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ABSTRACT

Large language models (LLMs) have demonstrated remarkable capabilities across
diverse tasks, but optimizing LLM-based agentic systems remains challenging
due to the vast search space of agent configurations, prompting strategies, and
communication patterns. Existing approaches often rely on heuristic-based tuning
or exhaustive evaluation, which can be computationally expensive and suboptimal.
This paper proposes Agentic Predictor, a lightweight predictor for efficient agentic
workflow evaluation. Agentic Predictor is equipped with a multi-view workflow
encoding technique that leverages multi-view representation learning of agentic
systems by incorporating code architecture, textual prompts, and interaction graph
features. To achieve high predictive accuracy while significantly reducing the
number of required workflow evaluations for training a predictor, Agentic Predictor
employs cross-domain unsupervised pretraining. By learning to approximate task
success rates, Agentic Predictor enables fast and accurate selection of optimal
agentic workflow configurations for a given task, significantly reducing the need
for expensive trial-and-error evaluations. Experiments on a carefully curated
benchmark spanning three domains show that our predictor outperforms several
strong graph-based baselines in both predictive accuracy and workflow utility,
highlighting the potential of performance predictors in streamlining the design of
LLM-based agentic workflows.

1 INTRODUCTION

Large language models (LLMs) have catalyzed the development of agentic systems capable of
executing complex, multi-step tasks autonomously (Hong et al., 2024; Wu et al., 2024; Xi et al.,
2024; Mialon et al., 2024). These systems, often constructed through meticulous manual engineering,
integrate components such as Chain-of-Thought reasoning, tool invocation, and memory management
to enable sophisticated behaviors for orchestrating intricate workflows (Xi et al., 2025; Ke et al., 2025;
Gridach et al., 2025; Plaat et al., 2025). However, the handcrafted nature of these systems imposes
limitations on scalability, adaptability, and rapid deployment across diverse domains.

To address these limitations, recent trends have shifted towards automated design methods for agentic
systems (Hu et al., 2025a; Shang et al., 2025; Zhang et al., 2025b; Zhuge et al., 2024; Liu et al.,
2024b; Hu et al., 2025b; Yuan et al., 2025). Automated methods typically employ search algorithms
to discover optimal workflow configurations by systematically exploring a vast design space. Instead
of relying on human intuition, these approaches generally involve iterations of candidate generation,
evaluation, and refinement. While promising, these methods exhibit significant drawbacks, chiefly the
high computational costs associated with the extensive validation steps needed during the exploration
and evaluation phases of the search. Each candidate configuration must undergo rigorous evaluation,
often through expensive, repeated interactions with LLM APIs, rendering the search prohibitively
costly and time-consuming.

In this paper, we argue that purely search-based automated design methods are inherently inefficient
and propose a predictive approach to significantly accelerate workflow evaluation. Specifically, we
advocate for a predictor-based framework that can rapidly estimate the performance of candidate
agentic workflows, similar to performance predictors in neural architecture search (White et al., 2021),
thereby reducing the need for extensive validation.
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As depicted in Figure 1, instead of fully evaluat-
ing every candidate, a predictive model can es-
timate the quality and viability of agentic work-
flows, thus guiding the search process far more
efficiently. By reducing costly ground-truth
executions or environment interactions during
the search process, prediction-based approaches
promise significant improvements in both search
efficiency and solution quality. However, build-
ing a high-quality predictor for agentic work-

flows introduces two fundamental challenges.  Figure 1: Comparison between (a) execution-based
and (b) prediction-based candidate evaluation for
agentic workflow generation. Execution-based
methods rely on costly runtime or LLM calls, while
our prediction-based approach offers faster, scal-
able evaluation via a learned predictor.
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Workflow Heterogeneity. Agentic workflows
exhibit considerable heterogeneity; subtle vari-
ations in configuration can lead to dramatically
different performances. Specifically, workflows
can vary widely in communication structure,
prompting strategies, tool invocation patterns, and reasoning styles, making it challenging to learn
a unified predictive model. Moreover, agentic systems differ significantly across tasks, domains,
and toolsets, resulting in diverse and complex workflow configurations that are difficult to model
uniformly (Xu et al., 2024; Qiao et al., 2025).

Scarcity of Labeled Data. The availability of labeled data for training effective prediction models
is severely limited due to the prohibitive cost of generating performance labels through exhaustive
validation. Constructing a large, diverse set of labeled workflows with known execution outcomes
is particularly expensive, creating a data bottleneck for supervised learning approaches. Moreover,
gathering large-scale, high-quality labels for agentic workflows (e.g., success rates and execution
outcomes) is often infeasible, further limiting the amount of supervised training data available for
learning accurate predictors.

