The function g(C, A) represents the modularity objective, improving clustering
performance. Additionally, h(C, Θ) is a regularization term enforcing desirable properties in the clustering
matrix, as defined in Equation 1. The overarching goal of the optimization problem 4 is to choose f(C, X, Θ),
g(C, A), and h(C, Θ) such that nodes are optimally clustered and inter-cluster connectivity is maintained. In
the next section, we will develop the clustering algorithm, leveraging the coarsening objective and modularity
to enhance clustering performance.

4 Proposed Method

Given a graph G = {V, E, A, X}, considering f(C, XC , Θ) = tr(XT
C CT ΘCXC), g(C, A) = − β

2e tr(CT BC)
(where B = A− ddT

2e , d = A · 1), and h(C, Θ) = −γ log det(CT ΘC + J), to obtain clustering matrix C we
formulate the following optimization problem :

min
XC ,C

LMAGC = tr(XT
C CT ΘCXC)− β

2e
tr(CT BC)− γ log det(CT ΘC + J)

subject to C ∈ SC = {C ∈ Rp×l
∣∣ ∥∥CT

i

∥∥2
2 ≤ 1} ∀i, X = CXC where, J = 1

k
1k×k (5)

The term tr(XT
C CT ΘCXC) represents the smoothness or Dirichlet energy of the coarsened graph while

CT ΘC is the Laplacian matrix of the coarsened graph. Minimizing smoothness ensures that the clusters or
supernodes with similar features are linked with stronger weights. The term tr(CT BC) corresponds to the
graph’s modularity, enhancing the quality of the clusters formed. The term − log det(CT ΘC + J) is crucial
for maintaining inter-cluster edges in the coarsened graph. For a connected graph matrix with k super-nodes
or clusters, the rank of CT ΘC is k − 1. Adding J to CT ΘC makes CT ΘC + J a full-rank matrix without
altering the row and column space of CT ΘC (Kumar et al., 2020).

Problem 5 is a multi-block non-convex optimization problem solved using the Block Successive Upper-bound
Minimization (BSUM) framework. All terms except modularity are convex in nature, which we prove in
Appendix A. We iteratively update C and XC alternately while keeping the other constant. This process
continues until convergence or the stopping criteria are met. Since the constraint X = CXC is hard and
difficult to enforce, we relax it by adding the term α

2 ∥X − CXC∥2
F to the objective. This term ensures that

each node is assigned to a cluster, leaving no node unassigned. Additionally, when needed, we can add an
optional sparsity regularization term λ∥CT ∥2

1,2, which can be seen as ensuring that each node is assigned to
exactly one cluster, avoiding any overlap in node assignments across clusters.

Update rule of C. Treating XC as constant and C as a variable the sub-problem for C is:

min
C

f(C) = tr(XT
C CT ΘCXC)− β

2e
tr(CT BC)− γ log det(CT ΘC + J) + α

2 ∥X − CXC∥2
F

subject to C ∈ SC = {C ∈ Rp×l|C ≥ 0,
∥∥CT

i

∥∥2
2 ≤ 1} ∀i, where, J = 1

k
1k×k (6)
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By using the first-order Taylor series approximation, a majorised function for f(C) at Ct (C after t iterations)
can be obtained as:

g(C|Ct) = f(Ct) + (C − Ct)∇f(Ct) + L

2
∥∥C − Ct

∥∥2 (7)

where f(C) is L−Lipschitz continuous gradient function L = max(L1, L2, L3, L4) with L1, L2, L3, L4 the
Lipschitz constants of −γlog det(CT ΘC + J), tr(XT

C CT ΘCXC), ∥CXC −X∥2
F , tr(CT BC), respectively. We

prove this in Appendix B. After ignoring the constant term, the majorised problem of equation 6 is

min
C∈SC

1
2CT C − CT

(
Ct − 1

L
∇f(Ct)

)
(8)

Equation 8 is the majorized problem of equation 5. The optimal solution to equation 8, found by using
Karush–Kuhn–Tucker (KKT) optimality conditions is (Proof is deferred to the Appendix B):

Ct+1 =
(

Ct − 1
L
∇f
(
Ct
))+

(9)

where, ∇f
(
Ct
)

= −2γΘCt(CtT ΘCt + J)−1 + α(CtXC −X)XT
C + 2ΘCtXCXT

C −
β

e
BCt (10)

Update rule of XC . Treating C fixed and Xc as variable. The subproblem for updating Xc is

min
X̃

f(X̃) = tr(XT
C CT ΘCXC) + α

2 ∥X − CXC∥2
F (11)

The closed form solution of problem equation 11 can be obtained by putting the gradient of f(X̃) to zero.

Xt+1
C =

( 2
α

CT ΘC + CT C
)−1

CT X (12)

Algorithm 1 Q-MAGC Algorithm
Require: G(X, Θ), α, β, γ, λ

1: t← 0
2: while Stopping Criteria not met do
3: Update Ct+1 as in Eqn. 9
4: Update Xt+1

C as in Eqn. 12
5: t← t + 1
6: end while
7: return Ct, Xt

C

Convergence Analysis.
Theorem 1. The sequence {Ct+1, Xt+1

C } gen-
erated by Algorithm 1 converges to the set of
Karush–Kuhn–Tucker (KKT) optimality points for
Problem 5

Proof. The detailed proof can be found in the Ap-
pendix Section C.

Complexity Analysis. The worst-case time com-
plexity of a loop (i.e. one epoch) in Algorithm 1 is
O(p2k + pkn) because of the matrix multiplication in the update rule of C equation 9. Here, k is the number
of clusters and n is the feature dimension. Note that k is much smaller than both p and n. This makes
our method much faster than previous optimization based methods and faster than GCN-based clustering
methods which have complexities around O(p2n + pn2). We discuss this more in Appendix Section M.

Consistency Analysis on Degree Corrected Stochastic Block Models (DC-SBM).

To check whether the proposed objective (Equation 5) results in consistent clustering, we need to assume a
random graph. A graph G(V, E) is generated by a DC-SBM with p nodes which belong to k classes. Following
the setup in Zhao et al. (2012), each node vi is associated with a label-degree pair (yi, ti) drawn from a
discrete joint distribution Πk×m. Here, ti takes values 0 ≤ x1 ≤ · · · ≤ xm with E[ti] = 1, and yi ∈ [k].

Additionally, we have a symmetric k × k matrix P that specifies the probabilities of inter-cluster edges.
The edges between each node pair (vi, vj) are sampled as independent Bernoulli trials with probability
E[Aij ] = titjPyiyj

. To ensure E[Aij ] < 1, DC-SBMs must satisfy x2
m(maxi,j Pij) ≤ 1. The matrix P is

allowed to scale with the number of nodes p and is reparameterized as Pp = ρpP , where ρp = Pr[Aij = 1]→ 0
as p increases, and P is fixed. The average degree of the DC-SBM graph is defined as λp = pρp.
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Let ŷi denote the predicted cluster for node vi. The assignment matrix C is the one-hot encoding of y, such
that Ci = one-hot(yi).

We define O(e) ∈ Zk×k
≥0 as the inter-cluster edge count matrix for a given cluster assignment e ∈ [k]p. Here,

Oql(e) =
∑

ij Aij1{ei = q, ej = l} denotes the number of edges between clusters q and l. Also, We represent
the class frequency distribution as π ∈ [0, 1]k, where πi indicates the fraction of nodes assigned to cluster i.
Definition 1. (Strong and Weak Consistency). The clustering objective is defined to be strongly consistent if

lim
p→∞

Pr[ŷ = y]→ 1. A weaker notion of consistency is defined by lim
p→∞

Pr

[
1
p

p∑
i=1

1{ŷ ≠ y} < ϵ

]
→ 1 ∀ ϵ > 0.

Zhao et al. (2012) prove the consistency of multiple clustering objectives under the DC-SBM, including
Newman–Girvan modularity (Theorem 3.1). They also provide a general theorem (Theorem 4.1) for checking
consistency under DC-SBMs for any criterion L(e), which can be expressed as L(e) = F

(
O(e)
µp

, π
)

, where
µp = p2ρp and e ∈ [k]p is a cluster assignment.

