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ABSTRACT

This paper proposes a new theoretical lens to view Wasserstein generative adver-
sarial networks (WGANs). To minimize the Wasserstein-1 distance between the
true data distribution and our estimate of it, we derive a distribution-dependent
ordinary differential equation (ODE), which represents the gradient flow of the
Wasserstein-1 loss, and show that a forward Euler discretization of the ODE con-
verges. This inspires a new class of generative models that naturally integrates
persistent training (which we call W1-FE). When persistent training is turned off,
we prove that W1-FE reduces to WGAN. When we intensify persistent training
appropriately, W1-FE is shown to outperform WGAN in training experiments from
low to high dimensions, in terms of both convergence speed and training results.

1 INTRODUCTION

Recently, Huang and Zhang (2023) have shown that the original generative adversarial network
(GAN) algorithm (Goodfellow et al., 2014) in fact follows the dynamics of an ordinary differential
equation (ODE), which represents the gradient flow induced by the Jensen-Shannon divergence
(Huang and Zhang, 2023, Proposition 8). Huang and Malik (2024) characterize the gradient flow
induced by the Wasserstein-2 distance and propose a class of generative models, called W2-FE, that
follows the dynamics of the corresponding ODE (Huang and Malik, 2024, Algorithm 1). Notably,
while W2-FE covers W2-GAN in Leygonie et al. (2019) as a special case, it allows for a modification
to the generator training that may lead to substantial numerical improvements over W2-GAN (Huang
and Malik, 2024, Section 7).

This paper is motivated by the question: can we obtain analogous results for Wasserstein generative
adversarial networks (WGANs)? As a mainstream class of GAN algorithms known for its enhanced
stability, WGAN (Arjovsky et al., 2017; Gulrajani et al., 2017; Petzka et al., 2018) attempts to generate
samples whose distribution is similar to the true data distribution (measured by the Wasserstein-1
distance) using adversarial training motivated by Goodfellow et al. (2014). It is natural to expect that,
by slightly modifying the arguments in Huang and Malik (2024), one can similarly derive an ODE
that represents the gradient flow induced by the Wasserstein-1 distance and correspondingly propose
a new class of generative models that covers and potentially improves WGAN.

Mathematical challenges abound, however, under the the Wasserstein-1 distance. First and foremost,
while subdifferential calculus is full-fledged under the Wasserstein-p distance for all p > 1 (Ambrosio
et al., 2008, Chapter 10), the same construction breaks down when p = 1. In particular, “Fréchet
differential” (Ambrosio et al., 2008, Corollary 10.2.7) or “Wasserstein gradient” (Carmona and
Delarue, 2018, Definition 5.62) is no longer well-defined for p = 1. Simply put, it is not even clear
how “gradient” should be defined under the Wasserstein-1 distance. On top of this, when showing that
a discretization of the gradient-flow ODE converges (as the time step tends to 0), Huang and Malik
(2024) crucially rely on an interpolation result from optimal transport: the most cost-efficient path to
move one probability measure to another (measured by the Wasserstein-p distance for any p > 1) can
be interpolated recursively into smaller segments between intermediate measures (Ambrosio et al.,
2008, Lemma 7.2.1), where each segment is most cost-efficient in itself and represents one time step
in the ODE discretization. Such an interpolation result, again, fails when p = 1.

To overcome these challenges, we first recall “linear functional derivative” from the mean field game
literature (Carmona and Delarue, 2018) and observe that the “Euclidean gradient of a linear functional
derivative” can generally serve as the proper gradient notion in the space of probability measures,
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independently of any subdifferential calculus; see the discussion below Definition 3.1. Our first
main theoretical result, Proposition 3.1, shows that the linear function derivative of the Wasserstein-1
distance exists and it coincides with the Kantorovich potential in optimal transport (i.e., a 1-Lipschitz
function that maximizes the duality formula of the Wasserstein-1 distance; see Definition 2.1). The
gradient flow induced by the Wasserstein-1 distance thus takes the form of an ODE that evolves
along the negative Euclidean gradient of the Kantorovich potential (i.e., (3.6) below) and a forward
Euler discretization can be correspondingly devised (i.e., (4.1) below). As mentioned above, the
interpolation result in Ambrosio et al. (2008) can no longer be used to show the convergence of
the discretization. Our second main theoretical result, Theorem 4.1, instead relies on the uniform
boundedness of the Euclidean gradient of the Kantorovich potential (see Remark 2.1), which is unique
to the p = 1 case. Such boundedness allows us to show appropriate compactness and equicontinuity
of the flow of measures induced by the discretization, so that a refined Arzela-Ascoli argument can
be applied to give the convergence of the discretization; see the discussion below Theorem 4.1.

Algorithm 1 (called W1-FE) is designed to simulate the discretization of the gradient-flow ODE. It
first computes an estimate of the Kantorovich potential, by following the discriminator training in a
typical WGAN algorithm. With the Kantorovich potential estimated, a generator is trained to move
along the ODE discretization. As the generator’s task is to learn the new distribution at the next time
point, persistent training techniques (Fischetti et al., 2018) can be naturally incorporated—namely,
given a set of samples from the new distribution, the generator’s loss descends K ∈ N consecutive
times to better represent these samples (and thus the new distribution). For the case K = 1 (which
means no persistent training), Proposition 4.1 shows that W1-FE reduces to WGAN. It is interesting
to note that, despite the coincidence under K = 1, W1-FE and WGAN are fundamentally different.
Specifically, if we also incorporate persistent training into WGAN, the generator updates in W1-FE
and WGAN can be quite different under any K > 1. That is, K = 1 is the only case where they
agree; see the discussion below Proposition 4.1 and Remark 4.2 for details.

