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ABSTRACT

In this paper, we evaluate the resilience of modern vision and multimodal foun-
dational models against object-to-background context variations. The majority
of robustness evaluation methods have introduced synthetic datasets to induce
changes to object characteristics (viewpoints, scale, color) or utilized image trans-
formation techniques (adversarial changes, common corruptions) on real images
to simulate shifts in distributions. Our approach, on the other hand, can change
the background of real images using text prompts thus allowing diverse changes
to the background. We achieve this while preserving the original appearance and
semantics of the object of interest. This allows us to quantify the role of back-
ground context in understanding the robustness and generalization of deep neural
networks. To achieve this goal, we harness the generative capabilities of text-
to-image, image-to-text, and image-to-segment models to automatically generate
a broad spectrum of object-to-background changes. By using textual guidance
for control, we produce various versions of standard vision datasets (ImageNet,
COCO), incorporating either diverse and realistic backgrounds into the images
or introducing variations in the color and texture of the background. Addition-
ally, we craft adversarial backgrounds by optimizing the latent variables and text
embeddings within text-to-image models. We conduct thorough experimentation
and provide an in-depth analysis of the robustness of vision and language models
against object-to-background context variations across different tasks. Our code
and evaluation benchmark along with the datasets will be publicly released.

1 INTRODUCTION

Deep learning-based vision models have achieved significant improvement in diverse vision tasks.
However, the performance on static held-out datasets does not capture the diversity of different
object background compositions present in the real world. In order for these models to be deployed
in security-critical applications, analyzing the robustness of these models under diverse changes in
the distribution of the data is crucial. Previous works have shown that vision models are vulnerable
to a variety of image alterations, including common corruptions (e.g., snow, fog, blur) (Hendrycks &
Dietterich, 2019; Moayeri et al., 2022), domain shifts (e.g., paintings, sketches, cartoons)(He et al.,
2016; Hendrycks et al., 2021a), and changes in viewpoint (e.g., pose, shape, orientation) (Chang
et al., 2015; Idrissi et al., 2022; Bordes et al., 2023). Additionally, carefully designed perturbations
can be added to images to create adversarial examples that are imperceptible to humans but can fool
the decision-making of vision models (Szegedy et al., 2013; Goodfellow et al., 2014).

Several approaches have been proposed to improve the out-of-distribution robustness of vision mod-
els. Madry et al. (2017) propose to train the models on adversarial examples in order to achieve
adversarial robustness. (Zhang et al., 2017; Cubuk et al., 2018; Yun et al., 2019; Hendrycks et al.,
2021a) propose augmentation policies to improve the non-adversarial robustness of models. More
recently, the computer vision field has seen the emergence of large-scale pretraining of both vi-
sion (Oquab et al., 2023; Kirillov et al., 2023) and vision-language models (Radford et al., 2021;
Sun et al., 2023; Li et al., 2023a). These models, train on extensive datasets and multiple modali-
ties, have demonstrated promising performance on non-adversarial distribution shifts due to the rich
representation space learned by training at scale. Consequently, several works (Zhou et al., 2022;
Khattak et al., 2023) have adapted these models for downstream tasks by utilizing learnable prompts
to preserve the rich feature space learned during pre-training.
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Figure 1: The image-to-background variations by our approach. Each column in the figure represents a specific
background generated through the corresponding prompt mentioned below of each image.

To evaluate the vision models on different distribution shifts, numerous datasets, comprising ei-
ther synthetic or altered real images have been proposed. While synthetic datasets (Chang et al.,
2015; Johnson et al., 2017; Gondal et al., 2019) offer more control on variation of scene in the im-
age (background, shape, size, viewpoint), they lack in realism, with most datasets capturing only
simple shape objects in a controlled environment. On the other hand, many studies (Hendrycks &
Dietterich, 2019; Moayeri et al., 2022) opt for applying coarse-grained image manipulations on the
available ImageNet dataset (Deng et al., 2009). This provides more realism but lacks in terms of
the diversity in the scene. A recent work (Bordes et al., 2023), tries to bridge this gap by manually
creating a synthetic dataset using a powerful game engine to introduce more realism in the images.

