

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MULTI-VIEW ENCODERS FOR PERFORMANCE PREDICTION IN LLM-BASED AGENTIC WORKFLOWS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated remarkable capabilities across diverse tasks, but optimizing LLM-based agentic systems remains challenging due to the vast search space of agent configurations, prompting strategies, and communication patterns. Existing approaches often rely on heuristic-based tuning or exhaustive evaluation, which can be computationally expensive and suboptimal. This paper proposes **Agentic Predictor**, a lightweight predictor for efficient agentic workflow evaluation. Agentic Predictor is equipped with a *multi-view workflow encoding* technique that leverages multi-view representation learning of agentic systems by incorporating code architecture, textual prompts, and interaction graph features. To achieve high predictive accuracy while significantly reducing the number of required workflow evaluations for training a predictor, Agentic Predictor employs *cross-domain unsupervised pretraining*. By learning to approximate task success rates, Agentic Predictor enables fast and accurate selection of optimal agentic workflow configurations for a given task, significantly reducing the need for expensive trial-and-error evaluations. Experiments on a carefully curated benchmark spanning three domains show that our predictor outperforms **several strong graph-based baselines** in both predictive accuracy and workflow utility, highlighting the potential of performance predictors in streamlining the design of LLM-based agentic workflows.

1 INTRODUCTION

Large language models (LLMs) have catalyzed the development of agentic systems capable of executing complex, multi-step tasks autonomously (Hong et al., 2024; Wu et al., 2024; Xi et al., 2024; Mialon et al., 2024). These systems, often constructed through meticulous manual engineering, integrate components such as Chain-of-Thought reasoning, tool invocation, and memory management to enable sophisticated behaviors for orchestrating intricate workflows (Xi et al., 2025; Ke et al., 2025; Gridach et al., 2025; Plaat et al., 2025). However, the handcrafted nature of these systems imposes limitations on scalability, adaptability, and rapid deployment across diverse domains.

To address these limitations, recent trends have shifted towards automated design methods for agentic systems (Hu et al., 2025a; Shang et al., 2025; Zhang et al., 2025b; Zhuge et al., 2024; Liu et al., 2024b; Hu et al., 2025b; Yuan et al., 2025). Automated methods typically employ search algorithms to discover optimal workflow configurations by systematically exploring a vast design space. Instead of relying on human intuition, these approaches generally involve iterations of candidate generation, evaluation, and refinement. While promising, these methods exhibit significant drawbacks, chiefly the high computational costs associated with the extensive validation steps needed during the exploration and evaluation phases of the search. Each candidate configuration must undergo rigorous evaluation, often through expensive, repeated interactions with LLM APIs, rendering the search prohibitively costly and time-consuming.

In this paper, we argue that purely search-based automated design methods are inherently inefficient and propose a predictive approach to significantly accelerate workflow evaluation. Specifically, we advocate for a predictor-based framework that can rapidly estimate the performance of candidate agentic workflows, similar to performance predictors in neural architecture search (White et al., 2021), thereby reducing the need for extensive validation.

As depicted in Figure 1, instead of fully evaluating every candidate, a predictive model can estimate the quality and viability of agentic workflows, thus guiding the search process far more efficiently. By reducing costly ground-truth executions or environment interactions during the search process, prediction-based approaches promise significant improvements in both search efficiency and solution quality. However, building a high-quality predictor for agentic workflows introduces two fundamental challenges.

Workflow Heterogeneity. Agentic workflows exhibit considerable heterogeneity; subtle variations in configuration can lead to dramatically different performances. Specifically, workflows can vary widely in communication structure, prompting strategies, tool invocation patterns, and reasoning styles, making it challenging to learn a unified predictive model. Moreover, agentic systems differ significantly across tasks, domains, and toolsets, resulting in diverse and complex workflow configurations that are difficult to model uniformly (Xu et al., 2024; Qiao et al., 2025).

Scarcity of Labeled Data. The availability of labeled data for training effective prediction models is severely limited due to the prohibitive cost of generating performance labels through exhaustive validation. Constructing a large, diverse set of labeled workflows with known execution outcomes is particularly expensive, creating a data bottleneck for supervised learning approaches. Moreover, gathering large-scale, high-quality labels for agentic workflows (e.g., success rates and execution outcomes) is often infeasible, further limiting the amount of supervised training data available for learning accurate predictors.

To tackle these challenges, we present **Agentic Predictor**, a multi-view encoder framework for performance prediction in LLM-based agentic workflows. To address workflow heterogeneity, Agentic Predictor uses *multi-view workflow encoders* that jointly model complementary signals—structural (e.g., agent topology), behavioral (e.g., tool usage), and semantic (e.g., prompts)—capturing the diverse, task-dependent characteristics of workflow configurations. To mitigate label scarcity, we introduce *cross-domain unsupervised pretraining*, denoted Agentic Predictor+, which leverages abundant unlabeled workflows from related domains. We pretrain the multi-view encoders with contrastive and reconstruction objectives, then fine-tune on limited labeled data, yielding robust and transferable representations for prediction. The **main contributions** of this paper are as follows.

- We propose multi-view encoders and cross-domain unsupervised pretraining that jointly capture the heterogeneous facets of LLM-based agentic workflows, yielding higher predictive performance, better generalization, and effective predictor training under limited labels.
- We introduce Agentic Predictor, unifying these components for the underexplored problem of performance prediction in heterogeneous, label-scarce LLM-based agentic workflows, thereby reducing trial-and-error costs and accelerating development.
- We empirically demonstrate that, averaged across three domains, Agentic Predictor improves prediction accuracy by up to **6.90%** and utility by up to **5.87%** over strong baselines.

2 RELATED WORK

Automated Generation of Agentic Workflows. Recent advancements (Xi et al., 2025; Ke et al., 2025; Gridach et al., 2025; Plaat et al., 2025) in agentic workflows have led to the development of various frameworks aimed at enhancing multi-agent collaboration for complex tasks (Guo et al., 2024; Trirat et al., 2025; Niu et al., 2025; Trirat & Lee, 2025a). MetaGPT (Hong et al., 2024) and ChatDev (Qian et al., 2024) use predefined multi-agent structures to address coding challenges, while AgentVerse (Chen et al., 2024) introduces iterative collaboration where agents discuss, execute, and evaluate tasks. LLM-Debate (Du et al., 2024) employs multiple expert agents that engage in debates over several rounds to derive final answers. However, these systems often rely on static configurations, which limits their adaptability to diverse queries across different tasks and domains.

Figure 1: Comparison between (a) execution-based and (b) prediction-based candidate evaluation for agentic workflow generation. Execution-based methods rely on costly runtime or LLM calls, while our prediction-based approach offers faster, scalable evaluation via a learned predictor.

To optimize agentic workflows, GPTSwarm (Zhuge et al., 2024) and G-Designer (Zhang et al., 2025a) apply variants of the REINFORCE algorithm to optimize workflow structures represented as directed acyclic graphs (DAGs), while DyLAN (Liu et al., 2024b) dynamically selects agents based on task requirements. ADAS (Hu et al., 2025a) and AFlow (Zhang et al., 2025b) further leverage powerful LLMs (e.g., Claude-3.5-Sonnet and GPT-4) to iteratively generate task-specific multi-agent systems. Similarly, AgentSquare (Shang et al., 2025) proposes a modular design space for automatic LLM agent search, enhancing adaptability to novel tasks. Despite their effectiveness, these methods typically require numerous LLM calls, resulting in significant computational and financial overheads, making them less practical for real-world applications.

Rather than manually designing a fixed workflow (Qian et al., 2024; Chen et al., 2024; Du et al., 2024) or paying repeated inference costs to synthesize one per query (Zhuge et al., 2024; Liu et al., 2024b), Agentic Predictor presents a lightweight performance predictor to rapidly estimate the quality of candidate agentic workflows, enabling broad exploration without exhaustive evaluations. Among recent efforts, FLORA-Bench (Zhang et al., 2025c) advocates GNN-based predictors and releases a benchmark that models workflows as a single-view graph where prompts are node features. A complementary direction, MAS-GPT (Ye et al., 2025), fine-tunes LLMs to directly generate workflows in a single call. **In contrast to these directions**, Agentic Predictor differs in three respects: *representation* (multi-view encoding of agent topology, code, and system prompts vs. single-view graphs), *learning* (cross-domain unsupervised pretraining to mitigate label scarcity, rather than no pretraining recipe or supervised LLM fine-tuning), and *efficiency* (a compact predictor for fast evaluation without repeated LLM calls). **Table 1** summarizes these distinctions.

Performance Predictors for NAS. Neural architecture search (NAS) has spurred the development of performance predictors that aim to reduce the significant computational cost of evaluating candidate architectures. PRE-NAS (Peng et al., 2022) employs a predictor-assisted evolutionary strategy to estimate model performance, thereby alleviating the need for exhaustive training. BRP-NAS (Dudziak et al., 2020) integrates graph convolutional networks to forecast hardware-aware performance metrics, improving the practicality of NAS under resource constraints. CAP (Ji et al., 2024) introduces a context-aware neural predictor, leveraging self-supervised learning to generate expressive and generalizable representations of architectures, thus enabling more effective search space exploration. FlowerFormer (Hwang et al., 2024) advances architecture encoding through a flow-aware graph transformer, yielding improved prediction accuracy. A unifying trend among these methods is the emphasis on learning more *informative representations* to guide the search process. Building on this insight, we propose the Agentic Predictor framework, which approaches performance prediction from a *representation-centric* perspective. By incorporating multi-view representations conditioned on workflow configurations, Agentic Predictor facilitates accurate performance estimation and efficient exploration of the agentic workflow space.

3 METHODOLOGY: AGENTIC PREDICTOR

3.1 PROBLEM FORMULATION

Let an agentic workflow be denoted as $\mathcal{W} = \{\mathcal{V}, \mathcal{E}, \mathcal{P}, \mathcal{C}\}$, where $\mathcal{V} = \{v_i\}_{i=1}^N$ represents the set of N agents, \mathcal{E} denotes the set of edges defining the connections between agents, and $\mathcal{P} = \{p_i\}_{i=1}^N$ denotes the system prompts for each agent i . \mathcal{C} represents the complete code specifying the logic and structure of the workflow. Thus, the workflow \mathcal{W} is represented as a directed acyclic graph (DAG).

Given a task description T , the workflow \mathcal{W} autonomously executes agents in topological order, where the i -th agent receives the task description T along with the outputs y from its predecessor agents. Formally, the input to agent i is defined as $\mathcal{X}_i = \{T\} \cup \{y_j : v_j \in \mathcal{N}_i^{(\text{in})}\}$, where $\mathcal{N}_i^{(\text{in})}$ denotes the set of predecessor agents of agent i , and y_j is the output of agent j . The output y_i of agent i is generated by querying an LLM: $y_i = \text{LLM}(\mathcal{X}_i, p_i)$. After executing all agents, the final response of the agentic workflow is defined as $r = f_{\text{LLM}}(\mathcal{W}, T)$, where f_{LLM} represents the overall execution process of the given LLM. Generally, this process is repeated for the evaluation of r , which incurs significant computational and financial overhead.

