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Abstract
Modelling dynamical systems is an integral com-
ponent for understanding the natural world. To
this end, neural networks are becoming an increas-
ingly popular candidate owing to their ability to
learn complex functions from large amounts of
data. Despite this recent progress, there has not
been an adequate discussion on the architectural
regularization that neural networks offer when
learning such systems, hindering their efficient us-
age. In this paper, we initiate a discussion in this
direction using coordinate networks as a test bed.
We interpret dynamical systems and coordinate
networks from a signal processing lens, and show
that simple coordinate networks with few layers
can be used to solve multiple problems in mod-
elling dynamical systems, without any explicit
regularizers.

1. Introduction
Dynamical systems are systems whose state evolves over
time. Modeling such systems from finite observations plays
a major role in understanding, predicting, and controlling
a vast array of physical and biological phenomena such
as weather (Christensen & Berner, 2019; Knipp, 2016),
neuroscience (Izhikevich, 2007), planetary motion (Koon
et al., 2000; Jiang & Yeh, 2003), and molecular movements
(Gorban & Zinovyev, 2010; Toni & Stumpf, 2010), among
many others. Traditionally, analytical models derived from
first principles played a key role in simulating dynamical
systems. Nonetheless, a continuing concern of modeling
dynamical system is that since measurements of physical
quantities are typically obtained via sensors in the wild, they
can often be noisy, irregular, and sparse. Since classical
analytical tools for dynamical systems usually assume re-
strictive conditions, i.e., clean, regular, and relatively dense
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data, employing them on real-world data becomes less triv-
ial. Further, although analytical approaches usually benefit
from explicit mathematical guarantees, their extrapolation
to higher dimensional systems is often hindered by unrealis-
tic conditions (e.g., sampling complexity) and impractical
error bounds.

In contrast, there has been a recent surge of interest in using
neural networks for modeling dynamical systems. With in-
creasingly abundant computational resources and data, these
methods have yielded impressive performance over classical
simulation models. The underlying pillar of this success is
the universal approximation properties of neural networks,
that enables learning complex non-linear functions from
data. Despite this trend, far too little attention has been
paid to the architectural regularization that neural networks
implicitly offer in such settings. This lack of understanding
obfuscates principled, efficient usage of neural networks in
modeling dynamical systems, potentially leading to fairly in-
volved architectures and explicit regularizers (Bakarji et al.,
2022; Trischler & D’Eleuterio, 2016; Ku & Lee, 1995; Chu
et al., 2019; Yeung et al., 2019). Thus, this study strives
to investigate the efficacy of implicit architectural bias that
neural networks offer in the context of dynamical systems.
To this end, we choose coordinate-networks as a test bed,
a class of neural networks that is now ubiquitously being
used across many computer vision tasks (Skorokhodov et al.,
2021; Chen et al., 2021; Sitzmann et al., 2019; Mildenhall
et al., 2021; Li et al., 2022; Chen et al., 2022). This choice is
motivated by the simplicity of coordinate networks — which
are typically shallow fully connected networks — and the
strong architectural bias they offer when learning natural sig-
nals (Mildenhall et al., 2021; Tancik et al., 2020). We begin
with an interesting observation that both dynamical systems
and coordinate-networks can be viewed through a signal
processing lens. That is, a dynamical system can be inter-
preted as a (multi-dimensional) signal that evolves over time.
From this perspective, modeling a dynamical system using
finite measurements of physical quantities becomes analo-
gous to recovering a multi-dimensional signal from discrete
samples. On the other hand, we also note that coordinate-
networks perform a similar task; given discrete coordinates
and corresponding samples, coordinate-networks attempt
to encode (reconstruct) a continuous signal. Inspired by
this connection, we draw a parallel between dynamical sys-
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tems and coordinate networks, and use sampling theory to
bridge these two paradigms. First, we conduct a brief ex-
position of the Nyquist-Shannon sampling theory and show
that coordinate-networks can be considered as generator
functions under a generalized view of the former. Exploit-
ing this insight, we propose a novel non-linear activation
that allows coordinate networks to (theoretically) optimally
reconstruct a given signal, while producing smooth first
order derivatives of the network. With proper tuning of hy-
perparameters, our activation function enables controlling
the bandwidth of the network, allowing the network to cap-
ture high-frequency dynamics while filtering noise. Then,
we employ coordinate-networks across a series of physics
problems, and demonstrate surprisingly improved, robust
results compared to classical methods. It is important to
note that across all considered problems, we only utilize the
implicit bias of the neural architecture, omitting the need
for explicit regularizers.

Our contributions are as follows:

• We establish a parallel between dynamical systems and
coordinate networks, and propose a novel activation
function that performs better than existing activations.
To the best of our knowledge, this work is the first
to offer a theoretical comparison on the optimality of
activation functions in reconstructing signals.

• We improve the results of the SINDY algorithm
(Bakarji et al., 2022) — a method used to discover the
governing equations of dynamical systems — by ex-
ploiting the smooth first order derivatives of coordinate-
networks. We also demonstrate that our results are
significantly robust to noise compared to the baseline.

• We show that coordinate networks implicitly learn the
intrinsic rank of a given system from partial observa-
tions, eliminating the need for classical analytical tools
such as time-delay embedding.

• We utilize coordinate networks for discovering the char-
acteristics of dynamical systems from partial observa-
tions. We further demonstrate that the recovered repre-
sentations are extremely robust to random, sparse, and
noisy measurements, compared to classical tools.

• We demonstrate the efficacy of using coordinate net-
works for modeling higher dimensional systems, where
the number of measurements are orders of magnitude
lower than the optimal Nyquist rate.

2. Preliminaries
2.1. Dynamical systems

Dynamical systems can be defined in terms of a time depen-
dant state space x(t) ∈ RD where the time evolution of x(t)

can be described via a differential equation,

dx(t)

dt
= f(x(t), α), (2.1)

where f is a non-linear function and α are a set of sys-
tem parameters. The solution to the differential equation
2.1 gives the time dynamics of the state space x(t). In
practice, we only have access to discrete measurements
[y(t1), y(t2), . . . y(tQ)] where y(t) = g(x(t)) + η and
{tn}Qn=1 are discrete instances in time. Here, g(·) can be
the identity or any other non-linear function, and η is noise.
Thus, the central challenge in modeling dynamical systems
can be considered as recovering the characteristics of the
state space from such discrete observations.

