
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MULTI-VIEW ENCODERS FOR PERFORMANCE PREDIC-
TION IN LLM-BASED AGENTIC WORKFLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated remarkable capabilities across
diverse tasks, but optimizing LLM-based agentic systems remains challenging
due to the vast search space of agent configurations, prompting strategies, and
communication patterns. Existing approaches often rely on heuristic-based tuning
or exhaustive evaluation, which can be computationally expensive and suboptimal.
This paper proposes Agentic Predictor, a lightweight predictor for efficient agentic
workflow evaluation. Agentic Predictor is equipped with a multi-view workflow
encoding technique that leverages multi-view representation learning of agentic
systems by incorporating code architecture, textual prompts, and interaction graph
features. To achieve high predictive accuracy while significantly reducing the
number of required workflow evaluations for training a predictor, Agentic Predictor
employs cross-domain unsupervised pretraining. By learning to approximate task
success rates, Agentic Predictor enables fast and accurate selection of optimal
agentic workflow configurations for a given task, significantly reducing the need
for expensive trial-and-error evaluations. Experiments on a carefully curated
benchmark spanning three domains show that our predictor outperforms several
strong graph-based baselines in both predictive accuracy and workflow utility,
highlighting the potential of performance predictors in streamlining the design of
LLM-based agentic workflows.

1 INTRODUCTION

Large language models (LLMs) have catalyzed the development of agentic systems capable of
executing complex, multi-step tasks autonomously (Hong et al., 2024; Wu et al., 2024; Xi et al.,
2024; Mialon et al., 2024). These systems, often constructed through meticulous manual engineering,
integrate components such as Chain-of-Thought reasoning, tool invocation, and memory management
to enable sophisticated behaviors for orchestrating intricate workflows (Xi et al., 2025; Ke et al., 2025;
Gridach et al., 2025; Plaat et al., 2025). However, the handcrafted nature of these systems imposes
limitations on scalability, adaptability, and rapid deployment across diverse domains.

To address these limitations, recent trends have shifted towards automated design methods for agentic
systems (Hu et al., 2025a; Shang et al., 2025; Zhang et al., 2025b; Zhuge et al., 2024; Liu et al.,
2024b; Hu et al., 2025b; Yuan et al., 2025). Automated methods typically employ search algorithms
to discover optimal workflow configurations by systematically exploring a vast design space. Instead
of relying on human intuition, these approaches generally involve iterations of candidate generation,
evaluation, and refinement. While promising, these methods exhibit significant drawbacks, chiefly the
high computational costs associated with the extensive validation steps needed during the exploration
and evaluation phases of the search. Each candidate configuration must undergo rigorous evaluation,
often through expensive, repeated interactions with LLM APIs, rendering the search prohibitively
costly and time-consuming.

In this paper, we argue that purely search-based automated design methods are inherently inefficient
and propose a predictive approach to significantly accelerate workflow evaluation. Specifically, we
advocate for a predictor-based framework that can rapidly estimate the performance of candidate
agentic workflows, similar to performance predictors in neural architecture search (White et al., 2021),
thereby reducing the need for extensive validation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

 (a) Execution-based Workflow Generation (Existing Approaches)

 (b) Prediction-based Workflow Generation (Ours)

LLM APIs or
Runtime EnvironmentDatasets

Candidate
EvaluationCandidate

Workflow

Candidate
Workflow

A
ge

nt
ic

 S
ys

te
m

 B
ui

ld
in

g
B

lo
ck

s
(S

ea
rc

h
Sp

ac
e)

Prompts

Models

Tools

Connections

Function
Calls

Feedback

Performance
Predictor

Pass / Fail

Pass / Fail

Figure 1: Comparison between (a) execution-based
and (b) prediction-based candidate evaluation for
agentic workflow generation. Execution-based
methods rely on costly runtime or LLM calls, while
our prediction-based approach offers faster, scal-
able evaluation via a learned predictor.

As depicted in Figure 1, instead of fully evaluat-
ing every candidate, a predictive model can es-
timate the quality and viability of agentic work-
flows, thus guiding the search process far more
efficiently. By reducing costly ground-truth
executions or environment interactions during
the search process, prediction-based approaches
promise significant improvements in both search
efficiency and solution quality. However, build-
ing a high-quality predictor for agentic work-
flows introduces two fundamental challenges.

Workflow Heterogeneity. Agentic workflows
exhibit considerable heterogeneity; subtle vari-
ations in configuration can lead to dramatically
different performances. Specifically, workflows
can vary widely in communication structure,
prompting strategies, tool invocation patterns, and reasoning styles, making it challenging to learn
a unified predictive model. Moreover, agentic systems differ significantly across tasks, domains,
and toolsets, resulting in diverse and complex workflow configurations that are difficult to model
uniformly (Xu et al., 2024; Qiao et al., 2025).

Scarcity of Labeled Data. The availability of labeled data for training effective prediction models
is severely limited due to the prohibitive cost of generating performance labels through exhaustive
validation. Constructing a large, diverse set of labeled workflows with known execution outcomes
is particularly expensive, creating a data bottleneck for supervised learning approaches. Moreover,
gathering large-scale, high-quality labels for agentic workflows (e.g., success rates and execution
outcomes) is often infeasible, further limiting the amount of supervised training data available for
learning accurate predictors.

To tackle these challenges, we present Agentic Predictor, a multi-view encoder framework for
performance prediction in LLM-based agentic workflows. To address workflow heterogeneity,
Agentic Predictor uses multi-view workflow encoders that jointly model complementary signals—
structural (e.g., agent topology), behavioral (e.g., tool usage), and semantic (e.g., prompts)—capturing
the diverse, task-dependent characteristics of workflow configurations. To mitigate label scarcity,
we introduce cross-domain unsupervised pretraining, denoted Agentic Predictor+, which leverages
abundant unlabeled workflows from related domains. We pretrain the multi-view encoders with
contrastive and reconstruction objectives, then fine-tune on limited labeled data, yielding robust and
transferable representations for prediction. The main contributions of this paper are as follows.

• We propose multi-view encoders and cross-domain unsupervised pretraining that jointly capture
the heterogeneous facets of LLM-based agentic workflows, yielding higher predictive performance,
better generalization, and effective predictor training under limited labels.

• We introduce Agentic Predictor, unifying these components for the underexplored problem of
performance prediction in heterogeneous, label-scarce LLM-based agentic workflows, thereby
reducing trial-and-error costs and accelerating development.

• We empirically demonstrate that, averaged across three domains, Agentic Predictor improves
prediction accuracy by up to 6.90% and utility by up to 5.87% over strong baselines.

2 RELATED WORK

Automated Generation of Agentic Workflows. Recent advancements (Xi et al., 2025; Ke et al.,
2025; Gridach et al., 2025; Plaat et al., 2025) in agentic workflows have led to the development
of various frameworks aimed at enhancing multi-agent collaboration for complex tasks (Guo et al.,
2024; Trirat et al., 2025; Niu et al., 2025; Trirat & Lee, 2025a). MetaGPT (Hong et al., 2024) and
ChatDev (Qian et al., 2024) use predefined multi-agent structures to address coding challenges, while
AgentVerse (Chen et al., 2024) introduces iterative collaboration where agents discuss, execute, and
evaluate tasks. LLM-Debate (Du et al., 2024) employs multiple expert agents that engage in debates
over several rounds to derive final answers. However, these systems often rely on static configurations,
which limits their adaptability to diverse queries across different tasks and domains.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

To optimize agentic workflows, GPTSwarm (Zhuge et al., 2024) and G-Designer (Zhang et al., 2025a)
apply variants of the REINFORCE algorithm to optimize workflow structures represented as directed
acyclic graphs (DAGs), while DyLAN (Liu et al., 2024b) dynamically selects agents based on task
requirements. ADAS (Hu et al., 2025a) and AFlow (Zhang et al., 2025b) further leverage powerful
LLMs (e.g., Claude-3.5-Sonnet and GPT-4) to iteratively generate task-specific multi-agent systems.
Similarly, AgentSquare (Shang et al., 2025) proposes a modular design space for automatic LLM
agent search, enhancing adaptability to novel tasks. Despite their effectiveness, these methods
typically require numerous LLM calls, resulting in significant computational and financial overheads,
making them less practical for real-world applications.

Table 1: Comparison between ours and existing frameworks
for prediction-based workflow generation.
Framework Multi-View

Representation
Unsupervised
Pretraining

Lightweight
Predictor

Search
Agnostic

MAS-GPT (Ye et al., 2025) × × × ×
FLORA-Bench (Zhang et al., 2025c) × × ✓ ✓

Agentic Predictor (Ours) ✓ ✓ ✓ ✓

Rather than manually designing a
fixed workflow (Qian et al., 2024;
Chen et al., 2024; Du et al., 2024)
or paying repeated inference costs
to synthesize one per query (Zhuge
et al., 2024; Liu et al., 2024b), Agen-
tic Predictor presents a lightweight
performance predictor to rapidly estimate the quality of candidate agentic workflows, enabling
broad exploration without exhaustive evaluations. Among recent efforts, FLORA-Bench (Zhang et al.,
2025c) advocates GNN-based predictors and releases a benchmark that models workflows as a single-
view graph where prompts are node features. A complementary direction, MAS-GPT (Ye et al., 2025),
fine-tunes LLMs to directly generate workflows in a single call. In contrast to these directions,
Agentic Predictor differs in three respects: representation (multi-view encoding of agent topology,
code, and system prompts vs. single-view graphs), learning (cross-domain unsupervised pretraining
to mitigate label scarcity, rather than no pretraining recipe or supervised LLM fine-tuning), and
efficiency (a compact predictor for fast evaluation without repeated LLM calls). Table 1 summarizes
these distinctions.