In this work, our goal is to introduce diverse background shifts in real images to understand the
robustness of vision models from the perspective of object-to-background context. We accomplish
this by utilizing the generative capabilities of a text-to-image diffusion model for image editing (Ho
et al., 2020; Rombach et al., 2022). Our approach preserves the semantics of the original object
(Figure 1) by conditioning the diffusion process on object boundaries and textual descriptions gen-
erated by foundational image-to-segment (Kirillov et al., 2023) and image-to-text (Li et al., 2023a)
models. We guide the diffusion process to add variations in the background by adding the desired
change in the textual description of the image. Additionally, our approach can generate adversarial
backgrounds in the feature space of diffusion models by optimizing both its latent variable and text
embedding. Thus, our approach allows to generate datasets covering diverse background changes
on a selected subset of ImageNet(Deng et al., 2009) and COCO validation set (Lin et al., 2015), en-
abling comprehensive evaluation of modern unimodal and multimodal models across different tasks.
Our contributions are as follows:

• Framework for Object-to-Backgroud Manipulations. We propose an automated frame-
work to add diverse background changes to real images, allowing us to benchmark the
resilience of modern vision models against object-to-background context.

• BackBench Dataset. By carefully filtering the images from ImageNet and COCO valida-
tion set, we generate diverse background variations of these datasets by utilizing textual
guidance for depicting the desired change.

• New Benchmark for Resilience Evaluation. We provide thorough analysis and insights
on different unimodal and multimodal models for the task of classification, segmentation,
detection, and captioning. Our analysis indicates the recent foundational models are vulner-
able to non-adversarial background changes even when the original object is fully preserved
in the modified image.

2 RELATED WORK

Corruptions. Zhu et al. (2016) curate distinct datasets by separating foreground and background
elements using ImageNet-1k bounding boxes. They found that models could achieve high object
classification performance even when the actual object was absent. Similarly, Rosenfeld et al. (2018)
demonstrate that subtle changes in object positioning could significantly impact the detector’s pre-
dictions, highlighting the sensitivity of these models to spatial configurations. A related approach
by Shetty et al. (2019) focuses on co-occurring objects within an image and investigates if remov-
ing one object affected the response of the target model toward another. Xiao et al. (2020) analyze
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the models’ reliance on background signals for decision-making by training on various synthetic
datasets. Hendrycks & Dietterich (2019) benchmark the robustness of classifiers against common
corruptions and perturbations like fog, blur, and contrast variations. In subsequent work, Hendrycks
et al. (2021b) create the ImageNet-A dataset, filtering natural adversarial examples from a sub-
set of ImageNet to limit spurious background cues. Also, Hendrycks et al. (2021a) introduce the
ImageNet-R dataset, which comprises various renditions of object classes under diverse visual rep-
resentations such as paintings, cartoons, embroidery, sculptures, and origami. Similarly, Moayeri
et al. (2022) introduce the RIVAL10 dataset to study Gaussian noise corruptions in the foreground,
background, and object attributes.

Viewpoint Changes. (Chang et al., 2015; Gondal et al., 2019; Alcorn et al., 2019) introduce a large-
scale 3D shape datasets to study object scale and viewpoints variations. In a similar vein, Johnson
et al. (2017) introduce a synthetic dataset of rendered objects to aid in diagnostic evaluations of
visual question-answering models. Later works have made strides in addressing the realism gap,
as seen in Idrissi et al. (2022) and Barbu et al. (2019). Barbu et al. (2019) utilize crowdsourcing
to control rotation, viewpoints, and backgrounds of household objects, while Idrissi et al. (2022)
provide more fine-grained annotations for variations on the ImageNet validation set. In a recent
development, Bordes et al. (2023) release a dataset rendered using Unreal Engine under diverse
conditions, including varying sizes, backgrounds, camera orientations, and light intensities.

Adversarial and Counterfactual Manipulations. Researchers have uncovered that subtle, care-
fully designed alterations to an image, imperceptible to human observers, have the ability to deceive
deep learning models (Szegedy et al., 2013; Goodfellow et al., 2014; Kurakin et al., 2016). These
perturbations, constructed using gradient-based methods, serve as a worst-case analysis in probing
the model’s robustness within specified distance norm metrics (l2 or l∞). Another strategy entails
applying unbounded perturbations to specific image patches, thereby conserving object semantics
while inducing model confusion (Sharma et al., 2022; Fu et al., 2022). Recent studies also leverage
generative models to create semantic adversarial alterations in images (Song et al., 2018; Gowal
et al., 2020; Ibrahim et al., 2022; Christensen et al., 2022; Chen et al., 2023). Similarly, Prabhu et al.
(2023) has utilized image editing method Hertz et al. (2022b) in order to generate counterfactual
examples to evaluate the robustness of vision models.

