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ABSTRACT

Noise is pervasive in real-world data, posing significant challenges to reliably un-
covering latent generative processes. While evolution may have enabled the brain
to solve such problems over millions of years, machine learning faces this task in
just a few years. Most prior identifiability theories, even under restrictive assump-
tions like linear generating functions, are limited to handling only additive noise
and fail to address nonparametric noise. In contrast, we study the problem of prov-
ably learning nonlinear representations in the presence of nonparametric noise.
Specifically, we show that, under certain structural conditions between latent and
observed variables, latent factors can be identified up to element-wise transforma-
tions, even when both the generative processes and noise are nonlinear and lack
specific parametric forms. We further present extensions of the general frame-
work, demonstrating trade-offs between different assumptions and the identifia-
bility of latent variables in the presence of both noise and distortions. Moreover,
we prove that the underlying directed acyclic graph can be recovered even with
nonlinear measurement errors, offering independent insights into structure learn-
ing. Our theoretical results are validated on both synthetic and real-world datasets.

1 INTRODUCTION

Uncovering the underlying generative processes from observational data is a cornerstone of scientific
discovery. While modern machine learning excels at capturing complex patterns in real-world data,
it often lacks identifiability guarantees that the learned representations correspond to the true latent
factors generating the data (Locatello et al., 2019). For many applications, the ability to reliably
identify these latent factors is critical for unbiased analysis of complex data, such as in economics
(Hu, 2008), psychology (Bollen, 2002), and biomedical research (Imbens & Rubin, 2015).

Classical methods for recovering the underlying data-generating process, with theoretical guar-
antees, have traditionally focused on linear relationships between latent and observed variables
(Comon, 1994). Recent advances in nonlinear Independent Component Analysis (ICA) have ex-
tended this theory to nonlinear contexts (Hyvärinen & Pajunen, 1999; Hyvärinen et al., 2024), incor-
porating additional assumptions such as auxiliary variables (Hyvärinen & Morioka, 2016; Hyvärinen
et al., 2019), time-series data (Hyvärinen & Morioka, 2017; Hälvä et al., 2021; Yao et al., 2021),
structural conditions (Moran et al., 2021; Zheng et al., 2022), or specific functional forms (Taleb &
Jutten, 1999; Buchholz et al., 2022). However, many of these approaches operate in deterministic
settings, without accounting for noise, which limits their applicability in real-world scenarios where
data is often affected by various forms of randomness.

While some studies have integrated noise into latent variable models, existing frameworks remain re-
strictive. Classical factor model literature, for instance, has typically employed additive noise under
specific parametric assumptions related to the data-generating function, such as normality, linearity,
or its reducibility to linear models (Reiersøl, 1950; Lawley & Maxwell, 1962; Kenny & Judd, 1984;
Bekker & ten Berge, 1997; Ikeda & Toyama, 2000; Beckmann & Smith, 2004; Bonhomme & Robin,
2009). Recent works have expanded these frameworks to more general nonlinear settings with
non-deterministic transformations, especially with advancements in nonlinear ICA (Khemakhem
et al., 2020a; Sorrenson et al., 2020; Lachapelle et al., 2022; Hälvä et al., 2024). However, these
methods continue to exhibit limitations, as they are primarily restricted to handling additive noise,
even when further constraints, such as temporal structures or weak supervision, are incorporated.
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Despite considerable advancements in establishing theoretical guarantees for latent variable models,
the challenge of provably learning nonlinear representations in the presence of complex noise
persists. This issue is particularly relevant in real-world applications, where data is frequently
contaminated by various forms of nonparametric noise. In medical imaging, for example, accurately
capturing detailed anatomical structures requires models that can disentangle meaningful signals
from pervasive noise (Suetens, 2017). Similarly, in autonomous driving, sensor data from lidar and
cameras must be interpreted with precision, despite environmental distortions and unpredictable
noise, to ensure reliable perception and decision-making (Yurtsever et al., 2020). Large-scale
foundation models, trained on extensive text corpora, also face the challenge of handling ambiguous
or noisy data from diverse sources that often lack clear functional forms (Bommasani et al., 2021).
Relying exclusively on additive noise models can introduce bias into representations, limiting the
model’s ability to veridically discover the process underlying the data. This brings us to a crucial,
yet unresolved, question:

Can machines reliably reveal the hidden world amid the chaos of noise?

Towards addressing this open question, we establish a set of theoretical results for provably learn-
ing nonlinear representations in the presence of general noise. We demonstrate that, even when the
underlying generative process is nonlinear and the noise lacks a specific parametric form, it is still
possible to recover the underlying process with theoretical guarantees. Specifically, we prove that,
under conditions on the hidden connective structure between latent and observed variables, the latent
variables can be identified up to element-wise indeterminacies (Thm. 1). These guarantees hold in
general settings without imposing restrictions on the distribution of the latent variables, the specific
form of the generating function, or the parametric structure of the noise. To the best of our knowl-
edge, this is one of the first results to achieve identifiability for nonlinear representation learning in
an unsupervised setting with general noise.

Moreover, to illustrate the implications of our theoretical framework, we demonstrate that several
challenging problems can be addressed under the umbrella of nonparametric identifiability with
noise. First, we show that even weaker assumptions can be sufficient when leveraging the paramet-
ric form of the noise (Thm. 2), exploring the trade-off between different conditions. Next, we prove
that the latent variables can be identified despite nonlinear distortions (i.e., element-wise unknown
nonlinear transformations) combined with general noise (Cor. 1). Furthermore, we show that the
hidden (causal) directed acyclic graph (DAG) among variables can also be uncovered in the general
setting, even in the presence of nonlinear measurement error (Thm. 3, Prop. 2). Consequently, our
identifiability theory offers broad applicability to a variety of existing problems, and the theorems
may hold independent significance in fields such as generative modeling and causal discovery. We
validate the theoretical results through experiments on synthetic and real-world datasets, but ad-
dressing practical challenges like finite sample errors remains a key open problem for future work
to enable broader deployment of identifiability theory.

2 PRELIMINARIES

Figure 1: Visual-
ization of Eq. (1).

Data-generating Process. We consider a data-generating process where the
observed variables x = (x1, . . . ,xm) ∈ X ⊆ Rm are generated from latent
variables z = (z1, . . . , zn) ∈ Z ⊆ Rn and independent noise variables with a
nonparametric form ϵ = (ϵ1, . . . , ϵne) ∈ E ⊆ Rne through a general function
f , which is a C2-diffeomorphism onto its image X ⊆ Rm. Specifically, the
process (Fig. 1) is defined as:

x = f(z, ϵ), (1)

where f : Rn × Rne → Rm. Following the standard setting (Hyvärinen et al.,
2024), all latent variables and noise variables possess positive and twice contin-
uously differentiable probability density functions.

Main Objective. Given only the observational data x, we aim to recover the underlying generating
process related to latent variables z, of which the main objective is defined as follows.
Definition 1 (Element-wise Identifiability). The latent variables z are element-wise identifiable if
there exists an invertible function h and a permutation π s.t. ẑi = hi(π(zi)).
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Element-wise identifiability guarantees that the estimated factors correspond to the true generating
factors without any mixture or entanglement. Standard ambiguities such as permutations and rescal-
ing may remain after identification, which are fundamental indeterminacies commonly noted in the
literature (Hyvärinen & Pajunen, 1999; Khemakhem et al., 2020a; Sorrenson et al., 2020; Hälvä
et al., 2021; Yao et al., 2021; Lachapelle et al., 2022; Buchholz et al., 2022; Zheng et al., 2022;
Lachapelle et al., 2024; Hyvärinen et al., 2024) and represent the best achievable outcome without
imposing further restrictive assumptions. Following the previous works (see e.g., a recent survey
(Hyvärinen et al., 2024)), all of our results are in the asymptotic setting.

Technical Notations. To facilitate the discussion, we introduce some technical notations. For
any vector v ∈ Rd and a subset S ⊆ {1, . . . , d}, we define the subspace Rd

S = {v ∈ Rd |
vi = 0 if i /∈ S}; that is, vectors in this subspace have zeros in all components outside S . The
cardinality of a set S is denoted by |S|. For a matrix M ∈ Rm×n, we denote its i-th row by Mi,:

and its j-th column by M:,j . The support of M is defined as supp(M) = {(i, j) | Mi,j ̸= 0}.
For matrix-valued functions M(θ) : Θ → Rm×n, where Θ is the parameter space, we define the
support over Θ as supp(M(Θ)) = {(i, j) | ∃θ ∈ Θ s.t. M(θ)i,j ̸= 0}. For any set of indices S ⊆
{1, . . . ,m} × {1, . . . , n}, we define Si,: = {j | (i, j) ∈ S} and S:,j = {i | (i, j) ∈ S} to represent
the column indices associated with row i and the row indices associated with column j, respectively.

The Jacobian matrix of f w.r.t. z is denoted by Dzf ∈ Rm×n, has elements (Dzf)i,j = ∂fi/∂zj ,
and its support is defined as Fz = supp(Dzf). Similar notations are used across different contexts,
where the specific function and variables may vary accordingly. Estimated quantities are indicated
with a hat symbol, such as f̂ for an estimate of f and ẑ for estimated latent variables. The estimated
model (f̂ , ẑ, ϵ̂) follows the data-generating process and matches the observed distributions, i.e.,
p(x̂) = p(x) (p(x̂|u) = p(x|u) if there exists a domain variable u).

In the relation Dẑf̂(·) = Dzf(·)T(·), T(·) is a matrix-valued function whose domain may vary
depending on the context. We denote by T the set of matrices that share the same support as T(·),
i.e., T = {T ∈ Rn×n | supp(T) = supp(T(·))}. We use (·)(ℓ) to denote a point with index ℓ (e.g.,
(z, ϵ)

(ℓ)). A complete summary of notations can be found in Appx. A.

3 IDENTIFIABILITY WITH GENERAL NOISE

In real-world scenarios, where the underlying processes are unknown, it is essential to avoid assump-
tions about specific parametric forms of the generating process, latent variables, or noise. Therefore,
we propose the following theorem to establish nonparametric identifiability in the general case.

Theorem 1. Let the observed data be generated by a model defined in Eq. (1). Together with a ℓ0
regularization on F̂ẑ during estimation (∥F̂ẑ∥0 ≤ ∥Fz∥0), suppose the following assumptions:

i. (Nondegeneracy) For all i ∈ {1, . . . , n}, there exist points {(z, ϵ)(ℓ)}|(Fz)i,:|
ℓ=1 and a ma-

trix T ∈ T s.t. span{Dzf((z, ϵ)
(ℓ)

)i,:}
|(Fz)i,:|
ℓ=1 = Rn

(Fz)i,:
and

[
Dzf((z, ϵ)

(ℓ)
)T

]
i,:

∈
Rn

(F̂ẑ)i,:.

ii. (Domain Variability) For any set A ⊆ Z×E with non-zero probability measure that cannot
be expressed as Bϵ × Bz for any Bϵ⊆E and Bz=Z , there exist two domains u1 and u2

that are independent of ϵ s.t.∫
(z,ϵ)∈A

[p(z, ϵ|u1)− p(z, ϵ|u2)] dz dϵ ̸= 0.

iii. (Structural Sparsity) For all k ∈ {1, . . . , n}, there exists a set Ck s.t.
⋂

i∈Ck
(Fz)i,: = {k}.

Then latent variables z are element-wise identifiable (Defn. 1).
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Remark. Since we are working with a nonparametric form of noise, rather than additive noise,
the noise can alter the latent distribution in a rather arbitrary manner. As a result, traditional
distributional assumptions offer limited insight for this general setting. Therefore, in Thm. 1,
we leverage a structural view, focusing on the connective relations between latent and observed
variables, which naturally generalize beyond specific functional forms or distributions.