We train W1-FE with diverse persistency levels K = 1, 3, 5, 10 in three experiments that involve
datasets from low to high dimensions, including synthetic two-dimensional mixtures of Gaussians
and real datasets of USPS, MNIST, and CIFAR-10. Across the three experiments, W1-FE with
K > 1 converges significantly faster and achieves better training results than the baseline K = 1 case
(which is WGAN). Intriguingly, while a larger K generally implies faster convergence, we observe
numerically a threshold of K beyond which the training results start to deteriorate, possibly due to
overfitting. This suggests that taking K to be at that threshold can likely best balance the benefits of
persistent training against potential overfitting; see the last paragraph in Section 6 for details.

Many recently developed generative models also feature “Wasserstein gradient flows” (e.g., Fan
et al. (2022), Choi et al. (2024), Zhang and Katsoulakis (2023), and Onken et al. (2020)), and the
common theme is to minimize a loss function under the geometry induced by the Wasserstein-2
distance. This means that “Wasserstein gradient flows” in the literature should be more precisely
referred to as “Wasserstein-2 gradient flows.” In other words, simply because subdifferential calculus
under the Wasserstein-2 distance and the resulting gradient flows are widely studied (Ambrosio et al.,
2008, Chapter 10 and Section 11.2), much of the recent literature has leveraged on this to design
new generative models. Our study is distinct from all this, as we right away tackle Wasserstein-1
gradient flows, which are much less understood. As explained before, this focus on Wasserstein-1
gradient flows allows us to recover and even improve WGAN, which by construction minimizes the
Wasserstein-1 distance and cannot be easily analyzed by the standard Wasserstein-2 framework.

The rest of this paper is organized as follows. Section 2 introduces the mathematical framework and
notation to be used. Section 3 discusses how the “gradient descent” idea can be applied to minimizing
the Wasserstein-1 distance and formulates the corresponding gradient-flow ODE. Section 4 defines
a forward Euler discretization of the ODE and designs an algorithm (i.e., W1-FE) to simulate this
discretization. Section 5 trains W1-FE in three experiments and demonstrates its superiority over
WGAN. Section 6 discusses the limitations of our study on both the theoretical and numerical sides.
Section 7 concludes our findings.
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2 MATHEMATICAL PRELIMINARIES

Fix d ∈ N and let Ld be the Lebesgue measure on Rd. Let P(Rd) be the set of probability measures
on Rd and Pp(Rd), for p ≥ 1, be the set of elements in P(Rd) with finite pth moments, i.e.,

Pp(Rd) :=

{
µ ∈ P(Rd) :

∫
Rd
|y|pdµ(y) <∞

}
.

The Wasserstein-p distance, a metric on Pp(Rd), is defined by

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
Rd×Rd

|x− y|p dγ(x, y)

)1/p

, ∀µ, ν ∈ Pp(Rd), (2.1)

where Γ(µ, ν) is the set of all probability measures on Rd × Rd whose marginals on the first and
second coordinates are µ and ν, respectively (Villani, 2009, Definition 6.1). For p = 1, we recall the
Kantorovich-Rubinstein duality formula for the W1 distance (Villani, 2009, (5.11)), i.e.,

W1(µ, ν) = sup
ϕ:Rd→R, ||ϕ||Lip≤1

{∫
Rd
ϕdµ−

∫
Rd
ϕdν

}
, (2.2)

where “||ϕ||Lip ≤ 1” means that ϕ : Rd → R is a 1-Lipschitz function.

Definition 2.1. A 1-Lipschitz ϕ : Rd → R that maximizes (2.2) is called a (maximal) Kantorovich
potential from µ to ν and will be denoted by ϕνµ to emphasize its dependence on µ and ν.

The general definition of a (maximal) Kantorovich potential is stated for any p ≥ 1; see the remark
above Ambrosio et al. (2008, Theorem 6.15). For p = 1, it reduces specifically to Definition 2.1,
thanks to the discussion in Villani (2009, Particular Case 5.4).
Remark 2.1. For any µ, ν ∈ P1(Rd), by Villani (2009, Theorem 5.10 (iii)), a Kantorivich potential
ϕνµ generally exists. As ϕνµ is 1-Lipschitz,∇ϕνµ(x) exists with |∇ϕνµ(x)| ≤ 1 for Ld-a.e. x ∈ Rd.

3 PROBLEM FORMULATION

Let µd ∈ P1(Rd) denote the (unknown) data distribution. Starting with an arbitrary initial estimate
µ0 ∈ P1(Rd) of µd, we aim to improve our estimate progressively and ultimately solve the problem

min
µ∈P1(Rd)

W1(µ, µd). (3.1)

As it can be checked directly that µ 7→W1(µ, µd) is convex on P1(Rd) (Appendix A.1), it is natural
to ask if (3.1) can be solved by gradient descent, the traditional wisdom of convex minimization.
Recall that for a convex f : Rd → R, if its minimizer y∗ ∈ Rd exists, it can be found by gradient
descent in Rd. Specifically, for any initial point y ∈ Rd, the ODE

dYt = −∇f(Yt)dt, Y0 = y ∈ Rd (3.2)

converges to y∗ as t→∞. For the derivation of a similar gradient-descent ODE for (3.1), where the
minimizer is clearly µd ∈ P1(Rd), the crucial question is how the “gradient” of the function

J(µ) := W1(µ, µd), µ ∈ P1(Rd) (3.3)

should be defined. As mentioned in the introduction, subdifferential calculus is well-developed in
Pp(Rd) for all p > 1 (Ambrosio et al., 2008, Chapter 10), but the same construction breaks down
exactly when p = 1. As a result, neither “Fréchet differential” (Ambrosio et al., 2008, Corollary
10.2.7) nor the equivalent “Wasserstein gradient” (Carmona and Delarue, 2018, Definition 5.62) is
well-defined in P1(Rd). To circumvent this, let us first recall “linear functional derivative” from the
mean field game literature.
Definition 3.1. Let S ⊆ P(Rd) be convex. A linear functional derivative of U : S → R is a function
δU
δm : S × Rd → Rd that satisfies

lim
ε→0+

U(µ+ ε(ν − µ))− U(µ)

ε
=

∫
Rd

δU

δm
(µ, y) d(ν − µ)(y), ∀µ, ν ∈ S. (3.4)
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The above definition is in line with Jourdain and Tse (2021, Definition 2.1), where S = Pp(Rd) for
p ≥ 1, and Carmona and Delarue (2018, Definition 5.43), where S = P2(Rd). Note that “δU/δm”
is simply a common notation for a function satisfying (3.4), where “m” indicates that the variable in
discussion is a probability measure and “δ/δm” alludes to a kind of differentiation with respect to m.