3 BACKBENCH

Our primary goal is to introduce a diverse set of background alterations while ensuring the object’s
visual presentation and semantic meaning remain intact. This is distinct from prior studies, which
either assessed models using artificially generated datasets, modifying both object traits and back-
grounds, or employed real images with constrained distribution shifts.

We propose an approach that combines the generative power of diffusion models with the general-
ization capabilities of foundational models such as SAM (Kirillov et al., 2023) and BLIP-2 (Li et al.,
2023a). We achieve this by exploiting the complementary strength of foundational models; image-
to-segment, and image-to-text to guide object-preserving diffusion inference for natural and adver-
sarial background-to-object context variations (see Figure 2). Our automated approach effectively
generates different datasets under varying distribution shifts, which can be used for benchmarking
vision and vision language models. In Section 3.1, we provide preliminaries of diffusion models
and vision and language foundational models that serve as the basis for our work. In Section 3.2, we
introduce our approach and explain its working in detail for generating diverse background changes.

3.1 PRELIMINARIES

Diffusion Models. Diffusion models have made remarkable advancements compared to Generative
Adversarial Networks (GANs) in the realm of creating realistic images and refining them based on
textual guidance. During training, diverse noisy versions It of the clean image I are fed into the
diffusion model ϵθ at different time steps t. The objective for the model is to learn the specific noise
added at each time step. The training process of diffusion models comprises of two stages; in the
forward process (first stage) gaussian noise sampled from a normal distributionN (0, I) is gradually
added to image I according to a variance schedule (βt : t = 1, ..., T ). Using the reparameterization
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Figure 2: We utilize a stable diffusion inpaint pipeline to generate the counterfactual background of
an image. The object mask is obtained from a segmentation model (SAM) by providing the class
label as an input prompt. This segmentation mask, along with the original image caption (generated
via BLIP-2) is then processed through the diffusion model. In the case of an ensemble attack, both
the latent and conditional embeddings at intermediate timesteps are optimized using a loss function.

trick, we can get the noisy image It at any time step as follows:

It =
√
ᾱtI +

√
1− ᾱtϵ ϵ ∼ N (0, I) (1)

Here, αt = 1 − βt and ᾱt =
∏t

s=1 αs. As T → ∞, ᾱT → 0, which implies IT ∼ N (0, I), all
the information of the original image I will be lost. Typically, diffusion models are conditioned on
the time step t and additional factors like the class label y or textual description T . However, recent
works have extended this conditioning to also consider the clean image I and its corresponding
mask, enabling specialized image editing tasks (Rombach et al., 2022; Saharia et al., 2022). Next, in
the reverse process (second stage) based on the conditioning, a model ϵθ is learned to approximate
the gaussian parameters at each time step t for the true reverse conditional distribution. Essentially
the training objective is to minimize the error between the estimated and actual noise added to the
image at different time steps t.

Lt = ||ϵ− ϵtθ(It, eT , ψ)||2 (2)

eT is the embedding of conditional guidance through either class label or caption of the image and ψ
is any additional conditioning, such as mask or layout of the scene. We use a pre-trained inpainting
pipeline from Stable Diffusion (Rombach et al., 2022), specializing in filling masked regions in
images using textual instructions. When presented with an image I and its corresponding maskM,
the model utilizes textual conditioning T to populate the masked region with visual information.

Foundational Models. BLIP-2 (Li et al., 2023a) presents an efficient vision-language pre-training
approach that utilizes a lightweight Querying Transformer (QFormer) to bridge the modality gap
between pre-trained vision and large language models (LLMs). This framework initially passes the
image through a pre-trained vision encoder and extracts relevant features via the QFormer. This
information is then passed to the pre-trained LLM to obtain a descriptive caption of the image.