Proof Sketch. We leverage distributional variability across two domains of the latent variables z
to disentangle z and ϵ into independent subspaces. To separate general noise from latent variables,
we use the independence between z and ϵ alongside the variability within z. The structural sparsity
condition is then employed to identify individual components of z in the nonlinear setting. Specif-
ically, for each latent variable, the intersection of parental sets from a subset of observed variables
uniquely specifies it. Since we only achieve relations among supports due to the nonparametric na-
ture of the problem, an unresolved element-wise transformation remains. Consequently, we achieve
element-wise identifiability for the latent variables z (Defn. 1).

Insights and Implications. Theorem 1 shows that, under appropriate conditions, the latent vari-
ables of a nonlinear data-generating process with nonparametric noise can be identified up to an
element-wise invertible transformation and a permutation. This ensures that, no matter how com-
plex the noise or mixing process, the underlying generative factors can still be provably recovered
and disentangled. Such a result is particularly important for real-world applications, where noise
often plays a disruptive role in biasing observations.

Furthermore, the assumption that noise is merely additive or follows a specific parametric form,
as is common in many traditional frameworks, can also lead to misrepresentations of real-world
complexity. For instance, if we assume x = z + ϵ, where ϵ ∼ N (0, 0.1), we might overlook
scenarios where noise interacts with latent variables in more complex ways, such as multiplicative
noise x = z·(1+ϵ). Our theory ensures that even with nonparametric noise and nonlinear generating
process, the latent variables of interest can be provably recovered, without being confounded by
noise-induced misrepresentation.

On the Assumptions. Recovering latent variables from observational data in Eq. 1 is well-known
to be impossible without additional assumptions, even when deterministic transformations are in-
volved (Hyvärinen & Pajunen, 1999). The challenge becomes even more pronounced in the pres-
ence of nonparametric noise. Revealing the hidden generating process from the vast space of possi-
ble functions is inherently ill-posed. Therefore, to make the problem tractable and ensure sufficient
information for recovery, we introduce specific conditions that eliminate these ill-posed scenarios.

Assumption i (Nondegenaracy) is crucial for linking the dependency structure of the latent
variables to the Jacobian of the nonlinear mapping function, following the spirit of methodologies
in (Lachapelle et al., 2022; Zheng et al., 2022). This assumption rules out unlikely cases where data
samples originate from a highly restrictive subpopulation that spans only a degenerate subspace.
The first part of the assumption ensures that there are enough data points such that the Jacobian
matrix of the function spans its corresponding support—a condition typically satisfied as the
sample size is not extremely small compared to the number of latent variables. The second part is
generally mild because the derivative Dẑf̂ = [DzfT]i,: naturally resides within its support space
Rn

(F̂ẑ)i,:
. Even in rare instances where the matrix does not align with the support due to specific

combinations of values, the assumption remains valid asymptotically. This is because it only
requires the existence of one matrix from the entire set T of matrices that share the support of T.
As a result, given the asymptotic nature of the theory, the assumption is almost always satisfied.

Assumption ii (Domain Variability) (Kong et al., 2022) requires a specific type of variability in the
joint distribution of the latent variables z and the noise variables ϵ across different domains u1 and
u2. These two domains are realizations of a domain variable u, which are observed and labeled.
This variability is also independent of ϵ to introduce the necessary distinction between the noise and
latent variables. As verified in (Kong et al., 2022), this condition is typically satisfied in practice, as
it is unlikely for the joint distributions under different domains to be very similar. The same as in
(Kong et al., 2022), these two domains can differ for different values of A, providing great flexibility.
To illustrate, let us consider the following example:
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Furthermore, it might be worth noting that the variability required here is significantly less
restrictive compared to existing results in the literature. Specifically, many identifiability theorems,
even without accounting for general noise, typically require 2n + 1 domains to identify n latent
variables (Hyvärinen et al., 2024). Differently, our theory does not put a hard constraint on requiring
O(n) domains, as long as the specific assumption of Domain Variability holds. However, since
the conditions are different, the assumption of Domain Variability is not strictly weaker than the
previous assumptions.

Assumption iii (Structural Sparsity) originates from prior work on the identifiability of ICA (with-
out nonparametric noise) (Lachapelle et al., 2022; Zheng et al., 2022). In general, it necessitates the
existence of a set of observed variables such that the intersection of their parents singles out itself.
Since we do not have any assumptions on the functional type (e.g., post-nonlinear models) or the
distributions of the latent variables (e.g., exponential distributions), we can only rely on the hidden
structure between latent and observed variables. If certain latent variables are consistently entangled
across the generation of all observed variables, identifying them individually becomes impossible
without further constraints. Therefore, this assumption provides the necessary structural diversity
for nonparametric identifiability. A specific example of when the assumption holds is as follows:

Example 1. Suppose for a latent variable z1, there exists a set of observed variables, say {x1,x2},
s.t., x1 depends on {z1, z2} and x2 depends on {z1, z3}. Alternatively, there exists a set {x1,x2}
s.t. the intersection of their parents singles out z1. Then the structural sparsity assumption satisfies
for z1. Note that there could be an arbitrary number of observed variables. As long as there exists
a subset of them satisfying the condition, the assumption holds for the target latent variable.

Importantly, the structural sparsity condition only requires a subset of the observed vari-
ables—potentially as few as one or two—to satisfy the necessary conditions. This is particularly
helpful because our theory allows for a larger number of observed variables compared to latent
ones. This enables us to fulfill the required assumptions by incorporating additional observed vari-
ables (e.g., adding more microphones in an audio system). In practice, since the true underlying
generative process is usually unknown, many assumptions in the literature cannot be directly tested.
However, by augmenting the number of observed variables, we may often meet the structural spar-
sity condition without knowing the ground truth, which significantly increases the applicability.

It might be worth noting that the structural sparsity implies the independence among latent variables
z. Specifically, if two latent variables are dependent, it becomes impossible to disentangle one of
them by the intersection of a set of observed variables that are influenced by these latent variables.
Moreover, for real-world scenarios, it is extremely challenging to make sure that all conditions on the
latent data generating process are perfectly satisfied and the distributions are perfectly matched after
estimation. Bridging the gap requires a thorough study of the finite sample error and the robustness
of the identification, which remains an open challenge in the literature.

4 NOISE, DISTORTION, AND STRUCTURE LEARNING

In this section, we present several theoretical developments grounded in the framework of nonlinear
representation learning with general noise. First, we investigate the connections between various
assumptions, demonstrating that variability can be bypassed by exploiting the parametric form of
the noise (Sec. 4.1). Next, we show that even with nonlinear distortion in addition to general noise,
the latent variables can still be identified up to element-wise indeterminacies (Sec. 4.2). Finally, we
delve into the hidden structure of the data, proving that the causal DAG of a general nonlinear model
remains identifiable, even when nonlinear measurement error is present (Sec. 4.3).

4.1 LEARNING WITHOUT DISTRIBUTIONAL VARIABILITY

Theorem 1 establishes that latent variables can be identified in the presence of general noise in a
nonparametric manner, provided there exists variability in the distributions. While this variability
is common in many real-world scenarios, it may not always be present. In some instances, data
is generated under stable conditions with no variation between domains. For example, in short-
term industrial monitoring systems or continuous physiological monitoring, external conditions may
remain constant, eliminating the distributional variability typically required for identifiability.

5
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Figure 2: Visual-
ization of Eq. (2).

To address this scenario, we extend our framework by removing the assumption
of distributional variability. Specifically, we show that, even in the absence
of any distributional variability, latent variables can still be identified. This
broadens the applicability of our identifiability theory to environments where
such variability is nonexistent. Of course, there is no free lunch. This extension
introduces a trade-off: the assumption that noise is additive. This trade-off
highlights an important insight—by restricting the form of the noise, as done
in many prior works, the whole system becomes less obscure. The resulting
data-generating process (Fig. 2) is as follows:

x = f(z) + ϵ, (2)

where we reuse f with a slight abuse of notation to denote a C2-diffeomorphism Rn → Rm onto its
image. The element-wise identifiability is shown as follows with its proof in Appx. B.2.
Theorem 2. Let the observed data be generated by a model defined in Eq. (2). Together with a ℓ0
regularization on F̂ẑ during estimation (∥F̂ẑ∥0 ≤ ∥Fz∥0), suppose the following assumptions:

i. (Nondegeneracy) For all i ∈ {1, . . . , n}, there exist points {z(ℓ)}|(Fz)i,:|
ℓ=1 and a matrix

T ∈ T s.t. span{Dzf(z
(ℓ))i,:}

|(Fz)i,:|
ℓ=1 = Rn

(Fz)i,:
and

[
Dzf(z

(ℓ))T
]
i,:

∈ Rn
(F̂ẑ)i,:.

ii. (Structural Sparsity) For all k ∈ {1, . . . , n}, there exists a set Ck s.t.
⋂

i∈Ck
(Fz)i,: = {k}.

Then latent variables z are element-wise identifiable (Defn. 1).

Remark. With the additional restriction that noise is additive, Thm. 2 shows that we can remove
the requirement for distributional variability. This is natural because additive noise is more easily
disentangled and does not influence the derivative of the observed variables with respect to the
latent variables, which primarily reflects the structure in the nonlinear case.

Insights and Implications. Theorem 2 is particularly relevant for practical scenarios where distribu-
tional variability is absent. Moreover, the assumption of additive noise introduces a useful structure,
making it easier to separate the noise from the underlying signals. This insight is consistent with
prior theoretical work in areas like factor analysis and noisy ICA, emphasizing that constraining the
noise form can lead to stronger identifiability results. Thus, Thm. 2 not only extends the applicabil-
ity of identifiability to scenarios without variability but also serves as a bridge between our proposed
theory and existing frameworks.

4.2 LEARNING WITH BOTH NOISE AND DISTORTION

Figure 3: Visualization of
Eqs. (3) and (4).

Having established the nonparametric identifiability of nonlinear
representation learning with general noise (Thm. 1), and further
extending this to consider the setting without any variability
(Thm. 2), we cover a significant portion of real-world scenarios.
However, in many practical settings, noise is not the only challenge
complicating data analysis. Data is often subject to additional
nonlinear distortions during the measurement process, which
apply unknown, element-wise, nonlinear transformations to each
variable. For example, in financial markets, real-time price data
can be affected by system latency or transaction delays, introducing
nonlinear distortions alongside noisy observations.