To tackle these challenges, we present Agentic Predictor, a multi-view encoder framework for
performance prediction in LLM-based agentic workflows. To address workflow heterogeneity,
Agentic Predictor uses multi-view workflow encoders that jointly model complementary signals—
structural (e.g., agent topology), behavioral (e.g., tool usage), and semantic (e.g., prompts)—capturing
the diverse, task-dependent characteristics of workflow configurations. To mitigate label scarcity,
we introduce cross-domain unsupervised pretraining, denoted Agentic Predictor+, which leverages
abundant unlabeled workflows from related domains. We pretrain the multi-view encoders with
contrastive and reconstruction objectives, then fine-tune on limited labeled data, yielding robust and
transferable representations for prediction. The main contributions of this paper are as follows.

* We propose multi-view encoders and cross-domain unsupervised pretraining that jointly capture
the heterogeneous facets of LLM-based agentic workflows, yielding higher predictive performance,
better generalization, and effective predictor training under limited labels.

* We introduce Agentic Predictor, unifying these components for the underexplored problem of
performance prediction in heterogeneous, label-scarce LLM-based agentic workflows, thereby
reducing trial-and-error costs and accelerating development.

* We empirically demonstrate that, averaged across three domains, Agentic Predictor improves
prediction accuracy by up to 6.90% and utility by up to 5.87 % over strong baselines.

2 RELATED WORK

Automated Generation of Agentic Workflows. Recent advancements (Xi et al., 2025; Ke et al.,
2025; Gridach et al., 2025; Plaat et al., 2025) in agentic workflows have led to the development
of various frameworks aimed at enhancing multi-agent collaboration for complex tasks (Guo et al.,
2024; Trirat et al., 2025; Niu et al., 2025; Trirat & Lee, 2025a). MetaGPT (Hong et al., 2024) and
ChatDev (Qian et al., 2024) use predefined multi-agent structures to address coding challenges, while
AgentVerse (Chen et al., 2024) introduces iterative collaboration where agents discuss, execute, and
evaluate tasks. LLM-Debate (Du et al., 2024) employs multiple expert agents that engage in debates
over several rounds to derive final answers. However, these systems often rely on static configurations,
which limits their adaptability to diverse queries across different tasks and domains.
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To optimize agentic workflows, GPTSwarm (Zhuge et al., 2024) and G-Designer (Zhang et al., 2025a)
apply variants of the REINFORCE algorithm to optimize workflow structures represented as directed
acyclic graphs (DAGs), while DyLAN (Liu et al., 2024b) dynamically selects agents based on task
requirements. ADAS (Hu et al., 2025a) and AFlow (Zhang et al., 2025b) further leverage powerful
LLMs (e.g., Claude-3.5-Sonnet and GPT-4) to iteratively generate task-specific multi-agent systems.
Similarly, AgentSquare (Shang et al., 2025) proposes a modular design space for automatic LLM
agent search, enhancing adaptability to novel tasks. Despite their effectiveness, these methods
typically require numerous LLM calls, resulting in significant computational and financial overheads,
making them less practical for real-world applications.

Rather than manually designing a Table 1: Comparison between ours and existing frameworks
fixed workflow (Qian et al., 2024; for prediction-based workflow generation.
Chen et al., 2024, Du et al., 2024) Multi-View Unsupervised Lightweight  Search

Framework

or p ay 1 n g re p eate d 1 nfe rence costs Representation  Pretraining Predictor  Agnostic

. MAS-GPT (Ye et al., 2025) X X X X
to synthesize one per query (Zhuge pgoraBench (Zhang et al., 2025¢) x x v v
et al., 2024, Liu et al. . 2024b), Agen' Agentic Predictor (Ours) v v v v

tic Predictor presents a lightweight

performance predictor to rapidly estimate the quality of candidate agentic workflows, enabling
broad exploration without exhaustive evaluations. Among recent efforts, FLORA-Bench (Zhang et al.,
2025c¢) advocates GNN-based predictors and releases a benchmark that models workflows as a single-
view graph where prompts are node features. A complementary direction, MAS-GPT (Ye et al., 2025),
fine-tunes LLMs to directly generate workflows in a single call. In contrast to these directions,
Agentic Predictor differs in three respects: representation (multi-view encoding of agent topology,
code, and system prompts vs. single-view graphs), learning (cross-domain unsupervised pretraining
to mitigate label scarcity, rather than no pretraining recipe or supervised LLM fine-tuning), and
efficiency (a compact predictor for fast evaluation without repeated LLLM calls). Table 1 summarizes
these distinctions.