2.2. Coordinate networks

Consider an L-layer coordinate network, FL, with widths
{n0, . . . , nL}. The output at layer l, denoted fl, is given by

fl(x) =


x, if l = 0

ϕ(WlFl−1 + bl), if l ∈ [L− 1]

WL−1FL−1 + bL, if l = L

(2.2)

where Wl ∈ Rnl×nl−1 , bl ∈ Rnl are the weights biases
respectively of the network, and ϕ is a non-linear activation
function. Although the above formulation is identical to
fully connected networks, they differ from traditional neural
networks by usage. In contrast to the mainstream utilization
of neural networks, where (very) high-dimensional inputs
such as images, videos are mapped to a label space, coor-
dinate networks are treated as a continuous data structure
that encodes a signal. The inputs to coordinate networks are
low-dimensional, discrete coordinates, e.g., (x, y), and the
outputs are samples of a particular signal at corresponding
coordinates, e.g. pixel intensities of an image sampled at
(x, y). The optimization minimizes the mean squared er-
ror (MSE) loss between the ground truth and the network
predictions. In the above example, the coordinate network
can be considered a continuous representation of an image,
which can be queried up to extreme resolutions. Further, the
activations used in coordinate networks determine their char-
acteristics. For instance, ReLU activations have shown to
suffer from spectral bias, hindering their performance in en-
coding high-frequency content, whereas recently proposed
Gaussian (Rahaman et al., 2019) and sinusoidal (Sitzmann
et al., 2020) activations allow high-fidelity signal recon-
structions. It is also a common practice to use a positional
encoding layer with coordinate networks, which modulates
input coordinates with sin and cosine functions, capturing
high-frequency content.
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3. Dynamical systems and coordinate networks
We note that modeling dynamical systems and encoding
signals using coordinate networks are analogous tasks. That
is, modeling dynamical systems can be interpreted as re-
covering characteristics of a particular system via measured
physical quantities over time intervals. Similarly, coordinate
networks are used to recover a signal given discrete samples.
Hence, in this section, we analyze coordinate networks from
sampling theory based perspective, and propose an activa-
tion function for better signal reconstruction. Coordinate
networks equipped with the newly proposed activation func-
tion will be validated on several problems in later sections.

3.1. Revisiting sampling thoery

The sampling theory concerns bandlimited signals. A signal
is bandlimited if, and only if, the magnitude of its Fourier
spectrum is zero beyond a certain threshold frequency. More
formally, let f denote a continuous signal that is Ω-band
limited, meaning its Fourier transform f̂(s) = 0 for all
|s| > Ω. If f ∈ L1(R) is an Ω-band limited signal, then the
Nyquist-Shannon sampling theorem (Zayed, 2018) gives

f(x) =

∞∑
n=−∞

f

(
n

2Ω

)
sinc

(
2Ω

(
x− n

2Ω

))
(3.1)

where the equality means converges in the L2 sense. Thus,
by sampling a signal at the lattice points n

2Ω , for n ∈ Z, and
taking shifted sinc functions, it is possible to recover the sig-
nal provided we sample at a frequency of at least 2Ω-Hertz.
Theoretically, the theorem indicates that one would need an
infinite number of samples for perfect reconstruction. This
is, of course, not possible in practice. Further, it should
be noted that the sampling theorem is an idealization of
the real-world; natural signals are not always bandlimited.
However, as natural signals tend to contain their dominant
frequency modes at lower energies, one can project the
original signal into a space of bandlimited functions with a
finite dimension to get a good reconstruction. The sampling
theory — in its original form — is only applicable to one-
dimensional signals. However, it can be extended to higher
dimensions in a straightforward manner. The main culprit
of the sampling theory is the curse of dimensionality; the
exponential increase in the number of sample points needed
to reconstruct a high-mode signal. This is a mathematical
consequence of the fact that volumes of many mathematical
shapes grow exponentially with dimension. This behaviour
is detrimental for modeling dynamical systems using clas-
sical tools, e.g., dynamic mode decomposition (DMD), in
higher dimensions, as the number of physical measurements
required quickly becomes infeasible as the dimensions grow.
In contrast, we show that coordinate networks can perform
remarkably well in cases where the number of samples falls
well below the Nyquist rate (see Sec. 7).

3.2. Coordinate-networks for signal reconstruction

In the previous section, we discussed how an exact recon-
struction of a bandlimited signal could be achieved via a
linear combination of shifted sinc functions. Thus, it is in-
triguing to explore if an analogous connection can be drawn
to coordinate networks. In this picture, we fix a function F
and define a space V (F ) by

V (F ) =

{
s(x) =

∞∑
k=−∞

a(k)F (x− k) : a ∈ l2
}
,

where l2 denotes the space of square summable sequences.
In other words, a function s ∈ V (F ) is characterized by the
sequence a, which is to be thought of as the discrete signal
representation of s. As in the case of the sampling theorem,
from the previous section, shifts of the function F and the
coefficients are enough to reconstruct s.

In order for the space V (F ) to be a good model to do signal
processing, it is generally required that the functions {Fk =
F (x − k)}Z should form a Riesz basis, see section B and
(Unser, 2000) for a detailed discussion on Riesz bases. The
second requirement is that they satisfy the partition of unity
condition ∑

k∈Z

F (x+ k) = 1, ∀x ∈ R. (3.2)

The partition of unity condition allows the space V (F ) to
have the capability of approximating any input function
arbitrarily close by selecting a sufficiently small sampling
step. Thus it should be thought of as a generalisation of
the Nyquist criterion in signal processing. We refer the
reader to (Unser, 2000) for details on how (3.2) determines
a Nyquist-type sampling criterion. Interestingly, we observe
that coordinate networks implicitly perform a similar task
of reconstructing a signal via shifted basis functions, as
discussed next.

Consider a coordinate network formulated as Eq. 2.2. Let
X ∈ Rn0×N and Y ∈ RnL×N denote the input coordinates
and the corresponding signal measurements, where N de-
notes the number of samples. For X = [x1, . . . , xN ]T ∈
RN×n0 , the feature matrix at layer l is given by Fl =
[fl(x1), . . . , fl(xN )]T ∈ RN×nl . For simplicity, now con-
sider a 2-layer coordinate network with one-dimensional
output. Such a network can be expressed by

F (X) =W2ϕ(W1X + b1) + b2. (3.3)

This equation exhibits the interesting observation that the
output function is being constructed via shifted samples
of the non-linearity. When training, the network seeks to
optimise the weights and biases so as to fit the training la-
bels optimally. In this way, the training can be thought of
as trying to pick suitable shifts and bandwidth of the non-
linearity that can reconstruct the output signal. However,
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note that in the previous sections, the sampling studied has
all been uniform sampling. In general, sampling theory
must assume uniform sampling, for otherwise, the methods
of Fourier analysis cannot be used to get a signal reconstruc-
tion theorem. While there have been various algorithms to
tackle non-uniform sampling for signal reconstruction, one
of the highlight points of reconstructing with a coordinate
network is that it has no issues with non-uniform samples
(see Sec. 6).

Activations. The discussion thus far asserted that encoding
signals using coordinate networks can be considered as re-
constructing signals with shifted basis functions, which are
essentially the type of activation functions used. One can
immediately see that, from a theoretical perspective, using
the sinc function as the activation should be optimal for re-
constructing signals. Indeed, we utilize sinc as the activation
function in our experiments and observe better performance
compared to previously proposed Gaussian or Sinusoidal ac-
tivations (Fig. 7). We speculate that the sinc activations can
potentially improve the results across many other computer
vision tasks where coordinate networks are used. Nonethe-
less, we limit our experiments to dynamical systems in this
work. On the theoretical side, what makes sinc an optimal
signal reconstructor is the fact that it generates a Riesz basis
that satisfies the partition of unity condition (3.2) (Unser,
2000). In Appendix B.1, we show that Gaussian functions
generate a Riesz basis but only satisfy the partition of unity
condition (3.2) approximately, making them inferior to the
sinc function for sampling. We also show that sinusoidal
functions are only optimal for sampling periodic signals,
see Appendix B.2. Finally, we show that the ReLU function
does not generate a Riesz basis (proposition B.2) and catas-
trophically fail to satisfy (3.2), see Appendix B.3. However,
it should be noted that this result does not undermine the
implicit regularization properties of ReLU activations in
recovering low-frequency signals.