To address such scenarios, we extend our framework to handle both
noise and distortions simultaneously. Specifically, Cor. 1 demon-
strates that latent variables can still be identified even when data is subject to both nonparametric
noise and nonlinear distortions. The data-generating process (Fig. 3) in this case is as follows:

x∗ = f1(z, ϵ), (3)
xi = f2,i(x

∗
i ) + ηi, (4)
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where x∗ = (x∗
1, . . . ,x

∗
m) ∈ X ∗ ⊆ Rm and η = (η1, . . . ,ηm) ∈ Q ⊆ Rm denote random vectors

representing the generated variables before the distortion and another type of noise, respectively.
While the noise η allows for potential generalization, it is not the central focus here. The mixing
function f1 and the distortion function f2 are C2-diffeomorphisms, and the observed data xi is sub-
ject to both a nonlinear distortion f2,i and additional noise ηi. We reuse f as the C2-diffeomorphism
between (z, ϵ,η) and x. The identifiability is provided in Cor. 1 with the proof in Appx. B.3.
Corollary 1. Let the observed data be generated by a model defined in Eqs. (3) and (4). Together
with a ℓ0 regularization on F̂ẑ during estimation (∥F̂ẑ∥0 ≤ ∥Fz∥0), suppose the following assump-
tions:

i. (Nondegeneracy) For all i ∈ {1, . . . , n}, there exist points {(z, ϵ,η)(ℓ)}|(Fz)i,:|
ℓ=1

and a matrix T ∈ T s.t. span{Dzf((z, ϵ,η)
(ℓ)

)i,:}
|(Fz)i,:|
ℓ=1 = Rn

(Fz)i,:
and[

Dzf((z, ϵ,η)
(ℓ)

)T
]
i,:

∈ Rn
(F̂ẑ)i,:.

ii. (Domain Variability) For any set A ⊆ Z×E with non-zero probability measure that cannot
be expressed as Bϵ × Bz for any Bϵ⊆E and Bz=Z , there exist two domains u1 and u2

that are independent of ϵ s.t.∫
(z,ϵ)∈A

[p(z, ϵ|u1)− p(z, ϵ|u2)] dz dϵ ̸= 0.

iii. (Structural Sparsity) For all k ∈ {1, . . . , n}, there exists a set Ck s.t.
⋂

i∈Ck
(F1z)i,: = {k}.

Then latent variables z are element-wise identifiable (Defn. 1).

Insights and Implications. While noise primarily introduces random fluctuations to the data, non-
linear distortions create systematic, element-wise transformations that alter observed variables in a
more persistent and structural manner. Noise tends to be stochastic and, in many cases, can be aver-
aged out over large samples. However, distortions are more systematic and can obscure underlying
patterns if not properly disentangled, such as delays and biases. Traditional factor models, which
focus solely on noise, often fail to recover the true generative factor due to the entanglement of these
distortions with the signal. Corollary 1 addresses this by demonstrating that latent factors can still
be identified even in the presence of both general noise and nonlinear distortions. This result may
also offer valuable insights for tackling adversarial attacks, where crafted distortions are deliberately
introduced to contaminate information and deceive models (Akhtar & Mian, 2018).

4.3 STRUCTURE LEARNING WITH NONLINEAR MEASUREMENT ERROR

In the previous sections, we have shown the identifiability of latent variables across various settings.
Interestingly, under the umbrella of learning with noise, it is also possible for us to discover the hid-
den structure among variables even in the presence of general measurement error. We first introduce
the data-generating process (Fig. 4) as follows:

z = f1(ξ), (5)
xi = f2,i(zi) + ηi, (6)

Figure 4: Visualization of
Eqs. (5) and (6).

where zi represents the latent variables, ξ = (ξ1, . . . , ξnu
) ∈ U ⊆

Rnu denotes noise, and ηi represents the nonlinear measurement
errors. Functions f1 and f2 are C2-diffeomorphisms, and xi is the
observed variable generated from the latent variable and the nonlin-
ear measurement error. Consistent with the previous theorems, we
denote Gf−1

1
and Gf̂−1

1
as the binary matrices with the same sup-

port as supp(Dzf
−1
1 ) and supp(Dx̂f̂

−1), respectively. We denote
by Tξ the set of matrices that share the same support as the matrix-
valued function Tξ(·) in the equation Dξ̂f̂(·) = Dξf(·)Tξ(·),
where Tξ(·) is a matrix-valued function. We reuse f as the C2-
diffeomorphism between (ξ,η) and x.
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Theorem 3. Let the observed data be generated by a model defined in Eqs. (5) and (6).

Suppose for each i ∈ {1, . . . ,m}, there exist {(ξ,η)(ℓ)}
|Fξi,:

|
ℓ=1 and a matrix Tξ ∈ Tξ s.t.

span{Dξf((ξ,η)
(ℓ)

)i,:}
|(Fξ)i,:|
ℓ=1 = Rm

(Fξ)i,:
and

[
Dξf((ξ,η)

(ℓ)
)Tξ

]
i,:

∈ Rm
(F̂ξ̂)i,:

. Then Gf̂−1 =

PGf−1
1

for a permutation matrix P together with a ℓ0 regularization on F̂ẑ during estimation

(∥F̂ẑ∥0 ≤ ∥Fz∥0).

Remark. Theorem 3 demonstrates that, under the nondegeneracy assumption—which prevents
ill-posed cases where the samples fail to span its support space—the structure linking exogenous
noises ξ and latent variables z remains identifiable up to permutation. This structural identification
offers valuable insights into the mixing processes of existing factor models, such as ICA.

Figure 5: Visualization of
Eqs. (6) and (7). The struc-
ture among z is a causal DAG
for {z1, z2, z3}.

The identifiability of the mixing structure provides theoretical guar-
antees of discovering the hidden connection underlying the data-
generating process. At the same time, similar to (Shimizu et al.,
2006), the mixing structure also sheds light on the underlying causal
graph under appropriate assumptions. If we assume that the noises
ξ are independent and the dimensions of ξ and z are the same, i.e.,
nu = n, we can transfer Eq. 5 as a Structural Causal Model (SCM)
by considering ξ as the exogenous noise, which is equivalent to

zi = f1,i(Pa(zi), ξi), ∀i, (7)

where we denote the set of parents of zi as Pa(zi) ⊂ Z . This
results in a set of edges that forms a causal graph, which, under the
acyclicity assumption, is a DAG (Fig. 5). The adjacency matrix of
a causal DAG is defined as follows:
Definition 2. The binary matrix A denotes the adjacency structure of a causal DAG, i.e., Ai,j = 0
if and only if zj /∈ Pa(zi). In addition, the rows of A are ordered to make it strictly lower-triangular.

Then we have the following results for the identifiability of the underlying directed acyclic graph
(DAG) among variables z.
Assumption 1. (Structural Faithfulness (Reizinger et al., 2022)) The set of samples that induce
additional zeroes (i.e., a sparser DAG) in the Jacobians Dξf1, Dzf

−1
1 has zero measure, i.e., both

Jacobians describe the sparsity structure of the underlying SCM with probability one. Alternatively,
this structural independencies are reflected in a functional form via Dξf1/Dzf

−1
1 .

Loosely speaking, the faithfulness assumption ensures that no edges are accidentally canceled due
to specific parameter combinations, a common condition in causal discovery (Zhang, 2013) and
we include the version formalized in (Reizinger et al., 2022) here for the ease of reference. The
identifiability results are as follows:
Proposition 1. [Reizinger et al. (2022)] The matrix Gf−1

1
is structurally equivalent to In −A for a

structurally faithful SCM (Assump. 1), i.e., ∀i, j,
(
Gf−1

1

)
ij
= 0 ⇔ (In −A)ij = 0.

Proposition 2. Suppose the assumptions in Theorem 3 and Proposition 1 hold, then A in Eq. 7 is
identifiable.

Remark. We demonstrate that the underlying causal structure of general SCMs can be identified
despite nonlinear measurement distortions. The key intuition is that the structural equivalence
between the mixing matrix and the causal graph, combined with the acyclicity of the DAG, elimi-
nates the permutation indeterminacy of the mixing structure.

Insights and Implications. Causal discovery aims to find the causal structure underlying the data
(Spirtes et al., 2000) based on pure observation. Traditional results on the identifiability of causal
discovery usually make parametric assumptions such as post-nonlinear or additive noise models to
identify the underlying causal DAG. Additionally, most previous methods assume that the observed

8
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values directly correspond to the variables of interest. While some works have considered structure
identification in the presence of measurement error (Zhang et al., 2018; Dai et al., 2022), these
approaches impose parametric assumptions on both the SCM (linear non-Gaussian models) and
the measurement error (linear distortions). These conditions are important given the challenges of
learning causal structure without any interventional data, but still somehow limit the applicability in
complicated real-world scenarios. As a result, the question of under what conditions we can identify
the causal graph for general nonlinear models with nonparametric measurement error remains open.

Fortunately, the connection between the mixing matrix and the causal DAG brings us the oppor-
tunity to study the identifiability of this challenging problem. This is because all relations among
causal variables (Eq. (7)) can be considered as how exogenous affect variables of interests if we
take a view of the whole system (Eq. (5)). This connection has been firstly used in the seminal
work of Shimizu et al. (2006) to identify linear non-Gaussian models based on linear ICA. The key
insight is that, given the acyclicity constraints, the recovered mixing matrix—despite permutation
indeterminacy—can be uniquely transferred to an adjacency matrix of a causal DAG. More recently,
Reizinger et al. (2022) extend it to the nonlinear case by bridging the Jacobian of the mixing func-
tion f1 in Eq. (7) and the causal structure (A). Thus, our results on the general factor model with
nonlinear distortion and additive noise (Thm. 3) inherently lead to the identifiability of the underly-
ing causal structure even in the presence of nonlinear measurement error (Prop. 2). This is exciting
since causal discovery with general functional relations has long been an open problem, and the
inclusion of nonlinear distortions adds further complexity. Naturally, this generalization requires
an additional nondegeneracy condition on the latent factor model, much like how Reizinger et al.
(2022) leverage identifiability conditions for nonlinear ICA in the context of nonlinear causal dis-
covery. We believe that the revealed insight may suggest a different direction toward more general
solutions for understanding the (causal) structure underlying the data.

5 EXPERIMENTS

To assess the identifiability of nonlinear representations in the presence of general noise, we perform
experiments on both synthetic and real-world datasets. While numerous studies have demonstrated
the empirical success of learning semantically meaningful representations from noisy data (e.g.,
through denoising techniques), our experiments aim to complement these findings by rigorously
validating our theoretical framework under the specified conditions. For a broader range of applica-
tions, we refer the reader to the extensive body of prior empirical research (Tian et al., 2020).

Setup. The training process uses a General Incompressible-flow Network (GIN) (Sorrenson
et al., 2020), a flow-based generative model, to optimize the objective function L(θ), defined
as: L(θ) = E(x,u)

[
log pf̂−1(x | u)

]
− λR, where λ is a regularization term and R repre-

sents the ℓ1-norm regularization applied to the Jacobian of f̂ . The dataset is denoted as D =
{(x(1),u(1)), . . . , (x(N),u(N))}, with N samples, where each data point x(i) corresponds to a do-
main u(i). During training, latent variables are drawn from two multivariate Gaussian distributions
to satisfy the variability condition, while noise is also sampled from a separate multivariate Gaus-
sian, with means sampled uniformly from the range [−5, 5] and variances sampled uniformly from
[0.5, 2.5]. The noise and latent variables are concatenated in the flow model, ensuring the nonpara-
metric nature of the noise. In scenarios with two domains u = u1 and u = u2, the domain index is
provided during the estimation process. We perform experiments across 10 independent trials, each
initialized with a different random seed. Further experimental details are in Appx. D.1.

Simulations. We perform an ablation study to evaluate the necessity of the proposed assumptions.
For the model grounded in our identifiability theory (Ours), all conditions required by Theorem
1 are satisfied in the data-generating process. In contrast, the baseline model (Base) violates key
assumptions, particularly those related to structural sparsity (by a fully connected structure) and
variability (by sampling from a single domain). In our experimental setup, half of the observed
variables (m/2) correspond to latent variables, while the remaining half are noise variables. Datasets
are generated according to these specifications, with further details provided in Appx. D.1. To assess
model performance, we employ the mean correlation coefficient (MCC) between the true latent
variables z and their estimates ẑ, following the evaluation metrics used in prior works (Hyvärinen
& Morioka, 2016; Lachapelle et al., 2022). We also extend our experiments to different numbers of

9
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Figure 6: Identification of latent variables
w.r.t. different m, where n = m/2.
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Figure 7: Identification w.r.t. different sample
sizes with the dimensions m = 10, n = 5.

variables to evaluate the model’s scalability across various settings. Additionally, we test the models
with varying sample sizes to study both the asymptotic behavior of our theory and its robustness to
sample size variation.