Kirillov et al. (2023) present the Segment Anything Model (SAM), that undergoes pre-training on
an extensive dataset of high quality images. SAM employs prompts, which can manifest in various
forms such as point sets, boxes, masks, or textual input, to demarcate objects within an image. The
image initially undergoes an encoding process through a large transformer-based image encoder.
Subsequently, both the features extracted from the image and the embeddings of the prompt from a
prompt encoder traverse a lightweight decoder, yielding the desired segmentation mask.

In our work, we use BLIP-2 and SAM to condition the diffusion model. BLIP-2 provides textual
guidance by extracting a descriptive text T of the scene in the image, while SAM provides the mask
M that delineates objects from backgrounds.
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3.2 CHANGING OBJECT TO BACKGROUND COMPOSITION

Preserving Object Semantics. In order to modify image backgrounds without affecting the object,
an obvious first step would be accurately delineating the object from its background. Additionally,
incorporating semantic information in the form of textual descriptions can provide valuable insights
into the composition of the scene and guide subsequent modifications.

To achieve this goal, we propose an Object-to-Background Conditioning Module denoted as C,
which takes the input image I and the provided label y as inputs, and returns both the textual
prompt T describing the scene and maskM encapsulates the object in the image:

C(I, y) = T ,M (3)

Our conditioning module leverages a promptable segmentation model called SAM (Kirillov et al.,
2023) denoted by S. By passing the class information y and the image I to the model S(I,y),
we obtain the object mask M. Simultaneously, to acquire a description for the image scene, we
utilize BLIP-2 (Li et al., 2023b), an image-to-text model denoted as B to get the necessary prompt
T describing the scene, thereby providing object-to-background context information.

B(I) = T ; S(I,y) =M (4)

We add the desired background changes by modifying the textual description T to get T ′
(see Ap-

pendix A.1). The mask M and the textual prompt T ′
serve as conditioning inputs for the subse-

quent stage, where we employ a diffusion model to generate diverse background variations. This
methodical integration of segmentation and language comprehension offers a fine-grained control
over image backgrounds while upholding object semantics, leading to refined object-centric image
manipulations.

Visual and Textual Guidance for Background Modification. Once we’ve obtained both visual
and textual information (T ′

,M) from our conditioning module, we leverage the generative power
of diffusion models to govern image manipulations. Specifically, we employ a diffusion model that
has been trained for inpainting tasks, which has additional conditioning ψ comprising of the image
I and its corresponding maskM. The denoising operation takes place in the latent space instead of
the image pixel space, which is facilitated through the use of a variational autoencoder that provides
the mapping between images and their respective latent representations. During the inference stage,
starting with a standard normal Gaussian noise latent zt, the diffusion model calculates the estimated
noise ϵ̂tθ to be removed from the latent at time step t using a linear combination of the noise estimate
conditioned on the textual description ϵtθ(zt, eT ′ , i,m) and the unconditioned estimate ϵtθ(zt, i,m):

ϵ̂tθ(zt, eT ′ , i,m) = ϵtθ(zt, i,m) + λ
(
ϵθ(zt, eT ′ , i,m)− ϵtθ(zt, i,m)

)
(5)

Here, (i,m) represents the representation of the original image I and its corresponding mask M
in the latent space. The guidance scale λ determines how much the unconditional noise estimate
ϵθ(zt, i,m) should be adjusted in the direction of the conditional estimate ϵθ(zt, eT ′ , i,m) to closely
align with the provided textual description T ′

. In this whole denoising process, the maskM gen-
erated from our conditioning module guides the image alterations to the background of the object,
while as the textual description T ′

which contains information of the original object and the desired
background change. This provides additional constraints during the denoising process as to what
kind of background should be added while maintaining the faithfulness of the original object.

Our approach allows optimizing the conditioned visual and textual latents zt and eT ′ using a dis-
criminative model Fϕ to generate adversarial backgrounds.

Adversarial Background Generation. For generating adversarial examples the goal of the attacker
is to craft perturbations δ that when added to clean image I with class label y, result in an adversarial
image Iadv = I+ δ which elicits an incorrect response from a classifier model Fϕ i.e., Fϕ(Iadv) ̸=
y, where ϕ are the model parameters. Usually in pixel-based perturbations, δ is bounded by a norm-
distance, such as l2 or l∞ norm in order to put a constraint on pixel level changes done to preserve
the semantics of the image. However, in our setting the control on the amount of perturbation added
is goverened by the textual and visual latents passed to the diffsuion model. In our approach (see
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Figure 3: Background diversity achieved using different prompts in each instance. More visual
illustrations are provided in Appendix A.3.

