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ABSTRACT
One fundamental statistical question for research areas such as precision medicine and health disparity
is about discovering effect modification of treatment or exposure by observed covariates. We propose
a semiparametric framework for identifying such effect modification. Instead of using the traditional
outcome models, we directly posit semiparametric models on contrasts, or expected differences of the
outcome under different treatment choices or exposures. Through semiparametric estimation theory, all
valid estimating equations, including the efficient scores, are derived. Besides doubly robust loss functions,
our approach also enables dimension reduction in presence of many covariates. The asymptotic and non-
asymptotic properties of the proposed methods are explored via a unified statistical and algorithmic
analysis. Comparison with existing methods in both simulation and real data analysis demonstrates the
superiority of our estimators especially for an efficiency improved version. Supplementary materials for this
article are available online.
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1. Introduction

In many scientific investigations, estimation of the effect mod-
ification is a major goal. For example, in precision medicine
research, recommending an appropriate treatment among many
existing choices is a central question. Based on patient’s char-
acteristics, such recommendation amounts to estimating treat-
ment effect modification (Kraemer 2013). Another example is
health disparity research that focuses on measuring modifica-
tion of the association between disparity categories (e.g., race
and socioeconomic status) and health outcomes. The estimated
effect modification can be used to improve the health system
(Braveman 2006).

In the classical regression modeling framework, this amounts
to estimating interactions between covariates and a certain
interested variable. Take the precision medicine example, the
goal is to find how the patient characteristics interact with
the treatment indicator. If the interest focuses on treatment
recommendation, then main effects of these characteristics do
not directly contribute to it because they are the same for all
treatment choices. Similarly for the health disparity example,
the goal is to find how the modifiers interact with the disparity
categories. If the interest focuses on elimination of disparity,
then main effects of modifiers are of less importance because
they are the same for all disparity categories.

Traditionally, effect modification or statistical interaction
discovery is conducted mainly by testing or estimating product
terms in outcome models. Such discovery is hard as it usu-
ally requires large sample sizes (Greenland 1993), especially
when many covariates are present. Recent works in the area of
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precision medicine illustrate that when the goal is treatment
recommendation, investigation on the product term in an out-
come model may not be ideal as the outcome is also affected by
covariate main effects (Zhang et al. 2012; Zhao et al. 2012; Lu,
Zhang, and Zeng 2013; Tian et al. 2014; Xu et al. 2015; Chen
et al. 2017). As we have discussed above, these main effects
usually are not directly related to treatment recommendation.
Therefore, these works focus on learning contrast functions
which are differences of conditional expectations of the outcome
under two treatment choices. Nonetheless, there is a lack of the
literature on how the main effects or estimation of the main
effects can contribute to the efficiency of learning such contrast
functions.

Most of the existing works use either nonparametric (Zhao
et al. 2012; Zhang et al. 2012) or parametric approaches (Krae-
mer 2013; Lu, Zhang, and Zeng 2013; Xu et al. 2015). The
nonparametric approaches are flexible but may not be ideal
when faced with a large number of covariates. The parametric
approaches on the other hand can be sensitive to the under-
lying model assumptions. Song et al. (2017) considered a sin-
gle index model for the contrast function to fill an impor-
tant middle ground. Single index models are semiparametric
models where the index is formed from a linear combination
of covariates and a wrapper function that takes the index as
argument is nonparametric. However, only an intuitive method
of estimation was considered in Song et al. (2017). No systematic
investigation was given to explore other possible estimating
equations. Therefore, issues such as efficiency were left largely
untackled.

© 2020 American Statistical Association
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More importantly, it is practical to provide more flexibil-
ity in the semiparametric framework by allowing more than
one indices. That is multiple index models can better capture
the heterogeneity in effect modification. As a simple exam-
ple, a single index model with the linear index part depend-
ing on the product of two covariates is not a single index
model any more, if this product is not included as a fitting
covariate. However, multiple index models can easily capture
this deviation from the linearity. When there are more than
two treatments, it is also mathematically appealing to consider
multiple index models. For example, single index models can
be used to model the contrasts between treatments A and B
and between B and C, respectively. But if the indices of these
two models are different, the resulting contrast between A and
C will be a double index model, not a single index model.
This asymmetry, of assuming two single index models for two
contrasts and one double index model for the other contrast,
is easily avoided by assuming the multiple index models for all
contrasts.

We therefore propose a more general semiparametric
approach which is essentially a multiple index modeling frame-
work for multiple treatments. We will also consider determi-
nation of the number of indices. Under our framework, we
make the following new contributions. First, based on the well-
established semiparametric estimation theory (Bickel et al. 1993;
Tsiatis 2006), we characterize all valid estimating equations,
including the efficient score under our framework. This leads
to many possible choices of estimating equations, and effi-
ciency consideration becomes very natural in our approach.
Second, because multiple index models are intrinsically related
to dimension reduction (Xia et al. 2002; Xia 2007), our method
can also be used as a dimension reduction tool for interaction
discovery with a specific variable. Third, we do not restrict
the treatment or exposure variable to be binary. Literature for
more than two treatment choices seem very sparse (Lou, Shao,
and Yu 2018). Fourth, we also study the asymptotic and non-
asymptotic properties of the resulting estimators based on a
careful analysis of the computing algorithm. This enables infer-
ence and provides useful insights for using our approach in
practice.

Estimating the effect modification is an important problem
in causal inference (Imai and Ratkovic 2013; Abrevaya, Hsu,
and Lieli 2015). Under the potential outcome framework (Rubin
1974, 2005), and the well-known assumptions of the Stable
Unit Treatment Value Assumption (SUTVA), consistency, and
treatment assignment ignorability (Imbens and Rubin 2015),
the effect modification becomes the conditional average treat-
ment effect (CATE). Under these assumptions, popular methods
such as inverse probability weighting (IPW) and augmented
inverse probability weighting (AIPW) (Robins, Rotnitzky, and
Zhao 1994; Bang and Robins 2005; Cao, Tsiatis, and David-
ian 2009; Tan 2010; Rotnitzky et al. 2012) were commonly
used to estimate average treatment effect (ATE) (Hirano and
Imbens 2001; Hirano, Imbens, and Ridder 2003) and the CATE
(Imai and Ratkovic 2013; Abrevaya, Hsu, and Lieli 2015). On
estimating the CATE, many literature also chose to directly
work with outcome models (Green and Kern 2012; Xie, Brand,
and Jann 2012; Lu et al. 2018; Wager and Athey 2018; Künzel
et al. 2019). The well-known structural nested models and

the corresponding G-estimation focused on parametric models
for the CATE with relatively few covariates (Robins, Mark,
and Newey 1992; Robins 1994; Vansteelandt and Joffe 2014).
We posit a multiple index model on the contrast function or
the CATE and show how the main effects contribute to the
efficiency. Our proposed approach in some way extends these
results on the CATE in a semiparametric modeling framework.
In some literature (Huang and Chan 2017; Luo, Zhu, and Ghosh
2017; Persson et al. 2017), the effect modification appears to
be used also as an important middle step to estimate the pop-
ulation level causal quantities such as the ATE. However, the
methods proposed in these literature, including index models or
dimension reduction, are for the outcomes, not for the contrast
functions.