The key observation here is that the “Euclidean gradient of a linear functional derivative,” i.e.,
∇ δU
δm (µ, ·) : Rd → Rd, can generally serve as the “gradient of U at a measure µ.” For S = P2(Rd),

Carmona and Delarue (2018, Proposition 5.48 and Theorem 5.64) show that ∇ δU
δm (µ, ·) in fact

coincides with the Wasserstein gradient of U at µ ∈ P2(Rd). For S = Pr(Rd) := {µ ∈ P(Rd) :

µ � Ld, dµ
dLd ∈ C1(Rd)}, where Wasserstein gradients are not well-defined, Huang and Zhang

(2023) show that ∇ δU
δm (µ, ·) still fulfills a gradient-type property. Specifically, for any µ ∈ Pr(Rd)

and ξ : Rd → Rd, let µξε be the law of Y + εξ(Y ), where Y is a random variable whose law is µ. For
sufficiently smooth and compactly supported ξ, Huang and Zhang (2023, Proposition 5) shows that
µξε ∈ Pr(Rd) and

lim
ε→0+

U(µξε)− U(µ)

ε
=

∫
Rd
∇ δU
δm

(µ, y) · ξ(y)dµ(y),

provided that δUδm is locally integrable and sufficiently continuous. That is, for any y ∈ Rd,∇ δU
δm (µ, y)

specifies how moving along ξ(y) instantaneously changes the function value from U(µ), which
suggests that∇ δU

δm (µ, ·) : Rd → Rd should be the proper “gradient of U at µ ∈ Pr(Rd).”

In view of this, in our case of S = P1(Rd), where Wasserstein gradients are again not well-defined,
we take the “gradient of J in (3.3) at µ ∈ P1(Rd)” to be ∇ δJ

δm (µ, ·) : Rd → Rd. The resulting
gradient-descent ODE for (3.1), in analogy to (3.2), is then

dYt = −∇ δJ

δm
(µYt , Yt) dt, µY0 = µ0 ∈ P1(Rd). (3.5)

This ODE, intriguingly, is distribution-dependent. At time 0, Y0 is an Rd-valued random variable
whose law is µ0 ∈ P1(Rd), an arbitrarily specified initial distribution. This initial randomness trickles
through the ODE dynamics in (3.5), such that Yt remains an Rd-valued random variable, with its law
denoted by µYt ∈ P1(Rd), at every t > 0. The evolution of the ODE is then determined jointly by
the “gradient of J” at the present distribution µYt ∈ P1(Rd) (i.e., the function ∇ δJ

δm (µYt , ·)) and the
actual realization of Yt (which is plugged into ∇ δJ

δm (µYt , ·)).

To ensure that ODE (3.5) makes sense and is tractable enough, one needs to show that δJ
δm exists and

admits a concrete characterization. Our first main theoretic result serves this purpose.
Proposition 3.1. For any µ ∈ P1(Rd), a Kantorovich potential ϕµd

µ (Definition 2.1) is a linear
functional derivative of J : P1(Rd)→ R in (3.3) at µ ∈ P1(Rd) (Definition 3.1 with S = P1(Rd)).
Specifically, for any µ ∈ P1(Rd),

δJ

δm
(µ, y) = ϕµd

µ (y) ∀y ∈ Rd.

The proof of Proposition 3.1 is relegated to Appendix A.2. To the best of our knowledge, Proposi-
tion 3.1 is the first result that establishes a precise connection between “Kantorovich potential” in
optimal transport and “linear functional derivative” in the mean field game literature.

Thanks to Proposition 3.1, ODE (3.5) now becomes

dYt = −∇ϕµd

µYt
(Yt) dt, µY0 = µ0 ∈ P1(Rd). (3.6)

That is, the evolution of the ODE is determined jointly by a Kantorovich potential from the present
distribution µYt to µd (i.e., the function ϕµd

µYt
(·)) and the actual realization of Yt (which is plugged

into∇ϕµd

µYt
(·)).

4 A DISCRETIZATION OF ODE (3.6)

Given ε > 0 and an initial random variable Y0,ε = Y0 with a given law µY0 = µ0 ∈ P1(Rd), we
consider a new random variable defined by

Y1,ε := Y0,ε − ε∇ϕµd

µY0,ε
(Y0,ε).
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Note that this is the very first step, from time 0 to time ε, in a forward Euler discretization of ODE
(3.6). Using the law of Y1,ε, denoted by µY1,ε , we can obtain a Kantorovich potential ϕµd

µY1,ε
from the

present distribution µY1,ε at time ε to µd. This allows us to perform another forward Euler update
and get Y2,ε := Y1,ε − ε∇ϕµd

µY1,ε
(Y1,ε). We may continue this procedure and obtain a sequence of

random variables {Yn,ε}n∈N, with

Yn,ε := Yn−1,ε − ε∇ϕµd

µYn−1,ε
(Yn−1,ε), ∀n ∈ N. (4.1)

This discretization recursively defines a sequence of measures {µYn−1,ε}n∈N in P1(Rd). A piecewise
constant flow of measures µε : [0,∞)→ P1(Rd) can then be defined by

µε(t) := µYn−1,ε for t ∈ [(n− 1)ε, nε), n ∈ N (4.2)

Our second main theoretic result, stated below, establishes the convergence of µε as ε → 0+. Its
proof is relegated to Appendix A.4.
Theorem 4.1. For any ε > 0, let µε : [0,∞) → P1(Rd) be defined as in (4.2) and assume that
µε(t) � Ld for all t ≥ 0. Then, there exists a sequence {εk}k∈N with εk → 0+ and a curve
µ∗ : [0,∞)→ P1(Rd) such that

lim
k→∞

W1(µεk(t), µ∗(t)) = 0 ∀t > 0.