The consistency of an objective is evaluated by determining if the population version of L(e) is maximized
by the true cluster assignment y. The population version of L(e) is obtained by taking its conditional
expectations given y and t. We consider an array S ∈ Rk×k×m and define a matrix H(S) ∈ Rk×k as
Hkl(S) =

∑
abuv xuxvPabSkauSlbv. Additionally, we define a vector h(S) ∈ Rk as hk(S) =

∑
au Skau. Here,

H(S) and h(S) denote the population versions of O(e) and π, respectively, such that 1
µp

E[O|C, t] = H(S)
and E[π|C, t] = h(S).
Lemma 1. (Theorem 4.1 from Zhao et al. (2012)) For any L(e) = F ( O(e)

µp
, f(e)), if F is uniquely maximized

by S = D and π, P, F satisfy the regularity conditions, then L is strongly consistent under DC-SBMs if
λp

logp →∞ and weakly consistent if λp →∞:

1. F is Lipschitz in its arguments (H(S), h(S))
2. The directional derivative ∂2

∂ε2 F (M0 + ε(M1 −M0), t0 + ε(t1 − t0))
∣∣
ε=0+ is continuous in (M1, t1)

for all (M0, t0) in a neighborhood of (H(D), π)
3. With G(S) = F (H(S), h(S)), ∂G((1−ε)D+εS)

∂ε |ε=0+ < −C < 0 ∀ π, P

It is important to note that the paper focuses on maximizing an objective function. Therefore, we consider
the negative of our loss function, −LMAGC . Additionally, we only consider the objective function defined in
equation 5, as regularizers can be adjusted for different downstream tasks.
Theorem 2. Under the DC-SBM, LMAGC is strongly consistent when λp/ log p→∞ and weakly consistent
when λp →∞.
Proof. The proof is divided into two parts. First, we demonstrate that LMAGC can be expressed in terms
of O and π. Second, we verify that, in this form, LMAGC satisfies the regularity conditions specified in
Theorem 4.1 of Zhao et al. (2012). It is important to note that DC-SBMs do not consider node features,
so we treat X and XC as constants. We start by noting that O = CT AC, i.e., the edge count matrix O is
the class-transformed version of the adjacency matrix A. This has a good intuition behind it, as C is the
mapping from nodes to classes, and it can also be proved easily.

{CT AC}ql = (CT )qAC:l =
p∑

i=1

p∑
j=1

(CT )qiAijCjl =
p∑

i=1

p∑
j=1

CiqAijCjl (13)

Ciq equals 1 only when node i is in cluster q, and Cjl equals 1 only when node j is in cluster l. Therefore,
this expression simplifies to the definition of O.

{CT AC}ql =
p∑

i=1

p∑
j=1

Aij1{yi = q, yj = l} (14)

This can be viewed as the cluster-level adjacency matrix, which quantifies the edges between clusters. Next,
we formalize the relationship between O and CT DC, where D = diag(d) is the degree matrix.
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{CT DC}ql =
p∑

i=1

p∑
j=1

CiqDijCjl =
p∑

i=1
CiqdiCil [Dij = 0 if i ̸= j] (15)

Since the rows of C are orthonormal, CiqCil = 1 if and only if q = l. Thus, we obtain the following expression
for the diagonal entries of CT DC:

{CT DC}qq =
p∑

i=1
C2

iqdi =
p∑

i=1
Ciqdi

[
∵ Cij ∈ {0, 1}

]
(16)

Now, we consider
∑k

l=1{CT AC}ql

=
p∑

i=1

p∑
j=1

(
CiqAij

k∑
l=1

Cjl

)
=

p∑
i=1

p∑
j=1

CiqAij · 1 =
p∑

i=1
Ciqdi (17)

Thus, we showed that CT DC = diag(
∑k

l=1[CT AC]k), which intuitively represents the cluster-level degree
matrix because it is the (diagonal of) row/column-sum of the CT AC or cluster-level adjacency matrix. We
now express the Laplacian of the coarsened graph as a function of O, ΘC(O) = CT ΘC = CT (D − A)C =
diag(

∑k
l=1 Ol) − O. This implies that the terms tr(XT

C CT ΘCXC), tr(CT BC), and log det(CT ΘC + J) in
our clustering objective are functions of ΘC(O). Using Theorem 4.1 from Zhao et al. (2012), we conclude
that LMAGC must be uniquely minimized at any point (y∗, A∗) s.t. Ep[π(yp)] = π(y∗) and Ep[A(p)] = A∗.
The Laplacian Θ can be written as a function of the adjacency Θij =

∑
j A∗

ij −A∗
ij (assuming no self-loops).

For the modularity term, this has been proven in Theorem 3.1 of Zhao et al. (2012). For the constraint
relaxation term 1

2∥CXC − X∥2
F , we see that XC is a function of only C(y∗) and Θ(A∗) from it’s update

rule equation 12, so we get termα(y∗, Θ) = 1
2∥C(y∗)XC(y∗, A∗) − X∥2

F . tr(XCCT ΘCXC) is already just
a function of XC , C, Θ which we have shown above to be functions of only y∗, A∗. By the same logic,
− log det(CT ΘC + J) is also a function of only y∗, A∗ (J is a constant = 1

k 1k×k). Thus, LMAGC can be
written as required above.

Next, we compute the population version of LMAGC .

F (H(S), h(S)) = E[−LMAGC |C, t] = f1(H(S), h(S))︸ ︷︷ ︸
smoothness

+ f2(H(S), h(S))︸ ︷︷ ︸
log-determinant

+ f3(H(S), h(S))︸ ︷︷ ︸
modularity

(18)

where, f1(H(S), h(S)) = µptr(XT
C [H(S)− diag(

k∑
j=1

H(S)ij)]XC) (19)

f2(H(S), h(S)) = µp

b
tr
(

H(S)− diag(
k∑

j=1
H(S)ij)

)
− 1

b
+ k − k log b (20)

f3(H(S), h(S)) = tr(H(S))
P̃0

−
∑k

i=1(
∑k

j=1 H(S)ij)2

P̃0
2 (21)

and, P̃0 =
∑
ab

π̃aπ̃bPab ; π̃a =
∑

u

xuΠau with
∑

a

π̃a = 1, since E[ti] = 1. (22)

For brevity, we denote F (H(S), h(S)) by F (S). Now for the second part of the proof, it is easy to prove that
F (S) satisfies the regularity conditions stated in Lemma 1. The detailed proof is deferred to Appendix D.
This concludes the proof that LMAGC is strongly and weakly consistent under the DC-SBM.

We also demonstrate experimental consistency of the optimization objective equation 5 in Appendix I, resulting
in complete recovery of the labels. This consistency extends to the objective with additional regularization
terms, as detailed therein. We want to emphasize that the consistency analysis for Equation 5 holds regardless
of how the objective is optimized: whether by integrating our loss into Graph Neural Networks (GNNs) or by
employing Block Majorization-Minimization techniques.
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5 Integrating with GNNs

Our optimization framework integrates seamlessly with Graph Neural Networks (GNNs) by incorporating
the objective equation 5 into the loss function. This integration can be minimized using gradient descent.
We demonstrate the effectiveness of this approach on several popular GNN architectures, including Graph
Convolutional Networks (GCNs) (Kipf & Welling, 2016b), Variational Graph Auto-Encoders (VGAEs) (Kipf
& Welling, 2016a), and a variant known as Gaussian Mixture Model VGAE (GMM-VGAE) (Hui et al., 2020).

Algorithm 2 Q-GCN Algorithm
Require: G(X, Θ), α, β, γ, λ
Require: k GCN layers - weights W (1..k)

1: t← 0
2: while Stopping Criteria not met do
3: Ct+1 ← GCN(X, A)
4: Xt+1

C ← C†X
5: t← t + 1
6: L ← LMAGC(C, X)
7: end while
8: return Ct, Xt

C

We iteratively learn the matrix C using gradient
descent. From equation 1, we update XC using the
relation XC = C†X. It is important to note that the
loss term CXC−X will not necessarily be zero. This
arises because we use a "soft" version of C (Ci,j is
the probability ∈ [0, 1]) in the loss function to enable
gradient flow, while a "hard" version of C (Ci,j is the
binary assignment ∈ {0, 1}) is used in the update
step. This method ensures that C naturally becomes
harder and exhibits a higher prediction probability.

Q-GCN. We integrate our loss function (LMAGC ,
as defined in equation 5) into a simple three-layer
Graph Convolutional Network (GCN) model. The
soft cluster assignments C are learned as the output of the final GCN layer. The detailed architecture and
loss function are illustrated in Figure 1.

Q-VGAE. The VGAE loss can be written as LV GAE = λrecon Eq(Z|X,A)[log p(Â|Z)]︸ ︷︷ ︸
Reconstruction Error

−λkl KL[q(Z|X, A) || p(Z)]︸ ︷︷ ︸
Kullback-Leibler divergence

where, Z represents the latent space of the VGAE, Â is the reconstructed adjacency matrix, and λrecon

and λkl are hyperparameters. We add a GCN layer on top of this architecture, which takes Z as input and
predicts C. A detailed summary of the VGAE loss terms is provided in Appendix Section G. For the VGAE,
we minimize the sum of three losses: the reconstruction loss, the KL-divergence loss, and our loss. This
combined loss function is expressed as: LQ−V GAE = LMAGC + LV GAE

Algorithm 3 Q-VGAE/Q-GMM-VGAE Algorithm
Z is the latent space of the VGAE and Â is the recon-
structed adjacency matrix.
Require: G(X, Θ), α, β, γ, λ
Require: Variational Encoder - VarEnc (GCN, µ, σ)
Require: Prediction Head - Pred (GCN or GMM)

1: t← 0
2: while Stopping Criteria not met do
3: Z ← VarEncµ,σ(X, A)
4: Â← ZZT

5: Ct+1 ← Pred(Z, A)
6: Xt+1

C ← C†X
7: t← t + 1
8: L ← LMAGC(C, X) + LVGAE(X, A, Z, Â)
9: end while

10: return Ct, Xt
C

Q-GMM-VGAE. This variant of VGAE incorpo-
rates a Gaussian Mixture Model (GMM) in the latent
space to better capture data distributions. This ap-
proach is effective because it minimizes the evidence
lower bound (ELBO) or variational lower bound
(Hui et al., 2020; Kingma & Welling, 2014; Kipf &
Welling, 2016a) using multiple priors, rather than
a single Gaussian prior as in standard VGAE. Hui
et al. (2020) use a number of priors equal to the
number of clusters.