3.3. Lipschitz constant of coordinate networks

A major obstacle to modelling dynamical systems is the
noisy measurements. Noise typically gets amplified through
non-linear systems, exhibiting deleterious effects on classi-
cal analytical tools. On the other hand, we observe that by
controlling the hyparparameters of the sinc function, it is
possible to smoothen the signal encoded by coordinate net-
works, making them act as implicit noise filters (see Fig. 6).
To explain this behavior, we show below that the hyperpa-
rameters of the sinc activation can manipulate the Lipschitz
constant of the network. We also offer an equivalent result
for Gaussians in the Appendix (theorem C.2).

Theorem 3.1. Let fL denote a neural network emplying a
sinc non-linearity, sinc(ωx) = sin(ωx)

ωx . Then the Lipshitz
constant of fk, for 1 ≤ k ≤ L increases as ω increases. In

other words, increasing ω increases the kth-layers Lipshitz
constant.

(Proof in C.1). Further, we assert that the Lipschitz constant
of a network with sinc activation is inherently linked to the
rank of the hidden layer representations. This provides an
important, controllable architectural bias (Fig.6).

Theorem 3.2. Let fL denote a coordinate neural network
with activation sinc(ωx) = sin(ωx)

ωx . Furthermore, fix a
training data set X = {xi} sampled from a fixed training
distribution P . Then increasing ω leads to on average an
increase in the stable rank of the feature map Fl.

(Proof in C.3).

4. Discovering governing equations
SINDy algorithm aims to recover the governing equa-
tions of a dynamical system from discrete observations
of underlying variables. Given a set of samples Y =
[y(t1),y(t2), . . .y(tN )] ∈ RD×N , SINDY computes Ẏ =

[ ˙y(t1), ˙y(t2), . . . ˙y(tN )] ∈ RD×N using a finite difference
based or continuous approximation technique. Then, a li-
brary of Q candidate functions are assumed to build the
library matrix Θ(Y) = [θ1(Y, ), θ2(Y, ), . . . , θQ(Y, )]. Fi-
nally, SINDY minimizes the loss,

LS = ||Ẏ −Θ(Y)Γ||22 + λ||Γ||21, (4.1)

where Γ is a sparsity matrix that choose candidate functions
from Θ while enforcing sparsity. We note that coordinate
networks offer two forms of important architectural biases
here; suppose we train a coordinate network using {tn}Qn=1

and Y as inputs and labels, respectively, to reconstruct a
continuous representation of Y. a) by controlling ω of sinc
functions (while training), one can filter high-frequency
noise embedded in Y and b) It is possible to obtain measure-
ments Ẏ by computing the Jacobian of the network, utilizing
smooth derivatives of sinc-activated coordinate networks.
In comparison, we observe that ReLU activations yield infe-
rior results, possibly due to the noisy first-order derivatives
caused by their piece-wise linear approximation of func-
tions (Fig. 7). We perform an experiment to demonstrate
the efficacy of these architectural biases below.

Experiment 1: We use the Lorenz system and the Rossler
system (see E) for this experiment. We obtain 1000 sam-
ples between 0 and 100 with an interval of 0.1 to create
Y. Then, we inject noise to Y from a uniform distribution
η ∼ U(−n, n) by varying n. As the baseline, for each noise
scale, we used spectral derivatives to compute Ẏ. Note
that we empirically chose spectral derivatives to obtain the
best baseline after comparing other alternatives to compute
Ẏ, including finite difference methods and polynomial ap-
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Figure 1. We use coordinate networks to improve the results of the SINDy algorithm. The top block and the bottom block demonstrate
experiments on the Lorenz system and the Rossler system, respectively. In each block, the top row and the bottom row represent the
results of the baseline SINDy algorithm and the improved version (using coordinate networks). As evident, coordinate networks can be
used to obtain significantly robust results.
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Figure 2. Discovering the dynamics from partial observations. We use the Vanderpol system for this experiment. Top row: the original
attractor and the diffeomorphism obtained by the SVD decomposition of the Hankel matrix (see Sec. 6) without noise. Second row: The
same procedure is used to obtain the reconstructions with noisy, random, and sparse samples. Third row: First, a coordinate network
is used to obtain a continuous reconstruction of the signal from discrete samples, which is then used as a surrogate signal to resample
measurements. Afterwards, the diffeomorphisms are obtained using those measurements. As shown, coordinate networks are able to
recover the dynamics more robustly with noisy, sparse, and random samples.
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proximations. As the competing method, again for each
noise scale, we use a coordinate network to reconstruct a
continuous signal by training the network on Y samples.
Then, we compute the Jacobian of the network to compute
Ẏ on the same coordinatesa and minimize LS using the the
computed Y and Ẏ. For both cases, we utilize the SINDy
algorithm to obtain the governing equations of each system.
The dynamics recovered from the discovered equations are
compared in Fig. 1. As evident, using coordinate networks
for this particular task yields surprisingly robust results at
each noise scale, compared to the baseline. We use a 4-
layer sinc-activated coordinate network for this experiment,
where the width of each layer is 256.

Figure 3. Discovering dynamics with partial observations. Recon-
structions across several systems are compared.

5. Mode discovery from partial observations.
Natural systems typically depend on multiple underlying
variables (e.g., temperature, pressure, velocity etc.). The
number of such factors is also known as the modes or the
intrinsic rank of the system. However, in practical settings,
the number of modes of a system is not apriori known, and
only a subset of variables are measured. In such scenarios,
“time-delay-embeddings” provide an analytical tool to deter-
mine the number of modes of a system by only observing
the dynamics of a subset of variables. Remarkably, we show
that the coordinate networks can be used to achieve the same
task, without time delay embedding. Further, we depict that
this neural mode recovery is robust to higher dimensions,
whereas classical time-delay-embedding fails in such cases.

Time delay embedding. Given a set of discrete samples
of the observable variable [y1(t1), y1(t2), . . . , y1(tQ)], a
Hankel matrix H can be created by augmenting the samples
as delay embeddings in each row:

H =


y1(t1) y1(t2) . . . y1(tn)
y1(t2) y1(t3) . . . y1(tn+1)

...
...

. . .
...

y1(tm) y1(tm+1) . . . y1(tm+n+1)

 . (5.1)

TDD
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Figure 4. We compare time delay decomposition (TDD) and neu-
ral decomposition (ND) in discovering the modes of a dynamical
system from partial observations. Remarkably, we find that co-
ordinate networks can be used to discover the hidden modes of
the system without time delay embedding. In the Chen system,
both methods perform well in identifying the three modes. In the
14-dim Lorenz system, TDD fails, while ND is able to identify 13
modes by only observing the dynamics of a single variable.