Furthermore, t 7→ µ∗(t) is uniformly continuous (in the W1 sense) on compacts of [0,∞).

At first glance, one might suspect that Theorem 4.1 is a straightforward extension of Huang and
Malik (2024, Theorem 5.2) from P2(Rd) to the larger space P1(Rd). In fact, proving Theorem 4.1
requires completely different arguments. Huang and Malik (2024, Theorem 5.2) is established by
an interpolation argument: for any p > 1, the most cost-efficient path to move one probability
measure to another in Pp(Rd), measured by the Wp distance, can be interpolated recursively into
smaller segments between intermediate measures, where each segment is most cost-efficient in itself
(Ambrosio et al., 2008, Lemma 7.2.1). This allows a suitable ODE discretization to correspond to the
smaller segments (Huang and Malik, 2024, Proposition 5.3), thereby admitting a well-defined limit
(i.e., the whole most cost-efficient path). The interpolation result in Ambrosio et al. (2008, Lemma
7.2.1), however, does not hold for p = 1. Theorem 4.1 instead relies on the uniform boundedness
of the gradient of any Kantorovich potential (Remark 2.1), which is unique to the p = 1 case. Such
boundedness allows us to show that {µε(t) : ε > 0, t ∈ [0, T ]} in (4.2) is compact in P1(Rd) for any
T > 0 and the curve t 7→ µε(t) becomes equicontinuous as ε→ 0+, so that a refined Arzela-Ascoli
argument can be applied to give the convergence of µε as ε→ 0+; see Appendix A.4 for details.
Remark 4.1. Theorem 4.1 is important for numerical implementation: it asserts that our discretiza-
tion scheme (4.1) is stable for small time steps and there is a well-defined limit. Moreover, in light of
its proof in Appendix A.4, the established convergence actually holds much more generally. If the
discretization (4.1) is modified to

Yn,ε := Yn−1,ε − ε∇gn−1,ε(Yn−1,ε), ∀n ∈ N,

where each gn−1,ε is a 1-Lipschitz function (but not necessarily the Kantorovich potential ϕµd

µYn−1,ε
),

the same convergence result in Theorem 4.1 remains true. This is because the arguments in Ap-
pendix A.4 hinge on only the 1-Lipschitz continuity of gn−1,ε (for |∇gn−1,ε| to be bounded by 1), but
not the specific form of gn−1,ε. That is, our discretization scheme (4.1) is robust in the following
sense: in actual computation, as long as the estimated ϕµd

µYn−1,ε
is 1-Lipschitz (facilitated by the

discriminator’s regularization in Gulrajani et al. (2017) and Petzka et al. (2018)), the scheme remains
stable for small time steps and there is a well-defined limit.

Thanks to the convergence result in Theorem 4.1, we propose an algorithm (called W1-FE) to
simulate (4.1); see Algorithm 1. We use two neural networks to carry out the simulation, one for the
Kantorovich potential ϕ : Rd → R and the other for the generator Gθ : R` → Rd, where R` (with
` ≤ d) is the latent space where we sample priors. To compute ϕ, we can follow the discriminator
training in any well-known WGAN algorithm, e.g., vanilla WGAN from Arjovsky et al. (2017),
W1-GP from Gulrajani et al. (2017), or W1-LP from Petzka et al. (2018), to obtain an estimate of the
Kantorovich potential from the distribution of samples generated by Gθ to that of the data, µd. To

5
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allow such generality in Algorithm 1, we simply denote the computation of ϕ by SimulatePhi(θ)
and treat it as a black box function. When we use the method of Petzka et al. (2018) (or Gulrajani
et al. (2017)) to compute ϕ, Algorithm 1 will be referred to as W1-FE-LP (or W1-FE-GP).

The generator Gθ is trained by explicitly following the (discretized) ODE (4.1). We start with a set of
priors {zi}, produce a sample yi = Gθ(zi) of µYn,ε , and then use a forward Euler step to compute
a sample ζi of µYn+1,ε . The generator’s task is to learn how to produce samples indistinguishable
from the points {ζi}—or more precisely, to learn the distribution µYn+1,ε , represented by the points
{ζi}. To this end, we fix the points {ζi} and update the generator Gθ by descending the mean square
error (MSE) between {Gθ(zi)} and {ζi} up to K ∈ N times. It is worth noting that throughout
the K updates of Gθ, the points {ζi} are kept unchanged. This sets us apart from the standard
implementation of stochastic gradient descent (SGD), but for a good reason: as our goal is to learn the
distribution represented by {ζi}, it is important to keep {ζi} unchanged for the eventual Gθ to more
accurately represent µYn+1,ε , such that the (discretized) ODE (4.1) is more accurately simulated.

Note that how we update the generator Gθ corresponds to persistent training in Fischetti et al. (2018),
a technique that reuses the same minibatch for K consecutive SGD iterations. Experimental results
in Fischetti et al. (2018) show that using a persistency level of five (i.e., taking K = 5) achieves
much faster convergence on the CIFAR-10 dataset Fischetti et al. (2018, Figure 1). In our numerical
examples (see Section 5), we will also show that increasing the persistency level appropriately can
markedly improve training performance.

Algorithm 1 W1-FE, our proposed algorithm.

