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Abstract

Multi-Agent Path Finding in the Real domain (MAPFgr)
extends classical MAPF to more realistic settings by al-
lowing continuous time and real-valued movement costs.
However, this extension introduces significant practical chal-
lenges. This paper examines fundamental issues in imple-
menting optimal MAPFR algorithms, including potential am-
biguities in collision detection, complications arising from
real number representation, precision errors, and even in-
consistencies within single algorithm implementation. These
challenges affect the reproducibility of the published work,
they complicate comparisons between competing implemen-
tations and undermine theoretical claims. We propose guiding
principles to minimise inconsistencies and outline the neces-
sary information that should be reported in academic papers
to demonstrate meaningful advances in the field. Finally, we
argue that computing truly optimal solutions for MAPFp, is
currently infeasible with existing technology.

Introduction

The multi-agent path finding (MAPF) problem is used to
plan collision-free paths for a team of moving agents, given
their starting and goal locations. The classical MAPF prob-
lem assumes a grid-based environment where all agent’s ac-
tions are synchronized perfectly with all movements tak-
ing the same time to complete. Under these assumptions,
optimal solutions for classical MAPF are able to regularly
solve problems with up to hundreds of moving agents (Shen
et al. 2023). Unfortunately, these plans are seldom applica-
ble in practice because physical robots (e.g., in warehouse
settings (Wurman, D’ Andrea, and Mountz 2008)) and vir-
tual agents (e.g., in-game settings (Harabor, Hechenberger,
and Jahn 2022)) often operate in continuous environments,
where actions have different, non-unit durations and action
executions are not synchronised.

Walker, Sturtevant, and Felner (2018) proposed a method
to handle these differences, by extending the problem model,
such that the movement costs in the problem has a real-
value instead of unit-cost, however, potential wait duration
remains at unit-cost. Later Andreychuk et al. (2022) further
extends the model by allowing arbitrary wait duration for
agents. In this setup, known as MAPFpg, agents operate on

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a graph-based model of the environment, where actions can
begin at any time instant and aegnts are allowed to have ar-
bitrary (real-positive-valued) durations.

Continuous-time Conflict Based Search (CCBS) (?) is the
first optimal algorithm to solve this problem. Many improve-
ments has been added to the CCBS frame work to increase
the efficiency of the algorithm (Andreychuk et al. 2021;
Walker et al. 2021; Walker, Sturtevant, and Felner 2024).
CCBS starts by finding each agent’s individual shortest path
without considering other agents, then looks for any conflic-
t/collisions among agents. If a collision between two agents
is found, CCBS will compute a constraint for each agent,
which forbids the agent to perform the colliding move and
allow the other agent to perform the move. Each constraint
will become a search node for high-level tree search, and
the tree is named constraint tree. The high-level of CCBS
performs a best first search of over the constraint tree. The
low-level of CCBS find a path for single agent, and follows
the constraints generated by high-level.

The theoretical work itself already presents significant
complexity, compared to discrete optimal MAPF, state-of-
the-art optimal solvers can only solve up to tens agents, and
only found out to be they are incomplete and suboptimal
due to some overlooked detail in the proof(Li, Chen, and
Harabor 2025). additional challenges arise when attempting
to implement these theoretical algorithms for practical use
or empirical experiment evaluation for theoretical study, as
compared to implementing classical discrete MAPF. Many
challenges that current researchers are not even aware of.

The challenges come from a lack of detail regarding the
implementation of the theoretical algorithm proposed in the
published paper. The missing details include ambiguity on
the solution validator, which real-number representation is
chosen, and how to handle the precision error. This ambi-
guity may lead to different implementations of the algo-
rithm producing conflicting results. Different implementa-
tions might produce different optimal solution costs, or even
disagree on the feasibility of a solution. This paper reveals
these challenges in detail and their associated consequences.
We also provide general guidance to mitigate the problem as
much as possible, and discussed how to describe and com-
pare the algorithmic improvements for future publications.