Performance Predictors for NAS. Neural architecture search (NAS) has spurred the development of
performance predictors that aim to reduce the significant computational cost of evaluating candidate
architectures. PRE-NAS (Peng et al., 2022) employs a predictor-assisted evolutionary strategy to
estimate model performance, thereby alleviating the need for exhaustive training. BRP-NAS (Dudziak
et al., 2020) integrates graph convolutional networks to forecast hardware-aware performance metrics,
improving the practicality of NAS under resource constraints. CAP (Ji et al., 2024) introduces
a context-aware neural predictor, leveraging self-supervised learning to generate expressive and
generalizable representations of architectures, thus enabling more effective search space exploration.
FlowerFormer (Hwang et al., 2024) advances architecture encoding through a flow-aware graph
transformer, yielding improved prediction accuracy. A unifying trend among these methods is the
emphasis on learning more informative representations to guide the search process. Building on this
insight, we propose the Agentic Predictor framework, which approaches performance prediction from
a representation-centric perspective. By incorporating multi-view representations conditioned on
workflow configurations, Agentic Predictor facilitates accurate performance estimation and efficient
exploration of the agentic workflow space.

3 METHODOLOGY: AGENTIC PREDICTOR

3.1 PROBLEM FORMULATION

Let an agentic workflow be denoted asW = {V, E ,P, C}, where V = {vi}Ni=1 represents the set
of N agents, E denotes the set of edges defining the connections between agents, and P = {pi}Ni=1
denotes the system prompts for each agent i. C represents the complete code specifying the logic and
structure of the workflow. Thus, the workflowW is represented as a directed acyclic graph (DAG).

Given a task description T , the workflow W autonomously executes agents in topological order,
where the i-th agent receives the task description T along with the outputs y from its predecessor
agents. Formally, the input to agent i is defined as Xi = {T} ∪ {yj : vj ∈ N (in)

i }, where N (in)
i

denotes the set of predecessor agents of agent i, and yj is the output of agent j. The output yi of
agent i is generated by querying an LLM: yi = LLM(Xi, pi). After executing all agents, the final
response of the agentic workflow is defined as r = fLLM(W, T), where fLLM represents the overall
execution process of the given LLM. Generally, this process is repeated for the evaluation of r, which
incurs significant computational and financial overhead.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

...

Label: Fail Label: Pass

A
ge

nt
ic

 S
ys

te
m

 B
ui

ld
in

g
B

lo
ck

s
(S

ea
rc

h
Sp

ac
e)

Prompts

Models

Tools

Connections

(Workflow, Perf.)
Pair Datasets

Search Method

Random
Sampling

Datasets

Graph Encoder

Code Encoder

Prompt Encoder

Task Encoder

(a) Multi-View Workflow Encoding

A
gg

re
ga

tio
n

La
ye

r

Performance
Predictor

D
ec

Predicted: Pass

(b) Pretraining Phase

(c) Predictor-Guided Search Phase

pretraining flow

predictor training flow

shared or predictor-guided search flow

+

+

Figure 2: Overview of our Agentic Predictor framework. A (a) multi-view workflow encoder is
designed to encode a set of agentic workflows from graph, code, and prompt aspects into unified
representations, which serve as features for training the predictor. In the (b) pretraining phase, the
encoder learns these representations on unlabeled workflows spanning diverse tasks and domains,
using cross-domain unsupervised pretraining objectives. In the (c) predictor-guided search phase, a
performance predictor is trained on a small (workflow configuration, performance) dataset to classify
configurations as pass or fail, and subsequently guides the search toward promising configurations.

In contrast, this paper aims to design a predictive model M that efficiently estimates the final
performance of an agentic workflowW on a given task description T , without requiring costly LLM
invocations. Therefore, we treat the workflowW and task description T as inputs to the predictor
M, which outputs the estimated performance ê. Formally, ê =MΘ(W, T), where Θ denotes the
learnable parameters of the performance predictor.

Learning Objective. Given the workflow W , task description (or query) T , and performance
predictorMΘ parameterized by Θ, we aim to find the optimal Θ that minimizes the error between
the estimated performance ê and the ground-truth performance e. Formally, we solve

min
Θ

E(W,T)[L(e, ê)], (1)

where L(·, ·) is a loss function that quantifies the discrepancy between the ground truth and the
predicted performance. L can be either the cross-entropy loss or the mean squared error loss,
depending on whether the prediction task is formulated as a classification or regression problem.

3.2 FRAMEWORK OVERVIEW

We present an overview of our Agentic Predictor framework in Figure 2. First, the multi-view
workflow encoder integrates key aspects of an agentic workflow—graph structures (V, E), code
implementations C, and system prompts P—into a unified representation F . Integration is achieved
via modality-specific encoders followed by an aggregation layer that consolidates features across
modalities. Second, when labeled instances are scarce, we refine these representations with unsuper-
vised objectives, reconstruction and contrastive learning, to improve generalization and adaptability
across diverse tasks and configurations. Third, a dedicated performance predictorMΘ is trained on a
labeled set (often small) comprising workflow configurationsW , task descriptions T , and observed
performance outcomes e. Finally, with the trained predictor, we perform a predictor-guided search
that efficiently ranks and selects promising workflow configurations without incurring expensive
LLM calls. Because Agentic Predictor is search-agnostic, we deliberately do not commit to a specific
search algorithm within the framework.

3.3 MULTI-VIEW WORKFLOW ENCODING

Motivated by recent findings in the NAS literature (White et al., 2020; Akhauri & Abdelfattah, 2024;
Trirat & Lee, 2025b), which show that architecture representations strongly influence predictor
performance, we argue for expressive, comprehensive representations tailored to agentic workflows.
Because agentic workflows differ fundamentally from traditional neural architectures, conventional

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

graph-based encodings alone are insufficient. Although DAGs naturally capture explicit inter-agent
communication and dependencies, they omit crucial implicit signals such as tool-usage patterns,
code structure, computational complexity, and the nuanced semantics present in agent prompts. To
address these limitations, we propose a multi-view encoding scheme that integrates complementary
representations at multiple granularities, with each view capturing distinct yet essential aspects of
LLM-based agentic workflows.

• Graph View explicitly models structural dependencies and direct interactions among agents,
emphasizing inter-agent communication channels. We denote the graph view as G = (V, E).

• Code View implicitly encodes program-level semantics, control and logical sequence, computa-
tional complexity, and patterns of tool usage inherent in workflow implementations C.

• Prompt View provides semantic embeddings that capture agent roles, behavioral specifications,
and broader contextual guidance embedded within system and instruction prompts P .

Our rationale for adopting this multi-view framework is that aggregating heterogeneous information
sources reduces representation bias, thereby improving both robustness and predictive accuracy.

3.3.1 ENCODER NETWORKS

We now detail the components of our proposed multi-view workflow encoding method for perfor-
mance prediction in agentic workflows using neural networks. Let Enc(·) denote an encoder function
that maps a candidate workflow—composed of (G, C,P)—into d-dimensional Euclidean space, i.e.,
Enc(·) : (G, C,P) → Rd. Given the heterogeneous nature of workflow configurations, we design
three specialized encoder networks, each responsible for learning a representation corresponding to
a distinct view. These view-specific representations are then aggregated into a shared latent space,
denoted by Z = Enc(G, C,P), where Z ∈ Rd. This continuous latent representation is used to train
the performance predictorMΘ (see §3.5). The individual encoders for each view are integrated into
a unified architecture as described below.

Graph Encoder. We employ graph neural network (GNN) layers to encode graph-based represen-
tations. The workflow is modeled as a DAG in which each edge encodes a unidirectional message
channel. Rather than relying on a single graph, we adopt a multi-graph approach that integrates node
features from multiple views, including agent-specific definitions and function-call implementations
at each agent node. We instantiate this multi-graph representation with three graph views constructed
from a workflow W . In the prompt graph Gprompt, node features are obtained by pooling the em-
beddings of each agent’s system and instruction prompts. In the code graph Gcode, node features
correspond to the function-call code associated with each agent. In the operator graph Goperator, node
features encode operator types and their definitions. All three graphs share the same node and edge
set, where edges can be derived from an abstract syntax tree as suggested by Zhang et al. (2025c).

We then obtain view-specific node embeddings Hprompt = GNN(Gprompt), Hcode = GNN(Gcode), and
Hoperator = GNN(Goperator) in RN×d, stack them along a view dimension to form X ∈ RN×V×d with
V = 3, and apply a cross-view self-attention block with residual connection and layer normalization
X̂ = LN(MHA(X,X,X) +X), where MHA is multi-head attention applied across views for each
node (the sequence axis is the view axis; topology is unchanged).

Next, a view-attention pooling module computes per-node attention weights with a L-layer multi-
layer perceptron (MLP) and tanh nonlinearity, followed by a softmax over views, and produces
a weighted sum across views H = ViewAttnPool(X̂) ∈ RN×d. Finally, a graph readout
Gpool aggregates node embeddings into a single graph representation, ZG = Gpool(H) =
Gpool(ViewAttnPool(CrossGraphAttn(X))), which preserves edge directionality from the up-
stream GNN while capturing cross-view contextual dependencies at the node level before graph-level
summarization. Here, CrossGraphAttn enriches each node with multi-view contextual dependen-
cies, while ViewAttnPool highlights which views are most informative.

Code Encoder. While Gcode and Goperator primarily encode structural information derived from
the different workflow graphs, this code encoder is designed to provide a complementary, holistic
representation of the entire workflow code. To model the workflow-level embeddings, we use an
L-layer MLP to extract latent semantic features, enabling the model to learn intricate computational
logic and tool interactions at a global level. The code representation is computed as ZC = MLPC(C).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Prompt Encoder. Instead of encoding agent prompts solely as node-level features (Zhang et al.,
2025c), we use a separate L-layer MLP to encode the entire workflow instruction prompt holistically.
This approach captures role descriptions, behavioral intents, and global context—resulting in richer
and more semantically informed representations. The prompt encoding is ZP = MLPP(P).
Aggregation Layer. The representations from the graph, code, and prompt encoders—ZG , ZC , and
ZP—are concatenated and passed through a final MLP layer. This aggregation mechanism adaptively
integrates information across all views, enabling the model to emphasize the most contextually
relevant aspects. The final output of the encoder Enc(·) is computed as Z = MLP([ZG ,ZC ,ZP]).

Consequently, the aggregation layer acts as a learnable fusion module. The attention-based graph
encoder produces ZG with cross-view interactions already embedded, and the downstream fusion
assigns task-dependent importance to the graph-, code-, and prompt-level representations, rather than
treating all views as equally informative. These encoders learn not only from different workflow
perspectives but also at varying levels of granularity, specifically, at the graph level for agent
interactions, the code level for logical structures, and the prompt level for agent-specific instructions.