Algo. 1), we use the discriminative model Fϕ to guide the diffusion model ϵθ to generate adversarial
examples by optimizing its latent representations zt and eT ′ :

max
zt,eT ′

Ladv = LCE(Fϕ(Iadv),y) (6)

where LCE is the cross-entropy loss, eT ′ is textual embedding and zt is the denoised latent at
time step t. Iadv represents the image generated by the diffusion model after it has been denoised
using DDIM (Song et al., 2020), a determinitic sampling process in which the the latent update is
formulated as:

zt−1 =
√
ᾱt−1

(
zt −

√
1− ᾱtϵ̂

t
θ√

ᾱt

)
+

√
1− ᾱt−1ϵ̂

t
θ, t = T , . . . , t − 1 , . . . , 1 (7)

Our proposed unconstrained adversarial objective Ladv would lead to unrestricted changes in the
image background while preserving the object semantics using the mask conditioning from S .

4 EXPERIMENTAL PROTOCOLS

Dataset Preparation. For classification, we initially gathered 30k images from the ImageNet vali-
dation set (Deng et al., 2009), which are correctly classified with high success rate using an ensemble
of models; ViT-T, ViT-S (Dosovitskiy et al., 2020), Res-50, Res-152 (He et al., 2016), DenseNet-
161 (Huang et al., 2017), Swin-T, and Swin-S (Liu et al., 2021). In order to create a high-quality
dataset for our object-to-context variation task, we remove image samples where the boundary be-
tween foreground and background is not distinct, e.g., ”mountain tent” where the mountain might
appear in the background of the tent. This processing results in 15k images. Then for foreground
semantic preservation, we utilize a compute efficient variant of SAM, known as FastSAM (Zhao
et al., 2023) with class labels as prompts to generate segmentation masks of the foreground object.
However, FastSAM encounter challenges in accurately segmenting objects in all images. To ad-
dress this, we selected images where the mask-creation process demonstrated exceptional accuracy
and generated a clear separation between the object of interest and its background. This meticu-
lous selection process yield a curated dataset comprising 5,505 images, representing a subset of 582
ImageNet classes. We refer to this dataset as IN-Nat. We perform all natural object-to-context
variations using these images. More details are presented in Appendix A.12. Note that our back-
ground context variation is a result of the diffusion process which can be computationally expensive
for adversarial background optimization. Therefore, for the adversarial backgrounds, we selected a
subset of 1,000 images from 500 classes of IN-Nat by sampling two images from each class. We
refer to this dataset as IN-Adv. For object detection, we carefully filtered 1,127 images manually
from the COCO 2017 validation set (Lin et al., 2015), with a clear distinction between foreground
objects and their background. We refer to these images as COCO-DC. We use COCO-DC to evaluate
both detection and classification. The dataset can have multiple objects in the image. To use this
dataset for classification we train the above-mentioned models on the COCO train dataset using la-
bels associated with the object that occupies the highest mask region in the image and evaluated on
our generated dataset.

Diffusion Inference. We use the pre-trained Inpaint Stable Diffusion v2 model(Rombach et al.,
2022) and set the guidance parameter λ to 7.5, and use the DDIM sampling (Song et al., 2020)
with T = 20 timesteps. We craft adversarial examples on IN-Nat using Res-50 as the classifier
model and maximize the adversarial loss Ladv shown in Eq.6 for 30 iterations. For COCO-DC,
we maximize the loss in the feature space of the model. Both the text embedding eT of the prompt

6



Under review as a conference paper at ICLR 2024

Table 1: Resilience of Transformer and CNN models trained on ImageNet and COCO training sets against our
proposed object-to-background context variations. We report top-1 (%) accuracy. We observe that CNN based
models are relatively more robust than Transformers.