Validator
Collision Checking

To solve the problem of finding collision-free paths, it’s es-
sential to have a clear definition of what constitutes a col-
lision, along with a concrete implementation of its valida-
tor (i.e., collision detection). This is fundamental, as it di-
rectly influences the solution space and determines the fea-
sibility of a solution. Validating the plan is trivial in classi-
cal discrete MAPF theoretical and practical. When advanc-
ing from MAPF to MAPFR, people are aware there are dif-
ferent ways to detect a collision, however, people have been
assuming they are fundamentally equivalent just with some
efficiency or other minor differences. There are two different
general approaches to detect collision in real domain: ana-
Iytically, and the numerically. The analytical method uses a
derived formula to solve an equation, which is very efficient
(O(1)), however, it is only capable of detecting collision for
agents with certain simple interactions(Walker and Sturte-
vant 2019). Due to the fact that analytical solution does not
exists for all equation(Pierpont 1896). The numerical meth-
ods use an iterative approach to identify the closest distance
among agents and terminate at a given tolerance of precision
error. This allows collision detection for agents with arbi-
trary interactions with a sacrifice on accuracy and efficiency.
These two approaches are fundamentally different on solv-
ing the same problem. Therefore, they will provide different
results in some cases. Given the importance of the validator,
the difference is not negligible. We believe all publicly ac-
cessible MAPFr implementations uses analytical methods
for collision checking, potentially because of assumptions
for MAPFR problems are constant velocity in all existing
publications.

Constraint Generation

Constraint generation is also a key component of CCBS.
Although it is distinct from the collision-checking func-
tion, the two are closely interrelated. A properly designed
constraint generation function should guarantee that, once
the appropriate constraints are applied, a previously collid-
ing move becomes collision-free. Similar to the collision-
checking function, constraints can be generated either an-
alytically or numerically. While all MAPFr implementa-
tions adopt analytical methods for collision checking, some
implementations compute constraints numerically, whereas
others rely on analytical formulations. Such a situation could
lead to different implementations producing different ~op-
timal solution cost” due to the size of the generated con-
straint.

Number representation

If all researchers agree on the same validator, more chal-
lenges presents when these method are implemented on
computer. Since modern computers are inherently based on
binary hardware and operate within a discrete framework,
therefore storing and operating with irrational number is not
trivial under such system. The research on trying to bet-
ter represent irrational number in computer has been well-
studied in many areas, such as numerical calculation, com-

putational geometry and many others. Many customized
number representations have been developed to tackle dif-
ferent types of problems, and all of them can be categorized
into two types: exact representation (expressions, that can be
evaluated up to oo precision), and approximate representa-
tion (floating, fix point).

Exact Representation stores an expression for a real
number instead of number itself. So that the precision of the
real number can be evaluated at any precision given enough
time, however, it often suffers from performance problems,
even very highly optimized implementation(GmbH 2025)
is still 2-order of magnitude slower than standard floating-
point operations. More fundamentally, the algorithms for
some atomic operations are even incomplete, including
comparison between two numbers(Ménissier-Morain 2005),
which means it might take an infinite amount of steps to
perform a comparison. The implementation in modern li-
braries can guarantee termination by introduce error toler-
ance. Therefore, exact real-number representation is not a
meaningful option for MAPFr implementations.

Approximation Representation was first introduced very
early with the computer itself in the 1940s, fix-point and
floating-point methods. They were considered basic, yet are
the most common representation of real numbers nowadays.
Floating-point representation is the default representation
for all implementation (including all the MAPFR solvers),
and built-in at hardware level in modern computers. FP pro-
vides a wide range of values within a relatively small bit
size, but the error magnitude depends on the exponent. In
contrast, fixed-point representation ensures a uniformly dis-
tributed error across the entire range, but its representable
range is limited compared to floating-point formats with the
same bit size. More advanced approximate representation
was formalized later in the 1990s, such as multiple-digit and
multiple-term representations. They provide higher preci-
sion by using more memory; however, they still suffers from
the core problem in as former two, i.e. rounding error.

Rounding Error is unavoidable for approximate repre-
sentations, therefore error bounding methods were devel-
oped to provide a guarantee on the size of potential errors
and help users understand how rounding error behaves in a
chain of operations. Such bound is often expressed in an in-
terval of lower bound and upper bound, and the true value
will lie within the interval. Interval math was developed
which simply use such bounds to represent the number and
perform all the operations directly on the intervals(Hickey,
Ju, and Van Emden 2001). The idea of error bounding is
not applicable to MAPFpR algorithms, as it is only possi-
ble in a sequence of bounded operations, such as arithmetic
and square root. Most of the MAPF R, solver is a tree-based
search algorithm, which has diverging branches based on
some conditions.Solution cost difference introduced by the
precision error in the validator is not boundable. If a colli-
sion is falsely detected due to precision errors, i.e. a collision
is reported when none actually exists, a detour could be in-
troduced to avoid the perceived collision. Such detour could
be arbitrarily long depends on the map, which cause the final



solution cost be much larger then true optimal cost.