The results for each model are presented in Figs. 6 and 7. It is evident that when the proposed
assumptions are satisfied (Ours), the models consistently achieve higher MCC scores compared
to the Base model. This confirms that latent variables can indeed be identified from observations
generated by an unknown nonlinear process, even in the presence of general noise. Furthermore, our
theory-based model shows stable performance across datasets with different numbers of variables,
whereas the baseline model’s performance degrades as scalability increases. Finally, as sample sizes
grow, we observe a steady improvement in the model’s performance, supporting the asymptotic
properties of our theory.

Real-world experiments. In Appx. D.2, we conduct additional experiments to evaluate the prac-
tical applicability of our approach in real-world scenarios. These experiments are performed on
two real-world image datasets: one featuring various types of clothing and another consisting of
handwritten digits. Our findings indicate that even in these real-world settings, we can successfully
identify semantically meaningful generative factors from the raw observational pixel data. These re-
sults further demonstrate the practical relevance and applicability of our theory. Importantly, several
practical challenges persist. For example, human interpretations of latent factors are often guided by
intuition, yet there is no guarantee that the true generative process aligns with these interpretations.
Certain latent factors may inherently appear entangled or lack clear semantic meaning from a human
perspective, even if they represent statistically independent components of the generative mecha-
nism. Furthermore, practical constraints, such as finite sample errors, pose additional challenges to
achieving perfect recovery of the hidden factors. Please refer to Figs. 9, 10 and 11 for details.

6 CONCLUSION

In this paper, we establish theoretical guarantees for nonlinear representation learning in the presence
of general noise. Specifically, we prove that latent generating factors can be identified up to trivial in-
determinacies, without imposing parametric constraints on either the generating process or the noise.
Within this general framework, we explore the relationships between various conditions, highlight-
ing the inherent trade-offs. Moreover, since real-world observations may involve not only noise but
also nonlinear distortions, we extend the proposed nonparametric identifiability to account for both.
Finally, we demonstrate that the underlying causal structure is also identifiable even with nonlinear
measurement errors. Theoretical results are validated in both synthetic and real-world settings.

While we demonstrate nonparametric identifiability for learning with noise, several related questions
remain open. One intriguing direction involves scenarios where the generating process includes
more latent variables than observed ones, making the function non-injective. In such cases, some
information is inevitably lost, raising the critical question of which part of the hidden world can still
be recovered. Additionally, our theory focuses on asymptotic guarantees, leaving the finite-sample
regime unexplored. Investigating sample complexity in this context, though distinct from our current
focus, could be interesting as well. Many questions remain, but for now, we can confidently answer
the question posed in the introduction:

Yes, machines can reliably reveal the hidden world amid the chaos of noise.

10
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Hermanni Hälvä, Sylvain Le Corff, Luc Lehéricy, Jonathan So, Yongjie Zhu, Elisabeth Gassiat, and
Aapo Hyvärinen. Disentangling identifiable features from noisy data with structured nonlinear
ICA. Advances in Neural Information Processing Systems, 34, 2021.
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A NOTATION SUMMARY

In this section, we summarize the key notations used throughout the paper for clarity and reference.

Variables and Spaces

• x = (x1, . . . ,xm) ∈ X ⊆ Rm: The observed data vector comprising m observed vari-
ables.

• z = (z1, . . . , zn) ∈ Z ⊆ Rn: The latent variable vector comprising n latent variables.
• ϵ = (ϵ1, . . . , ϵne

) ∈ E ⊆ Rne : The independent noise vector comprising ne noise vari-
ables.

• η = (η1, . . . ,ηm) ∈ Q ⊆ Rm: Another type of noise vector associated with distortion or
measurement error.

• ξ = (ξ1, . . . , ξnu
) ∈ U ⊆ Rnu : The independent noise vector used in the structural causal

model (SCM) setting.

• ẑ, ϵ̂, η̂, ξ̂: Estimated versions of the variables, denoted with a hat to represent estimated
quantities.

Functions

• Theorem 1: Data generating process:

x = f(z, ϵ),

where f : (z, ϵ) → x is the mixing function mapping latent variables and noise to the
observed data.

• Theorem 2: Data generating process:

x = f(z) + ϵ.

where f : z → x is the mixing function mapping latent variables to the observed data with
additive noise.

• Corollary 1: Data generating process:

x∗ = f1(z, ϵ),

xi = f2,i(x
∗
i ) + ηi,

where f1 : (z, ϵ) → x∗ maps latent variables and noise to an intermediate variable x∗, and
f2 : x∗ → x is an element-wise transformation applied to x∗ with additional noise η.

• Theorem 3, Proposition 2: Data generating process:

z = f1(ξ),

xi = f2,i(zi) + ηi,

where f1 : ξ → z maps independent noises to latent variables, and f2 : z → x is an
element-wise transformation applied to each latent variable zi with additional noise ηi.

Jacobians and Supports

• Dzf : The Jacobian matrix of the function f with respect to z.
• Dξf : The Jacobian matrix of the function f with respect to ξ.

• Dẑf̂ : The Jacobian matrix of the estimated function f̂ with respect to ẑ.
• supp(M): The support of a matrix M ∈ Rm×n, defined as {(i, j) | Mi,j ̸= 0}.
• supp(M(Θ)): The support of a matrix-valued function M : Θ → Rm×n, defined as
{(i, j) | ∃θ ∈ Θ,M(θ)i,j ̸= 0}.

Index Sets and Subspaces
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• S ⊆ {1, . . . , d}: A subset of indices used to specify subspaces or supports.

• Rd
S := {v ∈ Rd | i /∈ S =⇒ vi = 0}: The subspace of Rd specified by index set S.

• |S|: The cardinality (number of elements) of the set S.

• For a matrix M ∈ Rm×n:

– Mi,:: The i-th row of M.
– M:,j : The j-th column of M.

• For a set of indices S ⊆ {1, . . . ,m} × {1, . . . , n}:

– Si,: := {j | (i, j) ∈ S}: The set of column indices associated with row i.
– S:,j := {i | (i, j) ∈ S}: The set of row indices associated with column j.

Graphs and Matrices

• Fz := supp(Dzf): The support of the Jacobian of f with respect to z.

• Fξ := supp(Dξf): The support of the Jacobian of f with respect to ξ.

• Fξ̂
:= supp(Dξ̂f̂): The support of the Jacobian of f̂ with respect to ξ̂.

• T , Tξ: Sets of matrices that share the same support as the matrix-valued functions T(·)
and Tξ(·), respectively, appearing in equations like Dẑf̂(·) = Dzf(·)T(·).

• T(·), Tξ(·): Matrix-valued functions whose supports define the sets T and Tξ.

• T ∈ T , Tξ ∈ Tξ: Specific matrices within these sets.

• Gf−1
1

, Gf̂−1
1

: Binary matrices with the same support as supp(Dzf
−1
1 ) and supp(Dẑf̂

−1
1 ),

respectively.

• A: The adjacency matrix of a directed acyclic graph (DAG) representing the causal struc-
ture among latent variables. It is defined as Ai,j = 0 if and only if zj /∈ Pa(zi), where
Pa(zi) denotes the set of parents of zi.

Permutations and Diagonal Matrices

• P : A permutation matrix corresponding to a reordering of variables.

• D1, D2: Diagonal matrices, often used in element-wise transformations involving Jaco-
bians.

Domains and Probability Measures

• Θ: The parameter space for matrix-valued functions like M(θ).

• u1, u2: Domains or conditions under which distributions are considered, particularly in
variability assumptions.

• p(z, ϵ | u): The joint probability density function of z and ϵ conditioned on domain u.

Miscellaneous Notations

• span{·}: The linear span of a set of vectors.

• adj(M): The adjugate (adjoint) of a square matrix M.

• det(M): The determinant of the square matrix M.

• Sn: The set of all permutations of {1, 2, . . . , n}.

• sgn(σ): The sign (parity) of the permutation σ, equal to +1 for even permutations and −1
for odd permutations.

• {̂·}: The hat symbol denotes estimated quantities, such as f̂ , ẑ, and other estimated vari-
ables or functions.

• In: The n× n identity matrix.
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Functions and Equations Specific to the SCM Setting

• f1,i: The function defining the i-th structural equation in the SCM, mapping from parents
and noise to the latent variable zi.

• zi = f1,i(Pa(zi), ξi): The structural causal model equation for latent variable zi.

• Pa(zi): The set of parents of zi in the causal graph.

• Gf−1
1

structurally equivalent to In − A: Indicates that the support of the inverse Jacobian
of f1 reflects the structure of the DAG.

Submatrices and Indexing

• For matrices M ∈ Rn×n and indices i, j:

– M[n]\i,[n]\j : The submatrix of M obtained by removing the i-th row and j-th column.

• [n]: Denotes the set {1, 2, . . . , n}.

B PROOFS

B.1 PROOF OF THEOREM 1

Before the main proof, let us first introduce a lemma from (Kong et al., 2022). The proof of the
lemma is directly based on steps 1, 2, and 3 in the proof of Theorem 4.2 in (Kong et al., 2022). We
include its proof for the ease of reference.

Lemma 1. (Kong et al., 2022) Let the observed data be a large enough sample generated by a
model defined in Eq. (1). Suppose for any set A ⊆ Z × E with non-zero probability measure that
cannot be expressed as Bϵ × Bz for any Bϵ ⊆ E and Bz = Z , there exist two domains u1 and u2

that are independent of ϵ s.t.∫
(z,ϵ)∈A

[p(z, ϵ|u1)− p(z, ϵ|u2)] dz dϵ ̸= 0.

Then the partial derivative of ϵ w.r.t. ẑ is zero.

Proof. Please note that the proof is from steps 1, 2, and 3 in the proof of Theorem 4.2 in (Kong
et al., 2022), and we just change the notation to be consistent in our setting. Because domains are
independent of noise, for any Aϵ ⊆ E , we have the following relation for any u1, u2 ∈ U represents
the domain variable.

P
[
f̂−1
n+1:(x̂) ∈ Aϵ|u1

]
= P

[
f̂−1
n+1:(x̂) ∈ Aϵ|u2

]
. (8)

Because the observed distributions are matched for identification, we further have

P
[
f̂−1
n+1:(x) ∈ Aϵ|u1

]
= P

[
f̂−1
n+1:(x) ∈ Aϵ|u2

]
. (9)

Let the function h := f̂−1 ◦f denote the map between estimated and ground-truth concepts. Denote
hϵ := hn+1: : Z × E → E . It follows that

P [hϵ((z, ϵ)) ∈ Aϵ|u1] = P [hϵ((z, ϵ)) ∈ Aϵ|u2] , (10)

which is equivalent to∫
(z,ϵ)∈h−1

ϵ (Azϵ )

p(z,ϵ)|u((z, ϵ)|u1) dzdϵ =

∫
(z,ϵ)∈h−1

c (Azc )

p(z,ϵ)|u((z, ϵ)|u2) dzdϵ. (11)

Since z and ϵ are conditionally independent given u, we have

∫
(z,ϵ)∈h−1

ϵ (Azϵ )

pz|u1
(z|u1)pϵ(ϵ) dzdϵ =

∫
(z,ϵ)∈h−1

c (Azϵ )

pz|u2
(z|u2)pϵ(ϵ) dzdϵ. (12)
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We aim to prove that for all ϵ ∈ E and r ∈ R+, it follows that h−1
ϵ (Br(ϵ)) = Z × B+

ϵ , where
Br(ϵ) := {ϵ′ ∈ E : ∥ϵ′ − ϵ∥2 < r}, B+

ϵ ̸= ∅, and B+
ϵ ⊆ E .