2. A Semiparametric Framework for Modeling
Contrast Functions

Suppose X ∈ X is a p-dimensional vector of covariates, Y is
an outcome, and T is a discrete variable whose effect on Y and
modification of this effect by X are of interest. We first consider
the case when T has only two levels. We can also use {1, 2},
instead of {−1, 1}, to denote the levels of T and to conform with
our notation below for the more general case. However, we keep
{−1, 1} as it leads to simpler nations in our presentation for the
binary treatment setting.

The main goal is to learn the following contrast function
based on observed data,

�(X) ≡ E[Y|T = 1, X] − E[Y|T = −1, X]. (1)

We assume that a larger Y is better. Then when �(X) > 0, T = 1
rather than T = −1 leads to a better clinical outcome for given
X, and vice versa. Therefore, we consider the following model in
this article

�(X) = g(B�
0 X), (2)

where g is an unknown function and B0 is a p × d matrix. Here
d represents the number of indices. That is, d = 1 corresponds
to a single index model and d > 1 to a multiple index model.

Note that there is an identifiability issue in Model (2) when
both g and B0 are unrestricted. This is a known issue in both
the index models and dimension reduction literature (Xia et al.
2002; Xia and Hardle 2006; Cook 2007; Xia 2007, 2008; Ma and
Zhu 2012, 2013; Li 2018). To resolve this issue, we adopt the
common strategy in the dimension reduction literature (Cook
2007; Ma and Zhu 2012; Li 2018) and assume that the columns
of B0 form a Grassmann manifold. That is, B0 satisfies(

Id×d, 0d×(p−d)

)
B0 = Id×d,

where Id×d is the identity matrix with rank d.
Model (2) is very flexible as the contrast function is defined

in terms of the conditional means of the outcome, instead of its
conditional distributions. The model is therefore semiparamet-
ric as it leaves the other parts of the distribution (e.g., variance)
unspecified. This is similar to the well-known semiparamet-
ric conditional mean model commonly used in econometrics
(Chamberlain 1987; Newey 2004).



754 M. LIANG AND M. YU

Consequently, the outcome Y can be of many types as long
as its mean function satisfies our model. For example, when
Y is binary, the contrast function represents the difference of
the success probabilities. Then Model (2) implies a single or
multiple index model, depending on d = 1 or d > 1, for the
difference of its success probabilities under the two treatment
choices.

Now consider the case when T has K levels. To fully represent
the effect modification, we need to use K − 1 contrasts. For
example when K = 3, we can use contrasts such as E[Y|T =
1, X] − E[Y|T = 2, X] and E[Y|T = 3, X] − 1

2 (E[Y|T =
1, X]+E[Y|T = 2, X]). In general, we extend the concept of the
contrast function in (1) to a contrast vector function of length
K − 1 as follows

�(X) ≡ �

⎛
⎜⎝

E[Y|T = 1, X]
...

E[Y|T = K, X]

⎞
⎟⎠ , (3)

where � is a prespecified (K −1)×K matrix. The K −1 rows of
� represent the interested contrasts. For K = 2, � = (1, −1).
For the above example of K = 3, we have

� =
(

1 −1 0
− 1

2 − 1
2 1

)
.

For the contrasts to be interpretable, we require the sum of ith
row of � to be 0, that is,

∑K
j=1 �ij = 0 for i = 1, . . . , K − 1.

Reasonably, we also require ��� to be invertible.
In this setup, the corresponding model is

�(X) = g(B�
0 X), (4)

where g is a length (K − 1) vector function of B�
0 X.

3. Tangent Spaces and Semiparametric Efficient
Scores

Similar to the work in dimension reduction (Ma and Zhu 2012,
2013, 2014), we characterize the nuisance tangent space and
its orthogonal complement for B0. The corresponding efficient
score is also derived. We closely follow the notions and tech-
niques of Tsiatis (2006). The derivation requires working with
the full data likelihood even though we do not specify the form
of the distribution of Y in Model (2) or (4). In other words, we
need to convert these models into equivalent outcome models
that involve B0, g, and the unspecified nonparametric parts.

In our supplementary materials, we show that Model (2) is
equivalent to the following model for the outcome Y :

Y = 1
2

Tg(B�
0 X) + ε, (5)

where ε is some random variable satisfying the following con-
ditional mean condition

E [ε|T, X] = E [ε|X] . (6)

The equivalence can be shown by verifying that ε ≡ Y −
1
2 Tg(B�

0 X) satisfies (6). This representation (5) enables us to
directly work with the full data likelihood.

Similar to the binary setting, when T is multilevel, our model
(4) is equivalent to the following model for the outcome Y :

Y = ��·T
(
���)−1

g(B�
0 X) + ε, (7)

where �·T is the column of � that corresponds to the value of
the treatment T. Similarly ε in (7) needs to satisfy the condi-
tion (6).

We first present results for the general multilevel T and
assume that the function class of interest is the mean zero
Hilbert space H = {f (ε, X, T) : E(f ) = 0}. These results will
then be simplified for binary treatments.