6 Experiments

6.1 Benchmark Datasets and Baselines

We evaluate our method on a diverse set of datasets,
including small attributed datasets like Cora and
CiteSeer, larger datasets like PubMed, and unattributed datasets such as Airports (Brazil, Europe, and USA).
Additionally, we test our method on very large datasets like CoauthorCS/Physics, AmazonPhoto/PC, and
ogbn-arxiv. A detailed summary of all the datasets used is provided in Appendix E.

9



Under review as submission to TMLR

Figure 1: a) Architecture of Q-GCN. We want to train the encoder to learn the soft cluster assignment
matrix C. The coarsened features XC are obtained using the relation Xt+1

C = Ct+1†
X. Finally, our proposed

MAGC loss is then computed using C and XC .
b) Architecture of Q-VGAE/Q-GMM-VGAE. The three-layer GCN encoder takes X and A as inputs
to learn the latent representation Z of the graph. Z is then passed through an inner-product decoder
to reconstruct the adjacency matrix Â. The reconstruction loss is calculated between Â and A, and the
KL-divergence is applied to Z. In Q-VGAE (or Q-GMM-VGAE), Z is also passed through a GCN layer (or
GMM) to output the soft cluster assignments C. The MAGC loss is then computed as in Q-GCN.

To assess the performance of our method, we compare it against three types of state-of-the-art methods
based on the input and architecture type: methods that use only node attributes, methods that use only
graph structure, and methods that use both graph structure and node attributes. The last category is
further subdivided into graph coarsening methods, GCN-based architectures, VGAE-based architectures and
contrastive methods, and heavily modified VGAE architectures. This comprehensive evaluation allows us to
demonstrate the robustness and versatility of our approach across various data and model configurations.

6.2 Metrics

To evaluate the performance of our method, we utilize label alignment metrics that compare ground truth
node labels with cluster assignments. Specifically, we measure Normalised Mutual Information (NMI),
Adjusted Rand Index (ARI), and Accuracy (ACC), with higher values indicating superior performance. For
detailed explanations of these metrics, please refer to Appendix E. We selected NMI as the primary metric for
evaluating model performance based on its prominence in graph clustering literature and its comprehensive
ability to assess the quality of our cluster assignments. Training Details are available in the Appendix F.

6.3 Attributed Graph Clustering

We present our key results on the real datasets Cora, CiteSeer, and PubMed in Table 1. Our proposed method
outperforms all existing methods in terms of NMI and demonstrates competitive performance in Accuracy
and ARI. The best models were selected based on NMI scores. Results for very large datasets are provided in
Appendix J. Unlike some methods such as S3GC (Devvrit et al., 2022), which use randomly-sampled batches
that can introduce bias by breaking community structure, we perform full-batch training by passing the
entire graph. For extremely large graphs, such as ogbn-arxiv, we have also utilized batching.

6.4 Non-Attributed Graph Clustering

For non-attributed graphs, we use a one-hot encoding of the degree vector as features. While this is a basic
approach compared to learning-based methods like DeepWalk (Perozzi et al., 2014b) and node2vec (Grover &
Leskovec, 2016), it ensures a fair comparison since other methods also use this feature representation. Our
results in Figure 2a demonstrate that our method achieves competitive or superior performance in terms of
NMI, even for non-attributed datasets.

10
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Cora CiteSeer PubMed
Method ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑

K-means 34.7 16.7 25.4 38.5 17.1 30.5 57.3 29.1 57.4

Spectral Clustering 34.2 19.5 30.2 25.9 11.8 29.5 39.7 3.5 52.0
DeepWalk (Perozzi et al., 2014a) 46.7 31.8 38.1 36.2 9.7 26.7 61.9 16.7 47.1
Louvain (Blondel et al., 2008) 52.4 42.7 24.0 49.9 24.7 9.2 30.4 20.0 10.3

GAE [NeurIPS’16] (Kipf & Welling, 2016a) 61.3 44.4 38.1 48.2 22.7 19.2 63.2 24.9 24.6
DGI [ICLR’19] (Veličković et al., 2019) 71.3 56.4 51.1 68.8 44.4 45.0 53.3 18.1 16.6
GIC [PAKDD’21] (Mavromatis & Karypis, 2021) 72.5 53.7 50.8 69.6 45.3 46.5 67.3 31.9 29.1
DAEGC [IJCAI’19] (Wang et al., 2019) 70.4 52.8 49.6 67.2 39.7 41.0 67.1 26.6 27.8
GALA [ICCV’19] (Park et al., 2019) 74.5 57.6 53.1 69.3 44.1 44.6 69.3 32.1 32.1
AGE [KDD’20] (Cui et al., 2020) 73.5 57.5 50.0 69.7 44.9 34.1 71.1 31.6 33.4
DCRN [AAAI’22] (Liu et al., 2022) 61.9 45.1 33.1 70.8 45.8 47.6 69.8 32.2 31.4
FGC [JMLR’23] (Kumar et al., 2023) 53.8 23.2 20.5 54.2 31.1 28.2 67.1 26.6 27.8
Q-MAGC (Ours) 65.8 51.8 42.0 65.9 40.8 40.1 66.7 32.8 27.9
Q-GCN (Ours) 71.6 58.3 53.6 71.5 47.0 49.1 64.1 32.1 26.5
SCGC [IEEE TNNLS’23] (Liu et al., 2023a) 73.8 56.1 51.7 71.0 45.2 46.2 - - -
MVGRL [ICML’20] (Hassani & Khasahmadi, 2020) 73.2 56.2 51.9 68.1 43.2 43.4 69.3 34.4 32.3
VGAE [NeurIPS’16] (Kipf & Welling, 2016a) 64.7 43.4 37.5 51.9 24.9 23.8 69.6 28.6 31.7
ARGA [IJCAI’18] (Pan et al., 2018) 64.0 35.2 61.9 57.3 34.1 54.6 59.1 23.2 29.1
ARVGA [IJCAI’18] (Pan et al., 2018) 63.8 37.4 62.7 54.4 24.5 52.9 58.2 20.6 22.5
R-VGAE [IEEE TKDE’22] (Mrabah et al., 2022) 71.3 49.8 48.0 44.9 19.9 12.5 69.2 30.3 30.9
Q-VGAE (Ours) 72.7 58.6 49.6 66.1 47.4 50.2 64.3 32.6 28.0
VGAECD-OPT [Entropy’20] (Choong et al., 2020) 27.2 37.3 22.0 51.8 25.1 15.5 32.2 25.0 26.1
Mod-Aware VGAE [NN’22] (Salha-Galvan et al., 2022) 67.1 52.4 44.8 51.8 25.1 15.5 - 30.0 29.1
GMM-VGAE [AAAI’20] (Hui et al., 2020) 71.9 53.3 48.2 67.5 40.7 42.4 71.1 29.9 33.0
R-GMM-VGAE [IEEE TKDE’22] (Mrabah et al., 2022) 76.7 57.3 57.9 68.9 42.0 43.9 74.0 33.4 37.9
Q-GMM-VGAE (Ours) 76.2 58.7 56.3 72.7 47.4 48.8 69.0 34.8 34.0

Table 1: Comparison of all methods on attributed datasets. We classify the baselines into three
primary groups: the first includes traditional clustering algorithms and GNN-free methods, serving as relevant
baselines for our Q-MAGC method. The second category compares GNN-based methods with Q-GCN, and
the last, comprising the most performant methods, consists of VGAE-based baselines for Q-VGAE and
Q-GMM-VGAE.