Figure 2: Overview of our Agentic Predictor framework. A (a) **multi-view workflow encoder** is designed to encode a set of agentic workflows from graph, code, and prompt aspects into unified representations, which serve as features for training the predictor. In the (b) **pretraining phase**, the encoder learns these representations on unlabeled workflows spanning diverse tasks and domains, using cross-domain unsupervised pretraining objectives. In the (c) **predictor-guided search phase**, a performance predictor is trained on a small (workflow configuration, performance) dataset to classify configurations as pass or fail, and subsequently guides the search toward promising configurations.

In contrast, this paper aims to design a predictive model \mathcal{M} that efficiently estimates the final performance of an agentic workflow \mathcal{W} on a given task description T , without requiring costly LLM invocations. Therefore, we treat the workflow \mathcal{W} and task description T as inputs to the predictor \mathcal{M} , which outputs the estimated performance \hat{e} . Formally, $\hat{e} = \mathcal{M}_\Theta(\mathcal{W}, T)$, where Θ denotes the learnable parameters of the performance predictor.

Learning Objective. Given the workflow \mathcal{W} , task description (or query) T , and performance predictor \mathcal{M}_Θ parameterized by Θ , we aim to find the optimal Θ that minimizes the error between the estimated performance \hat{e} and the ground-truth performance e . Formally, we solve

$$\min_{\Theta} \mathbb{E}_{(\mathcal{W}, T)} [\mathcal{L}(e, \hat{e})], \quad (1)$$

where $\mathcal{L}(\cdot, \cdot)$ is a loss function that quantifies the discrepancy between the ground truth and the predicted performance. \mathcal{L} can be either the cross-entropy loss or the mean squared error loss, depending on whether the prediction task is formulated as a classification or regression problem.

3.2 FRAMEWORK OVERVIEW

We present an overview of our Agentic Predictor framework in Figure 2. First, the multi-view workflow encoder integrates key aspects of an agentic workflow—graph structures $(\mathcal{V}, \mathcal{E})$, code implementations \mathcal{C} , and system prompts \mathcal{P} —into a unified representation \mathcal{F} . Integration is achieved via modality-specific encoders followed by an aggregation layer that consolidates features across modalities. Second, when labeled instances are scarce, we refine these representations with unsupervised objectives, reconstruction and contrastive learning, to improve generalization and adaptability across diverse tasks and configurations. Third, a dedicated performance predictor \mathcal{M}_Θ is trained on a labeled set (often small) comprising workflow configurations \mathcal{W} , task descriptions T , and observed performance outcomes e . Finally, with the trained predictor, we perform a predictor-guided search that efficiently ranks and selects promising workflow configurations without incurring expensive LLM calls. Because Agentic Predictor is search-agnostic, we deliberately do not commit to a specific search algorithm within the framework.

3.3 MULTI-VIEW WORKFLOW ENCODING

Motivated by recent findings in the NAS literature (White et al., 2020; Akhauri & Abdelfattah, 2024; Trirat & Lee, 2025b), which show that architecture representations strongly influence predictor performance, we argue for expressive, comprehensive representations tailored to agentic workflows. Because agentic workflows differ fundamentally from traditional neural architectures, conventional

graph-based encodings alone are insufficient. Although DAGs naturally capture explicit inter-agent communication and dependencies, they omit crucial implicit signals such as tool-usage patterns, code structure, computational complexity, and the nuanced semantics present in agent prompts. To address these limitations, we propose a multi-view encoding scheme that integrates complementary representations at multiple granularities, with each view capturing distinct yet essential aspects of LLM-based agentic workflows.

- **Graph View** explicitly models structural dependencies and direct interactions among agents, emphasizing inter-agent communication channels. We denote the graph view as $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.
- **Code View** implicitly encodes program-level semantics, control and logical sequence, computational complexity, and patterns of tool usage inherent in workflow implementations \mathcal{C} .
- **Prompt View** provides semantic embeddings that capture agent roles, behavioral specifications, and broader contextual guidance embedded within system and instruction prompts \mathcal{P} .

Our rationale for adopting this multi-view framework is that aggregating heterogeneous information sources reduces representation bias, thereby improving both robustness and predictive accuracy.

3.3.1 ENCODER NETWORKS

We now detail the components of our proposed multi-view workflow encoding method for performance prediction in agentic workflows using neural networks. Let $\text{Enc}(\cdot)$ denote an encoder function that maps a candidate workflow—composed of $(\mathcal{G}, \mathcal{C}, \mathcal{P})$ —into d -dimensional Euclidean space, i.e., $\text{Enc}(\cdot) : (\mathcal{G}, \mathcal{C}, \mathcal{P}) \rightarrow \mathbb{R}^d$. Given the heterogeneous nature of workflow configurations, we design three specialized encoder networks, each responsible for learning a representation corresponding to a distinct view. These view-specific representations are then aggregated into a shared latent space, denoted by $\mathbf{Z} = \text{Enc}(\mathcal{G}, \mathcal{C}, \mathcal{P})$, where $\mathbf{Z} \in \mathbb{R}^d$. This continuous latent representation is used to train the performance predictor \mathcal{M}_Θ (see §3.5). The individual encoders for each view are integrated into a unified architecture as described below.

Graph Encoder. We employ graph neural network (GNN) layers to encode graph-based representations. The workflow is modeled as a DAG in which each edge encodes a unidirectional message channel. Rather than relying on a single graph, we adopt a *multi-graph* approach that integrates node features from multiple views, including agent-specific definitions and function-call implementations at each agent node. We instantiate this multi-graph representation with three graph views constructed from a workflow \mathcal{W} . In the *prompt graph* $\mathcal{G}_{\text{prompt}}$, node features are obtained by pooling the embeddings of each agent’s system and instruction prompts. In the *code graph* $\mathcal{G}_{\text{code}}$, node features correspond to the function-call code associated with each agent. In the *operator graph* $\mathcal{G}_{\text{operator}}$, node features encode operator types and their definitions. All three graphs share the same node and edge set, where edges can be derived from an abstract syntax tree as suggested by Zhang et al. (2025c).

We then obtain view-specific node embeddings $\mathbf{H}_{\text{prompt}} = \text{GNN}(\mathcal{G}_{\text{prompt}})$, $\mathbf{H}_{\text{code}} = \text{GNN}(\mathcal{G}_{\text{code}})$, and $\mathbf{H}_{\text{operator}} = \text{GNN}(\mathcal{G}_{\text{operator}})$ in $\mathbb{R}^{N \times d}$, stack them along a view dimension to form $\mathbf{X} \in \mathbb{R}^{N \times V \times d}$ with $V = 3$, and apply a cross-view self-attention block with residual connection and layer normalization $\hat{\mathbf{X}} = \text{LN}(\text{MHA}(\mathbf{X}, \mathbf{X}, \mathbf{X}) + \mathbf{X})$, where MHA is multi-head attention applied across views for each node (the sequence axis is the view axis; topology is unchanged).

Next, a view-attention pooling module computes per-node attention weights with a L -layer multi-layer perceptron (MLP) and tanh nonlinearity, followed by a softmax over views, and produces a weighted sum across views $\mathbf{H} = \text{ViewAttnPool}(\hat{\mathbf{X}}) \in \mathbb{R}^{N \times d}$. Finally, a graph readout G_{pool} aggregates node embeddings into a single graph representation, $\mathbf{Z}_G = G_{\text{pool}}(\mathbf{H}) = G_{\text{pool}}(\text{ViewAttnPool}(\text{CrossGraphAttn}(\mathbf{X})))$, which preserves edge directionality from the upstream GNN while capturing cross-view contextual dependencies at the node level before graph-level summarization. Here, CrossGraphAttn enriches each node with multi-view contextual dependencies, while ViewAttnPool highlights which views are most informative.

Code Encoder. While $\mathcal{G}_{\text{code}}$ and $\mathcal{G}_{\text{operator}}$ primarily encode structural information derived from the different workflow graphs, this code encoder is designed to provide a complementary, holistic representation of the entire workflow code. To model the workflow-level embeddings, we use an L -layer MLP to extract latent semantic features, enabling the model to learn intricate computational logic and tool interactions at a *global* level. The code representation is computed as $\mathbf{Z}_C = \text{MLP}_C(\mathcal{C})$.

270 **Prompt Encoder.** Instead of encoding agent prompts solely as node-level features (Zhang et al.,
 271 2025c), we use a separate L -layer MLP to encode the *entire* workflow instruction prompt holistically.
 272 This approach captures role descriptions, behavioral intents, and global context—resulting in richer
 273 and more semantically informed representations. The prompt encoding is $\mathbf{Z}_P = \text{MLP}_P(\mathcal{P})$.

274 **Aggregation Layer.** The representations from the graph, code, and prompt encoders— \mathbf{Z}_G , \mathbf{Z}_C , and
 275 \mathbf{Z}_P —are concatenated and passed through a final MLP layer. This aggregation mechanism adaptively
 276 integrates information across all views, enabling the model to emphasize the most contextually
 277 relevant aspects. The final output of the encoder $\text{Enc}(\cdot)$ is computed as $\mathbf{Z} = \text{MLP}([\mathbf{Z}_G, \mathbf{Z}_C, \mathbf{Z}_P])$.

278 Consequently, the aggregation layer acts as a *learnable* fusion module. The attention-based graph
 279 encoder produces \mathbf{Z}_G with cross-view interactions already embedded, and the downstream fusion
 280 assigns task-dependent importance to the graph-, code-, and prompt-level representations, rather than
 281 treating all views as equally informative. These encoders learn not only from different workflow
 282 perspectives but also at varying levels of granularity, specifically, at the graph level for agent
 283 interactions, the code level for logical structures, and the prompt level for agent-specific instructions.

285 3.3.2 DECODER NETWORKS

286 The decoder is a generative module that reconstructs $\hat{\mathcal{G}}$, $\hat{\mathcal{C}}$, and $\hat{\mathcal{P}}$ from the latent variables \mathbf{Z} to
 287 encourage learning generalizable representations of agentic workflows. It consists of a stack of MLP
 288 layers. For simplicity, the decoder outputs the modality-specific *input embedding* vectors of \mathcal{G} , \mathcal{C} , and
 289 \mathcal{P} . Accordingly, we parameterize $\text{Dec}(\cdot)$ with an MLP and define $\hat{\mathcal{G}} = \text{MLP}(\mathbf{Z}_G)$, $\hat{\mathcal{C}} = \text{MLP}(\mathbf{Z}_C)$,
 290 and $\hat{\mathcal{P}} = \text{MLP}(\mathbf{Z}_P)$. This decoder is used only during pretraining for self-supervised reconstruction
 291 of modality-specific embeddings from \mathbf{Z} and is not part of the encoding path at inference time.