Datasets Background
Transformers CNN

ViT-T ViT-S Swin-T Swin-S Res-50 Res-152 DenseNet-161 Average

IN-Nat

Original 96.04 98.18 98.65 98.84 98.65 99.27 98.09 98.25
Class label 92.82 94.75 96.18 96.55 97.24 97.56 95.8 95.84(-2.41)
BLIP-2 Caption 86.77 90.41 92.71 93.60 94.46 95.35 91.62 92.13(-6.12)
Color 70.64 84.52 86.84 88.84 89.44 92.89 83.19 85.19(-13.06)
Texture 68.24 79.73 81.09 84.41 83.21 87.66 77.29 80.23(-18.02)

IN-Adv
Original 95.01 97.50 97.90 98.30 98.50 99.10 97.20 97.64
Adversarial 18.40 32.10 25.00 31.70 2.00 28.00 14.40 21.65(-75.99)

COCO-DC

Original 82.96 86.24 88.55 90.23 88.55 89.08 86.77 87.21
BLIP-2 Caption 82.69 84.73 86.24 86.95 88.46 86.69 85.01 85.67(-1.54)
Color 55.54 61.04 70.09 72.13 74.97 75.10 66.19 66.66(-20.55)
Texture 52.52 58.82 68.05 70.09 70.71 74.77 63.79 63.99(-23.22)
Adversarial 49.68 55.72 61.93 69.12 55.45 61.13 57.76 58.68(-28.52)

T (initialized with BLIP-2) and denoised latent zt are optimized from denoising time step t = 4 using
AdamW (Loshchilov & Hutter, 2017) with a learning rate of 0.1. All experiments were conducted
using a single NVIDIA-A100 GPU.

Vision Models. a) Natural ImageNet Training: We evaluate seven naturally ImageNet-trained vi-
sion transformers and convolutional neural networks (CNNs). Specifically we use ViT-T, ViT-S
(Dosovitskiy et al., 2020), Res-50, Res-152 (He et al., 2016), DenseNet-161 (Huang et al., 2017),
Swin-T, and Swin-S (Liu et al., 2021). b) Adversarial ImageNet Training. We also evaluate adver-
sarial ImageNet-trained models including ResAdv-18, ResAdv-50, and WideResAdv-50 at various
perturbation budget of ℓ∞ and ℓ2 (Salman et al., 2020). c) Stylized ImageNet Training. We eval-
uate the DeiT-T and DeiT-S models trained on a stylized version of the ImageNet dataset (Naseer
et al., 2021; Geirhos et al., 2018). Multimodal Training. Additionally, we explored seven vision lan-
guage foundational models within CLIP (Radford et al., 2021) and EVA-CLIP (Sun et al., 2023).d)
Segmentation and Detection. We evaluate Mask-RCNN for segmentation and object detection re-
spectively using our proposed background-to-object variations. Further evaluations on FastSAM
(Zhao et al., 2023) and DETR (Carion et al., 2020) are reported in Appendix A.6 and A.5. e) Image
Captioning. Further, we evaluate the robustness of a recent image captioning model BLIP-2 (Li
et al., 2023b), using our generated dataset.

Evaluation Metrics: We report results using the top-1 accuracy (%), Intersection Over Union (IoU),
Average Precision(AP) and Recall(AR), and CLIP text similarity score for classification, segmenta-
tion, object detection, and captioning tasks, respectively.

Text Prompts Conditioning. During inducing background variations, we use the following text
prompts templates; Class Label: ”A picture of a class” where class is the class name of the image,
Caption: ”captions from BLIP-2 model, Color: ”A picture of background” where is replaced
with red, green, blue, and colorful, Texture: ”A picture of background where is replaced with
textured, intricately rich textures, colorful textures, distorted textures, Adversarial: ”captions from
BLIP-2 model”. Note that for adversarial setting the text prompts get updated after optimization. We
observe similar trends across different color and texture prompts and report the worst-performing
one. Detailed analysis across different color and texture prompts is provided in Appendix A.7.

4.1 RESULTS

Natural ImageNet Training. Our evaluation demonstrates a consistent decline in accuracy for
both transformer-based and CNN models when exposed to diverse object-to-background changes.
This decrease is especially noticeable in texture and color backgrounds across both IN-Nat and
COCO-DC, as summarized in Table 1. We found that as we moved from purely transformer-based ar-
chitectures to convolution-based architectures, there was an overall improvement in accuracy across
different background changes. For instance the average accuracy across all backgrounds for ViT-T,
Swin-T, and Res-50 on IN-Nat is 79.61%, 89.20% and 91.08% respectively. A similar trend can
be seen on COCO-DC dataset. Further, we observe that as the model capacity is increased across
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Figure 4: Adversarially trained models performance on IN-Nat and In-Adv. The top row plots
the Top-1(%) accuracy achieved by adversarially trained ResNet models on adversarial background
changes and the bottom row indicates for the case of non-adversarial background changes.