3.3.2 DECODER NETWORKS

The decoder is a generative module that reconstructs Ĝ, Ĉ, and P̂ from the latent variables Z to
encourage learning generalizable representations of agentic workflows. It consists of a stack of MLP
layers. For simplicity, the decoder outputs the modality-specific input embedding vectors of G, C, and
P . Accordingly, we parameterize Dec(·) with an MLP and define Ĝ = MLP(ZG), Ĉ = MLP(ZC),
and P̂ = MLP(ZP). This decoder is used only during pretraining for self-supervised reconstruction
of modality-specific embeddings from Z and is not part of the encoding path at inference time.

3.4 CROSS-DOMAIN UNSUPERVISED PRETRAINING

In real-world scenarios, labeled performance data for agentic workflows are scarce due to costly
evaluation. To enable data-efficient training without label leakage, we optionally adopt a two-phase
strategy. Rather than directly supervising the encoder with performance labels, we first perform
cross-domain unsupervised pretraining to obtain rich and generalizable workflow representations
Z. No performance labels (e.g., success/failure) are used in this stage. The resulting representations
improve sample efficiency for downstream prediction, in line with observations in NAS (White et al.,
2020; Yan et al., 2020; 2021; Akhauri & Abdelfattah, 2024; Trirat & Lee, 2025b). When sufficiently
many labels are available, direct supervised learning of the predictor remains feasible.

Multi-Task Pretraining. We train the multi-view encoder on M unlabeled workflow configurations
by minimizing a combined loss comprising reconstruction and contrastive objectives: Lrec =
1
M

∑M
i=1 ∥Gi− Ĝi∥2 + ∥Ci− Ĉi∥2 + ∥Pi− P̂i∥2 and Lcon = 1

M

∑M
i=1−log

exp(sim(Zi,Z
+
j)/τ)∑M

k=1 exp(sim(Zi,Zk)/τ)
.

Here, Gi, Ci,Pi denote the input graph, code, and prompt embeddings, respectively, while ·̂ denotes
reconstructions via modality-specific decoders. Notably, the graph branch reconstructs its own
embedding target with a stop-gradient, whereas code and prompt/text are reconstructed in input space.
The contrastive loss is instantiated cross-modally with in-batch sampling. For each configuration i,
positives (Zi,Z

+
j) are the index-aligned embeddings of the configuration across two different views

(e.g., Gi with Ci), while negatives are all other configurations within the batch. We symmetrize the
objective by swapping anchor/target and average it over the three view pairs (G, C), (G,P), and
(C,P). This learning objective encourages the encoder to capture structure- and content-aware signals
without observing performance outcomes. Thus, the total loss function is Lenc = Lrec + Lcon.

3.5 PERFORMANCE PREDICTOR

Following the unsupervised pretraining of the multi-view encoder, we introduce a lightweight
performance predictor to guide exploration of the large agentic workflow space. This phase enables
efficient identification of high-performing configurations with minimal supervision, using only a
small set of labeled workflow–performance pairs. As shown in Figure 2(c), our predictor operates on
learned workflow embeddings, enriched with task-specific context, to form a joint representation F
used for performance prediction and downstream search.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Task Encoder. To capture task-specific characteristics, we incorporate a Task Encoder that gener-
ates high-level semantic embeddings from natural-language task descriptions. These embeddings,
derived from pretrained language models (e.g., T5 or BERT), provide global context that helps
differentiate tasks with similar surface form but distinct functional requirements. The task embed-
ding is concatenated with the multi-view workflow representation, forming F = [Z,T], where Z
is the encoded workflow and T is the task embedding. For workflow content itself (prompts and
code), we pair this with lightweight, domain-specific encoders within the multi-view backbone to
balance representational capacity with efficiency. This separation of modalities followed by fusion
captures complementary compositional and contextual signals and supports generalization across
heterogeneous tasks with varying operational goals and constraints.

The performance predictor is a lightweight prediction head MΘ (e.g., an MLP) trained on a
limited set of labeled data (Xtrain, ytrain), where each Xtrain corresponds to F and ytrain is the
performance label (e.g., binary success/failure or a scalar score). We instantiate the objective
to match the label type. For binary labels, we use a binary cross-entropy loss, i.e., Lpred =

− 1
N

∑N
i=1 [ei log êi + (1− ei) log(1− êi)], where êi is the predicted success probability. For nu-

meric labels, we can use mean squared error, i.e., Lpred = 1
N

∑N
i=1(si − ŝi)

2. By operating on
semantically rich pretrained embeddings, the predictor attains strong accuracy in the low-data regime,
enabling label-efficient search.

Integration with Workflow Optimization. With the trained predictor in place, we can perform
predictor-guided search to efficiently explore the workflow configuration space. Rather than evaluating
each configuration via full execution, we embed candidates into their joint representationsF and score
them using the predictor. The top-scoring candidates are selected for evaluation. This substantially
reduces computational cost by focusing on the most promising regions of the search space. A simple
yet effective instantiation of this strategy uses random search to sample K workflow candidates from
the full configuration space, and then ranks them using the learned predictor. We select the top-k
configurations, averaged across samples in the benchmark, for evaluation. This predictor-as-ranker
setup transforms random search into a label-efficient guided procedure without requiring complex
heuristics. Since our main contribution is the performance predictor rather than the optimization
algorithm, we focus evaluation on prediction accuracy and ranking quality (i.e., workflow utility) in
the following section. Additional results on workflow optimization appear in §B.6.

4 EXPERIMENTS

We conduct a comprehensive evaluation of the proposed Agentic Predictor framework from mul-
tiple perspectives, guided by the following questions: (Q1) How does Agentic Predictor perform
as a predictor of agentic workflow performance compared to relevant baselines? (Q2) How do
different design choices of Agentic Predictor affect its predictive accuracy? (Q3) Is the pretraining
phase helpful for maintaining prediction quality under varying numbers of labels? (Q4) Does Agen-
tic Predictor maintain strong predictive performance under out-of-distribution shifts? (Q5) How does
Agentic Predictor compare against few-shot LLM-based workflow performance predictors?

4.1 SETUP

Table 2: Summary of benchmark statistics.

Domains Code Generation
(GD/AF)

Math
(GD/AF)

Reasoning
(GD/AF)

workflows 739 / 38 300 / 42 189 / 30
Avg. # nodes 5.96 / 6.11 6.06 / 5.49 5.97 / 6.58
tasks 233 / 233 782 / 782 2,400 / 2,400
samples 30,683 / 7,362 12,561 / 4,059 453,600 / 72,000

Benchmarks. To evaluate performance
predictors for agentic workflows, we use
FLORA-Bench (Zhang et al., 2025c), the
only publicly available benchmark (to the
best of our knowledge) that enumerates di-
verse workflows across multiple domains
and LLM backbones. It spans five datasets
covering three core areas: code generation (HumanEval (Chen et al., 2021), MBPP (Austin et al.,
2021)), mathematical problem solving (GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al.,
2021b)), and general reasoning (MMLU (Hendrycks et al., 2021a)). Table 2 summarizes the bench-
marks. Here, GD and AF denote the independently developed G-Designer (Zhang et al., 2025a)
and AFlow (Zhang et al., 2025b) agentic frameworks, respectively. We emphasize structural and
procedural diversity over raw difficulty; even for datasets often considered solved by prompting (e.g.,
GSM8K), predicting success across workflow variants remains nontrivial. For each dataset, we
randomly split instances into training (80%), validation (10%), and test (10%) sets.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison between Agentic Predictor and baselines. The best and second-best
results are highlighted in bold and underlined, respectively. GD is G-Designer, and AF is AFlow.

Domain CodeGD CodeAF MathGD MathAF ReasonGD ReasonAF Average
Model Accuracy Utility Accuracy Utility Accuracy Utility Accuracy Utility Accuracy Utility Accuracy Utility Accuracy Utility

MLP 83.88 76.16 78.02 73.94 63.22 64.13 73.73 69.64 71.54 62.41 78.45 88.48 74.81 72.46
(±0.04) (±0.03) (±0.59) (±1.35) (±0.30) (±0.44) (±0.31) (±0.29) (±0.09) (±1.67) (±0.08) (±0.63) (±0.24) (±0.74)

GCN 84.23 79.31 84.35 72.73 64.12 63.03 76.19 66.52 72.22 59.18 87.12 91.82 78.04 72.10
(±0.04) (±0.10) (±0.34) (±1.18) (±0.17) (±0.59) (±0.42) (±1.66) (±0.03) (±0.85) (±0.14) (±0.46) (±0.19) (±0.81)

GAT 85.14 79.50 84.49 76.46 64.84 62.32 76.44 66.51 72.16 59.44 87.07 89.40 78.36 72.27
(±0.25) (±0.14) (±0.56) (±0.91) (±0.96) (±0.93) (±0.61) (±1.28) (±0.03) (±1.06) (±0.08) (±0.68) (±0.42) (±0.83)

GCN-II 83.81 78.45 83.72 77.75 63.56 66.02 75.04 64.33 72.29 59.10 87.28 89.92 77.62 72.60
(±0.07) (±0.74) (±0.40) (±0.98) (±0.74) (±0.10) (±0.31) (±0.47) (±0.09) (±1.02) (±0.14) (±1.90) (±0.29) (±0.87)

Graph Transformer 85.24 80.20 84.71 74.09 63.25 64.97 75.45 66.48 72.26 60.92 86.93 90.60 77.97 72.88
(±0.19) (±0.64) (±0.45) (±0.35) (±0.70) (±0.36) (±0.23) (±0.96) (±0.08) (±1.79) (±0.27) (±1.97) (±0.32) (±1.01)

Dir-GNN 84.85 79.81 83.45 76.08 63.01 64.68 76.11 67.97 74.25 62.64 86.66 90.07 78.05 73.54
(±0.11) (±0.69) (±0.41) (±0.92) (±0.54) (±1.66) (±0.65) (±0.16) (±0.12) (±0.92) (±0.13) (±1.68) (±0.33) (±1.01)

One For All 83.74 75.93 81.05 73.42 63.17 66.65 75.21 69.08 72.29 60.35 82.52 87.64 76.33 72.18
(±0.09) (±0.12) (±0.34) (±1.39) (±0.21) (±0.82) (±0.23) (±0.64) (±0.12) (±1.25) (±0.13) (±1.98) (±0.19) (±1.03)

Agentic Predictor 85.33 81.42 85.62 80.08 66.20 67.88 79.56 74.08 75.13 63.06 87.96 91.47 79.97 76.33
(±0.05) (±0.26) (±0.47) (±0.46) (±0.17) (±0.21) (±0.25) (±0.47) (±0.01) (±0.45) (±0.02) (±0.44) (±0.16) (±0.38)

∆ vs. best baseline
(% Improvement)

+0.09 +1.22 +0.91 +2.33 +1.36 +1.23 +3.12 +4.44 +0.88 +0.42 +0.68 -0.35 +1.61 +2.79
(0.11%) (1.52%) (1.07%) (3.00%) (2.09%) (1.85%) (4.08%) (6.38%) (1.19%) (0.67%) (0.78%) -(0.38%) (2.05%) (3.79%)

Evaluation Metrics. To ensure a fair and consistent comparison, we strictly adhere to the official
evaluation protocols specified by the benchmark.