294 3.4 CROSS-DOMAIN UNSUPERVISED PRETRAINING

295 In real-world scenarios, labeled performance data for agentic workflows are scarce due to costly
 296 evaluation. To enable data-efficient training without label leakage, we *optionally* adopt a two-phase
 297 strategy. Rather than directly supervising the encoder with performance labels, we first perform
 298 cross-domain unsupervised pretraining to obtain rich and generalizable workflow representations
 299 \mathbf{Z} . No performance labels (e.g., success/failure) are used in this stage. The resulting representations
 300 improve sample efficiency for downstream prediction, in line with observations in NAS (White et al.,
 301 2020; Yan et al., 2020; 2021; Akhauri & Abdelfattah, 2024; Trirat & Lee, 2025b). When sufficiently
 302 many labels are available, direct supervised learning of the predictor remains feasible.

303 **Multi-Task Pretraining.** We train the multi-view encoder on M unlabeled workflow configurations
 304 by minimizing a combined loss comprising reconstruction and contrastive objectives: $\mathcal{L}_{rec} =$
 305 $\frac{1}{M} \sum_{i=1}^M \|\mathcal{G}_i - \hat{\mathcal{G}}_i\|^2 + \|\mathcal{C}_i - \hat{\mathcal{C}}_i\|^2 + \|\mathcal{P}_i - \hat{\mathcal{P}}_i\|^2$ and $\mathcal{L}_{con} = \frac{1}{M} \sum_{i=1}^M -\log \frac{\exp(\text{sim}(\mathbf{Z}_i, \mathbf{Z}_j^+)/\tau)}{\sum_{k=1}^M \exp(\text{sim}(\mathbf{Z}_i, \mathbf{Z}_k)/\tau)}$.
 306 Here, \mathcal{G}_i , \mathcal{C}_i , \mathcal{P}_i denote the input graph, code, and prompt embeddings, respectively, while $\hat{\cdot}$ denotes
 307 reconstructions via modality-specific decoders. Notably, the graph branch reconstructs its own
 308 embedding target with a stop-gradient, whereas code and prompt/text are reconstructed in input space.
 309 The contrastive loss is instantiated *cross-modally* with in-batch sampling. For each configuration i ,
 310 positives $(\mathbf{Z}_i, \mathbf{Z}_j^+)$ are the index-aligned embeddings of the configuration across two different views
 311 (e.g., \mathcal{G}_i with \mathcal{C}_i), while negatives are all other configurations within the batch. We symmetrize the
 312 objective by swapping anchor/target and average it over the three view pairs $(\mathcal{G}, \mathcal{C})$, $(\mathcal{G}, \mathcal{P})$, and
 313 $(\mathcal{C}, \mathcal{P})$. This learning objective encourages the encoder to capture structure- and content-aware signals
 314 without observing performance outcomes. Thus, the total loss function is $\mathcal{L}_{enc} = \mathcal{L}_{rec} + \mathcal{L}_{con}$.

315 3.5 PERFORMANCE PREDICTOR

316 Following the unsupervised pretraining of the multi-view encoder, we introduce a lightweight
 317 performance predictor to guide exploration of the large agentic workflow space. This phase enables
 318 efficient identification of high-performing configurations with minimal supervision, using only a
 319 small set of labeled workflow–performance pairs. As shown in Figure 2(c), our predictor operates on
 320 learned workflow embeddings, enriched with task-specific context, to form a joint representation \mathcal{F}
 321 used for performance prediction and downstream search.

324 **Task Encoder.** To capture task-specific characteristics, we incorporate a Task Encoder that generates high-level semantic embeddings from natural-language task descriptions. These embeddings, derived from pretrained language models (e.g., T5 or BERT), provide global context that helps 325 differentiate tasks with similar surface form but distinct functional requirements. The task embedding 326 is concatenated with the multi-view workflow representation, forming $\mathcal{F} = [\mathbf{Z}, \mathbf{T}]$, where \mathbf{Z} 327 is the encoded workflow and \mathbf{T} is the task embedding. For workflow content itself (prompts and 328 code), we pair this with lightweight, domain-specific encoders within the multi-view backbone to 329 balance representational capacity with efficiency. This separation of modalities followed by fusion 330 captures complementary compositional and contextual signals and supports generalization across 331 heterogeneous tasks with varying operational goals and constraints. 332

333 The performance predictor is a lightweight prediction head \mathcal{M}_Θ (e.g., an MLP) trained on a 334 limited set of labeled data $(X_{\text{train}}, y_{\text{train}})$, where each X_{train} corresponds to \mathcal{F} and y_{train} is the 335 performance label (e.g., binary success/failure or a scalar score). We instantiate the objective 336 to match the label type. For binary labels, we use a binary cross-entropy loss, i.e., $\mathcal{L}_{\text{pred}} =$ 337 $-\frac{1}{N} \sum_{i=1}^N [e_i \log \hat{e}_i + (1 - e_i) \log(1 - \hat{e}_i)]$, where \hat{e}_i is the predicted success 338 probability. For numeric labels, we can use mean squared error, i.e., $\mathcal{L}_{\text{pred}} = \frac{1}{N} \sum_{i=1}^N (s_i - \hat{s}_i)^2$. By operating on 339 semantically rich pretrained embeddings, the predictor attains strong accuracy in the low-data regime, 340 enabling label-efficient search. 341

342 **Integration with Workflow Optimization.** With the trained predictor in place, we can perform 343 predictor-guided search to efficiently explore the workflow configuration space. Rather than evaluating 344 each configuration via full execution, we embed candidates into their joint representations \mathcal{F} and score 345 them using the predictor. The top-scoring candidates are selected for evaluation. This substantially 346 reduces computational cost by focusing on the most promising regions of the search space. A simple 347 yet effective instantiation of this strategy uses random search to sample K workflow candidates from 348 the full configuration space, and then ranks them using the learned predictor. We select the top- k 349 configurations, averaged across samples in the benchmark, for evaluation. This predictor-as-ranker 350 setup transforms random search into a label-efficient guided procedure without requiring complex 351 heuristics. Since our main contribution is the performance predictor rather than the optimization 352 algorithm, we focus evaluation on prediction accuracy and ranking quality (i.e., workflow utility) in 353 the following section. Additional results on workflow optimization appear in §B.6. 354

4 EXPERIMENTS

355 We conduct a comprehensive evaluation of the proposed Agentic Predictor framework from multiple 356 perspectives, guided by the following questions: **(Q1)** How does Agentic Predictor perform 357 as a predictor of agentic workflow performance compared to relevant baselines? **(Q2)** How do 358 different design choices of Agentic Predictor affect its predictive accuracy? **(Q3)** Is the pretraining 359 phase helpful for maintaining prediction quality under varying numbers of labels? **(Q4)** Does Agentic 360 Predictor maintain strong predictive performance under out-of-distribution shifts? **(Q5)** How does 361 Agentic Predictor compare against few-shot LLM-based workflow performance predictors? 362

4.1 SETUP

363 **Benchmarks.** To evaluate performance 364 predictors for agentic workflows, we use 365 FLORA-Bench (Zhang et al., 2025c), the 366 only publicly available benchmark (to the 367 best of our knowledge) that enumerates 368 diverse workflows across multiple domains 369 and LLM backbones. It spans five datasets 370 covering three core areas: code generation (HumanEval (Chen et al., 2021), MBPP (Austin et al., 371 2021)), mathematical problem solving (GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 372 2021b)), and general reasoning (MMLU (Hendrycks et al., 2021a)). **Table 2** summarizes the 373 benchmarks. Here, GD and AF denote the *independently* developed G-Designer (Zhang et al., 2025a) 374 and AFlow (Zhang et al., 2025b) agentic frameworks, respectively. We emphasize structural and 375 procedural diversity over raw difficulty; even for datasets often considered solved by prompting (e.g., 376 GSM8K), predicting success across workflow variants remains nontrivial. For each dataset, we 377 randomly split instances into training (80%), validation (10%), and test (10%) sets. 378

Table 2: Summary of benchmark statistics.

Domains	Code Generation (GD/AF)	Math (GD/AF)	Reasoning (GD/AF)
# workflows	739 / 38	300 / 42	189 / 30
Avg. # nodes	5.96 / 6.11	6.06 / 5.49	5.97 / 6.58
# tasks	233 / 233	782 / 782	2,400 / 2,400
# samples	30,683 / 7,362	12,561 / 4,059	453,600 / 72,000

378

379
380
Table 3: Performance comparison between Agentic Predictor and baselines. The best and second-best
381 results are highlighted in **bold** and underlined, respectively. **GD** is G-Designer, and **AF** is AFlow.

Domain	CodeGD		CodeAF		MathGD		MathAF		ReasonGD		ReasonAF		Average	
	Model	Accuracy	Utility	Accuracy										
MLP	83.88 (±0.04)	76.16 (±0.03)	78.02 (±0.59)	73.94 (±1.35)	63.22 (±0.30)	64.13 (±0.44)	73.73 (±0.31)	69.64 (±0.29)	71.54 (±0.09)	62.41 (±1.67)	78.45 (±0.08)	88.48 (±0.63)	74.81 (±0.24)	72.46 (±0.74)
GCN	84.23 (±0.04)	79.31 (±0.10)	84.35 (±0.34)	72.73 (±1.18)	64.12 (±0.17)	63.03 (±0.59)	76.19 (±0.42)	66.52 (±1.66)	72.22 (±0.03)	59.18 (±0.85)	87.12 (±0.14)	91.82 (±0.46)	78.04 (±0.19)	72.10 (±0.81)
GAT	85.14 (±0.25)	79.50 (±0.14)	84.49 (±0.56)	76.46 (±0.91)	64.84 (±0.96)	62.32 (±0.93)	76.44 (±0.61)	66.51 (±1.28)	72.16 (±0.03)	59.44 (±1.06)	87.07 (±0.08)	89.40 (±0.68)	78.36 (±0.42)	72.27 (±0.83)
GCN-II	83.81 (±0.07)	78.45 (±0.74)	83.72 (±0.40)	77.75 (±0.98)	63.56 (±0.74)	66.02 (±0.10)	75.04 (±0.31)	64.33 (±0.47)	72.29 (±0.09)	59.10 (±1.02)	87.28 (±0.14)	89.92 (±1.90)	77.62 (±0.29)	72.60 (±0.87)
Graph Transformer	<u>85.24</u> (±0.19)	80.20 (±0.64)	84.71 (±0.45)	74.09 (±0.35)	63.25 (±0.70)	64.97 (±0.36)	75.45 (±0.23)	66.48 (±0.96)	72.26 (±0.08)	60.92 (±1.79)	86.93 (±0.27)	90.60 (±1.97)	77.97 (±0.32)	72.88 (±1.01)
Dir-GNN	84.85 (±0.11)	79.81 (±0.69)	83.45 (±0.41)	76.08 (±0.92)	63.01 (±1.66)	64.68 (±0.65)	76.11 (±0.16)	67.97 (±0.12)	74.25 (±0.92)	62.64 (±0.13)	86.66 (±1.68)	90.07 (±0.33)	78.05 (±1.01)	73.54
One For All	83.74 (±0.09)	75.93 (±0.12)	81.05 (±0.34)	73.42 (±1.39)	63.17 (±0.21)	66.65 (±0.82)	75.21 (±0.23)	69.08 (±0.64)	72.29 (±0.12)	60.35 (±1.25)	82.52 (±0.13)	87.64 (±1.98)	76.33 (±0.19)	72.18 (±0.38)
Agentic Predictor	85.33 (±0.05)	81.42 (±0.26)	85.62 (±0.47)	80.08 (±0.46)	66.20 (±0.17)	67.88 (±0.21)	79.56 (±0.25)	74.08 (±0.47)	75.13 (±0.07)	63.06 (±0.25)	87.96 (±0.45)	91.47 (±0.02)	79.97 (±0.44)	76.33 (±0.16)
Δ vs. best baseline (% Improvement)	+0.09 (0.11%)	+1.22 (1.52%)	+0.91 (1.07%)	+2.33 (3.00%)	+1.36 (2.09%)	+1.23 (1.85%)	+3.12 (4.08%)	+4.44 (6.38%)	+0.88 (6.38%)	+0.42 (1.19%)	+0.68 (0.67%)	-0.35 (0.78%)	+1.61 (-0.38%)	+2.79 (2.05%)

392
393
394
Evaluation Metrics. To ensure a fair and consistent comparison, we strictly adhere to the official
395 evaluation protocols specified by the benchmark.