Require: Input measures µ0, µd, batch sizes m ∈ N, generator learning rate γg > 0, time step
ε > 0, persistency value K ∈ N, function SimulatePhi to approximate Kantorovich potential,
generator Gθ parameterized as a deep neural network.
for Number of training epochs do

ϕ← SimulatePhi(θ) . Compute Kantorovich potential
Sample a batch (z1, · · · , zm) of priors
Compute yi ← Gθ(zi)
Compute ζi ← yi − ε∇ϕ(yi).
for K generator updates do . Persistent training

Update θ ← θ − γg
m∇θ

∑
i |ζi −Gθ(zi)|2.

end for
end for

4.1 A COMPARISON: W1-FE AND WGAN

Our first finding is that W1-FE actually covers WGAN as a special case. For the case K = 1 in
Algorithm 1 (i.e., W1-FE), the generator update reduces to the standard SGD without persistent
training, which turns Algorithm 1 into standard WGAN algorithms.
Proposition 4.1. The WGAN algorithms presented in Arjovsky et al. (2017), Gulrajani et al. (2017),
Petzka et al. (2018) are special cases of Algorithm 1 with K = 1.

Proof. Take SimulatePhi in Algorithm 1 to be the discriminator update in an aforementioned
WGAN algorithm, such that the produced ϕ is exactly the estimated Kantorovich potential in the
WGAN algorithm. Then, it suffices to show that the generator update in Algorithm 1, when K = 1,
coincides with that in the corresponding WGAN algorithm. Observe that with K = 1,

∇θ
1

m

m∑
i=1

|ζi −Gθ(zi)|2 = − 2

m

m∑
i=1

(ζi −Gθ(zi))∇θGθ(zi)

=
2

m

m∑
i=1

ε∇ϕ(Gθ(zi))∇θGθ(zi) =
2ε

m
∇θ

m∑
i=1

ϕ(Gθ(zi)),

(4.3)

where the second equality follows from ζi = Gθ(zi) − ε∇ϕ(Gθ(zi)), due to the two lines above
the generator update in Algorithm 1. That is, the generator update in Algorithm 1 is now θ ←
θ−γg 2ε

m∇θ
∑m
i=1 ϕ(Gθ(zi)), the same as that in the WGAN algorithm with a learning rate 2γgε.
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The above result is somewhat unexpected: after all, W1-FE builds upon our gradient-flow approach,
distinct from the two-player min-max game perspective that underlies WGAN. Proposition 4.1 shows
that the two fundamentally different methods can actually coincide, when the computation of the
gradient flow, or the (discretized) ODE (4.1), is crude—in the sense that µYn+1,ε , the distribution
along the ODE at the next time step, is less accurately approximated under K = 1.
Remark 4.2. It is tempting to think that if one enforces persistent training also in WGAN (i.e.,
performs SGD in its generator update K ∈ N consecutive times with the same minibatch), WGAN
will become our W1-FE. This is however not the case. When Gθ is updated for the second time
in W1-FE, the second equality in (4.3) no longer holds, as “ζi = Gθ(zi) − ε∇ϕ(Gθ(zi))” is true
only when Gθ is obtained from the previous iteration and has not been updated yet. The connection
between W1-FE and WGAN then breaks down, starting from K = 2. That is, even when persistent
training is included in WGAN, the generator updates in W1-FE and WGAN coincide only for K = 1,
and can in general be quite different for K > 1.

5 NUMERICAL EXPERIMENTS

This section contains three training experiments with datasets from low to high dimensions. In
each experiment, we carry out the training task using W1-FE-LP with diverse persistency levels
K = 1, 3, 5, 10. The case K = 1 can be viewed as the baseline, as Proposition 4.1 indicates that it is
equivalent to the refined WGAN algorithm in Petzka et al. (2018) (i.e., W1-LP), which is arguably
one of the most well-performing and stable WGAN algorithms.

First, we consider learning a two-dimensional mixture of Gaussians arranged on a circle from an
initially given Gaussian distribution (Metz et al., 2017). Figure 1 shows the qualitative evolution of
the models, while Figure 2 presents the actual W1 losses. In Figure 2, W1-FE-LP with K = 3 and
K = 5 converges to a similar loss level as the baseline K = 1 case (i.e., W1-LP), but achieves it
much faster than W1-LP in both number of epochs1 and wallclock time. These gains are partially lost
with K = 10, possibly due to overfitting. The computation in Figures 1 and 2 takes 10 discriminator
updates per training epoch, γg = 10−4, and minibatches of size m = 512, and uses a three-layer
perceptron for the generator and discriminator, where each hidden layer contains 128 neurons.
All neural networks are trained using the Adam stochastic gradient update rule (Kingma and Ba,
2015). We let ε = 1, for γg is already small and thus controlls any possible overshooting from
backpropagation.

Next, we consider domain adaptation from the USPS dataset (Hull, 1994) to the MNIST dataset
(Deng, 2012) and evaluate the performance of our algorithms every 100 training epochs using a
1-nearest neighbor (1-NN) classifier. This is the same performance metric as in Seguy et al. (2018),
although it was used there only once at the end of training. Figure 3 displays the results. With the
persistency level K = 3, W1-FE-LP converges significantly faster and achieves consistently a higher
accuracy rate than the baseline case K = 1 (i.e., W1-LP). Indeed, it takes W1-LP 6000 epochs
to attain its ultimate accuracy rate, which is achieved by W1-FE-LP with K = 3 by epoch 2000;
W1-FE-LP with K = 3 continues to improve after epoch 2000, yielding the best accuracy rate among
all the models. Raising persistency level to K = 5 and K = 10 further accelerates the convergence
before epoch 2000, but the ultimate accuracy rate achieved worsens slightly, which might result from
overfitting. The computation in Figure 3 takes γg = 10−4, ε = 1, minibatches of size m = 64, and 5
discriminator updates per training epoch.