Table 2: Comparative Evaluation of Zero-shot CLIP and Eva CLIP Vision-Language Models on
IN-Nat and IN-Adv. Top-1(%) accuracy is reported. We find that Eva CLIP models showed
more robustness in all object-to-background variations.

Datasets Background
CLIP

ViT-B/32 ViT-B/16 ViT-L/14 Res50 Res101 Res50x4 Res50x16 Average

IN-Nat

Original 75.56 81.56 88.61 73.06 73.95 77.87 83.25 79.12
Class label 80.83 84.41 89.41 78.87 79.33 81.94 85.67 82.92(+3.80)
BLIP-2 Captions 69.33 73.66 79.07 67.44 68.70 71.55 75.78 72.22(-6.90)
Color 53.02 63.08 71.42 53.53 55.87 60.05 71.28 61.18(-17.94)
Texture 51.01 62.25 69.08 51.35 53.46 61.10 70.33 59.79(-19.33)

IN-Adv Original 73.90 79.40 87.79 70.69 71.80 76.29 82.19 77.43
Adversarial 25.5 34.89 48.19 18.29 24.40 30.29 48.49 32.87(-46.25)

Datasets Background
EVA-CLIP

g/14 g/14+ B/16 L/14 L/14+ E/14 E/14+ Average

IN-Nat

Original 90.80 93.71 90.24 93.71 93.69 95.38 95.84 93.34
Class label 90.48 93.53 90.20 93.47 93.49 94.78 95.18 93.02(-0.32)
BLIP-2 Caption 80.56 85.23 81.88 85.28 86.24 88.13 88.68 85.14 (-8.20)
Color 77.25 83.96 76.24 83.63 85.79 88.70 88.33 83.41(-9.93)
Texture 75.93 82.76 74.44 82.56 86.35 87.84 88.44 82.62(-10.72)

IN-Adv Original 88.80 92.69 89.19 91.10 91.99 93.80 94.60 91.74
Adversarial 55.59 62.49 48.70 65.39 73.59 70.29 73.29 64.19(-27.55)

different model families, the robustness to background changes also increases. As is evident, the
models are most vulnerable to adversarial background changes, resulting in a significant drop in
average accuracy. In Figure 6 the same effect is shown by visualizing the loss surface of a classifier
(ViT-S) across different background changes. We provide extensive visualizations and results on
different background prompts in Appendix A.3 and A.7.

Adversarial ImageNet Training. As can be seen from the Figure 4 (bottom row), adversarial
trained models show a significant drop in accuracy on IN-Nat with object-to-background changes,
implying that the robustness gained by these models does not transfer to different distribution shifts.
However, when we evaluate these models on adversarial examples crafted on IN-Adv, the perfor-
mance improves with an increase in adversarial robustness(ϵ) of the models (see Figure 4 (top row)).
We also observe models with more capacity perform better, similar to results on natural training.

Multimodal Training. We observe that the CLIP the zero-shot robustness on different background
variations decreases similar to results mentioned in Table 1. However, for background variations
induced using class label information the performance increases. This could be because of the CLIP
text encoder utilized for textual conditioning of the diffusion model. On EVA-CLIP, which proposed
changes to stabilize the training of CLIP models on large-scale datasets, we observe significant

8
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Table 3: Stylized Training Evaluation

Datasets Background Stylized Trained models

DeiT-S DeiT-T Average

IN-Nat

Original 91.22 87.21 89.21
Class label 89.35 85.35 87.35(-1.86)
BLIP-2 Caption 84.01 79.19 81.60(-7.61)
Color 66.57 57.54 62.05(-27.15)
Texture 64.08 54.82 59.45(-29.76)

IN-Adv Original 89.60 85.90 87.75
Adversarial 15.90 10.80 13.35(-74.40)

Table 4: Image-to-Caption
(BLIP-2) Evaluation

Dataset Background CLIP Score

IN-Nat Class Label 0.75
BLIP-2 Caption 0.84
Color 0.66
Texture 0.67

IN-Adv Adversarial 0.62

Table 5: Mask AP and Seg-
ment AP score on COCO-DC

Background Box AP Segment AP

Original 57.99 56.29
BLIP-2 Caption 47.40 44.75
Color 48.12 45.09
Texture 45.79 43.07
Adversarial 37.10 34.91

Figure 5: Correct predictions by Mask-RCNN and Res-50 on the original image (top row) and the
corresponding predictions on altered backgrounds (bottom row).