Then, eigen values of H can be obtained by the SVD decom-
position H = UΣVT . The number of dominant eigenval-
ues are used to identify the intrinsic rank of the system.

In contrast, we train a coordinate network on
[y1(t1), y1(t2), . . . , y1(tQ)] to obtain a continuous represen-
tation of the signal. Let the mapping from the inputs t to the
penultimate layer be ϕ(t) : R → RK , where the penultimate
layer is K-dimensional. Then, we extract the penultimate
layer outputs Ψ = [ϕ(t1)

T , ϕ(t2)
T , . . . , ϕ(tQ)

T ] ∈ RK×Q,
and perform SVD on Ψ to extract singular values. Remark-
ably, we found that the number of dominant (non-zero)
singular values is equal to the intrinsic rank of the system.
This observation suggests that the architectural bias of
coordinate networks implicitly leads to learning a Koopman
basis in the penultimate layer. However, we limit the scope
of this work to this empirical observation and leave a
thorough theoretical exploration to future work.

Experiment 2: We use a three-dimensional Chen system
and a 14-dim Lorenz system (E) for this experiment. As
a baseline, we perform time-delay decomposition on both
signals. Then, we perform neural decomposition using a
4-layer coordinate network with 20-width layer. The re-
sults are shown in Fig. 4. As depicted, the baseline fails to
correctly identify the modes of the signal in higher dimen-
sions, while the neural decomposition identifies 13 modes
correctly.

6. Discovering the dynamics of latent variables
In Sec.4, we discussed how coordinate networks could be
utilized to discover the number of modes (latent variables)
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of a dynamical system by observing the dynamics of a sin-
gle variable. When only such partial measurements are
available, it is generally not possible to derive a closed-form
model of the system. However, Taken’s theorem (F) states
that under certain conditions, it is possible to augment the
partial measurements as delay embeddings, which yields
an attractor that is diffeomorphic to the original attractor.
This is an extremely powerful tool, as it enables discovering
certain dynamics of a complex system by only observing
a handful of variables. The procedure is as follows: First,
a Hankel matrix is computed as in Eq. 5.1. The Taken’s
theorem shows that the dynamics of the dominant eigenvec-
tors of the Hankel matrix are diffeomorphic to the original
attractor.

Nonetheless, the above procedure should adhere to restric-
tive conditions; a) the measurements should be equally
spaced, and b) the intervals between measurements have to
adhere to the condition nτ ≈ 0.1, where n is the width of
the Hankel matrix and τ is the time interval between two
samples. Further, as we demonstrate, the obtained dynamics
(diffeomorphisms) are extremely sensitive to noise. On the
contrary, using a coordinate network to encode the origi-
nal measurements as a continuous signal, and then using
the coordinate network as a surrogate signal to create the
Hankel matrix leads to surprisingly robust results. Further,
the continuous reconstruction we get from the coordinate
network requires sparser samples (nτ = 0.2)), overriding a
restrictive condition.

Experiment 3: We use a Vanderpol system, Limit cycle
attractor, and Duffing equation for this experiment (E). We
use 5000 samples, sampled between 0− 100, to create the
Hankel matrix. The results are illustrated in Fig. 2 and Fig. 3.
To demonstrate the effect of noise on recovered dynamics,
we add uniformly sampled noise to the Hankel matrix. In the
sparse sampling scenario, we increase the sampling interval
by a factor of two. As evident, coordinate networks are able
to produce significantly robust results. In other words, this
enables one to accurately recover the dynamics of a system
with partial observations that are noisy, random, and sparse,
whereas the performance of the classical method degrades
in each case.

7. Predicting the future states
The time evolution of a dynamical system can be learned
by modeling the relationship xt+1 = γ(xt), where γ
is a non-linear function, which can also be thought of
as time-series forecasting. A popular tool for obtain-
ing these forecasting dynamics is Dynamic Mode Decom-
position (DMD), which has a strong connection to vec-
tor autoregressive models (VAR). Given a set of D di-
mensional data points, DMD attempts to learn the linear
transformation A such that xt+1 ≈ A(xt). A can be
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Figure 5. Interpolation and extrapolation of coordinate networks.
The training points are only sampled within the globes of the at-
tractors. When an initial test point is randomly sampled within
the bounds of the training data (first column), the coordinate net-
work is able to follow the ground truth trajectories a considerable
amount of time into the future, while DMD fails. Note that in the
14-dimensional case, we project the dynamics into two variables
for visualization. In this case, the ratio of training samples to the
Nyquist rate is extremely small (≈ 1.81× 10−8), but still, the co-
ordinate network shows satisfactory performance, demonstrating
its extreme sampling efficiency. The second column illustrates the
extrapolation capability of the coordinate networks. Even when
the initial sampling point is far away from the training data, the
network still is able to converge to the attractor.

computed via finding a sparse solution to the equation
X2 = AX1, where X1 = [x(t1),x(t2), . . . ,x(tQ)] and
X1 = [x(t2),x(t3), . . . ,x(tQ+1)]. For a more comprehen-
sive read on DMD, we refer the reader to (Tu, 2013). How-
ever, critical limitations of DMD include the linearization of
the system and, most importantly, the required sampling den-
sity. For ideal reconstruction, DMD has to comply with the
Nyquist sampling rate (Fathi, 2018). This becomes a signifi-
cant drawback when forecasting with higher-dimensional
signals, as the Nyquist sampling rate increases exponentially
with the number of dimensions A. We note that this is a com-
mon drawback to any classical forecasting system, not only
DMD. We also point out that there are clever workarounds to
this problem that assumes the sparsity of data in some basis,
e.g., compressed sensing (Brunton et al., 2013). However,
such methods demand domain knowledge of the system and
often include fairly involved mathematical modeling.

Due to the above reason, forecasting the dynamical systems
using neural networks has attracted a significant amount of
interest recently (Park et al., 2022; Isamiddin et al., 2021).
These methods can handle high dimensional data more effec-
tively and can learn complex, non-linear functions. These
methods utilize the explicit recurrent relationships built into
the neural architectures to obtain predictive dynamics. In
contrast, we show that by using coordinate networks, which
are simply fully connected networks that minimizes an MSE
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objective, it is possible to enjoy impressive predictive per-
formances.