Performance Predictors for NAS. Neural architecture search (NAS) has spurred the development of
performance predictors that aim to reduce the significant computational cost of evaluating candidate
architectures. PRE-NAS (Peng et al., 2022) employs a predictor-assisted evolutionary strategy to
estimate model performance, thereby alleviating the need for exhaustive training. BRP-NAS (Dudziak
et al., 2020) integrates graph convolutional networks to forecast hardware-aware performance metrics,
improving the practicality of NAS under resource constraints. CAP (Ji et al., 2024) introduces
a context-aware neural predictor, leveraging self-supervised learning to generate expressive and
generalizable representations of architectures, thus enabling more effective search space exploration.
FlowerFormer (Hwang et al., 2024) advances architecture encoding through a flow-aware graph
transformer, yielding improved prediction accuracy. A unifying trend among these methods is the
emphasis on learning more informative representations to guide the search process. Building on this
insight, we propose the Agentic Predictor framework, which approaches performance prediction from
a representation-centric perspective. By incorporating multi-view representations conditioned on
workflow configurations, Agentic Predictor facilitates accurate performance estimation and efficient
exploration of the agentic workflow space.

3 METHODOLOGY: AGENTIC PREDICTOR

3.1 PROBLEM FORMULATION

Let an agentic workflow be denoted as W = {V,&,P,C}, where V = {v;}¥, represents the set
of N agents, € denotes the set of edges defining the connections between agents, and P = {p;} ¥ ;
denotes the system prompts for each agent i. C represents the complete code specifying the logic and
structure of the workflow. Thus, the workflow W is represented as a directed acyclic graph (DAG).

Given a task description 7', the workflow }V autonomously executes agents in topological order,
where the i-th agent receives the task description 7" along with the outputs y from its predecessor
agents. Formally, the input to agent i is defined as X; = {T'} U {y; : v; € N}, where N
denotes the set of predecessor agents of agent ¢, and y; is the output of agent j. The output y; of
agent i is generated by querying an LLM: y; = LLM(X;, p;). After executing all agents, the final
response of the agentic workflow is defined as r = frrm (W, T'), where fi1,m represents the overall
execution process of the given LLM. Generally, this process is repeated for the evaluation of r, which
incurs significant computational and financial overhead.
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Figure 2: Overview of our Agentic Predictor framework. A (a) multi-view workflow encoder is
designed to encode a set of agentic workflows from graph, code, and prompt aspects into unified
representations, which serve as features for training the predictor. In the (b) pretraining phase, the
encoder learns these representations on unlabeled workflows spanning diverse tasks and domains,
using cross-domain unsupervised pretraining objectives. In the (c¢) predictor-guided search phase, a
performance predictor is trained on a small (workflow configuration, performance) dataset to classify
configurations as pass or fail, and subsequently guides the search toward promising configurations.

In contrast, this paper aims to design a predictive model M that efficiently estimates the final
performance of an agentic workflow W on a given task description 7', without requiring costly LLM
invocations. Therefore, we treat the workflow W and task description T as inputs to the predictor
M, which outputs the estimated performance é. Formally, é = Mg (W, T'), where © denotes the
learnable parameters of the performance predictor.

Learning Objective. Given the workflow W, task description (or query) 7, and performance
predictor Mg parameterized by O, we aim to find the optimal © that minimizes the error between
the estimated performance é and the ground-truth performance e. Formally, we solve

m(gn Eow,7) [L(e, )], (1)

where L(-,-) is a loss function that quantifies the discrepancy between the ground truth and the
predicted performance. L can be either the cross-entropy loss or the mean squared error loss,
depending on whether the prediction task is formulated as a classification or regression problem.

3.2 FRAMEWORK OVERVIEW

We present an overview of our Agentic Predictor framework in Figure 2. First, the multi-view
workflow encoder integrates key aspects of an agentic workflow—graph structures (V, £), code
implementations C, and system prompts P—into a unified representation F. Integration is achieved
via modality-specific encoders followed by an aggregation layer that consolidates features across
modalities. Second, when labeled instances are scarce, we refine these representations with unsuper-
vised objectives, reconstruction and contrastive learning, to improve generalization and adaptability
across diverse tasks and configurations. Third, a dedicated performance predictor Mg is trained on a
labeled set (often small) comprising workflow configurations W, task descriptions 7', and observed
performance outcomes e. Finally, with the trained predictor, we perform a predictor-guided search
that efficiently ranks and selects promising workflow configurations without incurring expensive
LLM calls. Because Agentic Predictor is search-agnostic, we deliberately do not commit to a specific
search algorithm within the framework.