- **Accuracy** quantifies how well a model predicts agentic workflow performance. It is defined as $accuracy = \frac{1}{|\mathcal{D}^{\text{test}}|} \sum_i^{\mathcal{D}^{\text{test}}} \mathbf{1}(\hat{e}_i = e_i)$, where $|\mathcal{D}^{\text{test}}|$ is the size of the test split, and \hat{e}_i and e_i denote the predicted and ground-truth performance, respectively. $\mathbf{1}(\cdot)$ is the indicator function, which returns 1 if $\hat{e}_i = e_i$, and 0 otherwise.
- **Utility** evaluates the consistency between the workflow rankings predicted by the model and the ground-truth rankings, emphasizing the model’s ability to determine the relative order of different workflows. First, we calculate the ground-truth and predicted success rates of a workflow \mathcal{W}_i by averaging e and \hat{e} across all tasks in $\mathcal{D}^{\text{test}}$. Then, we rank the workflows and extract the top- k workflows according to the respective scores, resulting in two ordered sets: $\mathcal{H} = \{\mathcal{W}_i\}_{i=1}^k$ and $\hat{\mathcal{H}} = \{\mathcal{W}'_i\}_{i=1}^k$. Formally, $utility = \frac{1}{k} \sum_{i=1}^k \mathbf{1}(\mathcal{W}'_i \in \mathcal{H})$.

405
406
407
408
409
410
Baselines. Since there is no direct baseline method specifically designed for performance prediction
411 in agentic systems, we adopt comparison baselines from the benchmark paper. Some of these methods
412 have previously been used as performance predictors for NAS (White et al., 2021). The selected
413 baselines include one naive **MLP** and several strong graph-based models: **GCN** (Kipf & Welling,
414 2017), **GAT** (Veličković et al., 2018), **GCN-II** (Chen et al., 2020), **Graph Transformer** (Shi et al.,
415 2021), **Dir-GNN** (Rossi et al., 2024) and **One For All** (Liu et al., 2024a).416
417
418
419
420
421
Implementation Details. For all methods, we follow the same setup as suggested by Zhang et al.
422 (2025c). Specifically, we use a 2-layer backbone with a hidden dimension of 512, set dropout to
423 0.5, and use a batch size of 512. Models are optimized with the Adam optimizer (Kingma & Ba,
424 2014) using a learning rate of 1×10^{-4} and weight decay of 5×10^{-4} . Training is conducted for
425 200 epochs on a single NVIDIA A100-SXM4-80GB GPU, and the best checkpoint is selected by the
426 highest accuracy on the validation subset. Our framework is encoder-agnostic by design. To ensure a
427 controlled comparison, we reuse the **all-MiniLM-L6-v2** (Wang et al., 2020) text encoder and
428 adopt **CodeRankEmbed** (Suresh et al., 2025) for code, both via SentenceTransformers (Reimers &
429 Gurevych, 2019) with default hyperparameters. Text inputs are truncated to 256 tokens and encoded
430 into 384-dimensional vectors, while code inputs (function-level nodes and full-workflow files) are
431 tokenized and truncated to model limits (up to 8,192 tokens) producing 768-dimensional vectors. All
432 embeddings are finally mapped into a unified 512-dimensional space using a 2-layer MLP ($L = 2$).433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
10

432
433
434
435
436
437
438
439
440

Table 4: Results of ablation study on different input view variations.

Variations			Code Generation		Math Problem		Common Reasoning		Average	
Code	Graph	Text	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility
✓			82.04	75.66	75.70	68.52	83.19	91.51	80.31	78.56
	✓		84.44	77.22	79.14	67.99	87.00	91.03	83.53	78.75
		✓	79.87	70.34	76.60	68.45	68.06	71.04	74.84	69.94
✓	✓		83.72	73.97	75.86	70.18	86.88	86.14	82.15	76.76
✓		✓	82.27	77.28	76.03	66.66	54.17	53.21	70.82	65.72
✓	✓	✓	82.45	74.64	75.70	67.83	69.47	70.55	75.87	71.01
✓	✓	✓	85.62	80.08	79.56	74.08	87.96	91.47	84.38	81.88

441
442
443
444
445
446

Table 5: Results of ablation study on different input graph variations.

Variations			Code Generation		Math Problem		Common Reasoning		Average	
Single View	Multi View		Accuracy	Utility	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility
✓			82.58	78.52	78.57	67.51	86.95	90.14	82.70	78.72
	✓		84.44	77.22	79.14	67.99	87.00	91.03	83.53	78.75

a near-best score in reasoning tasks (91.47%), second only to GCN (91.82%). On average, it achieves the highest utility score of 76.33%, representing improvements of 3.79% to 5.87% over the baselines. These results demonstrate that Agentic Predictor not only enhances predictive accuracy but also improves downstream utility across diverse agentic workflows, highlighting its robustness and generalizability. The consistent performance gains further underscore the advantages of leveraging multi-view encoding for heterogeneous agentic workflows.

4.3 ADDITIONAL ANALYSES

Ablation Study (Q2). To substantiate our contributions on specific design of multi-view workflow encoding in Agentic Predictor, we conduct ablation study on two main components using the AFlow subset: multi-view encoder and multi-graph encoding techniques. According to the results in Table 4, we find that incorporating all three input views—code, graph, and text—results in the best overall performance across all tasks. Specifically, the full model configuration achieves the highest average accuracy (84.38%) and utility (81.88%), underscoring the complementary value of each modality. Notably, the removal of any single view leads to a consistent drop in performance, demonstrating the synergistic role of multimodal inputs in prediction capabilities of Agentic Predictor.

Furthermore, results in Table 5 reveal the significance of multi-graph encoding. When multiple graphs are used instead of a single graph, the model shows a clear performance improvement, particularly in code generation (accuracy improves from 82.58% to 84.44%) and reasoning tasks (utility rises from 90.14% to 91.03%). This supports our hypothesis that different graph perspectives enrich structural context and lead to more robust representations. Together, these findings validate the architectural choices in Agentic Predictor, demonstrating that both multi-view and multi-graph designs are integral to its superior performance.

Effects of Pretraining Phase (Q3). Since acquiring a large amount of ground-truth labels from agentic workflows is expensive, we examine whether cross-domain unsupervised pretraining (denoted as Agentic Predictor+) benefits settings where labeled instances are limited. We vary the label ratio from 0.1 to 0.5, selecting labeled samples from the training split of all datasets in the benchmark. We pretrain the proposed multi-view encoder on the remaining 50% (M) of the training set with a batch size of 32 for 20 epochs. See more details in §B.5. On average, the results shown in Figure 3 indicate that Agentic Predictor+ consistently outperforms all baseline models across all label ratios, demonstrating the effectiveness of our unsupervised pretraining strategy. The gains are especially pronounced in low-label regimes: at a 0.1 label ratio, Agentic Predictor+ maintains an accuracy above 73%, while other models drop closer to 70%. These findings underscore the importance of leveraging cross-domain structure through pretraining for generalizable workflow performance prediction, especially when direct supervision is limited.

Figure 3: Accuracy comparison between Agentic Predictor and the baselines across varying label ratios.

486 **Out-of-Distribution (OOD) Performance (Q4).** We evaluate OOD robustness under *cross-system*
 487 generalization (training on one agentic framework and testing on another) and *cross-domain*
 488 generalization (training on one task domain and testing on disjoint domains). As shown in §B.4,
 489 Agentic Predictor consistently generalizes beyond in-distribution memorization, maintaining strong
 490 performance and preserving relative workflow rankings across both settings. For example, when
 491 trained on AFlow and tested on G-Designer, Agentic Predictor improves average accuracy from
 492 59.52% (best baseline) to 62.05% and utility from 55.33% to 58.49%. Similar gains hold in the
 493 reverse direction and under cross-domain splits.

494 **Comparison with LLM Predictors (Q5).** We evaluate 5-shot, prompt-based LLM classifiers
 495 (temperature 0) using the standardized LLM-PP template (Jawahar et al., 2023) with GPT-4.1,
 496 Claude 4 Sonnet, and Gemini 2.5 Flash. As shown in Table 9, these prompt-only LLM predictors
 497 substantially underperform our graph-based model, indicating that they struggle to exploit the struc-
 498 tured nature of agentic workflows. Agentic Predictor achieves 84.97% accuracy and 81.37% utility,
 499 far exceeding the second-best GPT-4.1 at 62.86% and 58.92%, while also avoiding the considerable
 500 latency and monetary overhead of LLM inference. Overall, few-shot LLMs serve as a useful baseline
 501 but remain less effective and less economical for large-scale agent search.

502 4.4 RESOURCE COST

503 We further examine the efficiency of Agentic Predictor
 504 measured by computation time and memory usage. As
 505 shown in Table 6, our framework remains competitive with
 506 standard GNN baselines despite its higher model capac-
 507 ity and richer input features, requiring only 0.054ms and
 508 0.49GB to score a workflow at inference—orders of mag-
 509 nitude faster and cheaper than few-shot LLM predictors.
 510 A full run of Agentic Predictor involves a one-time cost of
 511 ≈ 1.2 A100 GPU-hours (200 supervised epochs plus 20
 512 optional pretraining epochs), with modest memory require-
 513 ments that fit on a single 16 GB GPU. In
 514 contrast, LLM-based scoring costs about \$21 per 1,000 candidates ($\approx \$0.021$ per sample with Gemini
 515 2.5 Flash), implying a break-even point after only 110-120 evaluations assuming a \$2/hr A100 rate.
 516 As realistic searches involve thousands of candidates and the trained predictor is reusable across tasks
 517 and frameworks, this modest one-time cost is quickly amortized, making Agentic Predictor far more
 518 economical than repeated LLM calls while offering near-zero marginal latency and higher accuracy.