Error Handling

Given a commonly agreed validator model, and numerical
representation, error handling method is still critical for a
consistent result. It’s well know that error tolerance € value is
needed for equality check, i.e. |a — b| < e. However, the use
of € in other comparisons (<, >) is not commonly agreed,
sometimes even within a single implementation. Further
than that, € value itself is also not commonly agreed. This
not only cause different implementation is essentially solv-
ing different problem, but also breaks the consistency within
one implementation.

Consistency within One Implementation

Despite using the same validator on same numerical rep-
resentation with same error handling method, inconsisten-
cies may still arise within a single implementation due to
the rounding error. For instance, consider a model in which
a>b=a>b+eanda < b= a < b— e Inthe case of
single precision FP numbers with a = 0.49999899,b = 0.5
and € = le—06, the following can be derived:

* |a —b| = 1.01e—6 > €, which implies a # b,
e b+ e =0.50000101 > a, therefore a ¥ b, and
e b—e=0.49999899 = a, therefore a £ b

Existing implementation rarely check all three condition to-
gether for a relationship comparison, instead, a common ap-
proach is simply checking one condition and assuming its
one of other two conditions will be the opposite. A macro-
level consequence of this issue is the potential for the search
process to enter an infinite loop failure.

Continuous time Conflict Based Search(CCBS) (?) is
the foundational framework for all state-of-the-art optimal
MAPFp, solvers. Thus we will use CCBS as an case study
example to explain the Mutual Agreement principle. The
propsed principle applies to any of the two-level tree search
solvers that suffers from the precision error loss during the
search. CCBS is a two-level tree search algorithm that be-
gins by computing the shortest path for each agent individ-
ually. During each iteration, the algorithm checks for colli-
sions among the agents’ current paths. If no collisions are
found, the solution is found. However, if a collision is de-
tected, one is selected for resolution. A constraint is then
generated to avoid the collision, and the single-agent path
planner is invoked to replan the agent’s path while consider-
ing the newly introduced constraint along with all previously
generated constraints.

Mutual Agreements in MAPF

To address the aforementioned issue, we introduce a guid-
ing principle termed Mutual Agreements, designed to mit-
igate the effects of precision errors and ensure consistency
in FP computations. We acknowledge that precision loss
arises solely during computation. Accordingly, the princi-
ple of Mutual Agreements stipulates that once a value has
been computed, its exact result should be mutually accepted

by all components within the implementation. This consis-
tency is primarily achieved by reusing previously computed
results rather than re-executing equivalent operations, even
for seemingly trivial cases such as simple additions.

Standardized Collision Definition Similar to collision
detection, constraint generation is also a core component in
many optimal MAPF solvers. In discrete MAPF this compo-
nent can be implemented without any ambiguity. However,
this is not the case for MAPFR. A correctly generated con-
straint implies that the collision will necessarily be avoided
by following the constraint. Constraints can be computed ei-
ther analytically by derived equation, or numerically such as
binary search. We notice that an analytical solution might
cause inf loop failure due to the precision loss in computing
the equations. It might not resolve the collision defined by
collision detector, as analytical solution does not explicitly
check the result from collision detector. This will result into
an inf loop failure by fail to generate a collision resolving
constraint, and the search will keep resolving such collision.
Numerical method performs a binary search by calling col-
lision detector explicitly at each iteration. Therefore there
will be no disagreement between collision detector and con-
straint generation.

One-way calculation:  Only perform one-way calcula-
tions and avoid redundant calculations by reusing results.
For example, a move constraint may forbid a movement
from occurring within a specific time interval, such as
[t1,t2). As a result, the move is only allowed to take place
starting at time ¢o. The g value of the successor node is then
calculated as to + d(move), where d(move) is the travel
distance of the move. In the successor node, it is common
to use g — d(move) to determine the departure time of the
move.However, we avoid using this approach here, since o
is a verified number (one that does not violate constraints)
and g = t + d(move) — t = g — d(move) is not true
when dealing with FP calculations. Fail to do so will also
result in inf loop failure, as generated constraints are not
interpreted properly at single agent planner, hence, not re-
solving the collision. To mitigate this, we only use addition
when checking successors, even though the two equations
are mathematically equivalent.