Experiment 4: For this experiment, we use a three-
dimensional Lorenz system and a 14-dimensional Lorenz
system. In both cases, we create a set of X1 and X2 matri-
ces using snapshots of random trajectories, starting from
random initial points. For the 3-dimensional system and the
14-dimensional system, we use 20 and 100 trajecories, re-
spectively. We take 800 snapshots of each trajectory, using
0.01 time intervals. Afterwards, we train one coordinate
network per each system by feeding the columns of X1 as
inputs, and providing the corresponding columns of X2 as
labels. Thus, the network learns to predict the future state
after a fixed time interval, given the current state. After
training, We test the coordinate networks for two scenarios.
1) We randomly sample a point in the space, within the
bounds of the training data, and recursively use the coordi-
nate network to advance into future states. We computed the
average frequency across each axis of the 14-dimensional
system to be approximately 8, which means the Nyquist
sampling rate is 814 ≈ 4.4× 1012. However, we only use
800000 samples for training the network, where the ratio to
the Nyquist rate is 1.81× 10−8. Nonetheless, we still man-
aged to capture the dynamics of the system satisfactorily
(Fig. 5). This illustrates the extreme sampling efficiency of
coordinate networks. 2) Usually, neural networks are known
to demonstrate weak generalizations to out-of-distribution
data. However, we found that coordinate networks yield
surprisingly good extrapolations; when a random point is
sampled far from the training data distribution, the network
still managed to converge to the attractor.

8. Related Work
Data driven dynamical systems modeling. There have
been several works that have undertaken a study of data
driven discovery of dynamical systems using a variety of
techniques such as, nonlinear regression (Voss et al., 1999),
empirical dynamical modelling (Ye et al., 2015), normal
form methods (Majda et al., 2009), spectral analysis (Gi-
annakis & Majda, 2012), Dynamic mode decomposition
(DMD) (Schmid, 2010; Kutz et al., 2016). Compressed
sensing and sparse regression in a library of candidate mod-
els has also been used to identify dynamical systems (Rein-
bold et al., 2021; Wang et al., 2011; Naik & Cochran, 2012;
Brunton et al., 2016), (Tran & Ward, 2017) in the context
of corrupted data. Reduced modelling techniques have also
been widely used in the analysis of dynamical systems such
as, proper orthogonal decomposition (POD) (Holmes et al.,
2012; Kirby, 2001; Sirovich, 1987; Lumley, 1967), local
and global POD methods (Schmit & Glauser, 2004; Sahy-
oun & Djouadi, 2013), adaptive POD methods (Singer &
Green, 2009; Peherstorfer & Willcox, 2015). DMD meth-

ods with Koopman operator theory (Budišić et al., 2012;
Mezić, 2013) have also been used for system identification.
Neural networks have been used for system identification
and discovery of governing equations (Qin et al., 2019;
González-Garcı́a et al., 1998; LeCun et al., 2015; Chen
et al., 2018; Jaeger & Haas, 2004; Raissi et al., 2019; Lu
et al., 2021). For time series forecasting, recurrent neu-
ral networks (RNNs) (Bailer-Jones et al., 1998; Uribarri
& Mindlin, 2022) and long short-term memory networks
(LSTM) (Graves & Graves, 2012; Wang et al., 2011) are the
most commonly used networks. Data driven discovery using
deep neural networks was carried out in (Qin et al., 2019),
and convolution neural networks have also found applica-
tions in system identification (Mukhopadhyay & Banerjee,
2020).

Coordinate networks. Coordinate networks are a recently
popularized class of fully connected neural networks by the
seminal work of (Mildenhall et al., 2021). Although, in prin-
ciple, any activation function can be used with coordinate
networks, traditional activations such as ReLU, Sigmoid
etc. tend to suffer from spectral bias (Rahaman et al., 2019),
hindering their ability to learn high-frequency content. As a
workaround, (Mildenhall et al., 2021) employed a positional
embedding layer to project the inputs to a higher dimen-
sional space, which allowed the network to model high
frequencies more effectively. Further, Sitzmann et al. (Sitz-
mann et al., 2020) proposed a sinusoidal activation, known
as SIREN, which eliminated the need for positional embed-
ding layers. However, SIREN exhibits volatile performance
against random initializations. In contrast, (Ramasinghe &
Lucey, 2022) introduced a Gaussian activated coordinate
MLP that, like SIREN, showed state-of-the-art performance
on signal reconstruction. An advantage of Gaussian acti-
vated coordinate MLPs is that they are robust to random
initialisation schemes such as Xavier Uniform, and Xavier
Normal. Nonetheless, to the best of our knowledge, so far,
there has not been a discussion on the theoretical optimality
of these activations for reconstructing signals. In contrast,
we analyze these activations from a signal-processing per-
spective and propose a novel activation function.

9. Conclusion
In this work, we explore the efficacy of using the implicit
architectural regularization of coordinate networks for mod-
eling dynamical systems. We propose a novel activation
function that is better suited for reconstructing signals, and
utilize it across several problems. Notably, we use relatively
shallow (4-layer) networks for our evaluations and achieve
robust and improved results compared to traditional tools,
without explicit regularizers.
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ism. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 22(4):047510, 2012.

Chen, B., Kwiatkowski, R., Vondrick, C., and Lipson, H.
Fully body visual self-modeling of robot morphologies.
Science Robotics, 7(68):eabn1944, 2022.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. Advances
in neural information processing systems, 31, 2018.

Chen, Y., Liu, S., and Wang, X. Learning continuous image
representation with local implicit image function. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 8628–8638, 2021.

Christensen, H. M. and Berner, J. From reliable weather
forecasts to skilful climate response: A dynamical sys-
tems approach. Quarterly Journal of the Royal Meteoro-
logical Society, 145(720):1052–1069, 2019.

Chu, Y., Fei, J., and Hou, S. Adaptive global sliding-mode
control for dynamic systems using double hidden layer
recurrent neural network structure. IEEE transactions on
neural networks and learning systems, 31(4):1297–1309,
2019.

Fathi, M. F. Applications of Dynamic Mode Decomposition
and Sparse Reconstruction in The Data-Driven Dynamic
Analysis of Physical Systems. PhD thesis, The University
of Wisconsin-Milwaukee, 2018.

Giannakis, D. and Majda, A. J. Nonlinear laplacian
spectral analysis for time series with intermittency and
low-frequency variability. Proceedings of the National
Academy of Sciences, 109(7):2222–2227, 2012.
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A. Sampling theory in higher dimensions
The sampling theory — in its original form — is only applicable to one dimensional signals. However, it can be extended to
higher dimensions in a straightforward manner. Let f : Rn → R be a function in L1(Rn), which we think of as a higher
mode signal. Let I(Ω1, . . . ,Ωn) denote an n-dimensional rectangle about the origin with side lengths Ω1, . . . ,Ωn. Suppose
that the Fourier transform f̂ vanishes identically outside of I(Ω1, . . . ,Ωn). Then

f(t1, . . . , tn) =

∞∑
m1=−∞

· · ·
∞∑

mn−∞
f

(
m1

2Ω1
, . . . ,

mn

2Ωn

)
sinc

(
2Ω1

(
t1 −

n

2Ω1

))
· · · sinc

(
2Ωn

(
tn − n

2Ωn

))
.

Thus we see that sampling f on the lattice defined by lengths
(

1
2Ω1

, . . . , 1
2Ωn

)
and taking shifted sinc functions of

bandwidth 2Ωk, for 1 ≤ k ≤ n, we can reconstruct the function f as in the one dimensional case. Note that as in the case of
the one-dimensional Nyquist-Shanon theorem, in order for perfect reconstruction one needs to sample at larger than twice
the dominant frequency present in the signal. Therefore, in practise one would take the maximum of Ω = maxi{Ωi} and
sample at a frequency of 2Ω.