First, note that because Br(ϵ) is open and hϵ(·) is continuous, the preimage h−1
ϵ (Br(ϵ)) is

open. Additionally, due to the continuity of h(·) and the matched observation distributions (i.e.,
∀u′ ∈ U , P [{x ∈ Ax} | u′] = P [{x̂ ∈ Ax} | u′]), it follows from (Klindt et al., 2020) that h(·)
is bijective. This implies that h−1

ϵ (Br(ϵ)) is non-empty. Therefore, h−1
ϵ (Br(ϵ)) is both non-empty

and open.

Suppose there exists A∗
ϵ := Br∗(ϵ

∗), where ϵ∗ ∈ E and r∗ ∈ R+, such that

B∗ :=
{
(z, ϵ) ∈ Z × E : (z, ϵ) ∈ h−1

ϵ (A∗
ϵ), Z × {ϵ} ̸⊆ h−1

ϵ (A∗
ϵ)
}
̸= ∅. (13)

Intuitively, B∗ contains the subset of the preimage h−1
ϵ (A∗

ϵ) where z cannot take all values in Z
for a given ϵ. Only certain values of z can produce specific outputs of hϵ(·), indicating that hϵ(·)
depends on z.

The integral in Eq. (12) with such an A∗
ϵ is as follows:∫

(z,ϵ)∈h−1
ϵ (A∗

ϵ)

[
pz|u(z|u1)− pz|u(z|u2)

]
pϵ(ϵ) dz dϵ (14)

=

∫
(z,ϵ)∈h−1

ϵ (A∗
ϵ)\B∗

[
pz|u(z|u1)− pz|u(z|u2)

]
pϵ(ϵ) dz dϵ︸ ︷︷ ︸

T1

(15)

+

∫
(z,ϵ)∈B∗

[
pz|u(z|u1)− pz|u(z|u2)

]
pϵ(ϵ) dz dϵ︸ ︷︷ ︸

T2

. (16)

If h−1
ϵ (A∗

ϵ) \B∗ = ∅, then T1 = 0.

Otherwise, by definition, we can rewrite h−1
ϵ (A∗

ϵ) \ B∗ as Z × C∗
ϵ , where C∗

ϵ ̸= ∅ and C∗
ϵ ⊆ E .

With this expression, it follows that

T1 =

∫
(z,ϵ)∈Z×C∗

ϵ

[
pz|u(z|u1)− pz|u(z|u2)

]
pϵ(ϵ) dz dϵ (17)

=

∫
ϵ∈C∗

ϵ

pϵ(ϵ)

(∫
z∈Z

[
pz|u(z|u1)− pz|u(z|u2)

]
dz

)
dϵ (18)

=

∫
ϵ∈C∗

ϵ

pϵ(ϵ) (1− 1) dϵ = 0. (19)

Therefore, in both cases, T1 evaluates to zero.

Now, we address T2. As discussed, h−1
ϵ (A∗

ϵ) is open and non-empty. Because of the continuity of
hϵ(·), for every (z, ϵ) ∈ B∗, there exists r(ϵ) ∈ R+ such that Br(ϵ)(ϵ) ⊆ B∗.

Since pϵ(ϵ) > 0 over E , we have

P [(z, ϵ) ∈ B∗ | u′] ≥ P
[
(z, ϵ) ∈ Z × Br(ϵ)(ϵ) | u′] > 0, ∀u′ ∈ U . (20)

The assumption in the lemma indicates that there exist u∗
1, u

∗
2 ∈ U such that

T2 =

∫
(z,ϵ)∈B∗

[
pz|u(z|u∗

1)− pz|u(z|u∗
2)
]
pϵ(ϵ) dz dϵ ̸= 0. (21)

This inequality holds because the difference pz|u(z|u∗
1)−pz|u(z|u∗

2) is not identically zero over B∗,
and pϵ(ϵ) > 0. Therefore, for such A∗

ϵ , we have T1 + T2 ̸= 0. Therefore, we have∫
(z,ϵ)∈h−1

ϵ (Azϵ )

pz|u1
(z|u1)pϵ(ϵ) dzdϵ =

∫
(z,ϵ)∈h−1

c (Azϵ )

pz|u2
(z|u2)pϵ(ϵ) dzdϵ, (22)

which contradicts Eq. (12). This contradiction implies that, for all ϵ ∈ E and r ∈ R+, it follows that
h−1
ϵ (Br(ϵ)) = Z ×B+

ϵ , where Br(ϵ) := {ϵ′ ∈ E : ∥ϵ′ − ϵ∥2 < r}, B+
ϵ ̸= ∅, and B+

ϵ ⊆ E .
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Suppose there exists ϵ̂ ∈ E such that h−1
ϵ (ϵ̂) cannot be written as Z ×Bϵ̂ for any Bϵ̂ ⊆ E . Since hϵ

is continuous, there exists r̂ ∈ R+ such that for some z̃ ∈ Z and ϵ̃ ∈ E with hϵ(z̃, ϵ̃) = ϵ̂, it holds
that

hϵ(z̃, ϵ̃) /∈ Br̂(ϵ̂). (23)
This means

(z̃, ϵ̃) /∈ h−1
ϵ (Br̂(ϵ̂)) . (24)

On the other hand, we have
h−1
ϵ (Br̂(ϵ̂)) = Z ×B+

ϵ̂ , (25)

where B+
ϵ̂ ⊆ E and B+

ϵ̂ ̸= ∅. By the definition of ϵ̃, it is clear that ϵ̃ ∈ B+
ϵ̂ . Therefore,

(z̃, ϵ̃) ∈ Z ×B+
ϵ̂ = h−1

ϵ (Br̂(ϵ̂)) , (26)

which contradicts our earlier conclusion that (z̃, ϵ̃) /∈ h−1
ϵ (Br̂(ϵ̂)). This implies that there does not

exist ϵ̂ ∈ E such that h−1
ϵ (ϵ̂) cannot be written as Z × Bϵ̂ for any Bϵ̂ ⊆ E . Therefore, h−1

ϵ (ϵ̂) =
Z ×Bϵ̂ for some Bϵ̂ ⊆ E , Bϵ̂ ̸= ∅. This implies that hϵ(z, ϵ) does not depend on z, so we can write
ϵ̂ = hϵ(z, ϵ) = h̃ϵ(ϵ). Since h is invertible (as both f and f̂ are invertible), we have ϵ = h−1

ϵ (ϵ̂)
Therefore, ϵ does not depend on ẑ.

Now we are ready for the proof of Theorem 1.
Theorem 1. Let the observed data be generated by a model defined in Eq. (1). Together with a ℓ0
regularization on F̂ẑ during estimation (∥F̂ẑ∥0 ≤ ∥Fz∥0), suppose the following assumptions:

i. (Nondegeneracy) For all i ∈ {1, . . . , n}, there exist points {(z, ϵ)(ℓ)}|(Fz)i,:|
ℓ=1 and a ma-

trix T ∈ T s.t. span{Dzf((z, ϵ)
(ℓ)

)i,:}
|(Fz)i,:|
ℓ=1 = Rn

(Fz)i,:
and

[
Dzf((z, ϵ)

(ℓ)
)T

]
i,:

∈
Rn

(F̂ẑ)i,:.

ii. (Domain Variability) For any set A ⊆ Z×E with non-zero probability measure that cannot
be expressed as Bϵ × Bz for any Bϵ⊆E and Bz=Z , there exist two domains u1 and u2

that are independent of ϵ s.t.∫
(z,ϵ)∈A

[p(z, ϵ|u1)− p(z, ϵ|u2)] dz dϵ ̸= 0.

iii. (Structural Sparsity) For all k ∈ {1, . . . , n}, there exists a set Ck s.t.
⋂

i∈Ck
(Fz)i,: = {k}.

Then latent variables z are element-wise identifiable (Defn. 1).

Proof. We aim to show that under the given assumptions, the latent variables z are identifiable up
to element-wise invertible transformations and permutations. To this end, we consider the trans-
formation h : (z, ϵ) → (ẑ, ϵ̂), which maps the true latent variables and noise to their estimated
counterparts.

First, we apply the chain rule to the composition f̂ ◦ h = f . The derivative of f̂ with respect to
(ẑ, ϵ̂) can be expressed as:

D(ẑ,ϵ̂)f̂ = D(z,ϵ)f ·D(ẑ,ϵ̂)h
−1. (27)

The Jacobian matrix D(ẑ,ϵ̂)h
−1 can be partitioned into blocks:

D(ẑ,ϵ̂)h
−1 =

[
∂z
∂ẑ

∂z
∂ϵ̂

∂ϵ
∂ẑ

∂ϵ
∂ϵ̂

]
. (28)

According to steps 1, 2, and 3 in the proof of Theorem 4.2 in Kong et al. (2022) (Lemma 1), the

bottom-left block
∂ϵ

∂ẑ
is zero. Thus, the Jacobian simplifies to:

D(ẑ,ϵ̂)h
−1 =

[
∂z
∂ẑ

∂z
∂ϵ̂

0 ∂ϵ
∂ϵ̂

]
. (29)
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Since h is invertible, the determinant of D(ẑ,ϵ̂)h
−1 is non-zero:

det
(
D(ẑ,ϵ̂)h

−1
)
= det

(
∂z

∂ẑ

)
· det

(
∂ϵ

∂ϵ̂

)
̸= 0. (30)

This implies that both
∂z

∂ẑ
and

∂ϵ

∂ϵ̂
are invertible matrices:

det

(
∂z

∂ẑ

)
̸= 0, (31)

det

(
∂ϵ

∂ϵ̂

)
̸= 0. (32)

Define the map between ϵ̂ and ϵ as hϵ : ϵ̂ → ϵ. Since det

(
∂ϵ

∂ϵ̂

)
̸= 0 and

∂ϵ

∂ẑ
= 0, it follows that ϵ

depends solely on ϵ̂ and not on ẑ. Therefore, there exists an invertible function hϵ such that:

ϵ = hϵ(ϵ̂). (33)

Since z is independent of ϵ and ϵ = hϵ(ϵ̂), it follows that z is also independent of ϵ̂. Thus

∂z

∂ϵ̂
= 0. (34)

Thus, the Jacobian further simplifies to:

D(ẑ,ϵ̂)h
−1 =

[
∂z
∂ẑ 0

0 ∂ϵ
∂ϵ̂

]
. (35)

Substituting Eq. (35) into the chain rule expression, we focus on the derivatives with respect to ẑ:

D(ẑ,ϵ̂)f̂ :,:n
= D(z,ϵ)fD(ẑ,ϵ̂)h

−1
:,:n

(36)

= D(z,ϵ)f :,:n

∂z

∂ẑ
. (37)

Let us define a matrix T as follows:
Dẑf̂ = DzfT. (38)

According to Assumption i, for each i ∈ {1, . . . , n}, there exist points {(z, ϵ)(ℓ)}|(Fz)i,:|
ℓ=1 and a

matrix T ∈ T such that the set {Dzf((z, ϵ)
(ℓ))i,:}

|(Fz)i,:|
ℓ=1 spans the subspace Rn

(Fz)i,:
. This means

that any vector in Rn
(Fz)i,:

can be expressed as a linear combination of these derivative vectors.

Let us consider the standard basis vector ej0 ∈ Rn
(Fz)i,:

for some j0 ∈ (Fz)i,:. Then, there exist
coefficients βℓ such that:

ej0 =

|(Fz)i,:|∑
ℓ=1

βℓ ·Dzf((z, ϵ)
(ℓ))i,:. (39)

Multiplying both sides of Eq. (39) by T, we obtain:

ej0T =

|(Fz)i,:|∑
ℓ=1

βℓ ·Dzf((z, ϵ)
(ℓ))i,:T. (40)

By Assumption i, the transformed derivatives Dzf((z, ϵ)
(ℓ))T have their support within (F̂ẑ)i,:.