519 Full experimental results on different underlying LLMs, various GNN backbones, LLM classifier
 520 comparison, and out-of-distribution test are reported in Tables 7 8, 9, 10, 11 and 12, respectively.
 521 An additional evaluation of performance predictors used as a reward function for agentic workflow
 522 optimization, and case study findings are also provided in §B.6 and §C.

523 5 CONCLUSIONS

524 This paper introduces Agentic Predictor, a novel framework for efficient prediction of agentic work-
 525 flow performance that leverages a multi-view predictive approach. By integrating multi-view graph
 526 structures, code semantics, and prompt embeddings into a unified representation, Agentic Predictor
 527 captures the diverse characteristics of agentic systems. Moreover, it employs cross-domain unsuper-
 528 vised pretraining to mitigate the challenge of limited labeled data, thereby enhancing generalization
 529 across varied tasks. Through comprehensive experiments spanning three domains, Agentic Predictor
 530 consistently outperforms strong baselines in predictive accuracy and workflow utility.

531 **Limitations and Future Work.** While Agentic Predictor exhibits strong performance, it has certain
 532 limitations. The current predictor focuses on binary success metrics, constrained by the available
 533 benchmark, which may overlook more nuanced aspects of workflow behavior. Evaluating on new,
 534 independently curated agentic benchmarks is an important direction for future work. Additionally,
 535 adapting to highly specialized domains may still require some labeled data. Future work includes
 536 expanding to multi-objective optimization (e.g., balancing accuracy and cost), incorporating richer
 537 views such as temporal traces and user feedback, and exploring human-in-the-loop workflows for real-
 538 time refinement. These directions aim to make Agentic Predictor more generalizable and interactive
 539 in complex, real-world settings.

Table 6: Computation cost comparison.

Model	Training		Inference	
	Time (s/epoch)	Memory (GB)	Time (ms/sample)	Memory (GB)
MLP	0.195	0.033	0.002	0.020
GCN	4.867	0.058	0.017	0.040
GAT	5.108	0.058	0.023	0.042
GCN-II	4.623	0.058	0.015	0.040
Graph Transformer	5.372	0.087	0.023	0.060
Dir-GNN	4.965	0.077	0.023	0.050
One For All	6.140	0.038	0.018	0.038
GPT-4.1	N/A		2253.333	
Claude 4 Sonnet	(via OpenRouter API)		1888.333	N/A
Gemini 2.5 Flash			2606.667	
Agentic Predictor (+ pretraining)	4.840 (16.8104)	2.760 (13.5220)	0.054	0.490

540 REPRODUCIBILITY STATEMENT
541

542 We facilitate reproducibility by providing an anonymous repository with all source code at <https://anonymous.4open.science/r/agent-predictor>. **Algorithm 1** provides the complete
543 pseudocode of the proposed framework. For experimental consistency, the random seed for each run
544 is 2^r , where r is the running index starting from 0.
545

546
547 REFERENCES
548

549 Yash Akhauri and Mohamed S Abdelfattah. Encodings for prediction-based neural architecture
550 search. In *Forty-first International Conference on Machine Learning*, 2024. 4, 6

551 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
552 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
553 models. *arXiv preprint arXiv:2108.07732*, 2021. 7

554 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
555 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
556 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021. 7

558 Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
559 convolutional networks. In *Proceedings of the 37th International Conference on Machine Learning*,
560 pp. 1725–1735, 2020. 8

561 Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
562 Xaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong
563 Sun, and Jie Zhou. Agentverse: Facilitating multi-agent collaboration and exploring emergent
564 behaviors. In *The Twelfth International Conference on Learning Representations*, 2024. 2, 3

565 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
566 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
567 math word problems. *arXiv preprint arXiv:2110.14168*, 2021. 7

569 Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
570 factuality and reasoning in language models through multiagent debate. In *Forty-first International
571 Conference on Machine Learning*, 2024. 2, 3

572 Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
573 DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
574 *Proceedings of the 2019 Conference of the North American Chapter of the Association for
575 Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp.
576 2368–2378, 2019. 19

577 Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas Lane.
578 Brp-nas: Prediction-based nas using gcn. In *Advances in neural information processing systems*,
579 pp. 10480–10490, 2020. 3

581 Mourad Gridach, Jay Nanavati, Khaldoun Zine El Abidine, Lenon Mendes, and Christina Mack.
582 Agentic ai for scientific discovery: A survey of progress, challenges, and future directions. *arXiv
583 preprint arXiv:2503.08979*, 2025. 1, 2

584 Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf
585 Wiest, and Xiangliang Zhang. Large language model based multi-agents: a survey of progress
586 and challenges. In *Proceedings of the Thirty-Third International Joint Conference on Artificial
587 Intelligence*, pp. 8048–8057, 2024. 2

588 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
589 Steinhardt. Measuring massive multitask language understanding. In *International Conference on
590 Learning Representations*, 2021a. 7

592 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
593 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*,
2021b. 7

594 Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
 595 Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
 596 Xiao, Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
 597 collaborative framework. In *The Twelfth International Conference on Learning Representations*,
 598 2024. 1, 2

599 Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. In *The Thirteenth*
 600 *International Conference on Learning Representations*, 2025a. 1, 3

601 602 Yue Hu, Yuzhu Cai, Yixin Du, Xinyu Zhu, Xiangrui Liu, Zijie Yu, Yuchen Hou, Shuo Tang, and
 603 Siheng Chen. Self-evolving multi-agent networks for software development. In *The Thirteenth*
 604 *International Conference on Learning Representations*, 2025b. 1

605 606 Dongyeong Hwang, Hyunju Kim, Sunwoo Kim, and Kijung Shin. Flowerformer: Empowering neural
 607 architecture encoding using a flow-aware graph transformer. In *Proceedings of the IEEE/CVF*
 608 *Conference on Computer Vision and Pattern Recognition*, pp. 6128–6137, 2024. 3

609 610 Ganesh Jawahar, Muhammad Abdul-Mageed, Laks VS Lakshmanan, and Dujian Ding. Llm perfor-
 611 mance predictors are good initializers for architecture search. *arXiv preprint arXiv:2310.16712*,
 612 2023. 10, 16

613 614 Han Ji, Yuqi Feng, and Yanan Sun. Cap: a context-aware neural predictor for nas. In *Proceedings of*
 615 *the Thirty-Third International Joint Conference on Artificial Intelligence*, pp. 4219–4227, 2024. 3

616 617 Zixuan Ke, Fangkai Jiao, Yifei Ming, Xuan-Phi Nguyen, Austin Xu, Do Xuan Long, Minzhi Li,
 618 Chengwei Qin, Peifeng Wang, Silvio Savarese, et al. A survey of frontiers in llm reasoning:
 Inference scaling, learning to reason, and agentic systems. *arXiv preprint arXiv:2504.09037*, 2025.
 1, 2

619 620 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 621 *arXiv:1412.6980*, 2014. 8

622 623 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 In *International Conference on Learning Representations*, 2017. 8

624 625 Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
 626 Zhang. One for all: Towards training one graph model for all classification tasks. In *The Twelfth*
 627 *International Conference on Learning Representations*, 2024a. 8

628 629 Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic LLM-powered agent
 630 network for task-oriented agent collaboration. In *First Conference on Language Modeling*, 2024b.
 1, 3

631 632 Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA:
 633 a benchmark for general AI assistants. In *The Twelfth International Conference on Learning*
 634 *Representations*, 2024. 1

635 636 Boye Niu, Yiliao Song, Kai Lian, Yifan Shen, Yu Yao, Kun Zhang, and Tongliang Liu. Flow: Modu-
 637 larized agentic workflow automation. In *The Thirteenth International Conference on Learning*
 638 *Representations*, 2025. 2

639 640 Yameng Peng, Andy Song, Vic Ciesielski, Haytham M. Fayek, and Xiaojun Chang. Pre-nas: predictor-
 641 assisted evolutionary neural architecture search. In *Proceedings of the Genetic and Evolutionary*
 642 *Computation Conference*, pp. 1066–1074, 2022. 3

643 644 Aske Plaat, Max van Duijn, Niki van Stein, Mike Preuss, Peter van der Putten, and Kees Joost
 645 Batenburg. Agentic large language models, a survey. *arXiv preprint arXiv:2503.23037*, 2025. 1, 2

646 647 Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
 648 Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. ChatDev:
 649 Communicative agents for software development. In Lun-Wei Ku, Andre Martins, and Vivek
 650 Srikanth (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational*
 651 *Linguistics (Volume 1: Long Papers)*, pp. 15174–15186, 2024. 2, 3

648 Shuofei Qiao, Runnan Fang, Zhisong Qiu, Xiaobin Wang, Ningyu Zhang, Yong Jiang, Pengjun Xie,
 649 Fei Huang, and Huajun Chen. Benchmarking agentic workflow generation. In *The Thirteenth*
 650 *International Conference on Learning Representations*, 2025. 2

651 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
 652 In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing*, 11
 653 2019. 8

654 Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan Günnemann,
 655 and Michael M Bronstein. Edge directionality improves learning on heterophilic graphs. In
 656 *Learning on graphs conference*, pp. 25–1. PMLR, 2024. 8

657 Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. Agentsquare: Automatic
 658 llm agent search in modular design space. In *The Thirteenth International Conference on Learning*
 659 *Representations*, 2025. 1, 3

660 Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked label
 661 prediction: Unified message passing model for semi-supervised classification. In *Proceedings of*
 662 *the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21*, pp. 1548–1554, 8
 663 2021. 8

664 Tarun Suresh, Revanth Gangi Reddy, Yifei Xu, Zach Nussbaum, Andriy Mulyar, Brandon Duderstadt,
 665 and Heng Ji. CoRNStack: High-quality contrastive data for better code retrieval and reranking. In
 666 *The Thirteenth International Conference on Learning Representations*, 2025. 8

667 Patara Trirat and Jae-Gil Lee. MONAQ: Multi-objective neural architecture querying for time-series
 668 analysis on resource-constrained devices. In *Findings of EMNLP*, 2025a. 2

669 Patara Trirat and Jae-Gil Lee. Pasta: Neural architecture search for anomaly detection in multivariate
 670 time series. *IEEE Transactions on Emerging Topics in Computational Intelligence*, 9(4):2924–2939,
 671 2025b. 4, 6

672 Patara Trirat, Wonyong Jeong, and Sung Ju Hwang. AutoML-agent: A multi-agent LLM framework
 673 for full-pipeline autoML. In *Forty-second International Conference on Machine Learning*, 2025. 2

674 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 675 Bengio. Graph attention networks. In *International Conference on Learning Representations*,
 676 2018. 8

677 Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
 678 attention distillation for task-agnostic compression of pre-trained transformers. *Advances in neural*
 679 *information processing systems*, 33:5776–5788, 2020. 8

680 Colin White, Willie Neiswanger, Sam Nolen, and Yash Savani. A study on encodings for neural
 681 architecture search. In *NeurIPS*, pp. 20309–20319, 2020. 4, 6

682 Colin White, Arber Zela, Binxin Ru, Yang Liu, and Frank Hutter. How powerful are performance
 683 predictors in neural architecture search? In *Advances in Neural Information Processing Systems*,
 684 2021. 1, 8