The full data likelihood is

pX(X)πT(X)pε

(
Y − ��·T

(
���)−1

g(B�
0 X), X, T

)
,

where pX is the density of X, πT(X) is the density of T condi-
tional on X, and pε is the density of ε conditional on X and T,
with respect to some dominating measure. The density πT(X) is
also known as propensity score (Rosenbaum and Rubin 1983).
Note that pX , πT , pε , and g are infinite-dimensional nuisance
parameters. The tangent spaces correspond to pX , pε , and πT are

�X = {f (X) ∈ H : E[f ] = 0},

�ε =
{

f (ε, X, T) ∈ H : E(f |X, T) = 0 and

E
[
f ε|T, X

] = E
[
f ε|X]},

�π = {f (X, T) ∈ H : E[f | X] = 0}.

Through some algebra, we can rewrite �π as

�π =
{

w�
T

(
���)−1

f π (X), ∀f π (X) : X �→ RK−1
}

,

where

wT = �·T
πT(X)

.

The tangent space of g is

�g =
{p′

ε,1(ε, X, T)

pε(ε, X, T)
��·T
(
���)−1

f g(B�
0 X), ∀f g(B�

0 X) : X �→ RK−1
}

,

where p′
ε,1(·) is the derivative of pε(ε, X, T) w.r.t ε.

Let ⊥ denote the orthogonal complement of a Hilbert space.
Denote the nuisance tangent space � ≡ �X + �ε + �π + �g .
Then we have

Theorem 3.1. The orthogonal complement of the nuisance tan-
gent space, �⊥, is a subspace characterized by all functions with
the form

w�
T [ε − E(ε|X)]

[
α(X) − E{α(X)|B�

0 X}
]

,

for any function α(X) : X �→ RK−1.
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Detailed proofs of this theorem and other theorems and
corollaries are given in the supplementary materials. To obtain
the efficient score, we need to project the score function onto
�⊥. The following theorem provides a formula to project any
function onto �⊥ and thus contains the efficient score as a
special case.

Theorem 3.2. For any function f (ε, X, T) ∈ H, its projection
onto �⊥ is given by

w�
T {ε − E(ε|X)} C(B�

0 X),

where

C(B�
0 X) = V(X)

{
D(X) − E[V(X)|B�

0 X]−1E[V(X)D(X)|B�
0 X] },

V(X)−1 = E(wT w�
T ε2|X) − E(wT w�

T |X)E(ε|X)2,

D(X) = E(wTf ε|X) − E(wTf |X)E(ε|X).

Note that C(B�
0 X) depends on X, in addition to B�

0 X. But we
have suppressed it for notational simplicity. After setting f as the
score function in Theorem 3.2, we obtain the efficient score in
the following corollary.

Corollary 3.1. The efficient score of B0 is given by the vectoriza-
tion of a d × p matrix whose (i, j) coordinate is given by

w�
T {ε − E(ε|X)} C∗

i,j(B�
0 X),

where

C∗
i,j(B�

0 X) =V(X)
{

Xj − E[V(X)|B�
0 X]−1E[V(X)Xj | B�

0 X]
}

× ∂ig(B�
0 X),

Xj is the jth component of X, and ∂ig is the derivative of g with
respect to its ith index.

In cases like clinical trials, πT(X) may be known. In this case,
there is no corresponding tangent space �π and the correspond-
ing nuisance tangent space �̃ ≡ �X + �ε + �g . Its orthogonal
complement �̃⊥ is then larger and can be shown to be the sum
of �⊥ and S2 defined in the supplementary materials. For any
function f (ε, X, T), its projection on �̃⊥ is its projection on �⊥
plus an additional term w�

T E(wTw�
T |X)−1E(wTf |X). However,

the efficient score is unchanged as E(wTf |X) = 0 when f is
chosen as the score function.

As a special case of Theorem 3.2 and Corollary 3.1, when
K = 2, we have the following corollaries, recognizing that
wT = πT(X)−1T now becomes a scalar.

Corollary 3.2. For K = 2 and T ∈ {−1, 1},

�⊥ ={πT(X)−1T
[
α(X) − E{α(X)|B�

0 X}] [ε − E(ε|X)] ,
∀α(X) : X �→ R

}
.

Corollary 3.3. For K = 2 and T ∈ {−1, 1}, the projection of any
function f (ε, X, T) ∈ H onto �⊥ is given by

πT(X)−1T C(B�
0 X) {ε − E[ε|X]} ,

where

C(B�
0 X) = V(X)

{
D(X) − E[V(X)D(X)|B�

0 X]
E[V(X)|B�

0 X]

}
,

V(X)−1 = E[πT(X)−2ε2|X] − E[πT(X)−2|X]E(ε|X)2,
D(X) = E[πT(X)−1Tf ε|X] − E[πT(X)−1Tf |X]E(ε|X).

Therefore, the efficient score is

πT(X)−1T C∗(B�
0 X) {ε − E(ε|X)} ,

where

C∗(B�
0 X) = V(X)∇g(B�

0 X) ⊗
{

X − E[V(X)X|B�
0 X]

E[V(X)|B�
0 X]

}
,

and ⊗ is the Kronecker product.

4. Estimation and Algorithm

We first consider estimation of B0 with a fixed d. Then we pro-
pose a method for determining d similar to Xia et al. (2002). For
simplicity, we present our method with K = 2. Generalization
to K > 2 is straightforward and relegated to the supplementary
materials. From Corollary 3.3, the efficiency score can be writ-
ten as

V(X)
T

πT(X)
∇g(B�

0 X)⊗
{

X − E[V(X)X|B�
0 X]

E[V(X)|B�
0 X]

}

× {ε − E(ε|X)} . (8)

We can see that the efficient score is hard to estimate directly due
to many conditional expectations involved. We therefore use (8)
to accomplish two tasks.

The first task is to construct more practical and simplified
estimation procedures by exploring the robustness of the effi-
cient score (8). In particular, (8) remains unbiased (for 0) by
omitting the fraction E[V(X)X|B�

0 X]/E[V(X)|B�
0 X] and the

leading term V(X). In addition, πT(X) and E[ε|X] form a pair
for robustness in the sense that, if one is known or consistently
estimated, the other can be misspecified. This is the well-known
double robustness property in semiparametric estimation (Tsi-
atis 2006). Therefore, we propose the following class of esti-
mating equations that are all unbiased for estimating B0 under
Model (7),

S̃ = {πT(X)−1T∇g(B�
0 X) ⊗ X(ε − η(X)), ∀η(X) : X �→ R

}
.