Consequently, the vector ej0T lies in Rn
(F̂ẑ)i,:

. Therefore, for any j ∈ (Fz)i,:, it holds that:

Tj,: ∈ Rn
(F̂ẑ)i,:

. (41)
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Eq. (41) leads to the following inclusion of supports:

∀(i, j) ∈ Fz, {i} × Tj,: ⊆ F̂ẑ. (42)

Here, Tj,: denotes the set of indices corresponding to non-zero entries in the j-th row of T.

Because both Dẑf̂ and Dzf are of full-column rank, T is invertible. Thus, its determinant is non-
zero. Expanding the determinant, we have:

det(T) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

Ti,σ(i) ̸= 0, (43)

where Sn is the set of all permutations of {1, 2, . . . , n}, and sgn(σ) is the sign of the permutation σ.

The non-zero determinant implies that there exists at least one permutation σ such that:

∀i ∈ {1, 2, . . . , n}, Ti,σ(i) ̸= 0. (44)

From Eq. (44), for each j ∈ {1, 2, . . . , n}, we have:

σ(j) ∈ Tj,:. (45)

Combining this with the support inclusion from Eq. (42), we deduce:

∀(i, j) ∈ Fz, (i, σ(j)) ∈ F̂ẑ. (46)

Define the set:
σ(Fz) = {(i, σ(j)) | (i, j) ∈ Fz}. (47)

Eq. (46) implies that:
σ(Fz) ⊆ F̂ẑ. (48)

Since F̂ẑ is estimated under a sparsity constraint, we have:

|F̂ẑ| ≤ |Fz|. (49)

However, because σ is a permutation (hence bijective), it holds that:

|σ(Fz)| = |Fz|. (50)

Combining Eqs. (48), (49), and (50), we conclude:

|F̂ẑ| = |Fz| = |σ(Fz)|, (51)

which implies that:
F̂ẑ = σ(Fz). (52)

Assume, for the sake of contradiction, that T is not simply a product of a permutation matrix and a
diagonal (invertible scaling) matrix. Then there exist distinct indices j1 ̸= j2 such that:

Tj1,: ∩ Tj2,: ̸= ∅. (53)

Let j3 be an index such that:
σ(j3) ∈ Tj1,: ∩ Tj2,:. (54)

Without loss of generality, assume that j3 ̸= j1.

From Assumption iii (Structural Sparsity), there exists a set Cj1 such that:⋂
i∈Cj1

(Fz)i,: = {j1}. (55)

Since j3 /∈ {j1}, there exists i3 ∈ Cj1 such that:

j3 /∈ (Fz)i3,:. (56)
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Since j1 ∈ (Fz)i3,:, we have
(i3, j1) ∈ Fz. (57)

Thus, according to Eq. (42), we have

{i3} × Tj1,: ⊆ F̂ẑ (58)

Because of Eq. (54), this implies:
(i3, σ(j3)) ∈ F̂ẑ. (59)

Using Eq. (52), it follows that:
(i3, j3) ∈ Fz. (60)

This contradicts Eq. (56). Therefore, our assumption must be false, and T must indeed be a product
of a permutation matrix and a diagonal matrix.

Thus, h−1 in Eq. (38) is a composition of a permutation and an element-wise invertible trans-
formation. Therefore, under the given assumptions, the latent variables z are identifiable up to
element-wise invertible transformations and permutations.

B.2 PROOF OF THEOREM 2

Theorem 2. Let the observed data be generated by a model defined in Eq. (2). Together with a ℓ0
regularization on F̂ẑ during estimation (∥F̂ẑ∥0 ≤ ∥Fz∥0), suppose the following assumptions:

i. (Nondegeneracy) For all i ∈ {1, . . . , n}, there exist points {z(ℓ)}|(Fz)i,:|
ℓ=1 and a matrix

T ∈ T s.t. span{Dzf(z
(ℓ))i,:}

|(Fz)i,:|
ℓ=1 = Rn

(Fz)i,:
and

[
Dzf(z

(ℓ))T
]
i,:

∈ Rn
(F̂ẑ)i,:.

ii. (Structural Sparsity) For all k ∈ {1, . . . , n}, there exists a set Ck s.t.
⋂

i∈Ck
(Fz)i,: = {k}.

Then latent variables z are element-wise identifiable (Defn. 1).

Proof. Under Assumption i, for each i ∈ {1, . . . , n}, the set of vectors {Dzf(z
(ℓ))i,:}

|(Fz)i,:|
ℓ=1 spans

the subspace Rn
(Fz)i,:

. This implies that any vector in this subspace can be expressed as a linear
combination of these derivative vectors.

Consider a standard basis vector ej0 ∈ Rn
(Fz)i,:

for some j0 ∈ (Fz)i,:. There exist coefficients {βℓ}
such that:

ej0 =

|(Fz)i,:|∑
ℓ=1

βℓ Dzf(z
(ℓ))i,:. (61)

Let T be the transformation matrix defined by the relationship:

Dẑf̂ = DzfT. (62)

Multiplying both sides by T, we have:

ej0T =

|(Fz)i,:|∑
ℓ=1

βℓ Dzf(z
(ℓ))i,:T. (63)

Since, by assumption, Dzf(z
(ℓ))T has support in F̂ẑ , it follows that the vector ej0T lies in Rn

(F̂ẑ)i,:
.

Therefore, for any j ∈ (Fz)i,:, we have:

Tj,: ∈ Rn
(F̂ẑ)i,:

. (64)

This establishes the inclusion:

∀(i, j) ∈ Fz, {i} × Tj,: ⊆ F̂ẑ. (65)

Since both Dẑf̂ and Dzf are invertible, T must also be invertible, implying that its determinant is
non-zero:

det(T) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

Ti,σ(i) ̸= 0, (66)
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where Sn is the set of all permutations of {1, . . . , n}, and sgn(σ) denotes the sign of the permutation
σ.

The non-zero determinant ensures that there exists at least one permutation σ ∈ Sn such that:

∀i ∈ {1, . . . , n}, Ti,σ(i) ̸= 0. (67)

Therefore, for each j ∈ {1, . . . , n}, we have:

σ(j) ∈ Tj,:. (68)

Combining the support inclusion from Eq. (65) with Eq. (68), we deduce:

∀(i, j) ∈ Fz, (i, σ(j)) ∈ F̂ẑ. (69)

Define the set:
σ(Fz) = {(i, σ(j)) | (i, j) ∈ Fz}. (70)

Thus, we have:
σ(Fz) ⊆ F̂ẑ. (71)

Since the estimated Jacobian F̂ẑ is obtained under a sparsity constraint, it satisfies:

|F̂ẑ| ≤ |Fz|. (72)

However, because σ is a permutation (hence bijective), it holds that:

|σ(Fz)| = |Fz|. (73)

Combining these results, we find:

|F̂ẑ| = |Fz| = |σ(Fz)|, (74)

which, together with Eq. (71), implies that:

F̂ẑ = σ(Fz). (75)

Assume, for the sake of contradiction, that T is not a composition of a permutation matrix and a
diagonal (invertible scaling) matrix. Then there exist distinct indices j1 ̸= j2 such that:

Tj1,: ∩ Tj2,: ̸= ∅. (76)

Let j3 be an index such that:
σ(j3) ∈ Tj1,: ∩ Tj2,:. (77)

Without loss of generality, suppose j3 ̸= j1.

From Assumption ii (Structural Sparsity), there exists a set Cj1 such that:⋂
i∈Cj1

(Fz)i,: = {j1}. (78)

Since j3 /∈ {j1}, there exists i3 ∈ Cj1 such that:

j3 /∈ (Fz)i3,:. (79)

Since j1 ∈ (Fz)i3,:, we have
(i3, j1) ∈ Fz. (80)

Thus, according to Eq. (65), we have

{i3} × Tj1,: ⊆ F̂ẑ (81)

However, from Eq. (77), we have:
(i3, σ(j3)) ∈ F̂ẑ. (82)

Using Eq. (75), it follows that:
(i3, j3) ∈ Fz. (83)
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This contradicts Eq. (79). Therefore, our assumption must be false, and T must indeed be a compo-
sition of a permutation matrix and a diagonal matrix.

Since the noise ϵ has positive density and thus a non-zero characteristic function, by Step I of the
proof of Theorem 1 in (Khemakhem et al., 2020b), the noise-free distributions must be identical for
the observational distributions to match. Define the composite function h = f̂−1 ◦ f . Applying the
chain rule yields:

Dẑf̂ = Dzf · T. (84)

Since T is a composition of a permutation matrix and a diagonal matrix, h must also be of this form.
Therefore, the latent variables z are identifiable up to permutations and element-wise invertible
transformations.

B.3 PROOF OF COROLLARY 1

Corollary 1. Let the observed data be generated by a model defined in Eqs. (3) and (4). Together
with a ℓ0 regularization on F̂ẑ during estimation (∥F̂ẑ∥0 ≤ ∥Fz∥0), suppose the following assump-
tions:

i. (Nondegeneracy) For all i ∈ {1, . . . , n}, there exist points {(z, ϵ,η)(ℓ)}|(Fz)i,:|
ℓ=1

and a matrix T ∈ T s.t. span{Dzf((z, ϵ,η)
(ℓ)

)i,:}
|(Fz)i,:|
ℓ=1 = Rn

(Fz)i,:
and[

Dzf((z, ϵ,η)
(ℓ)

)T
]
i,:

∈ Rn
(F̂ẑ)i,:.

ii. (Domain Variability) For any set A ⊆ Z×E with non-zero probability measure that cannot
be expressed as Bϵ × Bz for any Bϵ⊆E and Bz=Z , there exist two domains u1 and u2

that are independent of ϵ s.t.∫
(z,ϵ)∈A

[p(z, ϵ|u1)− p(z, ϵ|u2)] dz dϵ ̸= 0.

iii. (Structural Sparsity) For all k ∈ {1, . . . , n}, there exists a set Ck s.t.
⋂

i∈Ck
(F1z)i,: =

{k}.
Then latent variables z are element-wise identifiable (Defn. 1).

Proof. Since the noise η has a positive density and thus a non-zero characteristic function, by Step
I of the proof of Theorem 1 in Khemakhem et al. (2020b), the noise-free distributions must be
identical for the observational distributions to match. Denote h : (z, ϵ) → (ẑ, ϵ̂), we have:

D(ẑ,ϵ̂)f̂ = D(z,ϵ)fD(ẑ,ϵ̂)h
−1. (85)

Let us represent the Jacobian D(ẑ,ϵ̂)h
−1 as follows:

D(ẑ,ϵ̂)h
−1 =

[
∂z
∂ẑ

∂z
∂ϵ̂

∂ϵ
∂ẑ

∂ϵ
∂ϵ̂

]
. (86)

According to steps 1, 2, and 3 in the proof of Theorem 4.2 in Kong et al. (2022), the bottom-left

block
∂ϵ

∂ẑ
is zero. Thus, the Jacobian simplifies to:

D(ẑ,ϵ̂)h
−1 =

[
∂z
∂ẑ

∂z
∂ϵ̂

0 ∂ϵ
∂ϵ̂

]
. (87)

Moreover, because h is invertible, the determinant of D(ẑ,ϵ̂)h
−1 is non-zero. Together with the

structure of the Jacobian matrix, we have:

det
(
D(ẑ,ϵ̂)h

−1
)
= det

(
∂z

∂ẑ

)
· det

(
∂ϵ

∂ϵ̂

)
̸= 0. (88)
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Thus, there must be

det

(
∂z

∂ẑ

)
̸= 0, (89)

det

(
∂ϵ

∂ϵ̂

)
̸= 0. (90)

Define the map between ϵ̂ and ϵ as hϵ : ϵ̂ → ϵ. Since det

(
∂ϵ

∂ϵ̂

)
̸= 0 and

∂ϵ

∂ẑ
= 0, it follows that ϵ

depends solely on ϵ̂ and not on ẑ. Therefore, there exists an invertible function hϵ such that:

ϵ = hϵ(ϵ̂). (91)

Since z is independent of ϵ and ϵ = hϵ(ϵ̂), it follows that z is also independent of ϵ̂. Thus

∂z

∂ϵ̂
= 0. (92)

Thus we have
D(ẑ,ϵ̂)f̂ :,:n

= D(z,ϵ)f :,:n
D(ẑ,ϵ̂)h

−1
:n,:n

, (93)

which is equivalent to
Dẑf̂ = DzfD(ẑ,ϵ̂)h

−1
:n,:n

. (94)

We need to prove that D(ẑ,ϵ̂)h
−1

:n,:n
is a generalized permutation matrix.