Finally, we train our algorithms on the CIFAR-10 dataset. The prior distribution (i.e., the input
z into the generator in Algorithm 1) is a 100-dimensional standard Gaussian and we transform it
through a multi-layer convolutional neural network into an image of dimension 3× 32× 32. The
performance is evaluated by the Fréchet inception distance (FID) (Heusel et al., 2017), a common
criterion for training quality of high-dimensional images. The results are displayed in Figure 4, where
the FID is calculated using a pre-trained ResNet18 model on CIFAR-10, publicly available on the
Github repository Phan (2021). With a larger persistency level K, W1-FE-LP converges faster and
consistently achieves a lower FID than the baseline model K = 1 (i.e., W1-LP). In particular, it takes
W1-LP 30000 epochs to achieve an FID about 8, which is achieved by W1-FE-LP with K = 10 by
epoch 10000. As an example, the images generated by epoch 500 are far clearer under K = 10 than
under any smaller K value, as shown in Figure 5. Figure 4 also shows that W1-FE-LP with K = 5

1One “training epoch” refers to learning one Euler step in (4.1), i.e., one iteration of the loop in Algorithm 1.
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Figure 1: Qualitative evolution of learning process. A sample from the target distribution is given in
green, a sample from the initial distribution is in magenta, and the transport rays by the generator are
given in the grey arrows. The generate samples lie at the head of each grey arrow.

Figure 2: W1 loss of W1-FE-LP with persistency levels K = 1, 3, 5, 10 against training epoch (left)
and wallclock time (right), respectively.

achieves the smallest FID by epoch 30000. Raising persistency level to K = 10 further accelerates
the convergence before epoch 20000, but the ultimate FID achieved worsens slightly, possibly due to
overfitting. The computation in Figures 4 and 5 takes γg = 10−4, time step ε = 1, minibatches of
size m = 64, and 5 discriminator updates per training epoch.

6 LIMITATIONS

While we have made important progress on the theoretical development, several key questions remain
open. Recall that Algorithm 1 builds upon (4.1), which is a discretization of the gradient-flow ODE
(3.6). While we have shown in Theorem 4.1 that the discretization has a well-defined limit µ∗(t) in
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Figure 3: 1-NN classifier accuracy against training epoch for domain adaptation from USPS to
MNIST datasets.

Figure 4: FID against training epoch for various W1-FE-LP models on generating CIFAR-10 images.

continuous time, whether µ∗(t) truly corresponds to a solution to ODE (3.6) is left unanswered. It is
also unclear if µ∗(t) will ultimately converges to the data distribution µd, although it is intuitively
expected by our “gradient descent” idea. To fill these gaps, one wishes to show that (i) there exists a
(unique) solution Y to ODE (3.6), (ii) the law of Yt coincides with µ∗, i.e., µYt = µ∗(t) for all t ≥ 0,
and (iii) µYt ultimately converges to µd, i.e., W1(µYt , µd) → 0 as t → ∞. The challenge here is
twofold. First, as the coefficient (µ, x) 7→ ∇ϕµd

µ (x) of (3.6) is not continuous in general, standard
existence results for distribution-dependent (stochastic) differential equations (i.e., McKean-Vlasov
equations) cannot be easily applied. Second, when analyzing the flow of measures {µYt}t≥0 in
P1(Rd) through the continuity equation (or, Fokker-Planck equation) associated with (3.6), the
standard theory in Ambrosio et al. (2008) does not provide concrete results or guidance, as it covers
the case Pp(Rd) for all p > 1, but excludes our present case P1(Rd).

Numerically, while we have shown that persistent training can markedly improve training results in
several experiments, it is not without restrictions. Recall that SGD is performed K ∈ N consecutive
times with the same minibatch {ζi} in Algorithm 1, with ζi = Gθ(zi) − ε∇ϕ(Gθ(zi)). There are
two issues one has to confront. First, any inaccuracy in the estimation of the Kantorovich potential ϕ
will be amplified by persistent training. As a larger K ∈ N demands our algorithm to more closely
fits the data points {ζi}, even when {ζi} are of low quality due to the inaccuracy of ϕ, the issue of
“garbage in, garbage out” will be exacerbated. Second, even if ϕ is perfectly estimated, such that {ζi}
are of high quality, an excessive K ∈ N will certainly lead to overfitting.

The first issue can be mitigated by better estimation of the Kantorovich potential ϕ. Indeed, the reason
why the experiments in Section 5 are run using W1-FE-LP, but not W1-FE-GP, is that the former
is known to estimate ϕ more accurately than the latter (Petzka et al., 2018); recall the distinction
between the two algorithms in the paragraph below Remark 4.1. As a simple demonstration, in
Appendix B.1, we run the first experiment in Section 5 again using W1-FE-GP and compare the
results with those under W1-FE-LP previously presented. It shows that raising persistency levels

9
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Figure 5: Uncurated samples from various W1-FE-LP models across training.

results in significantly more severe instability under W1-FE-GP than under W1-FE-LP. On the other
hand, to mitigate the overfitting issue, we suggest finding a suitable persistency level through careful
numerical investigation. For instance, the experiments in Section 5 all indicate a threshold of K ∈ N
beyond which the performance starts to deteriorate (i.e., K = 5, K = 3, and K = 5 in the first,
second, and third experiments, respectively). Taking K ∈ N to be at such a threshold (but not beyond
it) can likely balance the benefits of persistent training against overfitting.