• Accuracy quantifies how well a model predicts agentic workflow performance. It is defined as
accuracy = 1

|Dtest|
∑|Dtest|

i 1(êi = ei), where |Dtest| is the size of the test split, and êi and ei
denote the predicted and ground-truth performance, respectively. 1(·) is the indicator function,
which returns 1 if êi = ei, and 0 otherwise.

• Utility evaluates the consistency between the workflow rankings predicted by the model and the
ground-truth rankings, emphasizing the model’s ability to determine the relative order of different
workflows. First, we calculate the ground-truth and predicted success rates of a workflowWi by
averaging e and ê across all tasks in Dtest. Then, we rank the workflows and extract the top-k
workflows according to the respective scores, resulting in two ordered sets: H = {Wi}ki=1 and
Ĥ = {W ′

i}ki=1. Formally, utility = 1
k

∑k
i=1 1(W ′

i ∈ H).
Baselines. Since there is no direct baseline method specifically designed for performance prediction
in agentic systems, we adopt comparison baselines from the benchmark paper. Some of these methods
have previously been used as performance predictors for NAS (White et al., 2021). The selected
baselines include one naive MLP and several strong graph-based models: GCN (Kipf & Welling,
2017), GAT (Veličković et al., 2018), GCN-II (Chen et al., 2020), Graph Transformer (Shi et al.,
2021), Dir-GNN (Rossi et al., 2024) and One For All (Liu et al., 2024a).

Implementation Details. For all methods, we follow the same setup as suggested by Zhang et al.
(2025c). Specifically, we use a 2-layer backbone with a hidden dimension of 512, set dropout to
0.5, and use a batch size of 512. Models are optimized with the Adam optimizer (Kingma & Ba,
2014) using a learning rate of 1 × 10−4 and weight decay of 5 × 10−4. Training is conducted for
200 epochs on a single NVIDIA A100-SXM4-80GB GPU, and the best checkpoint is selected by the
highest accuracy on the validation subset. Our framework is encoder-agnostic by design. To ensure a
controlled comparison, we reuse the all-MiniLM-L6-v2 (Wang et al., 2020) text encoder and
adopt CodeRankEmbed (Suresh et al., 2025) for code, both via SentenceTransformers (Reimers &
Gurevych, 2019) with default hyperparameters. Text inputs are truncated to 256 tokens and encoded
into 384-dimensional vectors, while code inputs (function-level nodes and full-workflow files) are
tokenized and truncated to model limits (up to 8,192 tokens) producing 768-dimensional vectors. All
embeddings are finally mapped into a unified 512-dimensional space using a 2-layer MLP (L = 2).

4.2 MAIN RESULTS (Q1)

We report all experimental results for agentic workflow performance prediction, averaged over three
runs with different random seeds on the same dataset. Table 3 presents the main performance scores
and standard deviations for all datasets. Our proposed framework, Agentic Predictor, consistently
outperforms baseline methods across the three task domains. For accuracy, Agentic Predictor
achieves top results in each domain—85.62%, 79.56%, and 87.96%, respectively—yielding the
highest overall average accuracy of 79.97%. This corresponds to improvements of 2.05% to 6.90%
over the comparison baselines. Utility scores show a similar pattern. Agentic Predictor attains
the highest utility in code generation (81.42%) and math problem solving (74.08%), as well as

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Results of ablation study on different input view variations.
Variations Code Generation Math Problem Common Reasoning Average

Code Graph Text Accuracy Utility Accuracy Utility Accuracy Utility Accuracy Utility

✓ 82.04 75.66 75.70 68.52 83.19 91.51 80.31 78.56
✓ 84.44 77.22 79.14 67.99 87.00 91.03 83.53 78.75

✓ 79.87 70.34 76.60 68.45 68.06 71.04 74.84 69.94
✓ ✓ 83.72 73.97 75.86 70.18 86.88 86.14 82.15 76.76
✓ ✓ 82.27 77.28 76.03 66.66 54.17 53.21 70.82 65.72

✓ ✓ 82.45 74.64 75.70 67.83 69.47 70.55 75.87 71.01
✓ ✓ ✓ 85.62 80.08 79.56 74.08 87.96 91.47 84.38 81.88

Table 5: Results of ablation study on different input graph variations.
Variations Code Generation Math Problem Commong Reasoning Average

Single View Multi View Accuracy Utility Accuracy Utility Accuracy Utility Accuracy Utility
✓ 82.58 78.52 78.57 67.51 86.95 90.14 82.70 78.72

✓ 84.44 77.22 79.14 67.99 87.00 91.03 83.53 78.75

a near-best score in reasoning tasks (91.47%), second only to GCN (91.82%). On average, it
achieves the highest utility score of 76.33%, representing improvements of 3.79% to 5.87% over the
baselines. These results demonstrate that Agentic Predictor not only enhances predictive accuracy but
also improves downstream utility across diverse agentic workflows, highlighting its robustness and
generalizability. The consistent performance gains further underscore the advantages of leveraging
multi-view encoding for heterogeneous agentic workflows.

4.3 ADDITIONAL ANALYSES

Ablation Study (Q2). To substantiate our contributions on specific design of multi-view workflow
encoding in Agentic Predictor, we conduct ablation study on two main components using the AFlow
subset: multi-view encoder and multi-graph encoding techniques. According to the results in Table 4,
we find that incorporating all three input views—code, graph, and text—results in the best overall
performance across all tasks. Specifically, the full model configuration achieves the highest average
accuracy (84.38%) and utility (81.88%), underscoring the complementary value of each modality.
Notably, the removal of any single view leads to a consistent drop in performance, demonstrating the
synergistic role of multimodal inputs in prediction capabilities of Agentic Predictor.

Furthermore, results in Table 5 reveal the significance of multi-graph encoding. When multiple graphs
are used instead of a single graph, the model shows a clear performance improvement, particularly in
code generation (accuracy improves from 82.58% to 84.44%) and reasoning tasks (utility rises from
90.14% to 91.03%). This supports our hypothesis that different graph perspectives enrich structural
context and lead to more robust representations. Together, these findings validate the architectural
choices in Agentic Predictor, demonstrating that both multi-view and multi-graph designs are integral
to its superior performance.

Label Ratio

A
cc

ur
ac

y

70

72

74

76

78

80

0.10.20.30.40.5

MLP GCN GAT GCN-II Graph Transformer
One For All Agent Predictor Agent Predictor+

Figure 3: Accuracy comparison
between Agentic Predictor and the
baselines across varying label ratios.

Effects of Pretraining Phase (Q3). Since acquiring a large
amount of ground-truth labels from agentic workflows is expen-
sive, we examine whether cross-domain unsupervised pretrain-
ing (denoted as Agentic Predictor+) benefits settings where
labeled instances are limited. We vary the label ratio from
0.1 to 0.5, selecting labeled samples from the training split
of all datasets in the benchmark. We pretrain the proposed
multi-view encoder on the remaining 50% (M) of the training
set with a batch size of 32 for 20 epochs. See more details in
§B.5. On average, the results shown in Figure 3 indicate that
Agentic Predictor+ consistently outperforms all baseline mod-
els across all label ratios, demonstrating the effectiveness of
our unsupervised pretraining strategy. The gains are especially
pronounced in low-label regimes: at a 0.1 label ratio, Agentic Predictor+ maintains an accuracy
above 73%, while other models drop closer to 70%. These findings underscore the importance
of leveraging cross-domain structure through pretraining for generalizable workflow performance
prediction, especially when direct supervision is limited.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Out-of-Distribution (OOD) Performance (Q4). We evaluate OOD robustness under cross-system
generalization (training on one agentic framework and testing on another) and cross-domain gen-
eralization (training on one task domain and testing on disjoint domains). As shown in §B.4,
Agentic Predictor consistently generalizes beyond in-distribution memorization, maintaining strong
performance and preserving relative workflow rankings across both settings. For example, when
trained on AFlow and tested on G-Designer, Agentic Predictor improves average accuracy from
59.52% (best baseline) to 62.05% and utility from 55.33% to 58.49%. Similar gains hold in the
reverse direction and under cross-domain splits.

Comparison with LLM Predictors (Q5). We evaluate 5-shot, prompt-based LLM classi-
fiers (temperature 0) using the standardized LLM-PP template (Jawahar et al., 2023) with GPT-4.1,
Claude 4 Sonnet, and Gemini 2.5 Flash. As shown in Table 9, these prompt-only LLM predictors
substantially underperform our graph-based model, indicating that they struggle to exploit the struc-
tured nature of agentic workflows. Agentic Predictor achieves 84.97% accuracy and 81.37% utility,
far exceeding the second-best GPT-4.1 at 62.86% and 58.92%, while also avoiding the considerable
latency and monetary overhead of LLM inference. Overall, few-shot LLMs serve as a useful baseline
but remain less effective and less economical for large-scale agent search.