3.3 MULTI-VIEW WORKFLOW ENCODING

Motivated by recent findings in the NAS literature (White et al., 2020; Akhauri & Abdelfattah, 2024;
Trirat & Lee, 2025b), which show that architecture representations strongly influence predictor
performance, we argue for expressive, comprehensive representations tailored to agentic workflows.
Because agentic workflows differ fundamentally from traditional neural architectures, conventional
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graph-based encodings alone are insufficient. Although DAGs naturally capture explicit inter-agent
communication and dependencies, they omit crucial implicit signals such as tool-usage patterns,
code structure, computational complexity, and the nuanced semantics present in agent prompts. To
address these limitations, we propose a multi-view encoding scheme that integrates complementary
representations at multiple granularities, with each view capturing distinct yet essential aspects of
LLM-based agentic workflows.

* Graph View explicitly models structural dependencies and direct interactions among agents,
emphasizing inter-agent communication channels. We denote the graph view as G = (V, £).

* Code View implicitly encodes program-level semantics, control and logical sequence, computa-
tional complexity, and patterns of tool usage inherent in workflow implementations C.

* Prompt View provides semantic embeddings that capture agent roles, behavioral specifications,
and broader contextual guidance embedded within system and instruction prompts P.

Our rationale for adopting this multi-view framework is that aggregating heterogeneous information
sources reduces representation bias, thereby improving both robustness and predictive accuracy.

3.3.1 ENCODER NETWORKS

We now detail the components of our proposed multi-view workflow encoding method for perfor-
mance prediction in agentic workflows using neural networks. Let Enc(-) denote an encoder function
that maps a candidate workflow—composed of (G, C, P)—into d-dimensional Euclidean space, i.e.,
Enc(+) : (G,C,P) — R Given the heterogeneous nature of workflow configurations, we design
three specialized encoder networks, each responsible for learning a representation corresponding to
a distinct view. These view-specific representations are then aggregated into a shared latent space,
denoted by Z = Enc(G,C, P), where Z € R<. This continuous latent representation is used to train
the performance predictor Mg (see §3.5). The individual encoders for each view are integrated into
a unified architecture as described below.

Graph Encoder. We employ graph neural network (GNN) layers to encode graph-based represen-
tations. The workflow is modeled as a DAG in which each edge encodes a unidirectional message
channel. Rather than relying on a single graph, we adopt a multi-graph approach that integrates node
features from multiple views, including agent-specific definitions and function-call implementations
at each agent node. We instantiate this multi-graph representation with three graph views constructed
from a workflow W. In the prompt graph Gurompt, node features are obtained by pooling the em-
beddings of each agent’s system and instruction prompts. In the code graph G.oq., node features
correspond to the function-call code associated with each agent. In the operator graph Goperator, NOde
features encode operator types and their definitions. All three graphs share the same node and edge
set, where edges can be derived from an abstract syntax tree as suggested by Zhang et al. (2025¢).

We then obtain view-specific node embeddings Hprompt = GNN(Gprompt)s Heode = GNN(Geoge ), and
Hperator = GNN(Goperator) in RN stack them along a view dimension to form X € RV XV x4 with
V' = 3, and apply a cross-view self-attention block with residual connection and layer normalization
X = LN(MHA(X, X, X) + X), where MHA is multi-head attention applied across views for each
node (the sequence axis is the view axis; topology is unchanged).

Next, a view-attention pooling module computes per-node attention weights with a L-layer multi-
layer perceptron (MLP) and tanh nonlinearity, followed by a softmax over views, and produces
a weighted sum across views H = ViewAttnPool(X) € RN*4. Finally, a graph readout
Gpool aggregates node embeddings into a single graph representation, Zg = Gpooi(H) =
Gpool( ViewAttnPool(CrossGraphAttn(X))), which preserves edge directionality from the up-
stream GNN while capturing cross-view contextual dependencies at the node level before graph-level
summarization. Here, CrossGraphAttn enriches each node with multi-view contextual dependen-
cies, while ViewAttnPool highlights which views are most informative.

Code Encoder. While Geoge and Goperaor primarily encode structural information derived from
the different workflow graphs, this code encoder is designed to provide a complementary, holistic
representation of the entire workflow code. To model the workflow-level embeddings, we use an
L-layer MLP to extract latent semantic features, enabling the model to learn intricate computational
logic and tool interactions at a global level. The code representation is computed as Ze = MLP¢(C).
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Prompt Encoder. [nstead of encoding agent prompts solely as node-level features (Zhang et al.,
2025c¢), we use a separate L-layer MLP to encode the entire workflow instruction prompt holistically.
This approach captures role descriptions, behavioral intents, and global context—resulting in richer
and more semantically informed representations. The prompt encoding is Zp = MLP»(P).