Since both Dẑf̂ and Dzf are of full column rank, we have

Dẑf̂ = DzfD(ẑ,ϵ̂)T, (95)

where T has a non-zero determinant. Expanding the determinant, we have:

det(T) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

Ti,σ(i) ̸= 0, (96)

where Sn is the set of all permutations of {1, 2, . . . , n}, and sgn(σ) denotes the sign of the permu-
tation σ.

The non-zero determinant ensures that there exists at least one permutation σ ∈ Sn such that:

∀i ∈ {1, 2, . . . , n}, Ti,σ(i) ̸= 0. (97)

Therefore, for each j ∈ {1, 2, . . . , n}, we have:

σ(j) ∈ Tj,:. (98)

According to Assumption i, for each i ∈ {1, . . . , n}, there exist points {(z, ϵ,η)(ℓ)}|(Fz)i,:|
ℓ=1 such

that the set {Dzf((z, ϵ,η)
(ℓ))i,:}

|(Fz)i,:|
ℓ=1 spans the subspace Rn

(Fz)i,:
. This means that any vector in

Rn
(Fz)i,:

can be expressed as a linear combination of these derivative vectors.

Let us consider the standard basis vector ej0 ∈ Rn
(Fz)i,:

for some j0 ∈ (Fz)i,:. Then, there exist
coefficients {βℓ} such that:

ej0 =

|(Fz)i,:|∑
ℓ=1

βℓ ·Dzf((z, ϵ,η)
(ℓ))i,:. (99)

Multiplying both sides of Eq. (99) by T, we obtain:

ej0 · T =

|(Fz)i,:|∑
ℓ=1

βℓ ·Dzf((z, ϵ,η)
(ℓ))i,:T. (100)
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By Assumption i, the transformed derivatives Dzf((z, ϵ,η)
(ℓ))T have their support within (F̂ẑ)i,:.

Consequently, the vector ej0 · T lies in Rn
(F̂ẑ)i,:

. Therefore, for any j ∈ (Fz)i,:, it holds that:

Tj,: ∈ Rn
(F̂ẑ)i,:

. (101)

Eq. (101) leads to the following inclusion of supports:

∀(i, j) ∈ Fz, {i} × Tj,: ⊆ F̂ẑ. (102)

Here, Tj,: denotes the set of indices corresponding to non-zero entries in the j-th row of matrix T.

Combining the support inclusion from Eq. (102) with Eq. (98), we deduce:

∀(i, j) ∈ Fz, (i, σ(j)) ∈ F̂ẑ. (103)

Define the set:
σ(Fz) = {(i, σ(j)) | (i, j) ∈ Fz}. (104)

Thus, we have:
σ(Fz) ⊆ F̂ẑ. (105)

Since F̂ẑ is estimated under a sparsity constraint, we have:

|F̂ẑ| ≤ |Fz|. (106)

However, because σ is a permutation (hence bijective), it holds that:

|σ(Fz)| = |Fz|. (107)

Combining these results, we conclude:

|F̂ẑ| = |Fz| = |σ(Fz)|, (108)

which implies that:
F̂ẑ = σ(Fz). (109)

Assume, for the sake of contradiction, that T is not a composition of a permutation matrix and a
diagonal (invertible scaling) matrix. Then there exist distinct indices j1 ̸= j2 such that:

Tj1,: ∩ Tj2,: ̸= ∅. (110)

Let j3 be an index such that:
σ(j3) ∈ Tj1,: ∩ Tj2,:. (111)

Without loss of generality, assume that j3 ̸= j1.

From Assumption iii (Structural Sparsity), there exists a set Cj1 such that:⋂
i∈Cj1

(Fz)i,: = {j1}. (112)

Since j3 /∈ {j1}, there exists i3 ∈ Cj1 such that:

j3 /∈ (Fz)i3,:. (113)

Note that
j1 ∈ (Fz)i3,:, (114)

which indicates (i3, j1) ∈ Fz . Therefore, we have the following relation according to Eq. (102):

{i3} × Tj1,: ⊆ F̂ẑ (115)

From Eq. (111), we have
(i3, σ(j3)) ∈ F̂ẑ. (116)

Using Eq. (109), it follows that
(i3, j3) ∈ Fz. (117)

This contradicts Eq. (113). Therefore, our assumption must be false, and T must indeed be a
composition of a permutation matrix and a diagonal matrix. This ensures that D(ẑ,ϵ̂)h

−1
:n,:n

is a
generalized permutation matrix.

Thus, under the given assumptions, the latent variables z are identifiable up to permutations and
element-wise invertible transformations.
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B.4 PROOF OF THEOREM 3

Theorem 3. Let the observed data be generated by a model defined in Eqs. (5) and (6).

Suppose for each i ∈ {1, . . . ,m}, there exist {(ξ,η)(ℓ)}
|Fξi,:

|
ℓ=1 and a matrix Tξ ∈ Tξ s.t.

span{Dξf((ξ,η)
(ℓ)

)i,:}
|(Fξ)i,:|
ℓ=1 = Rm

(Fξ)i,:
and

[
Dξf((ξ,η)

(ℓ)
)Tξ

]
i,:

∈ Rm
(F̂ξ̂)i,:

. Then Gf̂−1 =

PGf−1
1

for a permutation matrix P together with a ℓ0 regularization on F̂ẑ during estimation

(∥F̂ẑ∥0 ≤ ∥Fz∥0).

Proof. Since the noise η has positive density and thus a non-zero characteristic function. Thus, by
Step I of the proof of Theorem 1 in (Khemakhem et al., 2020b), the noise-free distributions must be
identical for the observational distributions to match. Denote h : ξ → ξ̂, we have:

Dξ̂f̂ = Dξf ·Dξ̂h
−1, (118)

where Dξf is the Jacobian of f with respect to ξ, Dξ̂f̂ is the Jacobian of f̂ with respect to ξ̂, and

Dξ̂h
−1 is the Jacobian of h−1 with respect to ξ̂.

Remember that we have the following notations:

Fξ := supp(Dξf),

F̂ξ̂
:= supp(Dξ̂f̂).

(119)

Furthermore, Tξ refers to a set of matrices with the same support as Dξ̂h
−1, and T ∈ Tξ. Based on

the assumption, we have:

span{Dξf((ξ,η)
(ℓ))i,:}

|Fξi,:
|

ℓ=1 = R|Fξi,:
|. (120)

Given that the set {Dξf((ξ,η)
(ℓ))i,:}

|Fξi,:
|

ℓ=1 forms a basis of R|Fξi,:
|, we can express any vector in

this space as a linear combination of these basis vectors. In particular, for any j0 ∈ Fξi,:, the one-hot

vector ej0 ∈ R|Fξi,:
| can be written as

ej0 =
∑
ℓ

αℓDξf((ξ,η)
(ℓ))i,:, (121)

where αℓ denotes the respective coefficient.

With this in mind, we can find the transformation of ej0 under T as

Tj0,: = ej0T =
∑
ℓ

αℓDξf((ξ,η)
(ℓ))i,:T. (122)

According to the assumption, each term in the above summation belongs to the space R|(F̂ξ̂)i,:
|.

Therefore, Tj0,: itself resides in R|(F̂ξ̂)i,:
|, i.e., Tj0,: ∈ R|(F̂ξ̂)i,:

|. Thus,

∀j ∈ Fξi,:, Tj,: ∈ R|(F̂ξ̂)i,:
|
. (123)

Then the connections between these supports can be established:

∀(i, j) ∈ Fξ, {i} × supp(Tj,:) ⊆ F̂ξ̂. (124)

Since Dξf and Dξ̂f̂ have full rank n, T must have a non-zero determinant. Otherwise, it would

follow that the rank of T is less than n, which would imply a contradiction that Dξ̂f̂ = Dξf ·T has
rank less than n. Representing the determinant of the matrix T as its Leibniz formula yields

det(T) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

Ti,σ(i) ̸= 0, (125)
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where Sn is the set of all permutations of {1, . . . , n}. Thus, there is at least one permutation σ ∈ Sn

such that:
∀i ∈ {1, . . . , n}, Ti,σ(i) ̸= 0. (126)

Then we can conclude that this σ is in the support of T. Therefore, it follows that

∀j ∈ {1, . . . , n}, σ(j) ∈ supp(Tj,:). (127)

Together with Eq. (124), we have

∀(i, j) ∈ Fξ, (i, σ(j)) ∈ F̂ξ̂. (128)

Denote
σ(Fξ) = {(i, σ(j)) | (i, j) ∈ Fξ}. (129)

Then we have
σ(Fξ) ⊆ F̂ξ̂. (130)

Because of the sparsity regularization on the estimated Jacobian, we further have

|F̂ξ̂| ≤ |Fξ| = |σ(Fξ)|. (131)

Combining this with Eq. (130), we derive

σ(Fξ) = F̂ξ̂. (132)

This implies that
Dξ̂f̂ = D1DξfD2P, (133)

where D1 and D2 are diagonal matrices, and P is a permutation matrix corresponding to σ.

According to the chain rule, we have

Dξf = Dzf2 ·Dξf1,

Dξ̂f̂ = Dẑf̂2 ·Dξ̂f̂1.
(134)

Since both Dzf2 and Dẑf̂2 are diagonal matrices (because f2 and f̂2 are element-wise functions),
Eq. (134) further yields

supp(Dξf) = supp(Dξf1),

supp(Dξ̂f̂) = supp(Dξ̂f̂1).
(135)

Because
supp(Dξf) = supp(D1DξfD2), (136)

we have the following equation together with the previous result:

supp(Dξ̂f̂) = supp(DξfP ). (137)

This implies
supp(Dξ̂f̂1) = supp(Dξf1P ). (138)

Now, let us consider the inverses of these matrices:

(Dξf1P )−1 =
1

det(Dξf1P )
· adj(Dξf1P ),

(Dξ̂f̂1)
−1 =

1

det(Dξ̂f̂1)
· adj(Dξ̂f̂1).