4.4 RESOURCE COST

Table 6: Computation cost comparison.
Model Training Inference

Time (s/epoch) Memory (GB) Time (ms/sample) Memory (GB)
MLP 0.195 0.033 0.002 0.020

GCN 4.867 0.058 0.017 0.040
GAT 5.108 0.058 0.023 0.042

GCN-II 4.623 0.058 0.015 0.040
Graph Transformer 5.372 0.087 0.023 0.060

Dir-GNN 4.965 0.077 0.023 0.050
One For All 6.140 0.038 0.018 0.038

GPT-4.1 N/A
(via OpenRouter API)

2253.333
N/AClaude 4 Sonnet 1888.333

Gemini 2.5 Flash 2606.667

Agentic Predictor
(+ pretraining)

4.840
(168.104)

2.760
(13.520) 0.054 0.490

We further examine the efficiency of Agentic Predictor
measured by computation time and memory usage. As
shown in Table 6, our framework remains competitive with
standard GNN baselines despite its higher model capac-
ity and richer input features, requiring only 0.054ms and
0.49GB to score a workflow at inference—orders of mag-
nitude faster and cheaper than few-shot LLM predictors.
A full run of Agentic Predictor involves a one-time cost of
≈ 1.2 A100 GPU-hours (200 supervised epochs plus 20
optional pretraining epochs), with modest memory requirements that fit on a single 16 GB GPU. In
contrast, LLM-based scoring costs about $21 per 1,000 candidates (≈$0.021 per sample with Gemini
2.5 Flash), implying a break-even point after only 110-120 evaluations assuming a $2/hr A100 rate.
As realistic searches involve thousands of candidates and the trained predictor is reusable across tasks
and frameworks, this modest one-time cost is quickly amortized, making Agentic Predictor far more
economical than repeated LLM calls while offering near-zero marginal latency and higher accuracy.

Full experimental results on different underlying LLMs, various GNN backbones, LLM classifier
comparison, and out-of-distribution test are reported in Tables 7 8, 9, 10, 11 and 12, respectively.
An additional evaluation of performance predictors used as a reward function for agentic workflow
optimization, and case study findings are also provided in §B.6 and §C.

5 CONCLUSIONS

This paper introduces Agentic Predictor, a novel framework for efficient prediction of agentic work-
flow performance that leverages a multi-view predictive approach. By integrating multi-view graph
structures, code semantics, and prompt embeddings into a unified representation, Agentic Predictor
captures the diverse characteristics of agentic systems. Moreover, it employs cross-domain unsuper-
vised pretraining to mitigate the challenge of limited labeled data, thereby enhancing generalization
across varied tasks. Through comprehensive experiments spanning three domains, Agentic Predictor
consistently outperforms strong baselines in predictive accuracy and workflow utility.

Limitations and Future Work. While Agentic Predictor exhibits strong performance, it has certain
limitations. The current predictor focuses on binary success metrics, constrained by the available
benchmark, which may overlook more nuanced aspects of workflow behavior. Evaluating on new,
independently curated agentic benchmarks is an important direction for future work. Additionally,
adapting to highly specialized domains may still require some labeled data. Future work includes
expanding to multi-objective optimization (e.g., balancing accuracy and cost), incorporating richer
views such as temporal traces and user feedback, and exploring human-in-the-loop workflows for real-
time refinement. These directions aim to make Agentic Predictor more generalizable and interactive
in complex, real-world settings.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We facilitate reproducibility by providing an anonymous repository with all source code at https://
anonymous.4open.science/r/agent-predictor. Algorithm 1 provides the complete
pseudocode of the proposed framework. For experimental consistency, the random seed for each run
is 2r, where r is the running index starting from 0.

REFERENCES

Yash Akhauri and Mohamed S Abdelfattah. Encodings for prediction-based neural architecture
search. In Forty-first International Conference on Machine Learning, 2024. 4, 6

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021. 7

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021. 7

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In Proceedings of the 37th International Conference on Machine Learning,
pp. 1725–1735, 2020. 8

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong
Sun, and Jie Zhou. Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors. In The Twelfth International Conference on Learning Representations, 2024. 2, 3

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021. 7

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, 2024. 2, 3

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp.
2368–2378, 2019. 19

Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas Lane.
Brp-nas: Prediction-based nas using gcns. In Advances in neural information processing systems,
pp. 10480–10490, 2020. 3

Mourad Gridach, Jay Nanavati, Khaldoun Zine El Abidine, Lenon Mendes, and Christina Mack.
Agentic ai for scientific discovery: A survey of progress, challenges, and future directions. arXiv
preprint arXiv:2503.08979, 2025. 1, 2

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf
Wiest, and Xiangliang Zhang. Large language model based multi-agents: a survey of progress
and challenges. In Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, pp. 8048–8057, 2024. 2

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021a. 7

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021b. 7

11

https://anonymous.4open.science/r/agent-predictor
https://anonymous.4open.science/r/agent-predictor

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representations,
2024. 1, 2

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. In The Thirteenth
International Conference on Learning Representations, 2025a. 1, 3

Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui Liu, Zijie Yu, Yuchen Hou, Shuo Tang, and
Siheng Chen. Self-evolving multi-agent networks for software development. In The Thirteenth
International Conference on Learning Representations, 2025b. 1

Dongyeong Hwang, Hyunju Kim, Sunwoo Kim, and Kijung Shin. Flowerformer: Empowering neural
architecture encoding using a flow-aware graph transformer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 6128–6137, 2024. 3

Ganesh Jawahar, Muhammad Abdul-Mageed, Laks VS Lakshmanan, and Dujian Ding. Llm perfor-
mance predictors are good initializers for architecture search. arXiv preprint arXiv:2310.16712,
2023. 10, 16

Han Ji, Yuqi Feng, and Yanan Sun. Cap: a context-aware neural predictor for nas. In Proceedings of
the Thirty-Third International Joint Conference on Artificial Intelligence, pp. 4219–4227, 2024. 3

Zixuan Ke, Fangkai Jiao, Yifei Ming, Xuan-Phi Nguyen, Austin Xu, Do Xuan Long, Minzhi Li,
Chengwei Qin, Peifeng Wang, Silvio Savarese, et al. A survey of frontiers in llm reasoning:
Inference scaling, learning to reason, and agentic systems. arXiv preprint arXiv:2504.09037, 2025.
1, 2

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 8

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. 8

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. In The Twelfth
International Conference on Learning Representations, 2024a. 8

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic LLM-powered agent
network for task-oriented agent collaboration. In First Conference on Language Modeling, 2024b.
1, 3

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA:
a benchmark for general AI assistants. In The Twelfth International Conference on Learning
Representations, 2024. 1

Boye Niu, Yiliao Song, Kai Lian, Yifan Shen, Yu Yao, Kun Zhang, and Tongliang Liu. Flow: Modu-
larized agentic workflow automation. In The Thirteenth International Conference on Learning
Representations, 2025. 2

Yameng Peng, Andy Song, Vic Ciesielski, Haytham M. Fayek, and Xiaojun Chang. Pre-nas: predictor-
assisted evolutionary neural architecture search. In Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 1066–1074, 2022. 3

Aske Plaat, Max van Duijn, Niki van Stein, Mike Preuss, Peter van der Putten, and Kees Joost
Batenburg. Agentic large language models, a survey. arXiv preprint arXiv:2503.23037, 2025. 1, 2

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. ChatDev:
Communicative agents for software development. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 15174–15186, 2024. 2, 3

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shuofei Qiao, Runnan Fang, Zhisong Qiu, Xiaobin Wang, Ningyu Zhang, Yong Jiang, Pengjun Xie,
Fei Huang, and Huajun Chen. Benchmarking agentic workflow generation. In The Thirteenth
International Conference on Learning Representations, 2025. 2

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, 11
2019. 8

Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan Günnemann,
and Michael M Bronstein. Edge directionality improves learning on heterophilic graphs. In
Learning on graphs conference, pp. 25–1. PMLR, 2024. 8

Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. Agentsquare: Automatic
llm agent search in modular design space. In The Thirteenth International Conference on Learning
Representations, 2025. 1, 3

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. In Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 1548–1554, 8
2021. 8

Tarun Suresh, Revanth Gangi Reddy, Yifei Xu, Zach Nussbaum, Andriy Mulyar, Brandon Duderstadt,
and Heng Ji. CoRNStack: High-quality contrastive data for better code retrieval and reranking. In
The Thirteenth International Conference on Learning Representations, 2025. 8

Patara Trirat and Jae-Gil Lee. MONAQ: Multi-objective neural architecture querying for time-series
analysis on resource-constrained devices. In Findings of EMNLP, 2025a. 2

Patara Trirat and Jae-Gil Lee. Pasta: Neural architecture search for anomaly detection in multivariate
time series. IEEE Transactions on Emerging Topics in Computational Intelligence, 9(4):2924–2939,
2025b. 4, 6

Patara Trirat, Wonyong Jeong, and Sung Ju Hwang. AutoML-agent: A multi-agent LLM framework
for full-pipeline autoML. In Forty-second International Conference on Machine Learning, 2025. 2

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. 8

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers. Advances in neural
information processing systems, 33:5776–5788, 2020. 8

Colin White, Willie Neiswanger, Sam Nolen, and Yash Savani. A study on encodings for neural
architecture search. In NeurIPS, pp. 20309–20319, 2020. 4, 6

Colin White, Arber Zela, Binxin Ru, Yang Liu, and Frank Hutter. How powerful are performance
predictors in neural architecture search? In Advances in Neural Information Processing Systems,
2021. 1, 8

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. AutoGen: Enabling next-gen LLM applications via multi-agent conversations. In First
Conference on Language Modeling, 2024. 1

Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Dingwen
Yang, Chenyang Liao, Xin Guo, Wei He, Songyang Gao, Lu Chen, Rui Zheng, Yicheng Zou,
Tao Gui, Qi Zhang, Xipeng Qiu, Xuanjing Huang, Zuxuan Wu, and Yu-Gang Jiang. AgentGym:
Evolving large language model-based agents across diverse environments, 2024. 1

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. Science China Information Sciences, 68(2):121101, 2025. 1, 2

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z. Wang,
Xuhui Zhou, Zhitong Guo, Murong Cao, Mingyang Yang, Hao Yang Lu, Amaad Martin, Zhe Su,
Leander Maben, Raj Mehta, Wayne Chi, Lawrence Jang, Yiqing Xie, Shuyan Zhou, and Graham
Neubig. TheAgentCompany: Benchmarking llm agents on consequential real world tasks, 2024. 2

Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, and Mi Zhang. Does unsupervised architecture representa-
tion learning help neural architecture search? Advances in neural information processing systems,
33:12486–12498, 2020. 6

Shen Yan, Kaiqiang Song, Fei Liu, and Mi Zhang. Cate: Computation-aware neural architecture
encoding with transformers. In International Conference on Machine Learning, pp. 11670–11681.
PMLR, 2021. 6

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2369–2380, 2018. 19

Rui Ye, Shuo Tang, Rui Ge, Yaxin Du, Zhenfei Yin, Siheng Chen, and Jing Shao. MAS-GPT: Training
LLMs to build LLM-based multi-agent systems. In Forty-second International Conference on
Machine Learning, 2025. 3

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. Evoagent: Towards
automatic multi-agent generation via evolutionary algorithms. In NAACL, 2025. 1

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
Tianlong Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication topologies
via graph neural networks. In ICML, 2025a. 3, 7, 16

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
Wu. AFlow: Automating agentic workflow generation. In The Thirteenth International Conference
on Learning Representations, 2025b. 1, 3, 7, 16, 18

Yuanshuo Zhang, Yuchen Hou, Bohan Tang, Shuo Chen, Muhan Zhang, Xiaowen Dong, and Siheng
Chen. FLORA: GNNs as predictors of agentic workflow performances. In The Fourth Learning
on Graphs Conference, 2025c. 3, 5, 6, 7, 8, 15, 16, 18

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. GPTSwarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024. 1, 3

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A PSEUDOCODE OF AGENTIC PREDICTOR

We present the pseudocode of the proposed Agentic Predictor framework in Algorithm 1 below.

Algorithm 1 Overall Procedure of Agentic Predictor
Initialization: Multi-View Encoder Enc(·) and Performance Predictor ModelMΘ

Input: User Instruction (or Task Description) T ∈ T and Training Data Dtrain

1: ▷ Multi-View Graph Construction (§3.3)
2: Construct a node-aligned view set G = {Gv = (V, E , Xv) | v ∈ {prompt, code, operator}}

where Xv is the view-specific node features.
3: ▷ Cross-Domain Unsupervised Pretraining (§3.4, Optional)
4: Sample M unlabeled workflowsW1,W2, ...,WM from multiple domains
5: for eachWi = (Gi, Ci,Pi) do
6: Zi ← Enc(Gi, Ci,Pi) ▷ Encode multiview graph, code, and prompts
7: (Ĝi, Ĉi, P̂i)← Dec(Zi) ▷ Decode reconstructions
8: end for
9: Lenc = Lrec + Lcon ▷ Minimize total pretraining loss

10: ▷ Training Performance Predictor (§3.5)
11: Obtain (small) labeled dataset {(Wj , Tj , ej)}Nj=1 from Dtrain

12: for each (Wj , Tj) do
13: Zj ← Enc(Wj) ▷ Encode workflow
14: Tj ← TaskEncoder(Tj) ▷ Encode task description
15: Fj ← MLP([Zj ,Tj]) ▷ Form joint representation
16: êj ←MΘ(Fj) ▷ Predict performance
17: end for
18: TrainMΘ using binary cross-entropy loss Lpred(ej , êj), where {ej}Nj=1
19: ▷ Predictor-Guided Candidate Ranking
20: Sample K candidate workflows {Wk}Kk=1
21: for eachWk do
22: Zk ← Enc(Wk) ▷ Encode workflow
23: Fk ← MLP([Zk,T]) ▷ Encode task
24: êk ←MΘ(Fk) ▷ Predict score
25: end for
26: Rank all {Wk} by predicted scores êk
27: return top-k ranked workflows for final evaluation

B ADDITIONAL EXPERIMENTAL RESULTS

This section provides complementary studies that further characterize our approach: robustness when
the agent-controller LLM backbone varies (§B.1); an ablation over multiple GNN backbones (§B.2);
a comparison to few-shot LLM predictors (§B.3); and out-of-distribution (OOD) generalization
evaluations (§B.4).

B.1 PERFORMANCE ON DIFFERENT LLM BACKBONES

As shown in Table 7, we assess whether predictor performance is robust when the agentic work-
flows are driven by different LLMs. Concretely, we replicate our evaluation while swapping the
controller LLM among GPT-4o-mini, DeepSeek, Qwen 7B, and Mistral 7B, holding the training
data construction, multi-view encoder, and evaluation protocol fixed. Except for the Mistral 7B case,
Agentic Predictor exhibits stable performance and preserves the relative ranking of workflows across
these backbones, indicating that it captures structural and behavioral regularities of agentic programs
rather than idiosyncrasies of any single LLM.

B.2 PERFORMANCE ON DIFFERENT GNN BACKBONES

Our main experiments use a 2-layer GCN (hidden size 512) following the standard setup in FLORA-
Bench (Zhang et al., 2025c), enabling a controlled comparison to baseline predictors. To test

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Results on different backbones driven agentic workflows.
Domain GPT-4o-mini DeepSeek Qwen 7B Mistral 7B
Model Accuracy Utility Accuracy Utility Accuracy Utility Accuracy Utility

MLP 83.88 76.16 85.89 71.72 84.25 80.52 89.23 85.07
GCN 82.94 80.40 86.56 75.69 86.71 84.48 92.58 88.48
GAT 83.03 80.25 84.42 75.18 86.98 84.26 92.62 88.72

GCN-II 82.81 79.48 84.34 75.68 85.17 82.71 90.94 85.89
Graph Transformer 83.42 79.83 86.34 73.06 86.76 84.65 92.80 88.87

Dir-GNN 84.85 79.81 85.38 71.27 86.36 84.50 91.87 88.47
One For All 81.24 71.92 84.73 73.23 84.51 80.42 89.13 85.06

Agentic Predictor 85.33 81.42 88.39 76.64 86.99 85.02 92.33 88.69

architecture sensitivity, we conduct an ablation over five diverse GNN backbones—GCN, GAT,
GCN-II, Graph Transformer, and Dir-GNN—while keeping the prompt and code views fixed. As
presented in Table 8 All backbones yield comparable predictive accuracy and replicate the same
trends, reinforcing that the performance improvements stem from the multi-view encoding and
pretraining rather than a specific GNN design. These results support the architecture-agnostic nature
of the Agentic Predictor.

B.3 COMPARISON WITH LLM PREDICTORS

We compare against few-shot, prompt-based LLM classifiers implemented with a standardized
LLM-PP–style template (Jawahar et al., 2023) with 5-shot and temperature set to 0 using GPT-4.1,
Claude 4 Sonnet, and Gemini 2.5 Flash. The results in Table 9 are consistent with prior findings
on FLORA-Bench (Zhang et al., 2025c) (which evaluated DeepSeek-v3), these prompted LLMs
underperform even a simple MLP predictor and substantially trail our graph-based approach. A
likely reason is that prompted LLM classifiers do not exploit the structured execution patterns and
tool-usage dynamics present in agentic workflows. Beyond accuracy, prompted LLM inference incurs
a per-sample monetary and latency cost, whereas our predictor amortizes cost at training time. In
our setup, generating predictions for up to 1,000 samples per task with LLM prompting required
approximately $300, implying considerably higher expense at full-benchmark scale. By contrast,
the learned predictor scales to large candidate sets with constant per-sample computational cost at
inference. Overall, while few-shot LLMs provide a useful baseline, they are less effective and less
economical for large-scale agent search.

B.4 OUT-OF-DISTRIBUTION (OOD) GENERALIZATION PERFORMANCE

We study two factors that enable OOD robustness. First, the multi-view encoder jointly represents
workflows via graph, code, and prompt views, all of which are architecture-agnostic. This design
allows unseen agents and tools to be incorporated as long as their implementations and textual
descriptions are available; the graph encoder embeds novel entities through structural and attribute
signals without relying on fixed IDs. Second, cross-domain unsupervised pretraining over diverse
unlabeled workflows equips the encoder with priors over common structural and behavioral motifs
(e.g., tool invocation patterns and reasoning flows), improving robustness to unseen configurations.

Regarding evaluation, following RQ3 in FLORA-Bench (Zhang et al., 2025c), we perform two
levels of OOD generalization. Cross-system generalization: train on one agentic framework (e.g.,
AFlow (Zhang et al., 2025b)) and test on another (e.g., G-Designer (Zhang et al., 2025a)) as well as
cross-domain generalization: train on one set of downstream tasks (e.g., math) and test on disjoint
tasks (e.g., coding) not observed during training. As presented in Table 10, Table 11 and Table 12,
across both settings, Agentic Predictor maintains strong performance and preserves relative workflow
rankings, indicating that it generalizes beyond in-distribution memorization.

B.5 EFFECTS OF PRETRAINING PHASE (FULL RESULTS)

Since acquiring a large amount of ground-truth labels from agentic workflows is expensive, we
examine whether cross-domain unsupervised pretraining (denoted as Agentic Predictor+) benefits
settings where labeled instances are limited. We vary the label ratio from 0.1 to 0.5, selecting
labeled samples from the training split of all datasets in the benchmark. Concretely, we construct an

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: Results on different GNN backbones of Agentic Predictor.
Domain Code Generation Math Problem Common Reasoning Average

GNN Backbone Accuracy Utility Accuracy Utility Accuracy Utility Accuracy Utility

GCN 85.62 80.08 79.56 74.08 87.96 91.47 84.38 81.88
GAT 83.74 73.11 75.86 67.03 86.95 87.20 82.19 75.78

GCN-II 84.71 73.83 76.68 68.41 86.76 86.04 82.72 76.09
Graph Transformer 83.22 78.17 76.64 70.03 86.88 89.50 82.25 79.23

Dir-GNN 84.62 79.64 80.26 75.03 87.93 94.77 84.27 83.15

Table 9: Comparison between Agentic Predictor and LLM-based few-show classification.
Domain Code Generation Math Problem Common Reasoning Average
Model Accuracy Utility Accuracy Utility Accuracy Utility Accuracy Utility

GPT-4.1 (∼$59) 62.42 57.00 67.08 52.97 59.10 66.79 62.86 58.92
Claude 4 Sonnet (∼$202) 56.72 51.65 64.62 57.32 44.50 41.25 55.28 50.07
Gemini 2.5 Flash (∼$21) 60.52 58.94 51.60 55.21 59.20 63.17 57.10 59.11

Agentic Predictor 84.40 78.84 80.10 77.61 90.40 87.67 84.97 81.37

Label Ratio

A
cc

ur
ac

y

70

72

74

76

78

80

82

0.10.20.30.40.5

MLP GCN GAT GCN-II Graph Transformer
One For All Agentic Predictor Agentic Predictor+

(a) Code Generation.
Label Ratio

A
cc

ur
ac

y

64

66

68

70

72

74

0.10.20.30.40.5

MLP GCN GAT GCN-II Graph Transformer
One For All Agentic Predictor Agentic Predictor+

(b) Math Problem.
Label Ratio

A
cc

ur
ac

y

65

70

75

80

85

0.10.20.30.40.5

MLP GCN GAT GCN-II Graph Transformer
One For All Agentic Predictor Agentic Predictor+

(c) Reasoning Tasks.
Label Ratio

A
cc

ur
ac

y

70

72

74

76

78

80

0.10.20.30.40.5

MLP GCN GAT GCN-II Graph Transformer
One For All Agentic Predictor Agentic Predictor+

(d) Average.