Brazil Europe USA
Method ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑

GAE [NeurIPS’16] 62.6 37.8 30.8 47.6 19.9 12.7 43.9 13.6 11.8
DGI [ICLR’19] 64.9 31.0 30.4 48.6 16.1 12.3 52.2 22.9 21.7
GIC [PAKDD’21] 40.5 23.5 14.1 40.4 9.4 6.2 49.7 22.1 19.9
DAEGC [AAAI’19] 71.0 47.4 41.2 53.6 30.9 23.3 46.4 27.2 18.4
Q-GCN (Ours) 51.1 31.9 23.7 45.5 30.8 25.1 43.8 19.1 14.8
VGAE [NeurIPS’16] 64.1 38.0 30.7 49.9 23.5 16.7 45.8 23.1 15.7
Q-VGAE (Ours) 50.1 35.0 19.8 46.6 19.5 17.5 46.2 19.5 16.9
GMM-VGAE [AAAI’20] 70.2 46.0 41.9 53.1 31.1 24.4 48.1 21.9 13.2
R-GMM-VGAE [IEEE TKDE’22] 73.3 45.6 42.5 57.4 31.4 25.8 50.8 23.1 15.3
Q-GMM-VGAE (Ours) 68.4 46.0 42.4 47.9 32.2 23.5 46.6 23.1 13.1

Figure (2a): Comparison of all methods on non-attributed datasets.
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Figure (2b): Comparison of running times of
methods. scale for PubMed (right axis): mins,
scale for others (left axis) : secs.6.5 Ablation Studies

Comparison of running times In Figure 2b, we compare the running times of our method with other
baselines. Our method consistently takes less than half the time across all datasets. Notably, on PubMed (large
dataset), state-of-the-art methods GMM-VGAE and R-GMM-VGAE (unmodified) require approximately
60 minutes for clustering, whereas our Q-GMM-VGAE delivers superior performance in under 15 minutes,
representing a 75% reduction. Additionally, Q-MAGC runs even faster, completing in just 6 minutes on
PubMed, and achieves approximately 90% of the performance.

Modularity Metric Comparison We treat modularity as a metric and measure the gains observed in
modularity over other baselines on the Cora, CiteSeer, and PubMed datasets. We report two types of
graph-based metrics: modularity Q and conductance C, which do not require labels. Conductance measures
the fraction of total edge volume pointing outside the cluster, with C being the average conductance across
all clusters, where a lower value is preferred.

From Figure 3a, we observe that although DMoN (Tsitsulin et al., 2023) achieves the highest modularity, our
method attains significantly higher NMI. For CiteSeer, we achieve a 40% improvement in NMI with only an
8% decrease in modularity, positioning us closer to the ground truth. Additionally, our methods outperform
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Cora CiteSeer PubMed
C ↓ Q ↑ NMI ↑ C ↓ Q ↑ NMI ↑ C ↓ Q ↑ NMI ↑

DMoN 12.2 76.5 48.8 5.1 79.3 33.7 17.7 65.4 29.8
FGC 58.4 25 23.1 41.6 41.1 31 21.6 44.1 20.5
Q-MAGC 13.3 72.5 51.7 16.8 64.9 40.16 26 40.3 28.1
Q-GCN 13.6 73.3 58.3 5.8 74.5 46.7 8.27 55 31.5
VGAE 17.6 60.8 38.1 12.8 55.8 21 13.5 45.8 26.9
Q-VGAE 9.5 71.5 58.4 4.6 72.4 47.3 9.4 52.12 31.8

Figure (3a): Comparison of modularity and conductance
at the best NMI with DMoN. Note that DMoN is opti-
mizing only modularity, whereas we are optimizing other
important terms as well, as mentioned in Eqn 5, and thus
gain a lot on NMI by giving up a small amount of modu-
larity, making us closer to the ground truth.
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Figure (3b): Impact of active parameters on clustering
performance. All terms in the loss equation 5 are repre-
sented by their parameters, for example the modularity
term by β. ω represents the non-parameterized term.

their foundational counterparts, with Q-MAGC outperforming FGC, and Q-VGAE outperforming VGAE.
Although modularity is a valuable metric to optimize, the maximum modularity labeling of a graph does not
always correspond to the ground truth labeling. Therefore, it is crucial to include the other terms in our
formulation. While optimizing modularity helps approach the optimal model parameters (where NMI = 1), it
can deviate slightly. The additional terms in our formulation correct this trajectory, improving results.

Importance of and Evolution of different loss terms We analyze the evolution of the different loss
terms during training, and also try to measure the impact of each term separately by removing terms from
the loss one by one, as shown in Appendix N. Also, we found that ||CXC −X||2F is the most sensitive to
change in its weight α, followed by the terms related to γ, β and then λ. This makes sense because if that
constraint(relaxation) is not being met, then C would have errors. Even though some of the terms do the
heavy lifting, the other regularization terms do contribute to performance and more importantly, change
the nature of C : The smoothness term corresponds to smoothness of signals in the graph being transferred
to the coarsened graph which encourages local "patches"/groups of C to belong to the same cluster. The
term γ ensures that the coarsened graph is connected - i.e. preserving inter-cluster relations, which simple
contrastive methods destroy; this affects C by making it so that ΘC has minimal multiplicity of 0-eigenvalues.

Visualization of the latent space

Figure 4: Evolution of the latent space of a) Q-VGAE and b)
Q-GMM-VGAE over time for Cora. Colors represent clusters.

In Figure 4, we visualize how the la-
tent space of the Q-VGAE and Q-GMM-
VGAE changes over time for the Cora
dataset. Plots for the rest of the datasets
can be found in the Appendix H. We use
UMAP (Uniform Manifold Approxima-
tion and Projection) (McInnes et al., 2018)
for dimensionality reduction.

7 Discussion

Performance. Our methods consistently outperform their counterparts. Q-MAGC demonstrates significant
superiority over traditional algorithms and GNN-free approaches because of the inclusion of modularity,
smoothness, and connectedness terms in our objective. To compete with GNN-based methods, we leverage
their powerful message-passing mechanisms. Q-GCN surpasses other GCN-based methods, such as AGE and
DCRN. For the same reasons, Q-VGAE achieves better results than other VGAE-based methods.

Efficiency. Our methods are efficient in both complexity and implementation, as demonstrated in the
Complexity Analysis 1 and the Ablation - Comparison of running times.

Limitations. If the modularity of a graph, calculated from the ground truth labeling, is low, our method
may not perform optimally and can be slower to converge since maximizing modularity in such cases is not
ideal. However, our method still manages to match or surpass state-of-the-art methods on the Airports
dataset, where all graphs exhibit low modularity based on ground truth labels. This is due to the other terms
in our weighted loss function, which become the primary contributors to performance.
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A Convexity of terms in the optimization objective 5

When XC is kept constant, LMAGC gets reduced to:

min
C

f(C) = tr(XT
C CT ΘCXC)+α

2 ∥CXC −X∥2
F −

β

2e
tr(CT BC) (23)

− γ log det(CT ΘC + J) + λ

2
∥∥CT

∥∥2
1,2

subject to C ∈ Sc1 where, J = 1
k

1k×k

(24)

The term tr(XT
C CT ΘCXC) is convex function in C. This result can be derived easily using Cholesky

Decomposition on the positive semi-definite matrix Θ (i.e. Θ = LT L):

tr(XT
C CT ΘCXC) = tr(XT

C CT LT LCXC) = tr((LCXC)T LCXC) = ∥LCXC∥2
F (25)

Frobenius norm is a convex function, and the simplified expression is linear in C. Hence we can deduce that
the tr(.) term is convex in C. The terms ∥CXC −X∥2

F and
∥∥CT

∥∥2
1,2 are convex because Frobenius norm and

l1,2 norm are convex in C.

For proving the convexity of − log det(CT ΘC + J) we restrict function to a line. We define a function g:
g(t) = f(z + tu)where, t ∈ dom(g), z ∈ dom(f), u ∈ Rn. (26)

A function f : Rn → R is convex if g : R→ R is convex.

The graph Laplacian matrix of the coarsened graph (Θc) is symmetric and positive semi-definite having a
rank of k-1. To convert Θc to positive definite matrix, we add a rank 1 matrix J = 1

k 1k×k. (Θc + J = LT L)

f(L) = − log det(CT ΘC + J) = − log det(LT L) (27)
Now substituting L = Z + tU in the above equation.

g(t) = − log det((Z + tU)T (Z + tU)) (28)
= − log det(ZT Z + t(ZT U + UT Z)t2UT U) (29)

= − log det(ZT (I + t(UZ−1 + (UZ−1)T ) + t2(Z−1)T
UT UZ−1)Z) (30)

substituting P = V Z−1 (31)
= −(log det(ZT Z) + log det(I + t(P + P T ) + t2P T P )) (32)

Eigenvalue decomposition ofP = QΛQT andQQT = I (33)
= −(log det(ZT Z) + log det(QQT + 2tQΛQT + t2QΛ2QT )) (34)
= −(log det(ZT Z) + log det(Q(I + 2tΛ + t2Λ2)QT )) (35)

= − log det(ZT Z)−
n∑

i=1
log(1 + 2tλi + t2λ2) (36)

Finding double derivative of g(t):

g”(t) =
n∑

i=1

2λ2
i (1 + tλi)2

(1 + 2tλi + t2λ2
i )2 (37)

Since g”(t) ≥ 0∀ t ∈ R, g(t) is a convex function in t. This implies f(L) is convex in L. We know that,
CT ΘC + J = LT L so,

L = Θ 1
2 C + 1√

kp
1p×k (38)

Since L is linear in C and f(L) is convex in L, − log det(CT ΘC + J) is convex in C.
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B Optimal Solution of Optimization Objective in Equation 6

We first show that the function f(C) is L − Lipschitz continuous gradient function with
L = max(L1, L2, L3, L4, L5), where L1, L2, L3, L4, andL5 are the Lipschitz constants of
tr(XT

C CT ΘCXC), α
2 ∥CXC −X∥2

F ,− β
2e tr(CT BC),−γ log det(CT ΘC + J), and λ

2
∥∥CT

∥∥2
1,2.