685 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
 686 Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
 687 Chi Wang. AutoGen: Enabling next-gen LLM applications via multi-agent conversations. In *First*
 688 *Conference on Language Modeling*, 2024. 1

689 Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Dingwen
 690 Yang, Chenyang Liao, Xin Guo, Wei He, Songyang Gao, Lu Chen, Rui Zheng, Yicheng Zou,
 691 Tao Gui, Qi Zhang, Xipeng Qiu, Xuanjing Huang, Zuxuan Wu, and Yu-Gang Jiang. AgentGym:
 692 Evolving large language model-based agents across diverse environments, 2024. 1

693 Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
 694 Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
 695 A survey. *Science China Information Sciences*, 68(2):121101, 2025. 1, 2

702 Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z. Wang,
 703 Xuhui Zhou, Zhitong Guo, Murong Cao, Mingyang Yang, Hao Yang Lu, Amaad Martin, Zhe Su,
 704 Leander Maben, Raj Mehta, Wayne Chi, Lawrence Jang, Yiqing Xie, Shuyan Zhou, and Graham
 705 Neubig. TheAgentCompany: Benchmarking llm agents on consequential real world tasks, 2024. 2

706 Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, and Mi Zhang. Does unsupervised architecture representa-
 707 tion learning help neural architecture search? *Advances in neural information processing systems*,
 708 33:12486–12498, 2020. 6

709 Shen Yan, Kaiqiang Song, Fei Liu, and Mi Zhang. Cate: Computation-aware neural architecture
 710 encoding with transformers. In *International Conference on Machine Learning*, pp. 11670–11681.
 711 PMLR, 2021. 6

712 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
 713 and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
 714 answering. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language
 715 Processing*, pp. 2369–2380, 2018. 19

716 Rui Ye, Shuo Tang, Rui Ge, Yixin Du, Zhenfei Yin, Siheng Chen, and Jing Shao. MAS-GPT: Training
 717 LLMs to build LLM-based multi-agent systems. In *Forty-second International Conference on
 718 Machine Learning*, 2025. 3

719 Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. Evoagent: Towards
 720 automatic multi-agent generation via evolutionary algorithms. In *NAACL*, 2025. 1

721 Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
 722 Tianlong Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication topologies
 723 via graph neural networks. In *ICML*, 2025a. 3, 7, 16

724 Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
 725 Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
 726 Wu. AFlow: Automating agentic workflow generation. In *The Thirteenth International Conference
 727 on Learning Representations*, 2025b. 1, 3, 7, 16, 18

728 Yuanshuo Zhang, Yuchen Hou, Bohan Tang, Shuo Chen, Muhan Zhang, Xiaowen Dong, and Siheng
 729 Chen. FLORA: GNNs as predictors of agentic workflow performances. In *The Fourth Learning
 730 on Graphs Conference*, 2025c. 3, 5, 6, 7, 8, 15, 16, 18

731 Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbulin, and Jürgen
 732 Schmidhuber. GPTSwarm: Language agents as optimizable graphs. In *Forty-first International
 733 Conference on Machine Learning*, 2024. 1, 3

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A PSEUDOCODE OF AGENTIC PREDICTOR
757758 We present the pseudocode of the proposed Agentic Predictor framework in [Algorithm 1](#) below.
759760 **Algorithm 1** Overall Procedure of Agentic Predictor

761 **Initialization:** Multi-View Encoder $\text{Enc}(\cdot)$ and Performance Predictor Model \mathcal{M}_Θ
 762 **Input:** User Instruction (or Task Description) $T \in \mathcal{T}$ and Training Data D^{train}

763 1: \triangleright Multi-View Graph Construction ([§3.3](#))
 764 2: **Construct a node-aligned view set** $\mathcal{G} = \{\mathcal{G}_v = (\mathcal{V}, \mathcal{E}, X_v) \mid v \in \{\text{prompt, code, operator}\}\}$
 765 where X_v is the view-specific node features.
 766 3: \triangleright Cross-Domain Unsupervised Pretraining ([§3.4, Optional](#))
 767 4: Sample M unlabeled workflows $\mathcal{W}_1, \mathcal{W}_2, \dots, \mathcal{W}_M$ from multiple domains
 768 5: **for** each $\mathcal{W}_i = (\mathcal{G}_i, \mathcal{C}_i, \mathcal{P}_i)$ **do**
 769 6: $\mathbf{Z}_i \leftarrow \text{Enc}(\mathcal{G}_i, \mathcal{C}_i, \mathcal{P}_i)$ \triangleright Encode multiview graph, code, and prompts
 770 7: $(\hat{\mathcal{G}}_i, \hat{\mathcal{C}}_i, \hat{\mathcal{P}}_i) \leftarrow \text{Dec}(\mathbf{Z}_i)$ \triangleright Decode reconstructions
 771 8: **end for**
 772 9: $\mathcal{L}_{\text{enc}} = \mathcal{L}_{\text{rec}} + \mathcal{L}_{\text{con}}$ \triangleright Minimize total pretraining loss
 773 10: \triangleright Training Performance Predictor ([§3.5](#))
 774 11: Obtain (small) labeled dataset $\{(\mathcal{W}_j, T_j, e_j)\}_{j=1}^N$ from D^{train}
 775 12: **for** each (\mathcal{W}_j, T_j) **do**
 776 13: $\mathbf{Z}_j \leftarrow \text{Enc}(\mathcal{W}_j)$ \triangleright Encode workflow
 777 14: $\mathbf{T}_j \leftarrow \text{TaskEncoder}(T_j)$ \triangleright Encode task description
 778 15: $\mathcal{F}_j \leftarrow \text{MLP}([\mathbf{Z}_j, \mathbf{T}_j])$ \triangleright Form joint representation
 779 16: $\hat{e}_j \leftarrow \mathcal{M}_\Theta(\mathcal{F}_j)$ \triangleright Predict performance
 780 17: **end for**
 781 18: Train \mathcal{M}_Θ using binary cross-entropy loss $\mathcal{L}_{\text{pred}}(e_j, \hat{e}_j)$, where $\{e_j\}_{j=1}^N$
 782 19: \triangleright Predictor-Guided Candidate Ranking
 783 20: Sample K candidate workflows $\{\mathcal{W}_k\}_{k=1}^K$
 784 21: **for** each \mathcal{W}_k **do**
 785 22: $\mathbf{Z}_k \leftarrow \text{Enc}(\mathcal{W}_k)$ \triangleright Encode workflow
 786 23: $\mathcal{F}_k \leftarrow \text{MLP}([\mathbf{Z}_k, \mathbf{T}])$ \triangleright Encode task
 787 24: $\hat{e}_k \leftarrow \mathcal{M}_\Theta(\mathcal{F}_k)$ \triangleright Predict score
 788 25: **end for**
 789 26: Rank all $\{\mathcal{W}_k\}$ by predicted scores \hat{e}_k
 790 27: **return** top- k ranked workflows for final evaluation

791 B ADDITIONAL EXPERIMENTAL RESULTS
792793 This section provides complementary studies that further characterize our approach: robustness when
794 the agent-controller LLM backbone varies ([§B.1](#)); an ablation over multiple GNN backbones ([§B.2](#));
795 a comparison to few-shot LLM predictors ([§B.3](#)); and out-of-distribution (OOD) generalization
796 evaluations ([§B.4](#)).

797 798 B.1 PERFORMANCE ON DIFFERENT LLM BACKBONES

799 As shown in [Table 7](#), we assess whether predictor performance is robust when the agentic work-
800 flows are driven by different LLMs. Concretely, we replicate our evaluation while swapping the
801 controller LLM among GPT-4o-mini, DeepSeek, Qwen 7B, and Mistral 7B, holding the training
802 data construction, multi-view encoder, and evaluation protocol fixed. Except for the Mistral 7B case,
803 Agentic Predictor exhibits stable performance and preserves the relative ranking of workflows across
804 these backbones, indicating that it captures structural and behavioral regularities of agentic programs
805 rather than idiosyncrasies of any single LLM.

806 807 B.2 PERFORMANCE ON DIFFERENT GNN BACKBONES

808 809 Our main experiments use a 2-layer GCN (hidden size 512) following the standard setup in FLORA-
Bench ([Zhang et al., 2025c](#)), enabling a controlled comparison to baseline predictors. To test

810

811

Table 7: Results on different backbones driven agentic workflows.

812

813

Domain	GPT-4o-mini		DeepSeek		Qwen 7B		Mistral 7B		
Model	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility	
Graph Transformer	MLP	83.88	76.16	85.89	71.72	84.25	80.52	89.23	85.07
	GCN	82.94	80.40	86.56	75.69	86.71	84.48	92.58	88.48
	GAT	83.03	80.25	84.42	75.18	86.98	84.26	92.62	88.72
	GCN-II	82.81	79.48	84.34	75.68	85.17	82.71	90.94	85.89
	Dir-GNN	83.42	79.83	86.34	73.06	86.76	84.65	92.80	88.87
	One For All	84.85	79.81	85.38	71.27	86.36	84.50	91.87	88.47
	<i>Agentic Predictor</i>	85.33	81.42	88.39	76.64	86.99	85.02	92.33	88.69

814

815

816

817

818

819

820

821

architecture sensitivity, we conduct an ablation over five diverse GNN backbones—GCN, GAT, GCN-II, Graph Transformer, and Dir-GNN—while keeping the prompt and code views fixed. As presented in Table 8 All backbones yield comparable predictive accuracy and replicate the same trends, reinforcing that the performance improvements stem from the multi-view encoding and pretraining rather than a specific GNN design. These results support the architecture-agnostic nature of the Agentic Predictor.

822

823

B.3 COMPARISON WITH LLM PREDICTORS

824

825

826

827

828

We compare against few-shot, prompt-based LLM classifiers implemented with a standardized LLM-PP-style template (Jawahar et al., 2023) with 5-shot and temperature set to 0 using GPT-4.1, Claude 4 Sonnet, and Gemini 2.5 Flash. The results in Table 9 are consistent with prior findings on FLORA-Bench (Zhang et al., 2025c) (which evaluated DeepSeek-v3), these prompted LLMs underperform even a simple MLP predictor and substantially trail our graph-based approach. A likely reason is that prompted LLM classifiers do not exploit the structured execution patterns and tool-usage dynamics present in agentic workflows. Beyond accuracy, prompted LLM inference incurs a per-sample monetary and latency cost, whereas our predictor amortizes cost at training time. In our setup, generating predictions for up to 1,000 samples per task with LLM prompting required approximately \$300, implying considerably higher expense at full-benchmark scale. By contrast, the learned predictor scales to large candidate sets with constant per-sample computational cost at inference. Overall, while few-shot LLMs provide a useful baseline, they are less effective and less economical for large-scale agent search.