Curse of dimensionality. While the multidimensional Nyquist-Shanon sampling theorem provides a convenient theoretical
framework in which to understand signal processing problems in higher dimensions. It does not come without problems. In
practise, the multidimensional sampling theorem is extremely inefficient.

The main issue with sampling in higher dimensions is that there is an exponential increase in volumes of cubes (or
rectangles/balls) associated with adding extra dimensions. To see this, imagine we had a signal f : [0, 1] → R whose
dominant frequency was 50-Hertz. Let us then suppose we wish to perform a reconstruction by using a sample rate of
100-Hertz. This means that we would need to sample exactly 102 = 100 points from the unit interval [0, 1] each spaced
at a distance of 0.01. Now, imagine that we had a 10 mode signal g : [0, 1]10 → R on the unit cube whose dominant
frequency was also 50-Hertz. We wish to perform a 100-Hertz sample rate reconstruction of g as we did for f . Now we see a
problem, in this instance we would need to sample (102)10 = 1020 points from the 10-dimensional cube. Thus when using
a sampling distance of 0.01 we see that the 10-dimensional cube [0, 1]10 is 1018-times larger than the 1-dimensional cube
[0, 1]. This exponential increase in the amount of sample points needed to reconstruct a high mode signal is referred to as
the curse of dimensionality and is a mathematical consequence of the fact that volumes of many mathematical shapes grow
exponentially with dimension. This makes the sampling theory of Nqyquist and Shanon some what unusable in practise for
higher mode signals.

There have been other reconstruction techniques, most notable compressed sensing, that have shown far superior performance
than classical sampling due to their ability to break the Nyquist limit and allow far fewer sampling points. However, such
techniques have the added problem that they are memory intensive for high mode signals. As we show coordinate neural
networks offer a convenient middle ground that makes them perfectly suitable for signal reconstruction in higher mode
signal settings.

B. Riesz bases and sampling.
In this section, we outline the definition of a Riesz basis in detail and then show which activations generate a Riesz basis and
can be used as generators for reconstructing signals. A reference for this section is (Unser, 2000).

We recall the definition of a Riesz basis. We fix a function F and consider the space

V (F ) =

{
s(x) =

∞∑
k=−∞

a(k)F (x− k) : a ∈ l2
}
, (B.1)

where l2 denotes the space of square summable sequences. This means that a function s ∈ V is determined by its coefficients
c(k), provided it is continuously defined.

We say that the family of functions {Fk = F (x− k)}k∈Z defines a Riesz basis if the following property holds. There exists
two positive constants 0 < A,B <∞ such that

A · ||c||2l2 ≤
∣∣∣∣∣∣∣∣∑

k∈Z
c(k)Fk

∣∣∣∣∣∣∣∣2 ≤ B · ||c||2l2 (B.2)
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for all sequences c(k) ∈ l2, where l2 is the space of square summable sequences and ||c||2l2 =
∑

k |c(k)|2 is the squared l2
norm. The lower inequality says that the basis functions must be linearly independent, which implies every signal s ∈ V (F )
is uniquely determined by its coefficients c(k). The upper bound in the inequality implies that the L2-norm of the signal is
finite so that V (F ) is a subspace of L2.

In order for the model V (F ) to be a good model for sampling it should have the ability to approximate any input function
arbitrarily close by choosing an appropriate sampling step, analogous to the Nyquist criterion in classical sampling theory.
This is equivalent to the partition of unity condition∑

k∈Z
F (x+ k) = 1 for all x ∈ R. (B.3)

The reader is referred to (Unser, 2000) for a discussion on how the partition of unity condition leads to a Nyquist type
criterion for the space V (F ).

B.1. Gaussian activation

Shifts of a Gaussian form a Riesz basis, see (Hammerich, 2007). On the other hand the Gaussian will not satisfy (B.3).
However, by picking the appropriate variance, and using the Poisson summation formula (Stein & Shakarchi, 2011) it can
be shown that Gaussian’s do approximately satisfy (3.2), see (Hammerich, 2007). This shows that while shifts of a Gaussian
can be used to generate a basis of functions in L2, their ability to approximate a signal arbitrarily close will not be as strong
as the sinc function, due to Gaussians satisfying (B.3) only approximately.

B.2. Sinusoidal activation

Sinusoidal functions do not form a Riesz basis as they do not define functions in L2(R) and furthermore, due to the
periodicity of such functions, they do not satisfy (B.3). However, if we let L2[0, 1] denote the space of square-integrable
periodic functions on [0, 1]. Then the following proposition shows that shifted sine functions can be used for reconstruction
of periodic signals.

Proposition B.1. Let L2[0, 1] denote the square-integrable space of periodic functions on [0, 1]. Then given any signal
s ∈ L2[0, 1] we have

s(x) =

∞∑
n=0

ansin(nx+
π

2
) + bnsin(nx)

where the equality in the above should be understood as L2-convergence.

Proof. Fourier analysis, see (Stein & Shakarchi, 2011), shows that periodic signals can be reconstructed via a sine and
cosine basis. In other words, we have

s(x) =

∞∑
n=0

ancos(nx) + bnsin(nx).

Using the angle formula, sin(x+ π/2) = cos(x), we see that the first term on the right of the above equality can be written
as ansin(nx+ π/2). This completes the proof.

We thus see that for periodic signals one only needs two shifts of a sinusoidal function to be able to reconstruct a periodic
signal. We emphasize the basis will still be infinite dimensional as each shift can have a different frequency.

B.3. ReLU activation

The following proposition shows that translates of ReLU cannot generate a Riesz basis.

Proposition B.2. The function ReLU cannot generate a Riesz basis.

Proof. We have to show that the set V (ReLU), defined as in (B.1), fails to satisfy (B.2). We will show that it fails to satisfy
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the upper bound given in (B.2). We consider the sequence c(k) defined as follows

c(k) =

{
0 if k ≤ 1

1/k if k > 1.

Then it is clear that c(k) ∈ l2 with ||c(k)||2l2 = 1. Taking x = 0, we see that

ReLUk(0) = ReLU(−k) =

{
0 if k ≤ 0

k if k > 0.

In particular, ∑
k∈Z

c(k)ReLUk(0) =
∑
k>1

k

k
=

∑
k>1

1 = ∞.

Thus we see that the upper bound in (B.2) cannot hold and the statement of the proposition has been proved.

Furthermore, the ReLU function fails to satisfy the partition of unity condition (B.3) as the following proposition shows.

Proposition B.3. The ReLU function fails to satisfy the partition of unity condition (B.3).

Proof. Fix x ∈ R and osberve that∑
k∈Z

ReLU(x+ k) =
∑

k≥−x

ReLU(x+ k) =
∑

k≥−x

(x+ k) = ∞.