For the tr(XT
C CT ΘCXC) term, we apply triangle inequality and employ the property of the norm of the

trace operator: ||tr|| = sup
M ̸=0

|tr(M)|
||M ||F

.

|tr(XT
C CT

1 ΘC1XC)− tr(XT
C CT

2 ΘC2XC)| (39)
= |tr(XT

C CT
1 ΘC1XC)− tr(XT

C CT
2 ΘC1XC) + tr(XT

C CT
2 ΘC1XC)− tr(XT

C CT
2 ΘC2XC)| (40)

≤ |tr(XT
C CT

1 ΘC1XC)− tr(XT
C CT

2 ΘC1XC)|+ |tr(XT
C CT

2 ΘC1XC)− tr(XT
C CT

2 ΘC2XC)| (41)
≤ ||tr||||XT

C (C1 − C2)T ΘC1XC ||F + ||tr||||XT
C CT

2 Θ(C1 − C2)XC ||F (42)
≤ ||tr||||XC ||F ||Θ||||C1 − C2||F (||C1||F + ||C2||F ) (Frobenius Norm Property) (43)
≤ 2√p||tr||||XC ||F ||Θ||||C1 − C2||F (||C1||F = ||C2||F = √p) (44)
≤ L1||C1 − C2||F (45)

The second term is α
2 ∥CXC −X∥2

F can be written as:
α

2 tr((CXC −X)T (CXC −X)) (46)

= α

2 tr(XT
C CT CXC −XT CXC + XT X −XT

C CT X) (47)

= α

2 (tr(XT
C CT CXC)− tr(XT CXC) + tr(XT X)− tr(XT

C CT X)) (48)

All the terms except tr(XT X) (constant with respect to C) in obtained in the expression will follow similar
proofs to tr(XT

C CT ΘCXC).

Next we consider the modularity term:

|tr(CT
1 BC1)− tr(CT

2 BC2)| (49)
= |tr(CT

1 BC1)− tr(CT
2 BC1) + tr(CT

2 BC1)− tr(CT
2 BC2)| (50)

≤ |tr(CT
1 BC1)− tr(CT

2 BC1)|+ |tr(CT
2 BC1)− tr(CT

2 BC2)| (51)
≤ ||tr||||(C1 − C2)T BC1||F + ||tr||||(C1 − C2)T BC2||F (52)
≤ ||tr||||B||||C1 − C2||F (||C1||F + ||C2||F ) (Frobenius Norm Property) (53)
≤ L3||C1 − C2||F (54)

The Lipschitz constant for −γ log det(CT ΘC +J) is linked to the smallest non-zero eigenvalue of the coarsened
Laplacian matrix (Θc) and is bounded by δ

(k−1)2 (Rajawat & Kumar, 2017), where δ is the minimum non-zero
weight of Gc.

tr(1T CT C1) can be proved to be L5 − Lipschitz like the modularity and Dirichlet energy (smoothness)
terms. This concludes the proof.

The majorized problem for L-Lipschitz and differentiable functions can now be applied. The Lagrangian of
the majorized problem, 8 is:

L(C, XC , µ) = 1
2CT C − CT A− µT

1 C + µT
2

[ ∥∥CT
1
∥∥2

2 − 1, · · · ,
∥∥CT

i

∥∥2
2 − 1, · · · ,

∥∥CT
p

∥∥2
2 − 1

]T

(55)

where µ = µ1||µ2 are the dual variables and A =
(

C − 1
L∇f(C)

)+
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The corresponding KKT conditions (w.r.t C) are:

C −A− µ1 + 2[µ2oCT
0 , · · · , µ2iC

T
i , · · · , µ2pCT

p ] = 0 (56)

µT
2

[ ∥∥CT
1
∥∥2

2 − 1, · · · ,
∥∥CT

i

∥∥2
2 − 1, · · · ,

∥∥CT
p

∥∥2
2 − 1,

]T

= 0 (57)

µT
1 C = 0 (58)
µ1 ≥ 0 (59)
µ2 ≥ 0C ≥ 0 (60)∥∥[CT ]i
∥∥2

2 ≤ 1 ∀i (61)

The optimal solution to these KKT conditions is:

C = (A)+∑
i ∥[AT ]i∥ 2

(62)

C Proof of Theorem 1 (Convergence)

In this section, we prove that the sequence {Ct+1, Xt+1
C } generated by Algorithm 1 converges to the set of

Karush–Kuhn–Tucker (KKT) optimality points for Problem 5.

The Lagrangian of Problem 5 comes out to be:

L(C, XC , µ) = tr(XT
C CT ΘCXC) + α

2 ∥CXC −X∥2
F −

β

2e
tr(CT BC) (63)

− γ log det(CT ΘC + J) + λ

2
∥∥CT

∥∥2
1,2 − µT

1 C +
∑

i

µ2i

[ ∥∥CT
i

∥∥2
2 − 1

]
(64)

where µ = µ1||µ2 are the dual variables.

w.r.t. C, the KKT conditions are

2ΘCXCXT
C + α(CXC −X)XT

C −
β

e
BC − 2γΘC(CT ΘC + J)−1 (65)

+λC1k×k − µ1 + 2[µ2oCT
0 , · · · , µ2iC

T
i , · · · , µ2pCT

p ] = 0

µT
2

[ ∥∥CT
1
∥∥2

2 − 1, · · · ,
∥∥CT

i

∥∥2
2 − 1, · · · ,

∥∥CT
p

∥∥2
2 − 1

]T

= 0 (66)

µT
1 C = 0 (67)
µ1 ≥ 0 (68)
µ2 ≥ 0 (69)
C ≥ 0 (70)∥∥[CT ]i
∥∥2

2 ≤ 1 ∀i (71)

Now, C∞ ≡ lim
t→∞

Ct is found from Equation 9 as:

C∞ = C∞ + 1
L

(
2ΘC∞X∞

C X∞
C + α(C∞XC −X)X∞

C −
β

e
BC∞ (72)

− 2γΘC∞(C∞T ΘC∞ + J)−1 + λC∞1k×k

)

0 = 2ΘC∞X∞
C X∞

C + α(C∞XC −X)X∞
C −

β

e
BC∞ (73)

− 2γΘC∞(C∞T ΘC∞ + J)−1 + λC∞1k×k
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So, for µ = 0, C∞ satisfies the KKT conditions.

w.r.t. XC , the KKT conditions are:

2CT ΘCXC + αCT (CXC −X) = 0 (74)

So, X∞ ≡ lim
t→∞

Xt found from Equation 12 will satisfy this as that equation is just a rearrangement of the
KKT condition.

D Proof (continued) of Theorem 2 (conditions for consistency)

As previously defined in Theorem 2 O = CT AC and

1
µp

E[O|C, t] = H(S)

We need to find "population version" of the loss function in terms of H(S).

E[O|C, t] = E[CT AC|C, t] = µpH(S) (75)

E[CT DC|C, t] = E[CT diag(
k∑

j=1
Aij)C|C, t] = E[diag(

k∑
j=1

Oij)|C, t] (76)

= µpdiag(
k∑

j=1
Hij) (77)

So, for tr(XT
C CT ΘCXC)

E[tr(XT
C CT ΘCXC)|C, t] = tr(E[XT

C CT ΘCXC |C, t])
= tr(XT

CE[CT ΘC|C, t]XC) = tr(XT
CE[CT DC − CT AC|C, t]XC)

= tr(XT
C [µpdiag(

k∑
j=1

Hij) − µpH(S)]XC)

= µptr(XT
C [diag(

k∑
j=1

Hij) −H(S)]XC) (78)

Next, we have 1
2e tr(CT BC), which has already been solved in the paper Zhao et al. (2012) in their Appendix

(Page 25 of the full document).