Label Ratio

U
til

ity

65

70

75

80

85

0.10.20.30.40.5

MLP GCN GAT GCNII GT OFA
Agentic Predictor Agentic Predictor+

(e) Code Generation.
Label Ratio

U
til

ity

60

65

70

75

0.10.20.30.40.5

MLP GCN GAT GCNII GT OFA
Agentic Predictor Agentic Predictor+

(f) Math Problem.
Label Ratio

U
til

ity

75

80

85

90

95

0.10.20.30.40.5

MLP GCN GAT GCNII GT OFA
Agentic Predictor Agentic Predictor+

(g) Reasoning Tasks.
Label Ratio

U
til

ity
65

70

75

80

85

0.10.20.30.40.5

MLP GCN GAT GCNII GT OFA
Agentic Predictor Agentic Predictor+

(h) Average.

Figure 4: Comparison of accuracy (upper) and utility (lower) between Agentic Predictor and the
baselines across varying label ratios.

unlabeled corpus by pooling all workflow configurations from the remaining training splits of the
FLORA-Bench across Code, Math, and Reasoning tasks and both AFlow and G-Designer frameworks,
sampling uniformly over the pool without additional deduplication or domain re-weighting. This
yields M = 232, 104 distinct samples (≈ 6.56% Code, 2.86% Math, 90.58% Reasoning). No
validation and test workflows or labels are included to avoid leakage. We pretrain the proposed
multi-view encoder with a batch size of 32 for 20 epochs.

Following the average results in the main text, we provide a comprehensive comparison of accuracy
(top row) and utility (bottom row) across three task domains—code generation, math problems, and
reasoning—under varying label ratios from 0.5 to 0.1 (Figure 4).

Across all settings, our proposed framework, Agentic Predictor, and its pretrained variant, Agen-
tic Predictor+, consistently outperform baseline models, especially in low-resource scenarios. In the
code generation domain (Figures 4a, 4e), Agentic Predictor+ achieves superior accuracy and notably
higher utility as the label ratio decreases, outperforming all graph-based and non-graph baselines.
Similarly, for math problems (Figures 4b, 4f), Agentic Predictor+ maintains a stable accuracy even
as labeled data diminishes, while significantly improving utility, indicating better performance in
label-scarce conditions. In reasoning tasks (Figures 4c, 4g), although accuracy deltas narrow between
models, Agentic Predictor+ sustains strong utility across all label ratios, highlighting its robustness
in generalization. When averaged across domains (Figures 4d, 4h), Agentic Predictor+ shows clear
advantages in both metrics under limited supervision. The utility improvements are particularly
prominent, suggesting that our pretrained encoder captures transferable representations that enhance
decision-making, even when fine-tuning data is sparse. These findings validate the efficacy of the
unsupervised pretraining phase and highlight the importance of cross-domain datasets for pretraining.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 10: Results when train on AFlow and test on G-Designer.
Domain Code Generation Math Problem Common Reasoning Average
Model Accuracy Utility Accuracy Utility Accuracy Utility Accuracy Utility

GCN 56.76 54.29 49.64 51.92 61.37 54.13 55.92 53.45
GAT 57.25 56.05 48.29 48.71 57.03 53.12 54.19 52.63

GCN-II 64.16 62.67 48.85 50.56 65.55 52.76 59.52 55.33
Graph Transformer 60.83 58.39 47.73 46.65 55.88 48.87 54.81 51.30

One For All 58.97 53.25 50.60 51.02 63.84 55.22 57.80 53.16

Agentic Predictor 65.02 64.91 53.62 52.83 67.51 57.74 62.05 58.49

Table 11: Results when train on G-Designer and test on AFlow.
Domain Code Generation Math Problem Common Reasoning Average
Model Accuracy Utility Accuracy Utility Accuracy Utility Accuracy Utility

GCN 58.21 57.33 67.57 54.63 57.51 53.37 61.10 55.11
GAT 59.29 59.68 66.34 52.70 56.07 50.38 60.57 54.25

GCN-II 58.75 61.17 67.32 52.96 55.93 52.19 60.67 55.44
Graph Transformer 60.52 61.44 58.97 57.49 56.50 54.86 58.66 57.93

One For All 62.01 54.57 58.72 61.23 59.40 54.17 60.04 56.66

Agentic Predictor 60.94 59.75 69.11 63.02 58.56 56.73 62.87 59.83

B.6 WORKFLOW OPTIMIZATION RESULTS

In the main experiments, we demonstrate the feasibility and robustness of predicting agentic work-
flow performance. However, it remains an open question whether such predictions can effectively
contribute to improving efficiency and to what extent they may introduce performance degradation in
agentic workflows. To investigate this, we evaluate whether using Agentic Predictor as a predictor
enhances the optimization of agentic workflows compared to alternative baselines. Specifically, we
measure the performance improvement (or loss) incurred when using performance predictors.

To ensure a fair comparison, we adopt the same experimental setup as Zhang et al. (2025c), which
provides a unified platform for optimizing agentic workflows and evaluating their performance.
During the optimization process on each benchmark, a predictor is used to estimate the performance
of candidate agentic workflows. These predicted performance values are treated as rewards to guide
the optimization. Upon completion of the optimization, the quality of the resulting workflows is
assessed based on their accuracy score on held-out test tasks.

We compare Agentic Predictor against four baselines: (1) the ground truth baseline, which directly
evaluates agentic workflows to obtain ground-truth performance scores (as done in the original
AFlow (Zhang et al., 2025b)); (2) two strong GNN-based predictors GCN and GAT; and (3) a random
baseline, which assigns random performance scores as rewards. This experiment is conducted across
five benchmarks: MATH, GSM8K, MBPP, HumanEval, and MMLU.

As in Table 13, Agentic Predictor consistently outperforms the random, GCN, and GAT baselines,
achieving an average accuracy score of 74.43%, significantly higher than random (62.56%), GCN
(68.42%), and GAT (71.00%). Notably, as a predictor incurs zero search cost compared to the ground-
truth’s cost of $39.83, this result underscores the effectiveness and efficiency of Agentic Predictor
as a reliable predictor for optimizing agentic workflows. Note that the search cost is 0 because the
predictors do not incur any LLM inference cost. Note that the search cost when using the performance
predictor is effectively zero because the predictor incurs no LLM inference calls (i.e., no downstream
task executions of task queries) to decide whether the current workflow has failed. The lightweight
LLM update applied after each pass/fail decision, whose cost is about 0.005− 0.01 per update round
with GPT-4.1-mini on the existing workflow, is excluded from the reported costs for all methods.

In real-world deployments, Agentic Predictor can be combined with any workflow generator (e.g.,
AFlow). In such cases, the overall cost decomposes into (1) the candidate-generation LLM cost
(shared across all search strategies) and (2) the evaluation cost. Our predictor reduces (2) by replacing
most candidate evaluations with cheap, yet more accurate predictions, while incurring only a one-time
training cost (see §4.4). This analysis applies equally to the other predictors as well.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 12: Results on cross-domain OOD test.
Domain Code-Math Code-Reason Math-Reason Math-Code Reason-Code Reason-Math Average
Model Accuracy Utility Accuracy Utility Accuracy Utility Accuracy Utility Accuracy Utility Accuracy Utility Accuracy Utility

GCN 48.89 54.07 52.61 53.29 49.38 46.69 50.07 48.75 32.56 50.53 33.42 50.57 44.49 50.65
GAT 45.95 49.42 53.71 57.90 46.83 38.90 51.02 47.40 33.79 52.62 33.42 51.10 44.12 49.56

GCN-II 56.02 44.49 53.44 45.93 50.38 47.36 39.48 51.55 38.13 51.35 36.61 57.93 45.68 49.77
Graph Transformer 47.67 56.18 53.71 57.95 47.90 43.63 54.00 56.20 60.92 52.37 41.77 52.91 51.00 53.21

One For All 36.61 61.11 50.33 39.82 44.92 45.88 65.40 56.24 63.36 50.60 38.08 45.27 49.78 49.82

Agentic Predictor 57.17 61.03 54.22 62.99 53.86 61.75 59.88 60.25 61.60 54.52 62.90 52.69 58.27 58.87

Table 13: Workflow optimization performance based on the selected workflow across methods.

Methods Math Problems Code Generation Reasoning Average
MATH GSM8K MBPP HumanEval MMLU DROP HotpotQA Score Search Cost ($)

Ground Truth (AFlow) 87.38 94.53 73.22 97.20 83.10 84.25 69.94 84.23 39.83

Random 78.40 75.23 67.84 76.34 42.87 80.42 16.86 62.56 0.00
GCN 79.22 86.16 68.23 97.46 46.43 82.33 19.14 68.42 0.00
GAT 80.11 86.22 68.62 97.71 57.00 85.83 21.47 71.00 0.00

Agentic Predictor 81.89 92.65 68.42 98.73 79.70 86.25 13.37 74.43 0.00

B.7 TRANSFERABILITY

Considering that the MMLU benchmark encompasses various reasoning tasks, we further investigate
the transferability of predictors trained on MMLU datasets to determine whether they can be used
to optimize similar reasoning tasks, specifically DROP (Dua et al., 2019) and HotpotQA (Yang
et al., 2018). As reported in Table 13, the workflow optimized using Agentic Predictor achieves
competitive performance on these tasks: 86.25% on DROP and 13.37% on HotpotQA, demonstrating
notable transferability. While performance on HotpotQA is lower than the baselines, the results
remain broadly comparable, indicating that the workflows optimized via Agentic Predictor maintain
substantial effectiveness when transferred to closely related reasoning tasks. This highlights the
practical potential of Agentic Predictor for broader applicability in workflow optimization scenarios.