This will be our choice of estimating equations. The obvious
benefit of using this function class S̃ is that solving the esti-
mating equations is equivalent to minimizing the loss function
πT(X)−1{Y − 1

2 Tg(B�
0 X) − η(X)}2. The corresponding sample

version is

Lg(B) = 1
n

n∑
i=1

{Yi − 1
2 Tig(BTXi) − η(Xi)}2

πTi(Xi)
. (9)

The proposed loss function remains doubly robust in the
sense that the minimizer of the proposed loss function is con-
sistent if either πT(X) or η(X) = E[ε|X] is correctly specified.
When πT(X) is known or can be consistently estimated, the
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choice of η(X) can be flexible. A convenient choice is η(X) = 0
adopted in Chen et al. (2017) and Tian et al. (2014). Another
choice is η(X) = {1−2π(X)}g(B�

0 X) used by Song et al. (2017).
However, from the proof of Theorem 3.1 and Corollary 3.1,

η∗(X) = E[ε|X]
leads to the most efficient estimator.

Because g is unknown, to estimate B0 through minimiz-
ing Lg(B), we employ a minimum average variance estimation
(MAVE) type of method as advocated in Xia et al. (2002). In
particular, minimization is based on the following approximat-
ing loss function:
L(B, {aj, bj}n

j=1) (10)

=
n∑

j=1

n∑
i=1

{Yi − 1
2 Ti[aj + b�

j (B�Xi − B�Xj)] − η(Xi)}2

n2 πTi(Xi)
wij,

where wij = Kh(B�Xj − B�Xi) and Kh(·) = 1
hd K(·/h) is a

kernel function with bandwidth h. The extra parameters aj ∈
R and bj ∈ Rd can be thought of as approximations to g
and its gradient at each point B�Xj, and the kernel weight wij
ensures the adequacy of the local linear approximation of g in its
neighborhood. We can also normalize the weight wij’s by w̃ij =
wij/
∑

j wij. In the next two subsections, we will consider both
the case of fixing η(X) through a sensible or convenient choice
and of estimating η∗(X) = E[ε|X]. We term the two methods
interaction MAVE (iMAVE) and iMAVE2, respectively.

The second task is to use the variance of the efficient score (8),
or the efficiency bound, to evaluate our method. Obviously, our
simplified method will lead to efficiency loss in general cases.
However, if we further impose two assumptions

(a) ε ⊥ T|X, var(ε|X) is a constant;
(b) π1(X) ≡ π1, where π1 is a constant.

Then the efficiency bound (based on the asymptotic variance
of the efficient score) is exactly the same as the variance of our
iMAVE2 method derived in Theorem 5.3. Therefore, iMAVE2
attains local efficiency under the above two assumptions.

4.1. The iMAVE Method With a Fixed η(X)

In this section, a weighted least square algorithm to minimize
(10) is introduced that consists of the following steps.

1. An initial estimator, B(1), is obtained. Please see our com-
ments after the algorithm on how to obtain B(1).

2. Let B(t) be the estimator at the tth iteration. Calculate

w(t)
ij = Kh(B�

(t)Xi − B�
(t)Xj).

3. Solve the following weighted least square problem to obtain

(a(t)
j , b(t)

j ) = arg min
aj,bj

L1(aj, bj),

for j = 1, . . . , n, where

L1(aj, bj) = 1
n

n∑
i=1

{Yi − η(Xi) − 1
2 Ti[aj + b�

j (B�
(t)Xi − B�

(t)Xj)]}2

πTi(Xi)
w(t)

ij .

4. Solve the following weighted least square problem to obtain

B̃(t+1) = arg min
B

L2(B),

where

L2(B) = 1
n2

n∑
j=1

n∑
i=1

{Yi − η(Xi) − 1
2 Ti[a(t)

j + b(t)
j

�
(B�Xi − B�Xj)]}2

πTi(Xi)
w(t)

ij .

5. Normalize to obtain B(t+1) by projecting B̃(t+1) onto the
Grassmann manifold.

6. If the discrepancy, |B(t+1) − B(t)|, is smaller than a pre-
specified tolerance, or a max number of iterations achieved,
then output B(t+1). If not, go back to Step 2 and start a new
iteration.

The initial estimator B(1) needs to be a consistent estimator
for our theoretical analysis. To get a consistent B(1), one choice
is to solve a simplified version of (10) by only expanding g at 0,

L(B) = 1
n

n∑
i=1

{Yi − 1
2 TiB�Xi}2

πTi(Xi)
w̃i0,

where w̃i0 = Kh(B�Xi). For d = 1, one can also utilize the
method of Song et al. (2017). In our simulation studies, we found
that a simple choice of B(1) = 0 almost always led to stable
convergent results.

4.2. The iMAVE2 Method With an Estimated η∗(X)

The following two-step procedure is proposed to estimate
η∗(X) = E[ε|X]. First, we obtain an estimate B̂ of B0 with a
prefixed η. Then g(B�X) is estimated by

ĝ(B̂�X) =
∑n

i=1 πTi(Xi)−1TiYiKh(B̂�
(Xi − X))∑n

i=1 Kh(B̂�
(Xi − X))

, (11)

where Kh is a kernel function with Kh(X) = h−dK(X/h). The
kernel K and bandwidth h can be different from those used
before in (10).

The estimated residual is ε̂i = Yi − 1
2 Tiĝ(B̂�Xi). We can then

estimate E[ε|X], by ∑n
i=1 ε̂iKh(Xi − X)∑n
i=1 Kh(Xi − X)

, (12)

where Kh is another kernel function with Kh(X) = h−pK(X/h).
Again, the kernel K and bandwidth h can be different
from those used before. On the other hand, noticing that
E[πTi(Xi)−2|X]−1 = π1(X)π−1(X), η∗ can also be estimated
by

η̂∗(X) = π1(X)π−1(X)

∑n
i=1 πTi(Xi)−2ε̂iKh(Xi − X)∑n

i=1 Kh(Xi − X)
. (13)

With an estimated η̂∗, a possibly improved estimator B̂∗ of B0
can be obtained. We call this efficiency improved estimation
method iMAVE2.
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Other approaches to obtain η∗ can also be considered. For
example, it may be estimated from an external independent
dataset or given directly through prior knowledge. When η∗
cannot be estimated reliably, especially when the dimensionality
of X is high or when the sample size n is small, as long as the
estimator is a function of X, the resulting B̂∗ is still unbiased
in principle. Therefore instead of nonparametric estimators,
parametric models may also be used to estimate η∗.