829

830

B.4 OUT-OF-DISTRIBUTION (OOD) GENERALIZATION PERFORMANCE

831

832

833

834

835

836

837

838

839

840

841

842

843

844

We study two factors that enable OOD robustness. First, the multi-view encoder jointly represents workflows via graph, code, and prompt views, all of which are architecture-agnostic. This design allows unseen agents and tools to be incorporated as long as their implementations and textual descriptions are available; the graph encoder embeds novel entities through structural and attribute signals without relying on fixed IDs. Second, cross-domain unsupervised pretraining over diverse unlabeled workflows equips the encoder with priors over common structural and behavioral motifs (e.g., tool invocation patterns and reasoning flows), improving robustness to unseen configurations.

845

846

847

848

849

850

851

852

853

854

855

856

857

858

Regarding evaluation, following RQ3 in FLORA-Bench (Zhang et al., 2025c), we perform two levels of OOD generalization. *Cross-system generalization*: train on one agentic framework (e.g., AFlow (Zhang et al., 2025b)) and test on another (e.g., G-Designer (Zhang et al., 2025a)) as well as *cross-domain generalization*: train on one set of downstream tasks (e.g., math) and test on disjoint tasks (e.g., coding) not observed during training. As presented in Table 10, Table 11 and Table 12, across both settings, Agentic Predictor maintains strong performance and preserves relative workflow rankings, indicating that it generalizes beyond in-distribution memorization.

859

860

B.5 EFFECTS OF PRETRAINING PHASE (FULL RESULTS)

861

862

863

Since acquiring a large amount of ground-truth labels from agentic workflows is expensive, we examine whether cross-domain unsupervised pretraining (denoted as Agentic Predictor+) benefits settings where labeled instances are limited. We vary the label ratio from 0.1 to 0.5, selecting labeled samples from the training split of all datasets in the benchmark. Concretely, we construct an

864

865 Table 8: Results on different GNN backbones of Agentic Predictor.

Domain	Code Generation		Math Problem		Common Reasoning		Average	
GNN Backbone	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility
GCN	85.62	80.08	79.56	74.08	87.96	91.47	84.38	81.88
GAT	83.74	73.11	75.86	67.03	86.95	87.20	82.19	75.78
GCN-II	84.71	73.83	76.68	68.41	86.76	86.04	82.72	76.09
Graph Transformer	83.22	78.17	76.64	70.03	86.88	89.50	82.25	79.23
Dir-GNN	84.62	79.64	80.26	75.03	87.93	94.77	84.27	83.15

871

872

873 Table 9: Comparison between Agentic Predictor and LLM-based few-show classification.

Domain	Code Generation		Math Problem		Common Reasoning		Average	
Model	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility
GPT-4.1 (~\\$59)	62.42	57.00	67.08	52.97	59.10	66.79	62.86	58.92
Claude 4 Sonnet (~\\$202)	56.72	51.65	64.62	57.32	44.50	41.25	55.28	50.07
Gemini 2.5 Flash (~\\$21)	60.52	58.94	51.60	55.21	59.20	63.17	57.10	59.11
Agentic Predictor	84.40	78.84	80.10	77.61	90.40	87.67	84.97	81.37

879

880

886

887 Figure 4: Comparison of accuracy (upper) and utility (lower) between Agentic Predictor and the 888 baselines across varying label ratios.

889

890 unlabeled corpus by pooling all workflow configurations from the remaining training splits of the
891 FLORA-Bench across Code, Math, and Reasoning tasks and both AFlow and G-Designer frameworks,
892 sampling uniformly over the pool without additional deduplication or domain re-weighting. This
893 yields $M = 232,104$ distinct samples ($\approx 6.56\%$ Code, 2.86% Math, 90.58% Reasoning). No
894 validation and test workflows or labels are included to avoid leakage. We pretrain the proposed
895 multi-view encoder with a batch size of 32 for 20 epochs.

896

897 Following the average results in the main text, we provide a comprehensive comparison of accuracy
898 (top row) and utility (bottom row) across three task domains—code generation, math problems, and
899 reasoning—under varying label ratios from 0.5 to 0.1 (Figure 4).

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 Across all settings, our proposed framework, Agentic Predictor, and its pretrained variant, Agentic
919 Predictor+, consistently outperform baseline models, especially in low-resource scenarios. In the
920 code generation domain (Figures 4a, 4e), Agentic Predictor+ achieves superior accuracy and notably
921 higher utility as the label ratio decreases, outperforming all graph-based and non-graph baselines.
922 Similarly, for math problems (Figures 4b, 4f), Agentic Predictor+ maintains a stable accuracy even
923 as labeled data diminishes, while significantly improving utility, indicating better performance in
924 label-scarce conditions. In reasoning tasks (Figures 4c, 4g), although accuracy deltas narrow between
925 models, Agentic Predictor+ sustains strong utility across all label ratios, highlighting its robustness
926 in generalization. When averaged across domains (Figures 4d, 4h), Agentic Predictor+ shows clear
927 advantages in both metrics under limited supervision. The utility improvements are particularly
928 prominent, suggesting that our pretrained encoder captures transferable representations that enhance
929 decision-making, even when fine-tuning data is sparse. These findings validate the efficacy of the
930 unsupervised pretraining phase and highlight the importance of cross-domain datasets for pretraining.

918

919

Table 10: Results when train on AFlow and test on G-Designer.

Domain	Code Generation		Math Problem		Common Reasoning		Average	
Model	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility
GCN	56.76	54.29	49.64	51.92	61.37	54.13	55.92	53.45
GAT	57.25	56.05	48.29	48.71	57.03	53.12	54.19	52.63
GCN-II	64.16	62.67	48.85	50.56	65.55	52.76	59.52	55.33
Graph Transformer	60.83	58.39	47.73	46.65	55.88	48.87	54.81	51.30
One For All	58.97	53.25	50.60	51.02	63.84	55.22	57.80	53.16
<i>Agentic Predictor</i>	65.02	64.91	53.62	52.83	67.51	57.74	62.05	58.49

926

927

928

Table 11: Results when train on G-Designer and test on AFlow.

Domain	Code Generation		Math Problem		Common Reasoning		Average	
Model	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility
GCN	58.21	57.33	67.57	54.63	57.51	53.37	61.10	55.11
GAT	59.29	59.68	66.34	52.70	56.07	50.38	60.57	54.25
GCN-II	58.75	61.17	67.32	52.96	55.93	52.19	60.67	55.44
Graph Transformer	60.52	61.44	58.97	57.49	56.50	54.86	58.66	57.93
One For All	62.01	54.57	58.72	61.23	59.40	54.17	60.04	56.66
<i>Agentic Predictor</i>	60.94	59.75	69.11	63.02	58.56	56.73	62.87	59.83

937

939 B.6 WORKFLOW OPTIMIZATION RESULTS

940

941 In the main experiments, we demonstrate the feasibility and robustness of predicting agentic work-
 942 flow performance. However, it remains an open question whether such predictions can effectively
 943 contribute to improving efficiency and to what extent they may introduce performance degradation in
 944 agentic workflows. To investigate this, we evaluate *whether using Agentic Predictor as a predictor*
 945 *enhances the optimization of agentic workflows compared to alternative baselines*. Specifically, we
 946 measure the performance improvement (or loss) incurred when using performance predictors.

947 To ensure a fair comparison, we adopt the same experimental setup as [Zhang et al. \(2025c\)](#), which
 948 provides a unified platform for optimizing agentic workflows and evaluating their performance.
 949 During the optimization process on each benchmark, a predictor is used to estimate the performance
 950 of candidate agentic workflows. These predicted performance values are treated as rewards to guide
 951 the optimization. Upon completion of the optimization, the quality of the resulting workflows is
 952 assessed based on their accuracy score on held-out test tasks.

953 We compare Agentic Predictor against four baselines: (1) the **ground truth** baseline, which directly
 954 evaluates agentic workflows to obtain ground-truth performance scores (as done in the original
 955 AFlow ([Zhang et al., 2025b](#))); (2) two strong GNN-based predictors **GCN** and **GAT**; and (3) a **random**
 956 baseline, which assigns random performance scores as rewards. This experiment is conducted across
 957 five benchmarks: MATH, GSM8K, MBPP, HumanEval, and MMLU.

958 As in [Table 13](#), Agentic Predictor consistently outperforms the random, GCN, and GAT baselines,
 959 achieving an average accuracy score of **74.43%**, significantly higher than random (62.56%), GCN
 960 (68.42%), and GAT (71.00%). Notably, as a predictor incurs zero search cost compared to the ground-
 961 truth’s cost of \$39.83, this result underscores the effectiveness and efficiency of Agentic Predictor
 962 as a reliable predictor for optimizing agentic workflows. Note that the search cost is 0 because the
 963 predictors do not incur any LLM inference cost. Note that the search cost when using the performance
 964 predictor is effectively zero because the predictor incurs no LLM inference calls (i.e., no downstream
 965 task executions of task queries) to decide whether the current workflow has failed. The lightweight
 966 LLM update applied after each pass/fail decision, whose cost is about 0.005 – 0.01 per update round
 967 with GPT-4.1-mini on the existing workflow, is *excluded* from the reported costs for all methods.

968 In real-world deployments, Agentic Predictor can be combined with any workflow generator (e.g.,
 969 AFlow). In such cases, the overall cost decomposes into (1) the candidate-generation LLM cost
 970 (*shared across all search strategies*) and (2) the evaluation cost. Our predictor reduces (2) by replacing
 971 most candidate evaluations with cheap, yet more accurate predictions, while incurring only a one-time
 972 training cost (see [§4.4](#)). This analysis applies equally to the other predictors as well.

972

973

974

975

976

977

978

979

980

981

Table 12: Results on cross-domain OOD test.

Domain	Code-Math		Code-Reason		Math-Reason		Math-Code		Reason-Code		Reason-Math		Average	
Model	Accuracy	Utility												
GCN	48.89	54.07	52.61	53.29	49.38	46.69	50.07	48.75	32.56	50.53	33.42	50.57	44.49	50.65
GAT	45.95	49.42	53.71	57.90	46.83	38.90	51.02	47.40	33.79	52.62	33.42	51.10	44.12	49.56
GCN-II	56.02	44.49	53.44	45.93	50.38	47.36	39.48	51.55	38.13	51.35	36.61	57.93	45.68	49.77
Graph Transformer	47.67	56.18	53.71	57.95	47.90	43.63	54.00	56.20	60.92	52.37	41.77	52.91	51.00	53.21
One For All	36.61	61.11	50.33	39.82	44.92	45.88	65.40	56.24	63.36	50.60	38.08	45.27	49.78	49.82
<i>Agentic Predictor</i>	57.17	61.03	54.22	62.99	53.86	61.75	59.88	60.25	61.60	54.52	62.90	52.69	58.27	58.87

982

983

984

985

986

987

988

989

Table 13: Workflow optimization performance based on the selected workflow across methods.