7 CONCLUSION

By performing “gradient descent” in the space P1(Rd), we introduce a distribution-dependent ODE
for the purpose of generative modeling. A forward Euler discretization of the ODE converges to a
curve of probability measures, suggesting that numerical implementation of the discretization is stable
for small time steps. This inspires a class of new algorithms (called W1-FE) that naturally involves
persistent training. If we (artificially) choose not to implement persistent training, our algorithms
recover existing WGAN algorithms. By increasing the level of persistent training suitably (to better
simulate the ODE), our algorithms outperform existing WGAN algorithms in numerical examples.
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A THEORETICAL RESULTS

A.1 CONVEXITY OF W1(·, µd)

Proposition A.1. The function J : P1(Rd)→ R in (3.3) is convex. That is, for any µ, ν ∈ P1(Rd)
and λ ∈ (0, 1), we have J((1− λ)µ+ λν) ≤ λJ(µ) + (1− λ)J(ν).

Proof. For any µ, ν ∈ P1(Rd) and λ ∈ (0, 1), let ϕλ denote a Kantorovich potential from (1−λ)µ+
λν ∈ P1(Rd) to µd. By (3.3), (2.2), and Definition 2.1,

J((1− λ)µ+ λν) = W1((1− λ)µ+ λν, µd) =

∫
Rd
ϕλ d((1− λ)µ+ λν)−

∫
Rd
ϕλ dµd

= (1− λ)

∫
Rd
ϕλ d(µ− µd) + λ

∫
Rd
ϕλ d(ν − µd)

≤ (1− λ) sup
||ϕ||Lip≤1

{∫
Rd
ϕd(µ− µd)

}
+ λ sup

||ϕ||Lip≤1

{∫
Rd
ϕd(ν − µd)

}
= (1− λ)J(µ) + λJ(ν),

where the last equality follows again from (3.3) and (2.2).

Remark A.1. In most cases, the inequality in the proof above is strict, as it is in general unlikely
that ϕλ also attains both of the two suprema.

A.2 PROOF OF PROPOSITION 3.1

Proof. Fix µ, ν ∈ P1(Rd). For any ε ∈ (0, 1), note that µ+ ε(ν − µ) = (1− ε)µ+ εν remains in
P1(Rd). By (3.3) and Definition 2.1,

J(µ) = W1(µ, µd) =

∫
Rd
ϕµdµ d(µ− µd),

J(µ+ ε(ν − µ)) = W1(µ+ ε(ν − µ), µd) =

∫
Rd
ϕµd

µ+ε(ν−µ) d(µ+ ε(ν − µ)− µd).

(A.1)

(A.2)

On the other hand, by (3.3), the duality formula (2.2), and the fact that ϕµd
µ , ϕµd

µ+ε(ν−µ) : Rd → R
are 1-Lipschitz functions, we obtain the inequalities

J(µ) = W1(µ, µd) ≥
∫
Rd
ϕµd

µ+ε(ν−µ) d(µ− µd),

J(µ+ ε(ν − µ)) = W1(µ+ ε(ν − µ), µd) ≥
∫
Rd
ϕµd
µ d(µ+ ε(ν − µ)− µd).

(A.3)

(A.4)
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It follows from (A.4) and (A.1) that

J(µ+ ε(ν − µ))− J(µ) ≥
∫
Rd
ϕµd
µ d(µ+ ε(ν − µ)− µd)−

∫
Rd
ϕµd
µ d(µ− µd)

= ε

∫
Rd
ϕµd
µ d(ν − µ),

while (A.2) and (A.3) imply

J(µ+ ε(ν − µ))− J(µ) ≤
∫
Rd
ϕµd

µ+ε(ν−µ) d(µ+ ε(ν − µ)− µd)−
∫
Rd
ϕµd

µ+ε(ν−µ) d(µ− µd)

= ε

∫
Rd
ϕµd

µ+ε(ν−µ) d(ν − µ).

Putting the above two inequalities together, we see that∫
Rd
ϕµd
µ d(ν − µ) ≤ J(µ+ ε(ν − µ))− J(µ)

ε
≤
∫
Rd
ϕµd

µ+ε(ν−µ) d(ν − µ).

As ε→ 0+, since ϕµdµ+ε(ν−µ) converges uniformly to ϕµdµ on compacts of Rd (Santambrogio, 2015,
Theorem 1.52), the right-hand side above tends to

∫
Rd ϕ

µd
µ d(ν − µ). This then implies

lim
ε→0+

J(µ+ ε(ν − µ))− J(µ)

ε
=

∫
Rd
ϕµd
µ d(ν − µ),

i.e., ϕµd
µ is a linear functional derivative of J .

A.3 A REFINED ARZELA-ASCOLI RESULT

The following is a transcription of Ambrosio et al. (2008, Proposition 3.3.1) in our specific setting,
where we consider the metric space P1(Rd) with the natural topology induced by the W1 distance.

Proposition A.2. Fix T > 0 and letK ⊆ P1(Rd) be compact in P1(Rd) under the topology induced
by the W1 distance. For any sequence {gn}n∈N of curves gn : [0, T ]→ P1(Rd) such that

gn(t) ∈ K, ∀n ∈ N, t ∈ [0, T ],

lim sup
n→∞

W1(gn(s), gn(t)) ≤ |s− t| ∀s, t ∈ [0, T ],

(A.5)
(A.6)

there exist an increasing subsequence k → n(k) and a continuous g : [0, T ]→ P1(Rd) such that

W1(gn(k)(t), g(t))→ 0 ∀t ∈ [0, T ]. (A.7)

A.4 PROOF OF THEOREM 4.1

Proof. Let (Ω,F ,P) be the underlying probability space that supports all the random variables
{Yn−1,ε : n ∈ N, ε > 0}, defined as in (4.1). Fix any T > 0. We will show that {µε(t) : ε > 0, t ∈
[0, T ]} fulfills (A.5) and (A.6). For any fixed t ∈ [0, T ], there exists n ∈ N such that t ∈ [(n−1)ε, nε)
and µε(t) = µYn−1,ε . By (4.1), the random variable Yn−1,ε takes the form