4.3. Dimension Determination

There is a need to determine the dimension d, especially when
p is large. Many methods proposed in the dimension reduction
literature are applicable in our setting too (Schott 1994; Cook
1998; Koch and Naito 2007). In this article, we adopt the same
procedure as Xia et al. (2002), which is a consistent procedure
based on cross-validation. In particular, because

E
[

T
πT(X)

Y
∣∣∣∣X
]

= E
[

T
πT(X)

Y
∣∣∣∣B�

0 X
]

,

consistency of the dimension determination procedure can be
established by a direct application of Theorem 2 in Xia et al.
(2002).

Given a dimension d ∈ {0, 1, . . . , p}, the procedure goes
through the following steps based on iMAVE.

1. Randomly split the dataset into five folds, and Im, m =
1, . . . , 5 are the sets corresponding to these folds.

2. For m = 1, . . . , 5, choose Im as a testing set and the rest I−m
as a training dataset. Fit iMAVE on I−m to obtain estimates
of B̂(−m) and ĝ(−m)(·). Then calculate the following score.

CV(d, m) = 1
|Im|
∑
i∈Im

(
1
2

TiYi
πTi(Xi)

− ĝ(−m)(B̂�Xi)

)2
,

where ĝ(−m)(·) is estimated using I−m.
3. The estimated dimension is d̂ = arg min0≤d≤p∑5

m=1 CV(d, m).

These same steps can also be based on iMAVE2 to determine
the dimension. It is intuitively clear that over-estimating the true
dimension d to a slightly larger value is much less of a concern
than under-estimating.

5. Theoretical Results

In this section, we analyze our estimator in a unified framework
of statistical and algorithmic properties assuming a binary T for
notational simplicity. We study both iMAVE and iMAVE2.

The non-convexity of (10) makes it intractable to obtain
theoretical results for prediction or classification error by simply
mimicking the usual analysis of empirical risk minimization
(Vapnik 2000). It is also hard to analyze the convergence rate
or asymptotic distribution of the proposed estimators due to a
lack of characterization of the minimizers. On the other hand,
because we carry out our optimization by iteratively solving
a weighted least square problem, we can track the change of
each iteration similar to Xia et al. (2002) and Xia (2007). This

leads us to propose a unified framework of joint statistical and
algorithmic analysis.

For any matrix A, |A| represents the Frobenius norm of A.
For any random matrix An, we say An = Op(an) if each entry of
An is Op(an). Let B(t) be the estimator in the tth iteration of the
iMAVE algorithm, and B̂ be the limit of B(t) when t → +∞.
The existence of the limit of B(t) as well as the convergence of
the algorithm, similar to Xia (2007), can be concluded from the
proof. Denote δ

(t)
B = |B(t) − B0|. Our goal is to answer the

following questions for both iMAVE and iMAVE2:

1. Suppose that δ
(1)
B has some convergence rate to 0. After t

iterations, what is the convergence rate of δ
(t)
B ?

2. What is the convergence rate of δB̂ ≡ |B̂ − B0|?
3. What are the answers for Questions 1 and 2 when iMAVE2 is

used.
4. Whether there is asymptotic efficiency gain of iMAVE2 com-

pared with iMAVE?

Questions 1 and 2 are answered by Theorems 5.1 and 5.2,
respectively. Question 3 is answered by Theorem 5.5. Question 4
is answered by Theorems 5.3 and 5.5.

Theorem 5.1 is a new result beyond Xia et al. (2002) and
Xia (2007). It essentially quantifies the nonasymptotic property
of our estimators. It implies that under certain conditions, δ

(t)
B

converges to 0 with a rate of at least (n/ log n)−1/2 almost
surely when t is large enough and d ≤ 5. When d > 5, the
convergence rate is bounded by a quantity related to bandwidth
and d, and slower than (n/ log n)−1/2. Theorem 5.2 implies that
under certain conditions, δB̂ converges to 0 in probability with
the order of n−1/2 when d ≤ 5. When d > 5, the convergence
rate is slower than n−1/2. The convergence rate in Theorem 5.2 is
different than that in Theorem 5.1 by a factor of log n due to the
difference of convergence modes. Theorem 5.1 provides deeper
results with both statistical and algorithmic properties.

Theorems 5.3 and 5.5 provide the asymptotic distributions
of iMAVE and iMAVE2 estimators, respectively. Theorem 5.4
provides the accuracy of estimating g based on B̂. Combining
with the previous results in Section 2, we will see that difference
of the asymptotic covariance matrices of iMAVE and iMAVE2
is always positive semidefinite. Thus, iMAVE2 is more efficient
than iMAVE.

The conditions needed for our theorems are as follows. Let
ξB(u) = E(XX�|B�X = u) and μB(u) ≡ E(X|B�X = u). We
denote the distribution of B�X as pB(B�x).

(C.1) The density of X, pX(x), has bounded 4th order deriva-
tives and compact support. μB(u) and ξB(u) have
bounded derivatives with respect to u and B where B is
in a small neighborhood of B0 : |B − B0| ≤ δ, for some
δ > 0.

(C.2) The matrix M0 = ∫ ∇g(B�
0 x)∇�g(B�

0 x) ×
pB0(B�

0 x)pX(x)dx has full rank d.
(C.3) K(·) is a spherical symmetric univariate density function

with a bounded 2nd order derivative and compact sup-
port.
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(C.4) g has a bounded derivative. The error ε satisfies that there
exists some M and ν0 ∈ [0, +∞) such that

E
{

exp
[

Tε

πT(X)M

]
− 1 − |Tε|

πT(X)M
∣∣X}M2 ≤ ν0/2.

(C.5) The bandwidth h1 = c1n−rh , where 0 < rh ≤
1/{max(p, 3) + 6}. For t ≥ 2, ht = max{n−rh/2ht−1, h̄},
where h̄ = c3n−r′

h with 0 < r′
h ≤ 1/(d + 3). Here, c1–c4

are constants.
(C.6) pB(B�x) is bounded away from 0. In addition,

E[πT(X)−1TY|B�X = u] is Lipschitz continuous
and πT(X) is bounded away from 0 and 1.