C CASE STUDY

This section presents qualitative results from the workflow optimization process using Agen-
tic Predictor as the reward function across three domains.

C.1 CODE GENERATION

The code generation workflow on the HumanEval dataset demonstrates that the initial solution
generation step often required subsequent refinement through explicit review and revision cycles. By
systematically reviewing the initially generated code, and conditionally revising based on feedback
from automated tests, the workflow substantially improved the final solution’s correctness. This
iterative approach effectively balanced computational cost and performance, resulting in solutions
that were consistently more robust and accurate compared to single-step generations.

Workflow for Code Generation (HumanEval)

from typing import Literal
import workspace.HumanEval.workflows.template.operator as operator
import workspace.HumanEval.workflows.round_19.prompt as prompt_custom
from metagpt.provider.llm_provider_registry import create_llm_instance
from metagpt.utils.cost_manager import CostManager

DatasetType = Literal["HumanEval", "MBPP", "GSM8K", "MATH", "HotpotQA", "DROP", "MMLU"]

class Workflow:
def __init__(

self,
name: str,
llm_config,
dataset: DatasetType,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

) -> None:
self.name = name
self.dataset = dataset
self.llm = create_llm_instance(llm_config)
self.llm.cost_manager = CostManager()
self.custom = operator.Custom(self.llm)
self.custom_code_generate = operator.CustomCodeGenerate(self.llm)
self.test = operator.Test(self.llm)

async def __call__(self, problem: str, entry_point: str):
"""
Implementation of the workflow
1. Generate initial solution using custom_code_generate.
2. Review the solution using custom operator.
3. Test the solution; if test fails, revise using custom operator and retest.
"""
Step 1: Generate initial solution
initial_solution = await self.custom_code_generate(problem=problem, entry_point=

entry_point, instruction="")

Step 2: Review the solution to improve quality
reviewed = await self.custom(input=initial_solution[’response’], instruction=

prompt_custom.REVIEW_PROMPT)

Step 3: Test the reviewed solution
test_result = await self.test(problem=problem, solution=reviewed[’response’],

entry_point=entry_point)

If test fails, revise solution based on test feedback and retest once
if not test_result[’result’]:

revised = await self.custom(input=reviewed[’response’] + "\n" + test_result[’
solution’], instruction=prompt_custom.REVISE_PROMPT)

test_result = await self.test(problem=problem, solution=revised[’response’],
entry_point=entry_point)

final_solution = revised[’response’] if test_result[’result’] else reviewed[’
response’]

else:
final_solution = reviewed[’response’]

return final_solution, self.llm.cost_manager.total_cost

C.2 MATH PROBLEM

In addressing mathematical problems using the MATH dataset, the workflow leverages an ensemble
strategy by producing multiple candidate solutions, subsequently selecting the most consistent one via
a self-consistency ensemble step. The selected solution was then further refined through an additional
review process. This combined ensemble and review mechanism significantly enhanced solution
quality, highlighting the value of ensemble techniques in solving complex mathematical reasoning
tasks, while maintaining a controlled computational budget.

Workflow for Math Problem (MATH)

from typing import Literal
import workspace.MATH.workflows.template.operator as operator
import workspace.MATH.workflows.round_88.prompt as prompt_custom
from metagpt.provider.llm_provider_registry import create_llm_instance
from metagpt.utils.cost_manager import CostManager

DatasetType = Literal["HumanEval", "MBPP", "GSM8K", "MATH", "HotpotQA", "DROP", "MMLU"]

class Workflow:
def __init__(

self,
name: str,
llm_config,
dataset: DatasetType,

) -> None:
self.name = name
self.dataset = dataset
self.llm = create_llm_instance(llm_config)
self.llm.cost_manager = CostManager()
self.custom = operator.Custom(self.llm)
self.sc_ensemble = operator.ScEnsemble(self.llm)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

async def __call__(self, problem: str):
"""
Implementation of the workflow with ensemble and review step
"""
Generate multiple candidate solutions using custom operator with different

instructions
candidates = []
for i in range(3):

response = await self.custom(input=problem, instruction=prompt_custom.SOLVE_PROMPT
+ f" Attempt {i+1}.")

candidates.append(response[’response’])

Use self-consistency ensemble to select the best solution
ensemble_result = await self.sc_ensemble(solutions=candidates, problem=problem)
best_solution = ensemble_result[’response’]

Review and refine the best solution
review_response = await self.custom(input=problem + "\nSolution to review:\n" +

best_solution, instruction=prompt_custom.REVIEW_PROMPT)
final_solution = review_response[’response’]

return final_solution, self.llm.cost_manager.total_cost

C.3 REASONING TASK

For reasoning tasks on the MMLU dataset, the workflow combines multiple generation techniques,
including custom-generated solutions with varying prompts and answers produced by specialized
answer-generation operators, to diversify initial candidate answers. The self-consistency ensemble
step effectively selected the most consistent candidate, which was subsequently subjected to rigorous
review and format verification steps. This meticulous process, which included conditional regenera-
tion and revision to ensure strict adherence to specified answer formats, proved highly effective in
enhancing both accuracy and reliability of the final responses.

Workflow for Reasoning Task (MMLU)

from typing import Literal
import workspace.MMLU.workflows.template.operator as operator
import workspace.MMLU.workflows.round_19.prompt as prompt_custom
from metagpt.provider.llm_provider_registry import create_llm_instance
from metagpt.utils.cost_manager import CostManager

DatasetType = Literal["HumanEval", "MBPP", "GSM8K", "MATH", "HotpotQA", "DROP", "MMLU"]

class Workflow:
def __init__(

self,
name: str,
llm_config,
dataset: DatasetType,

) -> None:
self.name = name
self.dataset = dataset
self.llm = create_llm_instance(llm_config)
self.llm.cost_manager = CostManager()
self.custom = operator.Custom(self.llm)
self.answer_generate = operator.AnswerGenerate(self.llm)
self.sc_ensemble = operator.ScEnsemble(self.llm)

async def __call__(self, problem: str):
"""
Implementation of the workflow with multiple custom answers, multiple AnswerGenerate

answers, ensemble, review, and revision
"""
Step 1: Generate multiple candidate answers using custom operator with a concise

prompt
custom_answers = []
for _ in range(2):

custom_response = await self.custom(input=problem, instruction=prompt_custom.
CUSTOM_PROMPT)

custom_answer = custom_response[’response’]
custom_answers.append(custom_answer)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Add 1 answer with diversity prompt to increase answer variety
custom_diverse_response = await self.custom(input=problem, instruction=prompt_custom.

CUSTOM_DIVERSE_PROMPT)
custom_answers.append(custom_diverse_response[’response’])

Step 2: Generate multiple candidate answers using AnswerGenerate operator to
increase diversity

answergen_answers = []
for _ in range(2):

answergen_response = await self.answer_generate(input=problem)
answergen_answer = answergen_response[’answer’]
answergen_answers.append(answergen_answer)

Step 3: Ensemble all candidate answers to select the most consistent answer
all_answers = custom_answers + answergen_answers
ensemble_response = await self.sc_ensemble(solutions=all_answers)
ensemble_answer = ensemble_response[’response’]

Step 4: Review the ensemble answer to ensure format and correctness
review_input = problem + "\nAnswer: " + ensemble_answer
review_response = await self.custom(input=review_input, instruction=prompt_custom.

REVIEW_PROMPT)
reviewed_answer = review_response[’response’]

Step 5: If reviewed answer is not in correct format, regenerate with a stricter
prompt

if not reviewed_answer.startswith("Answer: Option "):
strict_regen_input = problem + "\nPlease provide the final answer strictly in the

format ’Answer: Option X’."
strict_regen_response = await self.custom(input=strict_regen_input, instruction=

prompt_custom.STRICT_REGEN_PROMPT)
reviewed_answer = strict_regen_response[’response’]

Step 6: Revision step to refine the reviewed answer for strict format adherence
revision_input = problem + "\nAnswer: " + reviewed_answer
revision_response = await self.custom(input=revision_input, instruction=prompt_custom.

REVISION_PROMPT)
final_answer = revision_response[’response’]

return final_answer, self.llm.cost_manager.total_cost

D USE OF LARGE LANGUAGE MODELS

In preparing this submission, we employed ChatGPT-5 strictly as a tool for language refinement,
including polishing text, improving clarity, and correcting grammatical and typographical errors.
Its role was limited to grammar correction, sentence restructuring, and rephrasing for readability.
All model-generated content was thoroughly reviewed and revised by the human authors to ensure
accuracy, originality, and adherence to research-integrity standards. The LLMs did not contribute
to the core research ideas, experimental design, or any substantive intellectual components of the
work. Note that LLMs also served as baselines for LLM-based prediction (§B.3) and case-study (§C)
experiments, as described above.

22

	Introduction
	Related Work
	Methodology: Agentic Predictor
	Problem Formulation
	Framework Overview
	Multi-View Workflow Encoding
	Encoder Networks
	Decoder Networks

	Cross-Domain Unsupervised Pretraining
	Performance Predictor

	Experiments
	Setup
	Main Results (Q1)
	Additional Analyses
	Resource Cost

	Conclusions
	Pseudocode of Agentic Predictor
	Additional Experimental Results
	Performance on Different LLM Backbones
	Performance on Different GNN Backbones
	Comparison with LLM Predictors
	Out-of-Distribution (OOD) Generalization Performance
	Effects of Pretraining Phase (Full Results)
	Workflow Optimization Results
	Transferability

	Case Study
	Code Generation
	Math Problem
	Reasoning Task

	Use of Large Language Models