1
2e

E[tr(CT BC)] =
∑

k

(
Hkk

P̃0
−
(

Hk

P̃0

)2)

For log det(CT ΘC + J), where J = 1
k⊮k×k,

We can write log(det(CT ΘC + J)) = tr(log(CT ΘC + J)) since, det(A) = etr(log(A)).
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Z = CT ΘC + J = V ΛV −1 (79)
So, (80)

tr(log(V ΛV −1)) = tr(V log(Λ)V −1) (81)

log Λ = log(bI) + log
(

I + Λ
b
− I

)
(82)

Using the first-order Taylor expansion of log(I + X) = X, we need to choose b such that

l =
∥∥∥∥Λ

b
− I

∥∥∥∥
F

< 1 (83)

And for the expansion to be a good approximation, we need l→ 0. We will enforce this later in equation 93.

tr(V
(

log(bI) + log
(

I + Λ
b
− I

))
V −1) (84)

= tr(V
(

log(bI) +
(

I + Λ
b
− I

))
V −1) (85)

= tr(V log(bI)V −1) + 1
b

tr(V ΛV −1)− tr(I) (86)

= tr(log(bI)) + 1
b

tr(Z)− tr(I) (87)

= k log(b) + 1
b

tr(Z)− k (88)

Finding the expectation of from equation 82,

= k log(b) + E
[

1
b

tr(Z)
∣∣∣∣ c, t

]
− k (89)

= k log(b) + 1
b

tr(E[Z| c, t])− k (90)

= k log(b) + 1
b

tr(E[CT ΘC + J | c, t])− k (91)

Using Θ = D −A, equation 75 and equation 77,

= k log(b) + 1
b

tr
(

µpdiag(
k∑

j=1
Hij)− µpH(S)

)
− k (92)

which is a linear function in H(S).

For the approximation to be good, we can now simplify l as defined in equation 83:

l =
∥∥∥∥Λ

b
− I

∥∥∥∥
F

(93)

l =

∥∥∥∥∥∥∥∥∥
1
b Λ11 − 1 1

b Λ12 · · · 1
b Λ1k

1
b Λ21

1
b Λ22 − 1 · · · 1

b Λ2k

...
... . . . ...

1
b Λk1

1
b Λk2 · · · 1

b Λkk − 1

∥∥∥∥∥∥∥∥∥
F

(94)
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Writing out this norm, we get a quadratic expression in 1
b :

l = (
k∑

i=1

k∑
j=1

λ2
ij) 1

b2 − 2(
k∑

u=1
λii)

1
b

+ k (95)

or concisely, l = ∥Λ∥2
F

1
b2 − 2tr(Λ)1

b
+ k (96)

Since, Λ is a diagonal matrix, (97)

tr(Λ) =
∑

i

λi = tr(Z) (98)

Also, since Λ2 is the eigenvalue matrix for Z2, (99)

∥Λ∥2
F =

∑
i

λ2
i = tr(Z2) (100)

l = tr(Z2) 1
b2 − 2tr(Z)1

b
+ k (101)

Since, l < 1 =⇒ l − 1 < 0 =⇒ l − 1 = 0 has 2 real roots. Using simple quadratic analysis (in 1
b ), the

discriminant ∆ should be positive.

∆ = 4tr(Z)2 − 4(k − 1)tr(Z2) > 0 (102)
tr(Z)2

tr(Z2) > k − 1 (103)

The minimum value of l := lmin occurs at (104)

b = tr(Z2)
tr(Z) = tr(Z) · tr(Z2)

tr(Z)2 (105)

lmin < 1 will exist when tr(Z)2

tr(Z2) > k − 1 (106)

which holds for b <
tr(Z)
k − 1 (107)

So we can always choose b <
2k − 1
k − 1 (108)

since min tr(Z) = 2k − 1[proved in 110] (109)

min tr(CT ΘC + J) = min tr(CT ΘC) + tr(J) (110)
= min tr(CT DC)− tr(CT AC) + 1 (111)
= 2e− 2(e− (k − 1)) + 1 (112)
= 2k − 1 (113)

Additionally, define π̃a =
∑

u xuΠau with
∑

a π̃a = 1, since E[ti] = 1.

D.1 Required Condition a): Lipschitz Continuity

Condition 1: We need to show that |F (S1)− F (S2)| ≤ α∥S1 − S2∥ (Lipschitz)
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|F (S1)− F (S2)| ≤ |f1(S1)− f1(S2)|+ |f2(S1)− f2(S2)|+ |f3(S1)− f3(S2)| (114)

Let’s first find ∥H(S1)−H(S2)∥F

H(S) = (Sx)P (Sx)T (115)
∥H(S1)−H(S2)∥F = ∥(S1x)P (S1x)T − (S2x)P (S2x)T ∥F (116)

= ∥(S1x)P ((S1 − S2)x)T + ((S1 − S2)x)P (S2x)T ∥F (117)

Next, we see ∥diag(
∑k

j=1 H(S1)ij)− diag(
∑k

j=1 H(S2)ij)∥F = ∥diag(
∑k

j=1(H(S1)ij −H(S2)ij))∥F

For the first term, |f1(H(S1))− f1(H(S2))|, define H(S)i =
∑k

j=1 H(S)ij

= |µptr(XT
C [H(S1)− diag(

k∑
j=1

H(S1)ij)]XC)− µptr(XT
C [H(S2)− diag(

k∑
j=1

H(S2)ij)]XC)| (118)

= |µp

(
tr(XT

C [H(S1)−H(S2)]XC)− tr(XT
C diag([H(S1)i −H(S2)i])XC)

)
| (119)

≤ |µp|
(∣∣∣∣tr(XT

C [H(S1)−H(S2)]XC)
∣∣∣∣− ∣∣∣∣tr(XT

C diag([H(S1)i −H(S2)i])XC)
∣∣∣∣) (120)

≤ |µp|
(
∥tr∥

∥∥∥∥XT
C [H(S1)−H(S2)]XC

∥∥∥∥
F

− ∥tr∥
∥∥∥∥XT

C diag([H(S1)i −H(S2)i])XC

∥∥∥∥
F

)
(121)

≤ |µp|
(
∥tr∥∥XC∥2

∥∥∥∥H(S1)−H(S2)
∥∥∥∥

F

− ∥tr∥∥XC∥2
∥∥∥∥diag([H(S1)i −H(S2)i])

∥∥∥∥
F

)
(122)

Taking the first sub-term,

|µp| ∥tr∥ ∥XC∥2
∥∥∥∥H(S1)−H(S2)

∥∥∥∥
F

(123)

= ∥tr∥ ∥XC∥2
∥∥∥∥(S1x)P ((S1 − S2)x)T + ((S1 − S2)x)P (S2x)T

∥∥∥∥
F

(124)

≤ ∥tr∥ ∥XC∥2 ∥P∥F (∥S1x∥F + ∥S2x∥F ) ∥(S1 − S2)x∥F (125)
≤ ∥tr∥ ∥XC∥2 ∥P∥F (∥S1x∥F + ∥S2x∥F ) ∥t∥F ∥(S1 − S2)∥F (126)
= α1∥(S1 − S2)∥F (127)

For the second sub-term, define S̃ka =
∑

u xuSkau = (Sx)ka
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H(S)i =
k∑

j=1
H(S)ij =

∑
as

π̃sPasS̃ia =
∑
asu

π̃sPasxuSiau (128)

|H(S1)i −H(S2)i| = |
∑
asu

π̃sPasxuS1iau −
∑
asu

π̃sPasxuS2iau| (129)

= |
∑
asu

π̃sPasxu(S1 − S2)iau| (130)

≤
∑
asu

|π̃sPasxu(S1 − S2)iau| (131)

≤
∑
asu

|π̃sPasxu| · |(S1 − S2)iau| (132)

≤
∑
asu

|π̃sPasxu| ·
∑
au

|(S1 − S2)iau| (133)

= α′
1
∑
au

|(S1 − S2)iau| (134)

So, ∥diag([H(S1)i −H(S2)i])∥F =

√√√√ k∑
i=1

( k∑
j=1

H(S1)ij −H(S2)ij

)2
(135)

≤

√√√√ k∑
i=1

(
α′

1

∑
au

|(S1 − S2)iau|
)2

(136)

= α′
1∥S1 − S2∥1,1,2 (137)

For the second term, |f2(H(S1))− f2(H(S2))|

= µp

b

∣∣∣∣tr(H(S1)− diag([H(S1)i]))− tr(H(S2)− diag([H(S2)i]))
∣∣∣∣ (138)

= µp

b

∣∣∣∣tr(H(S1)−H(S2)) − tr
(

diag([H(S1)i −H(S2)i])
)∣∣∣∣ (139)

≤ µp

b

(∣∣∣∣tr(H(S1)−H(S2))
∣∣∣∣ +

∣∣∣∣tr(diag([H(S1)i −H(S2)i])
)∣∣∣∣) (140)

≤ µp

b

(
∥tr∥

∥∥∥∥H(S1)−H(S2)
∥∥∥∥

F

+ ∥tr∥
∥∥∥∥diag([H(S1)i −H(S2)i])

∥∥∥∥
F

∣∣∣∣) (141)

As shown above, (142)
≤ α2∥(S1 − S2)∥F + α′

2∥(S1 − S2)∥1,1,2 (143)