Condition (C.6) is only needed for Theorem 5.4. Conditions
(C.1)–(C.5) are similar to Xia (2007) except the requirement for
compact support of covariates. This requirement is needed for
iMAVE2 because g needs to be estimated to a certain rate for the
asymptotic property of iMAVE2. For iMAVE, this requirement
can be replaced by a finite moment condition. Epanechnikov
and quadratic kernels satisfy Condition (C.3). The Gaussian
kernel can also be used to guarantee our theoretical results
with some modification to the proofs. According to Xia (2007),
Condition (C.2) suggests that the dimension d cannot be further
reduced. The bandwidth requirement in Condition (C.5) can be
easily met. Condition (C.6) characterizes the smoothness of g as
typically required for conditional expectation estimation.

Theorem 5.1. Under Conditions (C.1)–(C.5), suppose that the
initial estimator for iMAVE, B(1), satisfies δ

(1)
B /h1 → 0, then

there exists a constant C1 such that when the number of itera-
tions t satisfies

t ≥ 1 + log min

{
3C1{δn + δ2

dh̄h̄ + h̄4}
δ
(1)
B + 2C1h4

1
, 1

}/
log

2
3

,

we have δ
(t)
B ≤ (3C1 + 1){δn + δ2

dh̄h̄ + h̄4}almost surely, where
δn = (n/ log n)−1/2 and δdh̄ = (nh̄d/ log n)−1/2.

A simple observation from Theorem 5.1 implies that to reach
the same accuracy when d increases, the number of iterations
required is increasing linearly in d. This provides a useful guid-
ance on the maximum number of iterations for the algorithm.

Theorem 5.2. Under the same conditions as Theorem 5.1, there
exists a matrix B⊥

0 whose column space is the orthogonal
complement of the column space of B0, such that the iMAVE
estimator satisfies

B̂ = B0 {Id +Op(h̄4 +δ2
dh̄ +n−1/2)}+B⊥

0 Op(h̄4 +δ2
dh̄ +n−1/2).

Theorem 5.2 implies that when B̂ is decomposed based on
the column space of B0 and its orthogonal complement, the
component in the column space of B⊥

0 converges to 0, and the
projection of B̂ on the column space of B0 converges to B0. To
obtain the n−1/2 convergence rate, we need h̄4+δ2

dh̄ = O(n−1/2).
In this case, d has to be no larger than 5.

Theorem 5.3. Assume the same conditions as Theorem 5.1
and h̄4 + δ2

dh̄ = op(n−1/2). Denote νB(x) ≡ μB(B�x) − x.

Let l(B̂) and l(B0) be vectorizations of the matrices B̂ and B0,
respectively. Then

√
n{l(B̂) − l(B0)} → N(0, D+

0 �0D+
0 ),

where �0 = var[πTi(Xi)−1Ti∇g(B�
0 Xi)⊗νB0(Xi){εi− η(Xi)}].

The expression of D+
0 can be found in our proof of this theorem

from the supplementary materials.

Theorem 5.4. Suppose that Conditions (C.1)–(C.6) are satisfied
and g is estimated by some kernel Kh of order m. Then h can be
selected such that when n is large enough,

‖ĝ(B̂�X) − g(B�
0 X)‖∞ ≤ O

{
(n/ log n)

− m
2m+d
}

, almost surely,

where m can be any integer when d ≤ 5, but m ≤ 4d/(d − 5)

when d > 5.

Theorem 5.5. Denote δph ≡ (nhp/ log n)−1/2. In iMAVE2,
suppose d ≤ 5 and δ2

ph + h2m = o(n−1/2) when estimating η∗
by η̂∗ using (12) or (13). Then, under Conditions (C.1)–(C.5),
for iMAVE2, Theorems 5.1 and 5.2 still hold and Theorem 5.3
holds with the asymptotic variance, D+

0 �∗
0D+

0 , where �∗
0 =

var
[
πTi(Xi)−1Ti∇g(B�

0 Xi) ⊗ νB0(Xi){εi − η∗(Xi)}
]

, and �0 −
�∗

0 is positive semidefinite.

Detailed proofs for all theorems are given in the supple-
mentary materials. Here, we consider construction of confi-
dence intervals for B0 and possible improvement of empiri-
cal estimation with limited sample sizes. From Theorems 5.3
and 5.5, we know that the estimators are both

√
n-consistent and

asymptotically normal under suitable conditions. This makes
the inference of B0 possible if we have a stable way to estimate
the asymptotic variances to form confidence intervals. In theory
we just need to evaluate the variance formulas using observed
data.

However, we found from our simulation studies that estima-
tion of ∇g in the asymptotic variance formulas can be chal-
lenging. If we directly use all the data to estimate ∇g, the
resulting confidence intervals often over cover. This is because
estimation of ∇g is directly related to estimation of B0. Using
data twice to first estimate B0 and then estimate ∇g leads to
overfitting. Therefore, we propose a sample split procedure to
alleviate this issue, similar to some recent works (Athey and
Wager 2017; Chernozhukov et al. 2018; Zhao et al. 2019). Specif-
ically, the whole dataset is split into halves randomly. On the
first half, an iMAVE or iMAVE2 estimate of B0 is obtained.
On the other half, we estimate g and ∇g using smoothing
splines.

In addition, we found that a further one-step Newton–
Raphson estimator for B0 can lead to some improvement, espe-
cially when the sample size is limited. In particular, we use the
following step:

B̂NR = B̂MV −
{

E(1)

[
∂Ŝ(B̂MV; X, T, Y)

∂B̂MV

]}−1

E(1)
[
Ŝ(B̂MV; X, T, Y)

]
,
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where

Ŝ(B̂MV; X, T, Y) = πT(X)−1T∇ ĝ(B̂�
MVX) ⊗ ν̂B̂MV

(X)(ε − η(X)),

B̂MV is the iMAVE or iMAVE2 estimator with corresponding
choice of η or η̂∗(X) on the first half of the dataset, ν̂B̂MV

is the
estimator of νB0 on the second half of the dataset, and ∇ ĝ is the
estimator of gradient on the second half of the dataset. E(1)[·]
represents expectation taken over the first half of the dataset.
From the theory of one-step Newton–Raphson estimators, B̂NR
is still a

√
n-consistent estimator and its asymptotic variance can

be estimated by{
E(1)

[
∂Ŝ(B̂MV; X, T, Y)

∂B̂MV

]}−1

var
[
Ŝ(B̂MV; X, T, Y)

]
{

E(1)

[
∂Ŝ(B̂MV; X, T, Y)

∂B̂MV

]}−1

.