Calculation in Comparison: Due to the structure of FP
representation, the error tends to be larger when performing
calculations on two numbers with large differences in mag-
nitude. This issue, known as catastrophic cancellation, oc-
curs when the precision of the smaller number is insufficient
to maintain accuracy after the operation.

The broken comparison shown above is an example of this
effect. Therefore, when performing the comparison with a
calculated result, suchas a — b < ¢ — d where d << a, b, ¢,
the comparison should be performed asa —b—c < —d.Ine€
comparison model, generally speaking, the compared value
tends to be much larger than ¢, therefore, we propose using a
comparison model that use |a — b| <= ¢ for equality check,
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Table 1: V. for existing CCBS implementation, m. for our
modified implementation, Disjoint Splitting (DS), High-
Level Heuristics (H), Conflict Prioritisation (P). € is showed
in 10~* format, and oo stands for ¢ = 0. § is the aver-
age cost difference compared to baseline, max; is the max
difference, |d| for the number of different instances. ¢~ for
modified version with lower costs, and 7+ for higher costs.

a — b > e for greater than, a — b < —e for less than

la—bl<=e=a=b
a—b>e=a>0b
a—b< —€e=a<b

Emprical evaluation on CCBS as a Case Study

Continuous time Conflict Based Search(CCBS) is the foun-
dation of many optimal solvers. We have used the publicly
available implementation of CCBS provided by original au-
thors as a case study in this empirical evaluation. We mod-
ified the original implementation by applying the Mutual
Agreements, the new implementation is publicly accessible'.

We conduct experiments based on the graph benchmark
instances provided in the existing CCBS implementation.
The three graphs, sparse, dense and super dense, are sam-
pled from a grid-based benchmark map D520d from movin-
gai.com (Stern et al. 2019). For each instance, we run exper-
iments for each map with the number of agents varying from
3 up to 40. For each map and each number of agents, we run
25 instances. We use the existing implementation (V.), with
e = e % and preciston = 100 X €, to compare our mod-
ified CCBS implementation (m.), with different e settings
and with Disjoint Splitting (DS), High-Level Heuristics (H),

"https://link will be provided if accepted for publication.

and Conflict Priorisation (P) turned on or off. precision is
a variable to control the error tolerance for computing con-
straint intervals, which is set to 100 x e by default.

Comparison between different implementations The
results in Tablel show a comparison of the optimal solu-
tion costs computed by each algorithm with different im-
plementation. A notable observation is that more than 200
infinite loop failures were found in the unmodified version,
due to inconsistencies within the single implementation. For
co-solvable instances, the modified implementation always
found solutions with lower costs using e = e % ande = e~ 7.
Even for larger € values, we observe more solutions with
lower costs than those with higher costs. Although the re-
sults indicate that the existing implementation finds more
solutions, this is often because the original implementation’s
greedy precision value imposes significantly larger con-
straints, leading to “greedily” finding solutions with higher
costs. We also experimented with our m. version with ¢ = 0,
meaning comparisons were done based on raw algebraic
comparisons, and constraints were binary searched until ma-
chine e level accuracy was reached. For the m. version,
smaller € values resulted in more detected collisions, which
explains why the m. version includes cases where ¢ = 0
resulted in higher solution costs.

Comparison between algorithms

Improving techniques (such as DS), should function like
add-ons that layer on top of existing algorithms, speeding up
the solving process without altering the problem’s solution
cost. However this is not the case in MAPF g, even under the
same implementation. We observed that different improve-
ment techniques in CCBS produced different optimal solu-
tion costs for the same problem due to precision loss during
the search process, despite applying mutual agreement prin-
ciples. In Fig.1, we used the minimum-cost solution across
all algorithms as the baseline and plotted the cost differ-
ences of the other algorithm solutions in comparison. The
solution cost differences among algorithms in V.CCBS are
the around 10~7 level, peaking at 8.14e-7 when € = 1078,
Modified CCBS at the 10~ level peaks at 1.20e-8, and when
€ = 0 in the modified version, the solver consistently returns
the exact same solution across all algorithms.