For the third term, it has already been proven in Zhao et al. (2012), but we also prove it here:

|f3(H(S1))− f3(H(S2))|
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=
∣∣∣∣ tr(H(S1))

P̃0
−
∑k

i=1(
∑k

j=1 H(S1)ij)2

P̃0
2 − tr(H(S2))

P̃0
+
∑k

i=1(
∑k

j=1 H(S2)ij)2

P̃0
2

∣∣∣∣ (144)

=
∣∣∣∣ tr(H(S1)−H(S2))

P̃0
−
∑k

i=1
[
H(S1)2

i −H(S2)2
i

]
P̃0

2

∣∣∣∣ (145)

≤ 1
P̃0

∣∣∣∣tr(H(S1)−H(S2))
∣∣∣∣+ 1

P̃0
2

∣∣∣∣ k∑
i=1

[
H(S1)2

i −H(S2)2
i

]∣∣∣∣ (146)

As shown above, (147)

≤ α3∥(S1 − S2)∥F + 1
P̃0

2

∣∣∣∣ k∑
i=1

[
H(S1)i −H(S2)i

]
·
[
H(S1)i + H(S2)i

]∣∣∣∣ (148)

≤ α3∥(S1 − S2)∥F + 1
P̃0

2

k∑
i=1

∣∣H(S1)i + H(S2)i

∣∣ · k∑
i=1

∣∣H(S1)i −H(S2)i

∣∣ (149)

= α3∥(S1 − S2)∥F + α′
3
∑
iau

∣∣S1 − S2
∣∣
iau

(150)

= α3∥(S1 − S2)∥F + α′
3∥S1 − S2∥1,1,1 (151)

D.2 Required Condition b): Continuity of directional second derivative

Condition 2: W = H(D)

∂2

∂ε2 F (M0 + ε(M1 −M0), t0 + ε(t1 − t0))
∣∣∣∣
ε=0+

(152)

= ∂2

∂ε2 f1(M0 + ε(M1 −M0)) + ∂2

∂ε2 f2(M0 + ε(M1 −M0)) + ∂2

∂ε2 f3(M0 + ε(M1 −M0))
∣∣∣∣
ε=0+

(153)

Finding the directional derivative for f1,

f1(M0 + ε(M1 −M0)) = µptr(XT
C [M0 + ε(M1 −M0)− diag(

k∑
j=1

(
M0 + ε(M1 −M0)

)
ij

)]XC) (154)

= µp

(
tr(XT

C M0XC) + ε tr(XT
C (M1 −M0)XC) (155)

− tr(XT
C diag([

k∑
j=1

(M0)ij ])XC)− ε tr(XT
C diag([

k∑
j=1

(M1 −M0)ij ])XC)
)

(156)

∂2

∂ε
f1(M0 + ε(M1 −M0)) = µp

(
tr(XT

C (M1 −M0)XC)− tr(XT
C diag([

k∑
j=1

(M1 −M0)ij ])XC)
)

(157)

∂2

∂ϵ2 f1(M0 + ε(M1 −M0) = 0 (158)
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Finding the directional derivative for f2,

f2(M0 + ε(M1 −M0)) (159)

= µp

b
tr
(

M0 + ε(M1 −M0)− diag(
k∑

j=1

(
M0 + ε(M1 −M0)

)
ij

)
)
− 1

b
+ k − k log b (160)

∂

∂ε
f2(M0 + ε(M1 −M0)) = µp

b
tr(M1 −M0)− µp

b
tr
(

diag(
k∑

j=1
(M1 −M0)ij)

)
(161)

∂2

∂ε2 f2(M0 + ε(M1 −M0)) = 0 (162)

Finding the directional derivative for f3,

f3(M0 + ε(M1 −M0)) = tr(M0 + ε(M1 −M0))
P̃0

−
∑k

i=1(
∑k

j=1(M0 + ε(M1 −M0))ij)2

P̃0
2 (163)

= tr(M0 + ε(M1 −M0))
P̃0

−
∑k

i=1(
∑

asu π̃sPasxu(M0 + ε(M1 −M0))iau)2

P̃0
2 (164)

∂

∂ε
f3(M0 + ε(M1 −M0)) =

tr(M1 −M0)
P̃0

+
k∑

i=1
2(
∑
asu

π̃sPasxu(M1 −M0)iau)×
∑k

i=1(
∑

asu π̃sPasxu(M0 + ε(M1 −M0))iau)2

P̃0
2

(165)
∂2

∂ε2 f3(M0 + ε(M1 −M0)) =
∑k

i=1 2(
∑

asu π̃sPasxu(M1 −M0)iau)2

P̃0
2 (166)

Adding up these three,

∂2

∂ε2 F (M0 + ε(M1 −M0), t0 + ε(t1 − t0)) =
∑k

i=1 2(
∑

asu π̃sPasxu(M1 −M0)iau)2

P̃0
2

which is continuous in (M1, t1) for all (M0, t0) in a neighborhood of (W, π).

D.3 Required Condition c): Upper bound of first derivative

With G(S) = F (H(S), h(S)), ∂G((1−ε)D+εS)
∂ε |ε=0+ < −C < 0 ∀ π, P

G(S) = f1(H(S)) + f2(H(S)) + f3(H(S))

Let S̄ = ((S − D)t)P (Dt)T + (Dt)P (S − Dt)T

For f1
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f1(H((1− ε)D + εS)) = µptr(XT
C [H((1− ε)D + εS)− diag(

k∑
j=1

H((1− ε)D + εS)ij)]XC) (167)

H(S) = (Sx)P (Sx)T (168)
H((1− ε)D + εS) = ((1− ε)Dx + εSt)P ((1− ε)Dx + εSt)T (169)

= (Dx + ε(S − D)x)P (Dx + ε(S − D)x)T (170)
= (Dx)P (Dx)T + ε(Dx)P ((S − D)x)T (171)

+ ε((S − D)x)P (Dx)T + ε2((S − D)x)P ((S − D)x)T (172)
Finally, f1((1− ε)D + εS) = tr

(
XT

C (Dx)P (Dx)T XC

)
+ ε tr

(
XT

C (Dx)P ((S − D)x)T XC

)
(173)

+ ε tr
(
XT

C ((S − D)x)P (Dx)T XC

)
+ ε2 tr

(
XT

C ((S − D)x)P ((S − D)x)T XC

)
(174)

+ tr
(
XT

C diag([H(D)i])XC

)
+ ε2 tr

(
XT

C diag([H(S − D)i])XC

)
(175)

+ ε tr
(
XT

C diag([
(
((S − D)x)P (Dx)T + (Dx)P (S − Dx)T

)
i
])XC

)
(176)

Now,∂f1

∂ε

∣∣∣∣
ε=0+

= tr
(
XT

C (S̄ − diag([S̄i]))XC

)
(177)

For f2,

f2(H((1− ε)D + εS)) = µp

b
tr
(

H((1− ε)D + εS)− diag([H((1− ε)D + εS)i])
)
− 1

b
+ k − k log b (178)

∂f2

∂ε

∣∣∣∣
ε=0+

= µp

b
tr
(

S̄ − diag([S̄i])
)

(179)

For f3,

f3(H((1− ε)D + εS)) = 1
P̃0

tr
(

(Dx)P (Dx)T + ε(Dx)P ((S − D)x)T (180)

+ ε((S − D)x)P (Dx)T + ε2((S − D)x)P ((S − D)x)T

)
(181)

− 1
P̃ 2

0

k∑
i=1

k∑
j=1

([
(Dx)P (Dx)T + ε(Dx)P ((S − D)x)T (182)

+ ε((S − D)x)P (Dx)T + ε2((S − D)x)P ((S − D)x)
]

ij

)2
(183)

∂f3

∂ε

∣∣∣∣
ε=0+

= 1
P̃0

tr
(

S̄

)
− 2

P̃0

k∑
i=1

( k∑
j=1

[
(Dx)P (Dx)T

]
ij

×
k∑

j=1
[S̄]ij

)2
(184)

From here, the proof is followed as in Appendix of Zhao et al. (2012) (in Proof of Theorem 3.1) which also
borrows from Bickel & Chen (2009).

E Dataset Summaries and Metrics

Refer to Table 2 for the dataset summary.
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Name p (|V|) n (|Xi|) e (|E|) k (y)
Cora 2708 1433 5278 7

CiteSeer 3327 3703 4614 6
PubMed 19717 500 44325 3

Coauthor CS 18333 6805 163788 15
Coauthor Physics 34493 8415 495924 5

Amazon Photo 7650 745 238162 8
Amazon PC 13752 767 491722 10
ogbn-arxiv 169343 128 1166243 40

Brazil 131 0 1074 4
Europe 399 0 5995 4
USA 1190 0 13599 4

Table 2: Datasets summary.