Due to the sample split procedure, the estimation error of ĝ is
not related to the first half of the data, which results in a more
stable estimation of the asymptotic variance.

6. Simulation

Here, our method is evaluated and compared with existing
methods. In particular, we compare with the outcome weighted
learning method based on a logistic loss in Xu et al. (2015),
the modified covariate method under the squared loss proposed
in Tian et al. (2014), and residual weighted learning method
(Zhou et al. 2017) based on a logistic loss. We also compare with
Q-learning with linear basis functions as a parametric version
of the proposed loss function (Qian and Murphy 2011). We
first evaluate estimation results assuming d is known and then
investigate dimension determination. Given the fact that Song
et al. (2017) is a special case of iMAVE and their method can be

applied only when d = 1, we do not include it as our comparison
method.

We report part of the results for estimating effect modi-
fication and dimension determination in the main text. The
rest of the simulation results is relegated to the supplementary
materials. There we also report confidence interval coverage,
and results for additional settings including more complex data
generation models and correlated covariates.

6.1. Estimation Evaluation With Known d

Data are generated by the following model,

y = (β�X)2 + 1
2

Tg(β�X) + ε, (14)

where ε ∼ N(0, σ 2) and g is chosen as

1. Linear: g(β�X) = τβ�X;
2. Logistic: g(β�X) = τ {(1 + e−β�X)−1 − 0.5};
3. Gaussian: g(β�X) = τ {�(β�X) − 0.5}, where �(·) is the

Gaussian distribution function.

We set σ = 0.6, τ = 7, and T is generated to be −1 or 1
with equal probability and independent with all other variables.
The true β0 is chosen to be (1, 1, 1, 1)�. X is generated from
N(0, I4×4). The sample size n varies from 200, 500 to 1000.
Results are summarized from 1000 simulated datasets.

Table 1 investigates the asymptotic bias of the iMAVE and
iMAVE2 and the possible gain in efficiency from the latter. The
ratios β̂j/β̂1, j = 2, 3, 4, are reported due to the Grassmann
manifold assumption for identifiability. Whereas there are some
empirical biases for nonlinear g under small sample sizes, as the
sample size increases, the means of the ratios all approach 1, the
true value. There is noticeable improvement from iMAVE2 over
iMAVE in terms of MSE.

We further consider prediction results under the settings
of known and estimated propensity scores. In particular, we

Table 1. Simulation results for coefficient estimation.

Size Linear Gaussian Logistic

iMAVE iMAVE2 iMAVE iMAVE2 iMAVE iMAVE2

200

Mean
β̂2/β̂1 0.9995 0.9986 0.8630 0.9161 0.7797 0.8611
β̂3/β̂1 1.0021 1.0021 0.8960 0.9410 0.8192 0.8884
β̂4/β̂1 1.0042 1.0035 0.8891 0.9408 0.8013 0.8802

√
MSE

β̂2/β̂1 0.0563 0.0378 0.3122 0.2044 0.4106 0.2890
β̂3/β̂1 0.0586 0.0386 0.2971 0.1977 0.4056 0.2837
β̂4/β̂1 0.0540 0.0361 0.3075 0.2055 0.4191 0.2847

500

Mean
β̂2/β̂1 0.9978 0.9994 0.9526 0.9759 0.8995 0.9484
β̂3/β̂1 1.0010 1.0004 0.9701 0.9854 0.9193 0.9625
β̂4/β̂1 1.0020 1.0004 0.9452 0.9798 0.8994 0.9477

√
MSE

β̂2/β̂1 0.0372 0.0207 0.1676 0.0975 0.2539 0.1558
β̂3/β̂1 0.0329 0.0188 0.1663 0.0935 0.2587 0.1507
β̂4/β̂1 0.0326 0.0184 0.1675 0.0925 0.2531 0.1505

1000

Mean
β̂2/β̂1 1.0015 1.0006 0.9994 1.0032 0.9728 0.9913
β̂3/β̂1 1.0009 1.0007 1.0020 1.0026 0.9794 0.9946
β̂4/β̂1 0.9993 1.0006 0.9980 1.0018 0.9756 0.9897

√
MSE

β̂2/β̂1 0.0233 0.0124 0.1014 0.0515 0.1656 0.0905
β̂3/β̂1 0.0247 0.0125 0.1017 0.0533 0.1672 0.0894
β̂4/β̂1 0.0236 0.0123 0.1033 0.0520 0.1627 0.0885
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Figure 1. Simulation results for rank correlation and classification rate with known πT (X). The point represents the median, and the vertical line represents the range from
the 0.25 to the 0.75 quantiles, of the results from 1000 simulations.

investigate the estimated effect modification in terms of correct
classification rate and rank correlation over test datasets gen-
erated independently according to the true simulation model
above but with sample sizes of 10,000. The rank correlation is
determined by the fitted classifier and the true g(β�

0 X) and the
classification rate by their corresponding signs. For example, for
iMAVE and iMAVE2, we evaluate the rank correlation between
ĝ(β̂

�
X) and g(β�

0 X) and the concordance between ĝ(β̂
�

X) > 0
and g(β�

0 X) > 0 to determine the correct classification rate.
In our simulation setting where g is monotone and g(0) = 0,

the sign of g(β�
0 X) is also identical to that of β�

0 X. In addi-
tion, the rank correlation between g(β̂

�
X) and g(β�

0 X) is also
identical to that between β̂

�
X and β�

0 X. Because the resulting
estimators of Tian et al. (2014), Xu et al. (2015), and Zhou et al.

(2017) are parametric and target at the decision boundary β�
0 X,

we also include results of iMAVE(index) and iMAVE2(index)
which compare the concordance between β̂

�
X > 0 and β�

0 X >

0 and the rank correlation between β̂
�

X and β�
0 X when g is

monotone and g(0) = 0. This represents a more fair comparison
with the parametric methods. Again, the index comparison only
makes sense when g is monotone which is the case in our
simulation setting.