Original Class Label BLIP-2 Caption Color Texture Adversarial

Figure 6: The loss surfaces (flipped) of the ViT-S depicted on IN-Nat. Significant distribution
shifts result in narrow and shallow surfaces at convergence.

improvement in zero-shot performance across all background changes. Further results delving into
the comparison between multimodal and unimodal models are provided in Appendix A.7.

Stylized ImageNet Training. Stylized ImageNet training (Geirhos et al., 2018), which helps models
to focus on the foreground of the scene (Naseer et al., 2021), remains vulnerable to our object-to-
background variations on IN-Nat and IN-Adv (Table 3).

Segmentation and Detection. We observe that the AP scores on detection and instance segmenta-
tion on different background variations decrease compared to the original (see Table 5). The adver-
sarial background results in the lowest AP scores, but still remains at a reasonable level given that
the adversarial examples are generated using a classification model, with limited cross-task transfer-
ability. Moreover, our qualitative observations suggest detection and segmentation models exhibit
greater resilience to changes in the background compared to classifiers (Figure 5 and Appendix A.5).

Image Captioning. Table 4 reports the CLIP score between the captions generated on the clean and
generated images using BLIP-2 model. The scores decrease across color, texture and adversarial
background changes.

5 CONCLUSION

In this study, we propose a new benchmark for evaluating the resilience of current vision and vision-
language models to object-to-background context on real images. Our proposed framework, Back-
Bench, utilizes the capabilities of image-to-text and image-to-segmentation foundational models to
preserve the semantics and appearance of the object while adding diverse background changes in
real images through textual guidance of the diffusion model. BackBench offers a complimentary
evaluation protocol to the existing ones in the literature. We anticipate this will pave the way for
a more thorough evaluation of vision models, consequently driving the development of effective
methods for improving their resilience.

9
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Reproducibility Statement: Our method uses already available pre-trained models and the
codebase is based on several open source implementations. We highlight the main com-
ponents used in our framework for reproducing the results presented in our paper, a)
Diffusion Inpainting Implementation: We use the open-source implementation of
Stable-Diffusion-Inpainting method (https://github.com/huggingface/diffusers/
blob/main/src/diffusers/) with available pretrained weights (Stable-Diffusion-v-1-2) for
background generation. b) Image-to-Segment Implementation: We use the offi-
cial open-source implementation of FastSAM (https://github.com/CASIA-IVA-Lab/
FastSAM) to get the segmentation masks of filtered ImageNet dataset. c) Image-to-Text
Implementation: We use the official open-source implementation of BLIP-2(https://
github.com/salesforce/LAVIS/tree/main/projects/blip2) to get the captions
for each image. We will also provide captions for each image in our dataset. d) Adversarial
Attack: We intent to open-source our codebase and release the script for crafting adversarial
examples. e) Dataset: In the paper, we describe the procedure of filtering the images from
ImageNet and COCO val. set. Furthermore, we will provide the filtered datasets, object masks as
well as prompts used to generate different backgrounds.

Ethics Statement: Our work focuses on evaluating resilience of current vision and language mod-
els against natural and adversarial background changes in real images. This work can be utilized
by an attacker to generate malicious backgrounds on real images as well as generate adversarial
backgrounds which can fool the deployed computer-vision systems. Nevertheless, we believe that
our research will pave the way for improved evaluation protocols to assess the resilience of existing
models. This, in turn, is likely to drive the development of enhanced techniques for bolstering the re-
silience of deployed systems. Since we are benchmarking vision and vision-language models using
a subset of images from publicly available ImageNet and COCO datasets, it’s relevant to mention
that these datasets are known to have images of people which poses a privacy risk and further it is
known to have biases which can encourage social stereotypes. In the future, we intend to benchmark
our models on a less biased dataset to mitigate these concerns and ensure a fair evaluation.
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