(139)

Since Dξ̂f̂1 and Dξf1P have the same support, the submatrices (Dξ̂f̂1)[n]\i,[n]\j
and

(Dξf1P )[n]\i,[n]\j also have the same support. That is,

supp((Dξ̂f̂1)[n]\i,[n]\j
) = supp((Dξf1P )[n]\i,[n]\j). (140)

This means for any position (k, l) in (Dξ̂f̂1)[n]\i,[n]\j
and (Dξf1P )[n]\i,[n]\j ,

[(Dξ̂f̂1)[n]\i,[n]\j
]k,l ̸= 0 ⇐⇒ [(Dξf1P )[n]\i,[n]\j ]k,l ̸= 0. (141)
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The determinant of an (n − 1) × (n − 1) matrix is a sum of products of its elements, each product
corresponding to a permutation of the row and column indices, with a sign given by the parity of the
permutation. Specifically,

det((Dξ̂f̂1)[n]\i,[n]\j
) =

∑
σ∈Sn−1

sgn(σ)

n−1∏
k=1

[(Dξ̂f̂1)[n]\i,[n]\j
]k,σ(k), (142)

where Sn−1 is the set of all permutations of {1, . . . , n− 1}. Similarly,

det((Dξf1P )[n]\i,[n]\j) =
∑

σ∈Sn−1

sgn(σ)

n−1∏
k=1

[(Dξf1P )[n]\i,[n]\j ]k,σ(k). (143)

Clearly, the determinant is non-zero if there exists at least one term in the sum that is non-zero. For
such a term to be non-zero, all elements in the corresponding product must be non-zero.

Given Eq. (140), any product of elements in det((Dξ̂f̂1)[n]\i,[n]\j
) that is non-zero will correspond

to a product of elements in det((Dξf1P )[n]\i,[n]\j) that is also non-zero, and vice versa. This is
because the positions of non-zero elements in the two submatrices are identical.

Therefore,
det((Dξ̂f̂1)[n]\i,[n]\j

) ̸= 0 ⇐⇒ det((Dξf1P )[n]\i,[n]\j) ̸= 0. (144)

This implies that for each position (i, j), the cofactor Cij will be non-zero for Dξ̂f̂1 if and only if it
is non-zero for Dξf1P :

Cij(Dξ̂f̂1) ̸= 0 ⇐⇒ Cij(Dξf1P ) ̸= 0. (145)

According to the definition of the adjugate matrix, we have

adj(Dξ̂f̂1)ij = Cji(Dξ̂f̂1), (146)

and similarly,
adj(Dξf1P )ij = Cji(Dξf1P ). (147)

Since Cij(Dξ̂f̂1) ̸= 0 if and only if Cij(Dξf1P ) ̸= 0, it follows that:

adj(Dξ̂f̂1)ij ̸= 0 ⇐⇒ adj(Dξf1P )ij ̸= 0. (148)

Thus, the supports of the adjugate matrices are the same:

supp(adj(Dξ̂f̂1)) = supp(adj(Dξf1P )). (149)

Therefore, their inverses also have supports related by the permutation P according to Eq. (139):

supp((Dξf1P )−1) = supp((Dξ̂f̂1)
−1). (150)

Which implies
supp((Dξ̂f̂1)

−1) = P−1 supp((Dξf1)
−1). (151)

Since f̂2 is an element-wise transformation, we have

Gf̂−1 = PGf−1
1

. (152)

B.5 PROOF OF PROPOSITION 2

Proposition 2. Suppose the assumptions in Theorem 3 and Proposition 1 hold, then A in Eq. 7 is
identifiable.
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Proof. Under the assumptions of Theorem 3, we have established that

Gf−1
1

= PGf̂−1 . (153)

From Proposition 1, the matrix Gf−1
1

is structurally equivalent to In −A, where A is the adjacency
matrix of the directed acyclic graph (DAG) defined by the structural causal model in Eq. (7). That
is,

Gf−1
1

∼ In −A, (154)

where “∼” denotes structural equivalence (i.e., they have the same pattern of zeros and non-zeros).

In addition, with the right causal ordering(s), A can be arranged to be strictly lower-triangular, i.e.,
P⊤
π APπ is lower-triangular, where Pπ is a permutation matrix representing the unknown causal

ordering. Clearly, P⊤
π (In −A)Pπ , as well as P⊤

π Gf−1
1

Pπ , are also lower-triangular.

According to Eq. (153), we have

P⊤
π Gf−1

1
Pπ = P⊤

π PGf̂−1Pπ, (155)

where both sides are lower-triangular. For brevity, we denote P⊤
π P as Pπ̃ so that

P⊤
π Gf−1

1
Pπ = Pπ̃Gf̂−1Pπ, (156)

where both sides are also lower-triangular. Because the diagonal elements of Gf−1
1

are non-zero, the
diagonal elements of P⊤

π Gf−1
1

Pπ are also non-zero.

Then we aim to find the permutation matrices Pπ̃ and Pπ to make the estimated inverse of the
Jacobian lower-triangular. We then need to show: (1) if the causal ordering Pπ is unique (and
unknown), Pπ̃ is also unique; (2) if the causal ordering Pπ is not unique (but unknown), each of
them corresponds to a unique Pπ̃ . Similar techniques have been used in (Shimizu et al., 2006;
Reizinger et al., 2022) to bridge ICA to causal discovery. The two cases are considered as follows:

• If Pπ is unique (and unknown), we need to show that Pπ̃ is also unique. Suppose we
have two row-permutations Pπ̃1

and Pπ̃2
such that Pπ̃1

̸= Pπ̃2
and both Pπ̃1

J(ĝ◦f̂)−1Pπ

and Pπ̃2
J(ĝ◦f̂)−1Pπ are lower-triangular with no zero entries on the diagonal. Equiva-

lently, Pπ̃1
Jf̂−1Pπ and Pπ̃2

Jf̂−1Pπ are lower-triangular since Jĝ−1 is a diagonal matrix.
Suppose that Pπ̃1

Jf̂−1Pπ is lower-triangular; it is impossible for Pπ̃2
Jf̂−1Pπ to be also

lower-triangular since Pπ̃1 ̸= Pπ̃2 . Thus, Pπ̃ must be unique given a unique Pπ .

• If Pπ is not unique (but unknown), we can apply a similar argument above to identify a
set of row-permutation matrices Pπ̃ , each of which ensures the lower-triangularity (with no
zero entries on the diagonal).

Therefore, we can always resolve the indeterminacy Pπ̃ in Eq. (153) by the lower-triangularity of
Pπ̃Gf̂−1Pπ , even though the causal ordering Pπ is unknown. As a result, we can identify Gf−1

1
,

which leads to the identifiability of In −A and clearly also that of A.

C ADDITIONAL DISCUSSIONS

In this section, we discuss the challenge of modeling general noise, emphasizing the distinctions
between noise and content variables as explored in previous works.

Content variables are typically semantically meaningful and are often explicitly contrasted with style
variables. This enables existing techniques to disentangle content from style through structured
variability. For example, contrastive learning frameworks (Von Kügelgen et al., 2021) use paired
observations differing only in style (e.g., images with the same object but different backgrounds) to
disentangle content. In multi-domain settings (Kong et al., 2022), content remains invariant across
O(n) distinct domains characterized by different styles. Similarly, in intervention-based settings
(Lachapelle et al., 2024), agents or environments serve as auxiliary variables that induce changes in
the conditional distributions of latent variables. These structured variations provide the foundation
for effective disentanglement.
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In contrast, noise variables often lack semantic meaning and cannot be explicitly manipulated across
multiple domains or paired in observations. This makes it infeasible to assume the existence of O(n)
conditional distributions or define contrastive objectives. As a result, existing frameworks designed
for content-style disentanglement cannot be directly applied to general noise modeling.

To address this, we propose to only leverage the existence of variability in the latent distribution,
requiring only two distinct distributions as a minimal degree of change. This relaxation reduces
the need for O(n) distinct distributions, which are common in existing frameworks, and broadens
applicability to scenarios where the distribution is not completely invariant. This shift, from explic-
itly controlling different types of variables to achieve a required degree of change or transition, to
accommodating general variability in scenarios where the distribution is not completely invariant,
represents a significant technical contribution that is essential to address the unique contribution of
modeling general noise.

D EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

In this section, we present additional details regarding the experimental settings (Sec. D.1) as well
as supplementary empirical results (Sec. D.2).

D.1 EXPERIMENTAL DETAILS

We provide supplementary details of the experimental configurations as follows:

Evaluation Metric. We assess the correspondence between ground-truth and recovered latent vari-
ables using the Mean Correlation Coefficient (MCC). To compute MCC, we first apply an element-
wise transformation learned through regression, then calculate the pairwise correlation coefficients
between the true and recovered latent variables. An assignment problem is then solved to match
each recovered variable with the ground-truth one showing the highest correlation. MCC, commonly
used in the literature for measuring identifiability under element-wise transformations (Hyvärinen
& Morioka, 2016), serves as our evaluation metric.

Implementaion Details. In our experiments with synthetic datasets, we use a sample size of
10, 000, with a learning rate of 0.01 and a batch size of 200. The flow-based models are trained
using 10 coupling layers. All experiments are performed using the official GIN implementa-
tion1(Sorrenson et al., 2020), incorporating an additional ℓ1 regularization term on the Jacobian
of the estimated generating function, with a regularization coefficient of 0.1.

D.2 ADDITIONAL RESULTS

4 6 8 10 12
Dimensionality

0.0
0.2
0.4
0.6
0.8
1.0

M
CC

Model 1

4 6 8 10 12
Dimensionality

Model 2

Figure 8: Identification of latent variables
w.r.t. different m for Model 1 and Model 1,
where n = m/2.

Additional Synthetic Experiments. In this sec-
tion, we present additional experiments under dif-
ferent specific settings to validate our theoretical re-
sults. We generate datasets for two scenarios: (1) a
setting with only additive noise (Model 1) and (2) a
setting with both general noise and distortion (Model
2). For Model 1, we use additive Gaussian noise.
For Model 2, we apply an element-wise nonlinear
transformation and add Gaussian noise, as described
in Eq. (4) and the corresponding mixture model in
Eq. (3). All other experimental details follow those
of the main simulations. We construct datasets with
varying numbers of variables and conduct five random trials for each configuration. The results,
presented in Fig. 8, demonstrate that all latent variables are identifiable across different settings,
providing further validation of our theoretical findings.

Additional Real-world Experiments. As outlined in Sec. 5, here we include the results on the
real-world image datasets. we present the results from experiments conducted on real-world im-
age datasets. Specifically, we evaluated our model on the Fashion-MNIST (Xiao et al., 2017) and

1https://github.com/VLL-HD/GIN
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(a) Fashion-MNIST with noise (b) EMNIST with noise

Figure 9: Samples of images with noise from (a) Fashion-MNIST and (b) EMNIST datasets.

Figure 10: Identified variables from Fashion-MNIST.

Figure 11: Identified variables from EMNIST.

EMNIST (Cohen et al., 2017) datasets. Fashion-MNIST contains 60, 000 images of clothing items,
each with a resolution of 28× 28 pixels, while EMNIST consists of 240, 000 images of handwritten
digits, also sized 28 × 28. We added noises (mixtures of multiplicative and additive Gaussians) to
the images to evaluate whether we could identify latent variables from observed pixels with noises.
Figure 9 shows the samples of images with a rather complicated form of noise.

Figures 10 and 11 show the identified components, highlighting the top three concepts with the
largest standard deviations (SDs) from our analysis. Each sub-figure presents reconstructed im-
ages where the corresponding latent variable varies from −4 to +4 SDs, demonstrating its effect
on the image. The rightmost column displays a heat map of absolute pixel differences between −1
and +1 SDs, further visualizing these changes in the reconstruction. The identified latent variables
clearly capture meaningful semantics. For instance, variables identified from EMNIST represent
left-leaning, height, and right-leaning characteristics. This confirms that semantically meaningful
latent variables can be identified from real-world images even in the presence of general noise, illus-
trating the practical viability of the proposed nonparametric identifiability in real-world scenarios.
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