From Figure 1, our methods have the best correct classi-
fication rates for the test datasets in all settings with known
propensity score. When g is monotone and g(0) = 0, in
terms of rank correlation, iMAVE2(index) is the best followed
by iMAVE(index). The performances of iMAVE and iMAVE2
sacrifice slightly due to the estimation of g.
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Figure 2. Simulation results for rank correlation and classification rate with estimated πT (X). The point represents the median, and the vertical line represents the range
from the 0.25 to the 0.75 quantiles, of the results from 1000 simulations.

We further investigate the setting when πT(X) needs to be
estimated. In this case, we generate T from a logistic model with
coefficients β̃ = (0.2, −0.2, 0.2, −0.2)� and then fit a logistic
regression for πT(X). After estimating πT(X), all methods are
implemented with the estimated πT(X). From Figure 2, our
methods have the best correct classification rate and rank corre-
lation than all other methods in all settings.

6.2. Dimension Determination

Here, we evaluate our dimension determination procedure
through simulation. We follow Section 6.1 mostly except that
we set p = 10 and the true d = 2. Consequently, the function
g is

g(B�X) = τ {�(β�
1 X) − 0.5} + τ {�(β�

2 X) − 0.5},

where β1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)� and β2 =
(1, −1, 1, −1, 1, −1, 1, −1, 1, −1)�. We set γ = 0.1 and the
sample size n is fixed at 500. Over 100 simulated datasets, our
procedure was able to choose the correct dimension 2 for 72
times, 3 for 26 times, and 4 for 2 times. As we mentioned before,
over-estimating the dimension slightly is not a big issue. There
is no under-estimation of d, but slight over-estimation in some
datasets.

7. Application to a Mammography Screening Study

This is a randomized study that included female subjects who
were non-adherent to mammography screening guidelines at
baseline (i.e., no mammogram in the year prior to baseline)
(Champion et al. 2007). One primary interest of the study
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was to compare the intervention effect of phone counseling
on mammography screening (phone intervention) versus usual
care at 21 months post-baseline. The outcome is whether a
subject took mammography screening during this time period.
There are 530 subjects with 259 in the phone intervention group
and 271 in the usual care group. Baseline covariates include
socio-demographics, health belief variables, stage of readiness to
undertake mammography screening, and number of years had
a mammogram in past 2–5 years in the study. In total, there are
211 covariates including second-order interactions among the
covariates.

Our methods, together with our comparator methods (Tian
et al. 2014; Xu et al. 2015; Zhou et al. 2017), were applied to
this dataset. To compare the results of the estimated treatment
assignment rules, we used the following metrics. An assignment
rule T(X) refers to a mapping from X to {1, −1}. For example,
in our model set up with �(X) = E[Y|T = 1, X] − E[Y|T =
−1, X] = g(β�X), the assignment rule that maximizes the
expected value of the outcome is T(X) = 1{g(β�X) > 0}. For
a fitted assignment rule, say T̂(X), the following two quantities
are used to evaluate the performances.

E[�1] = E[Y|T̂(X) = 1, T = 1] − E[Y|T̂(X) = 1, T = −1],
and,

E[�−1]=E[Y|T̂(X)=−1, T =−1] − E[Y|T̂(X)=−1, T =1].
They represent gains in the outcome expectations between the
recommendation agreeing and disagreeing subgroups. If both
E[�−1] and E[�1] are positive, then the estimated treatment
decision rule can improve the outcome.

The actual evaluation was based on cross-validation. First,
80% of subjects were randomly selected into a training set
and the rest into a testing set. Apparently, due to this further
reduction of sample size, we had to reduce the number of
covariates for fitting. We performed screening procedures for
all methods in a uniform fashion. In particular, the method of
Tian et al. (2014) with lasso penalty was fitted on the training
sets for variable selection. After variable selection, the selected
covariates were fitted by each method. For iMAVE and iMAVE2,
dimension selection from d = 1, 2, 3 was also implemented.
Then, the benefit quantities defined above were calculated on
the testing set. The cross-validation was based on 100 splits. The
SDs in Table 2 refer to the standard deviations of Ê[�1] and
Ê[�−1] from these 100 repeats. In Table 2, our methods seem
to have advantages as they lead to larger Ê[�1] and Ê[�−1].
The average percentages of subjects assigned to T = 1 and
−1 in the test sets are also given in the table. A list of the top
selected variables by the screening method is provided in the
supplementary materials.

8. Discussion

In this article, we have proposed a very general semipara-
metric modeling framework for effect modification estima-
tion. Whereas our main motivational setting is from precision
medicine, the framework is generally applicable to statistical
interaction discovery with interested variables in many other

Table 2. Results for the mammography screening study from 100 cross-validations.

Ê[�1] Ê[�−1]
Mean Avg % of Mean Avg % of

Method (SD) subj in T = 1 (SD) subj to T = −1

iMAVE 0.032(0.014) 42% 0.052(0.012) 58%
iMAVE2 0.036(0.014) 42% 0.054(0.012) 58%

Tian 0.022(0.013) 44% 0.043(0.011) 56%
Xu 0.026(0.012) 43% 0.044(0.012) 57%

Zhou 0.020(0.013) 41% 0.041(0.011) 59%
QLearn 0.018(0.012) 33% 0.022(0.011) 67%

settings. For example in health disparities research, a com-
plex and interrelated set of individual, provider, health system,
societal, and environmental factors contribute to disparities in
health and health care. Federal efforts to reduce disparities often
include a focus on designated priority populations who are
particularly vulnerable to health and health care disparities. Our
approach seems ideal for data analysis in this setting.

When there are many covariates, we have focused on dimen-
sion reduction. In high-dimensional settings, variable screening
may be needed to reduce the number of covariates. Various
methods can be applied in our framework. For example, because
E[TY/πT |X] = g(β�X), we can implement a nonparamet-
ric variable screening method such as the distance correla-
tion based approach (Li, Zhong, and Zhu 2012). Alternatively,
regression with penalty for variable selection such as lasso can
be used (Tian et al. 2014; Xu et al. 2015). Ideally, one could
also incorporate variable selection into our framework when the
dimension d is fixed. In particular, lasso type of regularization
can be used together with our estimating equations. This can
be a fruitful path for future work as variable selection is an
important practical issue.

Supplementary Materials

Estimation with multiple level treatments or exposures, proofs of Theo-
rems 3.1–5.5, additional simulation results, and supplemental results for
the mammography screening study are contained in the supplementary
materials.
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