In Fig2, we illustrate the trend of how cost difference
changes as we reduce the size of €. The sample variance
is calculated over the sum of difference among algorithms
for each instance.The maximum cost difference is deter-
mined by the largest difference observed for each instance.
The maximum difference is at least two orders of magnitude
larger than the variance, and can be up to ten orders of mag-
nitude higher. The maximum cost difference typically aligns
with the order of magnitude of €, except when e=0.1, which
represents 20% of the agent’s radius. At this point the defi-
nition of collision becomes somewhat ambiguous.

Proceeding Research without Ambiguity

Given that all the issues mentioned above are inherent to the
problem and cannot be fully eliminated, the question then
becomes: How do we proceed?
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Figure 1: Cost difference compared to the lowest solution cost between all algorithms
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Figure 2: Sample variance and max on the cost difference
against varying € on m. implementation.

Reproducible Implementation A reproducible imple-
mentation and its experimental results are crucial in re-
search. However, due to insufficient description in the cur-
rent MAPF i papers, they are not reproducible. Based on our
investigation so far, we believe the following information is
essential for ensuring a reproducible implementation:

* Method of detecting collision

» Representation of real number

* How to address representation errors

* Size of tolerance

¢ Interpretation of the tolerance

* Additional approaches to handling representation errors

Comparable Metric After providing a description of a re-
producible implementation, we must also report the results
of an empirical experiment. However, due to the inconsis-
tency issues previously mentioned, we believe solvers will
still produce different optimal solution cost.

We identify three different solution spaces when trying
to implement an optimal MAPFy, algorithm. There are: Sg,
total solution space over the real number domain. S, Rep-
resentable solution space given a numerical representation.
Ss, Reachable solution space given a numerical representa-
tion with a starting point.

Unless proven otherwise, we assume the following rela-
tionship between the solution spaces: Sg € Sc¢ € Ss.
We believe achieving optimality in Sy is currently impos-
sible due to technological limitations, and it could only be

theoretically feasible if an analytical solution for optimal
MAPFp, exists—something that doesn’t yet exist for optimal
MAPF. Even with an analytical solution, modern computers
are still limited by real number representation as the overall
algorithm can not be compelete, if each number compari-
son operation is not complete as mentioned in Number rep-
resentation. While tie-breaking doesn’t affect MAPF’s the-
oretical properties, in MAPF R, implementation issues may
lead to different results from theoretically equivalent pro-
cesses. The current default numerical representation used in
all MAPFr implementation, Floating Point representation,
for all, additionally suffers from the loss of several funda-
mental mathematical properties during computation, includ-
ing Associativity, Distributivity, Reversibility, and transitiv-
ity of equality. Their absence can cause the search process to
yield different solution costs when starting from equivalent
nodes. Hence, we suspect Ss # Sc. Achieving optimality
in Sgr might only be possible through brute-force enumera-
tion. Unless Sg = Sc¢ is proven, no reasonable search will
exhaust all equivalent solutions without quickly devolving
into brute-force enumeration. Thus, for theoretically equiva-
lent algorithms, differences in tie-breaking or starting points
can lead to different “optimal” costs. Therefore, empirical
results should be treated with caution, comparing not just
success rates and computation times but also solution costs.
Despite the fact that all robots are executing on continu-
ous environment, the planner will inevitably be in discretion
domain because of the digital computer. We propose that a
model where minimal unit size can be considered. In such
model, instead of planning on graph with arbitrary real value
edge costs, a very fine grid can be considered as an underly-
ing map. The collision detection, and other critical compo-
nents can be computed as classical grid MAPF by checking
the occupancy of the cell. We believe search on this model
can provide a comparable and consistent result to the field.

Future Work

As discussed in the paper, the current implementation
searches in a Reachable Solution Space, which is signifi-
cantly smaller than the Continuous Solution Space, and yet
it cannot guarantee optimality within the Reachable Solu-



tion Space. Future work aims to explore approaches that can
provide guarantees for the solutions produced by the imple-
mentation. These guarantees focus on several key aspects.

The first is the feasibility guarantee. While error analy-
sis for MAPFp, is not possible at the algorithmic level, error
bounds can still be provided within the collision detection
process, guaranteeing a truly collision-free plan by consid-
ering any ambiguous situation as collisions.

For completeness and optimality, it’s possible to guaran-
tee optimality within Reachable Solution Space and Repre-
sentable Solution Space by using Fixed-point Numbers. This
approach avoids rounding operations and their associated er-
rors by only operating on representable numbers.
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