Yn−1,ε = Y0 − ε
n−2∑
i=0

∇ϕµd
µYi,ε

(Yi,ε). (A.8)

As |∇ϕνµ(x)| ≤ 1 Ld-a.e. on Rd for all µ, ν ∈ P1(Rd) (Remark 2.1), this implies

|Yn−1,ε| ≤ |Y0|+ (n− 1)ε ≤ |Y0|+ t ≤ |Y0|+ T a.s., (A.9)

where the second inequality is due to t ∈ [(n− 1)ε, nε). It follows that for all t ∈ [0, T ],

sup
ε>0

∫
Rd
|y| dµε(t) = sup

ε>0

∫
Rd
|y| dµYn−1,ε = sup

ε>0
EP[|Yn−1,ε|] ≤ EP[|Y0|] + T <∞, (A.10)
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By (A.10) and the fact that the function φ(y) := |y|, y ∈ Rd, has compact sublevels (i.e., the set
{y : |y| ≤ c} is compact in Rd for any c ≥ 0), Ambrosio et al. (2008, Remark 5.1.5) asserts that
the collection of measures {µε(t) : ε > 0, t ∈ [0, T ]} is tight (i.e., precompact under the topology
of weak convergence). To further prove that this collection of measures is precompact in P1(Rd),
it suffices to show that the measures have uniformly integrable first moments, in view of Ambrosio
et al. (2008, Proposition 7.1.5). That is, we need to show that

lim
k→∞

sup
ε>0,t∈[0,T ]

∫
Rd\Bk(0)

|y| dµε(t) = 0,

where Bk(0) denotes the open ball centered at 0 ∈ Rd with radius k > 0. For any fixed t ∈ [0, T ],
by the same arguments above (A.8),∫

Rd\Bk(0)

|y| dµε(t) = EP [|Yn−1,ε| IRd\Bk(0)(Yn−1,ε)
]

= EP [|Yn−1,ε(ω)| I{|Yn−1,ε(ω)|≥k}(ω)
]

≤ EP[|Y0(ω) + T | I{|Y0(ω)+T |≥k}(ω)
]

where I denotes an indicator function and the inequality follows from (A.9). Hence,

sup
ε>0,t∈[0,T ]

∫
Rd\Bk(0)

|y| dµε(t) ≤ EP[|Y0(ω) + T | I{|Y0(ω)+T |≥k}(ω)
]
→ 0 as k →∞,

where the convergence follows from Y0 ∈ L1(P), thanks to µY0 = µ0 ∈ P1(Rd). We therefore
conclude that {µε(t) : ε > 0, t ∈ [0, T ]} is precompact in P1(Rd) and thus fulfills (A.5).

Next, consider any s, t ∈ [0, T ] with s 6= t. Without loss of generality, assume s < t. For any fixed
ε > 0, there exist j, k ∈ N with j ≤ k such that

(j − 1)ε ≤ s < jε and µε(s) = µYj−1,ε ; (k − 1)ε ≤ t < kε and µε(t) = µYk−1,ε . (A.11)

By (4.1), we have

Yk−1,ε = Yj−1,ε − ε
k−j∑
i=1

∇ϕµd

µYi−1,ε
(Yi,ε). (A.12)

It follows that
W1(µε(s), µε(t)) = W1(µYj−1,ε , µYk−1,ε)

≤ EP[|Yk−1,ε − Yj−1,ε|] = EP

[∣∣∣∣∣ε
k−j∑
i=1

∇ϕµd
µYn−1,ε

(Yi,ε)

∣∣∣∣∣
]

≤ ε(k − j) < |t− s|+ ε,

(A.13)

where the second inequality follows again from |∇ϕνµ(x)| ≤ 1 Ld-a.e. on Rd for all µ, ν ∈ P1(Rd)
(Remark 2.1) and the third inequality is due to (A.11). This immediately yields

lim sup
ε→0

W1(µε(s), µε(t)) ≤ |s− t|, ∀s, t ∈ [0, T ], (A.14)

i.e., {µε(t) : ε > 0, t ∈ [0, T ]} satisfies (A.6).

Now, we can apply Proposition A.2 to obtain a subsequence {εk} and a continuous curve µ∗T (t) :
[0, T ] → P1(Rd) such that W1(µεk(t), µ∗T (t)) → 0 for all t ∈ [0, T ]. By a diagonal argument, we
can construct a continuous µ∗ : [0,∞) → P1(Rd) such that W1(µεk(t), µ∗(t)) → 0 for all t ≥ 0,
possibly along a further subsequence.

B MORE EXPERIMENTAL RESULTS

B.1 PERSISTENCY ON W1-FE-GP

We run the first experiment in Section 5 again using W1-FE-GP. The results, along with those under
W1-FE-LP in the main text, are shown in Figure 6. As we can see, raising persistency levels results
in significantly more severe instability under W1-FE-GP than under W1-FE-LP.
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Figure 6: W1 loss of W1-FE-GP and W1-FE-LP with persistency levels K = 1, 3, 5, 10 against
training epoch (left) and wallclock time (right), respectively.

C USING THE CODE

We built off of the software package developed for use in Leygonie et al. (2019). While we made
substantial changes to the package for our own purposes, we do acknowledge that the package built
by Leygonie et al. (2019) made it substantially easier for us to implement our algorithm. The usage is
almost identical to the original package’s usage.

We recommend storing the code as either a zipped file or pulling directly from the GitHub repository.
We also recommend using a Google Colab notebook as the virtual environment. Once the software
package is loaded in the appropriate folder, one may reproduce the low dimensional experiments
by running main.py inside exp_2d. The high dimensional experiments may be reproduced by
running main.py inside exp_da.

If one uses Google Colab to run the experiments, then the default environment provided by the Google
Colab Jupyter notebook in addition to the package Python Optimal Transport (POT) is required to
run the software. To reproduce the plots, one needs the package tensorboard.
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