This result also explains why coordinate networks employing ReLU activations tend to perform poorly with high frequency
signal reconstruction. As shown by proposition B.2 shifted copies of ReLU do not form a Riesz basis and the extreme
failure of condition (B.3) means they will only be able to produce low fidelity reconstructions. The key problem with a
ReLU activation is that it cannot be modulated primarily because it satisfies the homogeniety property

ReLU(ωx) = ωReLU(x) for any ω > 0. (B.4)

Thus, shifts and scales of ReLU’s will give poor reconstruction for high frequency signals. We also note that as a ReLU
function is not periodic, and cannot be modulated as shown in (B.4), it will not be a good reconstructor for periodic signals.

C. Lipschitz constant of coordinate networks

Theorem C.1. Let fL denote a neural network emplying a sinc non-linearity, sinc(ωx) = sin(ωx)
ωx . Then the Lipshitz

constant of fk, for 1 ≤ k ≤ L increases as ω increases. In other words, increasing ω increases the kth-layers Lipshitz
constant.

Proof. Since our activation function is smooth, the Lipshitz constant can be computed via the operator norm of the Jacobian

||fk||Lip = sup
x∈Rd

||J(fk)(x)||op. (C.1)

The Jacobian J(fk) is given by the formula, see (Nguyen & Mondelli, 2020) for derivation,

J(fk)(x) =

k−1∏
l=0

Dk−l(x)Wk−l, (C.2)

where Dk−l denotes the diagonal nk−l × nk−l matrix with entries ϕ′(gk−l,j(x)) for 1 ≤ j ≤ nk−l, and gk−l,j(x) is the
pre-activation neuron. Note that ϕ(x) = sinc(ωx) is our activation function, and ϕ′ denotes the derivative.
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We observe that in the case that ϕ(x) = sinc(ωx) = sin(ωx)
ωx , we have that ϕ′(x) = ω cos(ωx)

ωx − ω sin(ωx)
(ωx)2 . Thus the matrix

Dk−l can be expressed as ωD̃k−l, where D̃k−l denotes the diagonal matrix with diagonal entries given by ϕ̃(gk−l,j(x)),
where ϕ̃(x) = cos(ωx)

ωx − sin(ωx)
(ωx)2 . In particular, this implies the Jacobian can be written as

J(fk)(x) = ωk
k−1∏
l=0

D̃k−l(x)Wk−l.

Therefore, it follows that by changing ω, the operator norm of the Jacobian will scale by a factor of ωk and hence the
Lipshitz constant will scale by exactly that factor. In particular, by increasing ω the Lipshitz constant increases by a factor of
ωk.

Theorem C.2. Let fL denote a neural network with Gaussian non-linearity, e−x2/ω2

. Then the Lipshitz constant of fl
increases as ω decreases. In other words, decreasing ω increases the lth-layers Lipshitz constant.

Proof. Since our activation function is smooth, the Lipshitz constant can be computed via the operator norm of the Jacobian

||fk||Lip = sup
x∈Rd

||J(fk)(x)||op. (C.3)

The Jacobian J(fk) is given by the formula

J(fk)(x) =

k−1∏
l=0

Dk−l(x)Wk−l, (C.4)

where Dk−l denotes the diagonal nk−l × nk−l matrix with entries ϕ′(gk−l,j(x)) for 1 ≤ j ≤ nk−l, and gk−l,j(x) is the
pre-activation neuron.

We observe that in the case that ϕ(x) = e−x2/ω2

, we have that ϕ′(x) = −2x
ω2 e

−x2/ω2

. Thus the matrix Dk−l can be
expressed as 1

ω2 D̃k−l, where D̃k−l denotes the diagonal matrix with diagonal entries given by ϕ̃(gk−l,j(x)), where
ϕ̃(x) = −2xe−x2/ω2

. In particular, this implies the Jacobian can be written as

J(fk)(x) =
1

ω2k

k−1∏
l=0

D̃k−l(x)Wk−l.

Therefore, it follows that by changing ω, the operator norm of the Jacobian will scale by a factor of 1
ω2k and hence the

Lipshitz constant will scale by exactly that factor. In particular, by increasing ω the Lipshitz constant increases by a factor of
1

ω2k .

We now show how modulating the bandwidth always the stable rank of the feature maps Fl to increase. We will carry out
the following analysis for a Sinc activated coordinate network. Similar results also hold for a Gaussian or Sine/Cos activated
network.

Theorem C.3. Let fL denote a coordinate neural network with activation sinc(ωx) = sin(ωx)
ωx . Furthermore, fix a training

data set X = {xi} sampled from a fixed training distribution P . Then increasing ω leads to on average an increase in the
stable rank of the feature map Fl.

Proof. The rows of the feature map Fl are given by the outputs of the the lth-layer, fl. By proposition 3.1 we have that the
quantity

max
x,y∈X,x ̸=y

||fl(x)− fl(y)||
||x− y||

(C.5)

increases when ω increases. Expanding the norm on the numerator we find

||fl(x)− fl(y)||2

||x− y||2
=

||fl(x)||2 + ||fl(y)||2 − 2⟨fl(x), fl(y)⟩
||x− y||2

. (C.6)
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We observe that since |sinc(ωx)| ≤ 1, the sum ||fl(x)||2 + ||fl(y)||2 is bounded above by 2nl. We then observe that as
ω increases the maximum of the right side of (C.6) increases on average, which can only be possible if the inner product
is decreasing on average. Thus we see that as ω increases, the rows of the feature matrix Fl are tending to be orthogonal.
In other words, the rows of the feature matrix are becoming more spread out. This implies that the energy of the singular
values of Fl are more spread out, hence the quantity

∑
i σ

2
i increases as we increase ω. By definition of the stable rank, it

follows that the stable rank increases.

Proposition C.4. Let fL denote a coordinate neural network with activation e−x2/ω2

. Furthermore, fix a training data set
X = {xi} sampled from a fixed training distribution P . Then decreasing ω leads to on average an increase in the stable
rank of the feature map Fl.

Proof. The rows of the feature map Fl are given by the outputs of the the lth-layer, fl. By proposition C.2 we have that the
quantity

max
x,y∈X,x ̸=y

||fl(x)− fl(y)||
||x− y||

(C.7)

increases when ω decrease. Expanding the norm on the numerator we find

||fl(x)− fl(y)||2

||x− y||2
=

||fl(x)||2 + ||fl(y)||2 − 2⟨fl(x), fl(y)⟩
||x− y||2

. (C.8)

We observe that since |e−x2/ω2 | ≤ 1, the sum ||fl(x)||2 + ||fl(y)||2 is bounded above by 2nl. We then observe that as ω
decreases the maximum of the right side of (C.8) increases on average, which can only be possible if the inner product is
decreasing on average. Thus we see that as ω decreases, the rows of the feature matrix Fl are tending to be orthogonal. In
other words, the rows of the feature matrix are becoming more spread out. This implies that the energy of the singular values
of Fl are more spread out, hence the quantity

∑
i σ

2
i increases as we decrease ω. By definition of the stable rank, it follows

that the stable rank increases.

D. Comparison of activations
We compare the performance of activation functions in improving SINDy. Fig.7 shows the results. As depicted, the sinc
activation achieves the best results.