Metrics. A pair of nodes are said to be in agree-
ment if they belong to the same class and are as-
signed to the same cluster, or they belong to differ-
ent classes and have been assigned different clusters.
For a particular partitioning, ARI is the fraction
of agreeable nodes in the graph. Accuracy is ob-
tained by performing a maximum weight bipartite
matching between clusters and labels. NMI mea-
sures the normalized similarity between the clus-
ters and the labels, and is robust to class imbal-
ances. Mutual Information between two labellings
X and Y of the same data is defined as MI(X, Y ) =∑|X|

i=1
∑|Y |

j=1
|Xi∩Yi|

N log N |Xi∩Yi|
|Xi||Yi| and it is scaled be-

tween 0 to 1.

F Training Details

All experiments were run on an NVIDIA A100 GPU
and Intel Xeon 2680 CPUs. We are usually running
4-16 experiments together to utilize resources (for example, in 40GB GPU memory, we can run 8 experiments
on PubMed simultaneously). Again, the memory costs are more than dominated by the dataset. All
experiments used the same environment running CentOS 7, Python 3.9.12, PyTorch 2.0, PyTorch Geometric
2.2.0.

G VGAE

In a VGAE, the encoder learns mean (µ) and variance (σ): µ = GCNµ(X, A)and log σ = GCNσ(X, A) By using
the reparameterization trick, we get the distribution of the latent space as: q(Z|X, A) =

∏N
i=1 q(zi|X, A) =∏N

i=1N (zi|µi, diag(σ2
i )) A common choice for decoder is inner-product of the latent space with itself which

giving us the reconstructed Â. p(Â|Z) =
∏p

i=1
∏p

j=1 p(Âij |zi, zj), with p(Âij = 1|zi, zj) = sigmoid(zT
i zj)

H Visualization of evolution of latent space

Refer to Figures 4 and 5.

We can see the clusters forming in the latent space of the VGAEs. In the case of Q-VGAE, since a GCN is
used on this space, it can learn non-linearities and the latent space shows different structures (like a starfish in
CiteSeer). Moreoever, these structures have their geometric centres at the origin and grow out from there. In
contrast, for Q-GMM-VGAE, since a GMM is being learnt over the latent space, the samples are encouraged
to be normally distributed in their independent clusters, all of which have different means and comparable
standard deviations. So, we see multiple "blobs", which more or less follow a normal distribution. This plot
effectively shows why a GMM-VGAE is more expressive than a VGAE.

I Attributed SBM theory and results

We validate the robustness and sensitivity of proposed methods to variance in the node features and graph
structure. We are also generating features using a multivariate mixture generative model such that the node
features of each block are sampled from normal distributions where the centers of clusters are vertices of a
hypercube.

SBM. The Stochastic Block Model (SBM)(Nowicki & Snijders, 2001) is a generative model for graphs that
incorporates probabilistic relationships between nodes based on their community assignments. In the basic
SBM, a network with p nodes is divided into k communities or blocks denoted by Ci, where i = 1, 2, · · · , k.

30



Under review as submission to TMLR

Figure 5: Plots of evolution of latent space for Q-VGAE and Q-GMM-VGAE methods for CiteSeer, PubMed,
Brazil (Air Traffic) and Europe (Air Traffic) datasets.
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The SBM defines a symmetric block probability matrix B with size (k × k), where each entry Bij represents
the probability of an edge between a node in community Ci and a node in community Cj . Diagonal entries
of this matrix represents the probabilities of intra-cluster edges. This matrix B captures the intra- and
inter-community connections and is assumed to be constant. P (i ↔ j|Ci = a, Cj = b) = Bab denotes the
probability of an edge existing between nodes i and j when node i belongs to community a and node j
belongs to community b. Using these probabilities, the SBM generates a network by independently sampling
the presence or absence of an edge for each pair of nodes based on their community assignments and the
block probability matrix B.

Degree Corrected SBM. DC-SBM(Karrer & Newman, 2011) takes an extra set of parameters θi controlling
the expected degree of vertex i. Now, the probability of an edge between two nodes (using the same notation
as above) becomes θiθjBab. This was introduced to handle the heterogeneity of real-world graphs.

We selected this widely used and studied model for our analysis primarily because it considers a degree
parameter for all nodes, resembling a key characteristic of real-world graphs. Therefore, the DC-SBM is
closer to real-world graphs than the simpler SBM while still being analyzable, making it relevant here.

ADC-SBM Generation. We make use of the graph_tool library to generate the DC-SBM adjacency
matrix, with p = 1000, k = 4. To generate the B matrix, we follow the procedure in (Tsitsulin et al., 2023),
by taking expected degree for each node d = 20 and expected sub-degree dout = 2. This gives us B as:


18 2 2 2
2 18 2 2
2 2 18 2
2 2 2 18


Also, θ is generated by sampling a power-law distribution with exponent α = 2. We constrain the generated
vector to dmin = 2 and dmax = 4.

To generate features, we use the make_classification function in the sklearn library. We generate a
128-dimensional feature vector for each node, with no redundant channels. These belong to kf groups, where
kf might not be equal to k. We test three scenarios: a) matched clusters (kf = k) b) nested features (kf > k)
c) grouped features (kf < k) as visualized in Figure 6. Note that for better visualization, class_sep was
increased to 5 (however, the results are given with a value of 1, which is a harder problem).

Additionally, we also consider both cases, with and without the coarsening constraint term.

Results. Our objective is able to completely recover the ground truth labels (NMI/ARI/ACC = 1) under all
the specified conditions.
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Figure 6: Visualization of the generated adjacency and feature covariance matrices for the ADC-SBM
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J Results on very large datasets

The results are presented in Table 3.

CoauthorCS CoauthorPhysics AmazonPhoto AmazonPC ogbn-arxiv
Method ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑

FGC 69.6 70.4 61.5 69.9 60.9 49.5 44.9 38.3 22.5 46.8 36.2 23.3 24.1 8.5 9.1
Q-MAGC (Ours) 70.2 76.4 60.2 75.3 67.2 66.1 70.4 66.6 58.6 62.4 51 31.1 35.8 24.4 15.6
Q-GCN (Ours) 85.4 79.6 79.7 85.2 72 81.6 66.3 57.6 48.3 56.7 42.4 28.8 34.4 27.1 19.7
Q-VGAE (Ours) 85.6 79.9 81.6 86.7 69 77.7 69.0 59.4 49.0 62.3 45.7 47.2 39.5 30.4 24.7
Q-GMM-VGAE (Ours) 70.1 72.5 61.6 83.1 71.5 76.9 76.8 67.1 58.3 55.5 56.4 40 OOM OOM OOM
DMoN 68.8 69.1 57.5 45.4 56.7 50.3 61.0 63.3 55.4 45.4 49.3 47.0 25.0 35.6 12.7

Table 3: Comparison of methods on large attributed datasets.

K Implementation

The implementations for all the experiments can be found at https://anonymous.4open.science/r/
MAGC-8880/.

We have extensively used the PyTorch(Paszke et al., 2019) and PyTorch Geometric(Fey & Lenssen, 2019)
libraries in our implementations and would like to thank the authors and developers.

L Explanation on why VAE manifolds are curved

Embedded manifolds obtained from VGAEs are curved and must be flattened before any clustering algorithms
using Euclidean distance are applied.

The latent space of a VAE is not constrained to be Euclidean. Connor et al. (2021) point out that the
variational posterior is selected to be a multivariate Gaussian, and that the prior is modeled as a zero-mean
isotropic normal distribution which encourages grouping of latent points around the origin. Works such
as (Chen et al., 2020; Bogdanov & Shchur, 2021; Arvanitidis et al., 2018) make the VAE latent space to
be Euclidean/Hyperbolic/Riemannian, and show good visuals. Moreover, it can be observed in our own
work (Figure 4a and Appendix Figure 5a) that the latent manifolds are curved and so, are not suitable for
conventional methods such as k-means clustering, which need Euclidean distance.

M Complexities of some graph clustering methods

Some GCN-based clustering methods:

• AGC(Zhang et al., 2019) - O(p2nt + ent2)
where t is the number of iterations (within an epoch)

• R-VGAE(Mrabah et al., 2022) - O(pk2n + (p(n + k) + e(p + k))
• S3GC(Devvrit et al., 2022) - O(pn2s)

where s is the average degree
• HSAN(Liu et al., 2023b) - O(pBn)

they state it as O(B2d) but that is only for 1 batch of size B and not the whole epoch
• VGAECD-OPT(Choong et al., 2020) - O(p2nDL)

where D is the size of graph filter, l is the number of linear layers

N Evolution of different loss terms throughout training

Each separate series has been normalized by its absolute minimum value to see convergence behavior on
the same graph easily. Every series is decreasing/converging (except gamma, which represents sparsity
regularization and remains almost constant). Thus, we can be assured that no terms are counteracting and
hurting the performance. The legend is provided in the graph itself. This plot is on the Cora dataset. 7
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Figure 7: Evolution of the different loss terms throughout training, denoted by their weight parameters. Also
the term X_tˆT theta_C X_t term is the smoothness term tr(XT

C CT ΘCXC)
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