Methods	Math Problems			Code Generation			Reasoning			Average		
	MATH	GSM8K	MBPP	HumanEval	MMLU	DROP	HotpotQA	Score	Search Cost (\$)			
Ground Truth (AFlow)	87.38	94.53	73.22	97.20	83.10	84.25	69.94	84.23	39.83			
Random	78.40	75.23	67.84	76.34	42.87	80.42	16.86	62.56	0.00			
GCN	79.22	86.16	68.23	97.46	46.43	82.33	19.14	68.42	0.00			
GAT	80.11	86.22	68.62	97.71	57.00	85.83	21.47	71.00	0.00			
<i>Agentic Predictor</i>	81.89	92.65	68.42	98.73	79.70	86.25	13.37	74.43	0.00			

989

B.7 TRANSFERABILITY

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

Considering that the MMLU benchmark encompasses various reasoning tasks, we further investigate the transferability of predictors trained on MMLU datasets to determine whether they can be used to optimize similar reasoning tasks, specifically DROP (Dua et al., 2019) and HotpotQA (Yang et al., 2018). As reported in Table 13, the workflow optimized using Agentic Predictor achieves competitive performance on these tasks: 86.25% on DROP and 13.37% on HotpotQA, demonstrating notable transferability. While performance on HotpotQA is lower than the baselines, the results remain broadly comparable, indicating that the workflows optimized via Agentic Predictor maintain substantial effectiveness when transferred to closely related reasoning tasks. This highlights the practical potential of Agentic Predictor for broader applicability in workflow optimization scenarios.

C CASE STUDY

This section presents qualitative results from the workflow optimization process using Agentic Predictor as the reward function across three domains.

C.1 CODE GENERATION

The code generation workflow on the HumanEval dataset demonstrates that the initial solution generation step often required subsequent refinement through explicit review and revision cycles. By systematically reviewing the initially generated code, and conditionally revising based on feedback from automated tests, the workflow substantially improved the final solution’s correctness. This iterative approach effectively balanced computational cost and performance, resulting in solutions that were consistently more robust and accurate compared to single-step generations.

Workflow for Code Generation (HumanEval)

```

from typing import Literal
import workspace.HumanEval.workflows.template.operator as operator
import workspace.HumanEval.workflows.round_19.prompt as prompt_custom
from metagpt.provider.llm_provider_registry import create_llm_instance
from metagpt.utils.cost_manager import CostManager

DatasetType = Literal["HumanEval", "MBPP", "GSM8K", "MATH", "HotpotQA", "DROP", "MMLU"]

class Workflow:
    def __init__(self,
                 self,
                 name: str,
                 llm_config,
                 dataset: DatasetType,

```

```

1026
1027     ) -> None:
1028         self.name = name
1029         self.dataset = dataset
1030         self.llm = create_llm_instance(llm_config)
1031         self.llm.cost_manager = CostManager()
1032         self.custom = operator.Custom(self.llm)
1033         self.custom_code_generate = operator.CustomCodeGenerate(self.llm)
1034         self.test = operator.Test(self.llm)
1035
1036     @async def __call__(self, problem: str, entry_point: str):
1037         """
1038             Implementation of the workflow
1039             1. Generate initial solution using custom_code_generate.
1040             2. Review the solution using custom operator.
1041             3. Test the solution; if test fails, revise using custom operator and retest.
1042         """
1043
1044         # Step 1: Generate initial solution
1045         initial_solution = await self.custom_code_generate(problem=problem, entry_point=
1046             entry_point, instruction="")
1047
1048         # Step 2: Review the solution to improve quality
1049         reviewed = await self.custom(input=initial_solution['response'], instruction=
1050             prompt_custom.REVIEW_PROMPT)
1051
1052         # Step 3: Test the reviewed solution
1053         test_result = await self.test(problem=problem, solution=reviewed['response'],
1054             entry_point=entry_point)
1055
1056         # If test fails, revise solution based on test feedback and retest once
1057         if not test_result['result']:
1058             revised = await self.custom(input=reviewed['response'] + "\n" + test_result['
1059                 solution'], instruction=prompt_custom.REVISE_PROMPT)
1060             test_result = await self.test(problem=problem, solution=revised['response'],
1061                 entry_point=entry_point)
1062             final_solution = revised['response'] if test_result['result'] else reviewed['
1063                 response']
1064
1065         return final_solution, self.llm.cost_manager.total_cost

```

C.2 MATH PROBLEM

In addressing mathematical problems using the MATH dataset, the workflow leverages an ensemble strategy by producing multiple candidate solutions, subsequently selecting the most consistent one via a self-consistency ensemble step. The selected solution was then further refined through an additional review process. This combined ensemble and review mechanism significantly enhanced solution quality, highlighting the value of ensemble techniques in solving complex mathematical reasoning tasks, while maintaining a controlled computational budget.

Workflow for Math Problem (MATH)

```

1065
1066     from typing import Literal
1067     import workspace.MATH.workflows.template.operator as operator
1068     import workspace.MATH.workflows.round_88.prompt as prompt_custom
1069     from metagpt.provider.llm_provider_registry import create_llm_instance
1070     from metagpt.utils.cost_manager import CostManager
1071
1072     DatasetType = Literal["HumanEval", "MBPP", "GSM8K", "MATH", "HotpotQA", "DROP", "MMLU"]
1073
1074     class Workflow:
1075         def __init__(
1076             self,
1077             name: str,
1078             llm_config,
1079             dataset: DatasetType,
1080         ) -> None:
1081             self.name = name
1082             self.dataset = dataset
1083             self.llm = create_llm_instance(llm_config)
1084             self.llm.cost_manager = CostManager()
1085             self.custom = operator.Custom(self.llm)
1086             self.sc_ensemble = operator.ScEnsemble(self.llm)

```

```

1080
1081     async def __call__(self, problem: str):
1082         """
1083             Implementation of the workflow with ensemble and review step
1084         """
1085         # Generate multiple candidate solutions using custom operator with different
1086         # instructions
1087         candidates = []
1088         for i in range(3):
1089             response = await self.custom(input=problem, instruction=prompt_custom.SOLVE_PROMPT
1090                 + f" Attempt {i+1}.")
1091             candidates.append(response['response'])
1092
1093         # Use self-consistency ensemble to select the best solution
1094         ensemble_result = await self.sc_ensemble(solutions=candidates, problem=problem)
1095         best_solution = ensemble_result['response']
1096
1097         # Review and refine the best solution
1098         review_response = await self.custom(input=problem + "\nSolution to review:\n" +
1099             best_solution, instruction=prompt_custom.REVIEW_PROMPT)
1100         final_solution = review_response['response']
1101
1102     return final_solution, self.llm.cost_manager.total_cost

```

C.3 REASONING TASK

For reasoning tasks on the MMLU dataset, the workflow combines multiple generation techniques, including custom-generated solutions with varying prompts and answers produced by specialized answer-generation operators, to diversify initial candidate answers. The self-consistency ensemble step effectively selected the most consistent candidate, which was subsequently subjected to rigorous review and format verification steps. This meticulous process, which included conditional regeneration and revision to ensure strict adherence to specified answer formats, proved highly effective in enhancing both accuracy and reliability of the final responses.

Workflow for Reasoning Task (MMLU)

```

1109
1110     from typing import Literal
1111     import workspace.MMLU.workflows.template.operator as operator
1112     import workspace.MMLU.workflows.round_19.prompt as prompt_custom
1113     from metagpt.provider.llm_provider_registry import create_llm_instance
1114     from metagpt.utils.cost_manager import CostManager
1115
1116     DatasetType = Literal["HumanEval", "MBPP", "GSM8K", "MATH", "HotpotQA", "DROP", "MMLU"]
1117
1118     class Workflow:
1119         def __init__(
1120             self,
1121             name: str,
1122             llm_config,
1123             dataset: DatasetType,
1124         ) -> None:
1125             self.name = name
1126             self.dataset = dataset
1127             self.llm = create_llm_instance(llm_config)
1128             self.llm.cost_manager = CostManager()
1129             self.custom = operator.Custom(self.llm)
1130             self.answer_generate = operator.AnswerGenerate(self.llm)
1131             self.sc_ensemble = operator.ScEnsemble(self.llm)
1132
1133         async def __call__(self, problem: str):
1134             """
1135                 Implementation of the workflow with multiple custom answers, multiple AnswerGenerate
1136                 answers, ensemble, review, and revision
1137             """
1138             # Step 1: Generate multiple candidate answers using custom operator with a concise
1139             # prompt
1140             custom_answers = []
1141             for _ in range(2):
1142                 custom_response = await self.custom(input=problem, instruction=prompt_custom.
1143                     CUSTOM_PROMPT)
1144                 custom_answer = custom_response['response']
1145                 custom_answers.append(custom_answer)

```

```

1134
1135     # Add 1 answer with diversity prompt to increase answer variety
1136     custom_diverse_response = await self.custom(input=problem, instruction=prompt_custom.
1137         CUSTOM_DIVERSE_PROMPT)
1138     custom_answers.append(custom_diverse_response['response'])

1139     # Step 2: Generate multiple candidate answers using AnswerGenerate operator to
1140     # increase diversity
1141     answergen_answers = []
1142     for _ in range(2):
1143         answergen_response = await self.answer_generate(input=problem)
1144         answergen_answer = answergen_response['answer']
1145         answergen_answers.append(answergen_answer)

1146     # Step 3: Ensemble all candidate answers to select the most consistent answer
1147     all_answers = custom_answers + answergen_answers
1148     ensemble_response = await self.sc_ensemble(solutions=all_answers)
1149     ensemble_answer = ensemble_response['response']

1150     # Step 4: Review the ensemble answer to ensure format and correctness
1151     review_input = problem + "\nAnswer: " + ensemble_answer
1152     review_response = await self.custom(input=review_input, instruction=prompt_custom.
1153         REVIEW_PROMPT)
1154     reviewed_answer = review_response['response']

1155     # Step 5: If reviewed answer is not in correct format, regenerate with a stricter
1156     # prompt
1157     if not reviewed_answer.startswith("Answer: Option "):
1158         strict_regen_input = problem + "\nPlease provide the final answer strictly in the
1159         format 'Answer: Option X'."
1160         strict_regen_response = await self.custom(input=strict_regen_input, instruction=
1161             prompt_custom.STRICT_REGEN_PROMPT)
1162         reviewed_answer = strict_regen_response['response']

1163     # Step 6: Revision step to refine the reviewed answer for strict format adherence
1164     revision_input = problem + "\nAnswer: " + reviewed_answer
1165     revision_response = await self.custom(input=revision_input, instruction=prompt_custom.
1166         REVISION_PROMPT)
1167     final_answer = revision_response['response']

1168     return final_answer, self.llm.cost_manager.total_cost

```

D USE OF LARGE LANGUAGE MODELS

In preparing this submission, we employed ChatGPT-5 strictly as a tool for language refinement, including polishing text, improving clarity, and correcting grammatical and typographical errors. Its role was limited to grammar correction, sentence restructuring, and rephrasing for readability. All model-generated content was thoroughly reviewed and revised by the human authors to ensure accuracy, originality, and adherence to research-integrity standards. The LLMs did not contribute to the core research ideas, experimental design, or any substantive intellectual components of the work. Note that LLMs also served as baselines for LLM-based prediction (§B.3) and case-study (§C) experiments, as described above.

1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187