E. Dynamical equations
Lorentz System: For the Lorenz system we take the parameters, σ = 10, ρ = 28 and β = 8

3 . The equations defining the
system are:

dx

dt
= σ(−x+ y) (E.1)

dy

dt
= −xz + ρx− y (E.2)

dz

dt
= −xy − βz (E.3)

Van der Pol Oscillator: For the Van der Pol oscillator we take the parameter, µ = 1. The equations defining the system are:

dx

dt
= µ(x− 1

3
x3 − y) (E.4)

dy

dt
=

1

µ
x (E.5)
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w = 0.3 w = 5

Figure 6. The top row and the bottom row depicts the SINDy reconstructions obtained for the Lorenz system and the Rossler system,
respectively, using coordinate networks. As ω is increased in the sinc function, the coordinate network allows more higher frequencies to
be captured, resulting in noisy reconstructions.

Figure 7. Performance comparison of activation functions in improving SINDy. Sinc activation yields the best results.
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Chen System: For the Chen system we take the parameters, α = 5, β = −10 and δ = −0.38. The equations defining the
system are:

dx

dt
= αx− yz (E.6)

dy

dt
= βy + xz (E.7)

dz

dt
= δz +

xy

3
(E.8)

Rössler System: For the Rössler system we take the parameters, a = 0.2, b = 0.2 and c = 5.7. The equations defining the
system are:

dx

dt
= −(y + z) (E.9)

dy

dt
= x+ ay (E.10)

dz

dt
= b+ z(x− c) (E.11)
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Generalized Rank 14 Lorentz System: For the following system we take parameters a = 1√
2

, R = 6.75r and r = 45.92.
The equations defining the system are:

dψ11

dt
= −a

(
7

3
ψ13ψ22 +

17

6
ψ13ψ24 +

1

3
ψ31ψ22 +

9

2
ψ33ψ24

)
− σ

3

2
ψ11 + σa

2

3
θ11 (E.12)

dψ13

dt
= a

(
− 9

19
ψ11ψ22 +

33

38
ψ11ψ24 +

2

19
ψ31ψ22 −

125

38
ψ31ψ24

)
− σ

19

2
ψ13 + σa

2

19
θ13 (E.13)

dψ22

dt
= a

(
4

3
ψ11ψ13 −

2

3
ψ11ψ31 −

4

3
ψ13ψ31

)
− 6σψ22 +

1

3
σaθ22 (E.14)

dψ31

dt
= a

(
9

11
ψ11ψ22 +

14

11
ψ13ψ22 +

85

22
ψ13ψ24

)
− 11

2
σψ31 +

6

11
σaθ31 (E.15)

dψ33

dt
= a

(
11

6
ψ11ψ24

)
− 27

2
σψ33 +

2

9
σaθ33 (E.16)

dψ24

dt
= a

(
−2

9
ψ11ψ13 − ψ11ψ33 +

5

9
ψ13ψ31

)
− 18σψ24 +

1

9
σaθ24 (E.17)

dθ11
dt

= a

(
ψ11θ02 + ψ13θ22 −

1

2
ψ13θ24 − ψ13θ02 + 2ψ13θ04 + ψ22θ13 + ψ22θ31 + ψ31θ22 (E.18)

+
3

2
ψ33θ24 −

1

2
ψ24θ13 +

3

2
ψ24θ33

)
+Raψ11 −

3

2
θ11

dθ13
dt

= a

(
− ψ11θ22 +

1

2
ψ11θ24 − ψ11θ02 + 2ψ11θ04 − ψ22θ11 − 2ψ31θ22 (E.19)

+
5

2
ψ31θ24 +

1

2
ψ24θ11 +

5

2
ψ24θ31

)
+Raψ13 −

19

2
θ13

dθ22
dt

= a

(
ψ11θ13 − ψ11θ31 − ψ13θ11 + 2ψ13θ31 + 4ψ22θ04 − ψ33θ11 + 2ψ24θ02

)
+ 2Raψ22 − 6θ22 (E.20)

dθ31
dt

= a

(
ψ11θ22 − 2ψ13θ22 +

5

2
ψ13θ24 − ψ22θ11 + 2ψ22θ13 + 4ψ31θ02 − 4ψ33θ02 (E.21)

+ 8ψ33θ04 −
5

2
ψ24θ13

)
+ 3Raψ31 −

11

2
θ31

dθ33
dt

= a

(
3

2
ψ11θ24 − 4ψ31θ02 + 8ψ31θ04 −

3

2
ψ24θ11

)
+ 3Raψ33 −

27

2
θ33 (E.22)

dθ24
dt

= a

(
1

2
ψ11θ13 −

3

2
ψ11θ33 +

1

2
ψ13θ11 −

5

2
ψ13θ31 − 2ψ22θ02 (E.23)

− 5

2
ψ31θ13 −

3

2
ψ33θ11

)
+ 2Raψ24 − 18θ24

dθ02
dt

= a

(
− 1

2
ψ11θ11 +

1

2
ψ11θ11 +

1

2
ψ11θ13 +

1

2
ψ13θ11 + ψ22θ24 (E.24)

− 3

2
ψ31θ31 +

3

2
ψ31θ33 +

3

2
ψ33θ31 + ψ24θ24

)
− 4θ02

dθ04
dt

= −a
(
ψ11θ13 + ψ13θ11 + 2ψ22θ22 + 4ψ31θ33 + 4ψ33θ31

)
− 16θ04 (E.25)

F. On Taken’s embedding theorem
Taken’s embedding theorem is a delay embedding theorem giving conditions under which the strange attractor of a dynamical
system can be reconstructed from a sequence of observations of the phase space of that dynamical system.

The theorem constructs an embedding vector for each point in time

x(ti) = [x(ti), x(ti + n∆t), . . . , x(ti + (d− 1)n∆t)]
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n = 1.0 n = 0.8 n = 0.6 n = 0.2 n = 0.1

Figure 8. Robust recovery of dynamical systems from partial observations (Lorenz system). Top row: coordinate network. Bottom row:
classical method.

n = 1.0 n = 0.8 n = 0.6 n = 0.2 n = 0.1

Figure 9. Robust recovery of dynamical systems from partial observations (Duffing system). Top row: coordinate network. Bottom row:
classical method.

Where d is the embedding dimension and n is a fixed value. The theorem then states that in order to reconstruct the dynamics
in phase space for any n the following condition must be met

d ≥ 2D + l

where D is the box counting dimension of the strange attractor of the dynamical system which can be thought of as the
theoretical dimension of phase space for which the trajectories of the system do not overlap.

Drawbacks of the theorem: The theorem does not provide conditions as to what the best n is and in practise when D is not
known it does not provide conditions for the embedding dimension d. The quantity n∆t is the amount of time delay that is
being applied. Extremely short time delays cause the values in the embedding vector to almost be the same, and extremely
large time delays cause the value to be uncorrelated random variables. The following papers show how one can find the time
delay in practise (Kim et al., 1999; Small, 2005). Furthermore, in practise estimating the embedding dimension is often
done by a false nearest neighbours algorithm (Kennel et al., 1992).

Thus in practise time delay embeddings for the reconstruction of dynamics can require the need to carry further experiments
to find the best time delay length and embedding dimension.