Aggregation Layer. The representations from the graph, code, and prompt encoders—Zg, Z¢, and
Zp—are concatenated and passed through a final MLP layer. This aggregation mechanism adaptively
integrates information across all views, enabling the model to emphasize the most contextually
relevant aspects. The final output of the encoder Enc(+) is computed as Z = MLP([Zg, Z¢, Zp)).

Consequently, the aggregation layer acts as a learnable fusion module. The attention-based graph
encoder produces Zg with cross-view interactions already embedded, and the downstream fusion
assigns task-dependent importance to the graph-, code-, and prompt-level representations, rather than
treating all views as equally informative. These encoders learn not only from different workflow
perspectives but also at varying levels of granularity, specifically, at the graph level for agent
interactions, the code level for logical structures, and the prompt level for agent-specific instructions.

3.3.2 DECODER NETWORKS

The decoder is a generative module that reconstructs Q, ¢ , and P from the latent variables Z to
encourage learning generalizable representations of agentic workflows. It consists of a stack of MLP
layers. For simplicity, the decoder outputs the modality-specific input embedding vectors of G, C, and
P. Accordingly, we parameterize Dec(-) with an MLP and define G = MLP(Zg), C = MLP(Z¢),

and P = MLP(Zp). This decoder is used only during pretraining for self-supervised reconstruction
of modality-specific embeddings from Z and is not part of the encoding path at inference time.

3.4 CROSS-DOMAIN UNSUPERVISED PRETRAINING

In real-world scenarios, labeled performance data for agentic workflows are scarce due to costly
evaluation. To enable data-efficient training without label leakage, we optionally adopt a two-phase
strategy. Rather than directly supervising the encoder with performance labels, we first perform
cross-domain unsupervised pretraining to obtain rich and generalizable workflow representations
Z. No performance labels (e.g., success/failure) are used in this stage. The resulting representations
improve sample efficiency for downstream prediction, in line with observations in NAS (White et al.,
2020; Yan et al., 2020; 2021; Akhauri & Abdelfattah, 2024; Trirat & Lee, 2025b). When sufficiently
many labels are available, direct supervised learning of the predictor remains feasible.

Multi-Task Pretraining. We train the multi-view encoder on M unlabeled workflow configurations
by minimizing a combined loss comprising reconstruction and contrastive objectives: L. =
4 5 ~ exp(sim(Z;,Z27) /7
2 1G5 = Gall> +1C: = Cill2 + 1P = Pill? and Leon = 77 T, ~logsmrreroi T
Here, G;, C;, P; denote the input graph, code, and prompt embeddings, respectively, while * denotes
reconstructions via modality-specific decoders. Notably, the graph branch reconstructs its own
embedding target with a stop-gradient, whereas code and prompt/text are reconstructed in input space.
The contrastive loss is instantiated cross-modally with in-batch sampling. For each configuration ¢,
positives (Z;, Z ) are the index-aligned embeddings of the configuration across two different views
(e.g., G; with C;), while negatives are all other configurations within the batch. We symmetrize the
objective by swapping anchor/target and average it over the three view pairs (G,C), (G, P), and
(C,P). This learning objective encourages the encoder to capture structure- and content-aware signals
without observing performance outcomes. Thus, the total loss function is Ley,c = Lyec + Leon-

3.5 PERFORMANCE PREDICTOR

Following the unsupervised pretraining of the multi-view encoder, we introduce a lightweight
performance predictor to guide exploration of the large agentic workflow space. This phase enables
efficient identification of high-performing configurations with minimal supervision, using only a
small set of labeled workflow—performance pairs. As shown in Figure 2(c), our predictor operates on
learned workflow embeddings, enriched with task-specific context, to form a joint representation J
used for performance prediction and downstream search.



Under review as a conference paper at ICLR 2026

Task Encoder. To capture task-specific characteristics, we incorporate a Task Encoder that gener-
ates high-level semantic embeddings from natural-language task descriptions. These embeddings,
derived from pretrained language models (e.g., T5 or BERT), provide global context that helps
differentiate tasks with similar surface form but distinct functional requirements. The task embed-
ding is concatenated with the multi-view workflow representation, forming F = [Z, T], where Z
is the encoded workflow and T is the task embedding. For workflow content itself (prompts and
code), we pair this with lightweight, domain-specific encoders within the multi-view backbone to
balance representational capacity with efficiency. This separation of modalities followed by fusion
captures complementary compositional and contextual signals and supports generalization across
heterogeneous tasks with varying operational goals and constraints.

The performance predictor is a lightweight prediction head Mg (e.g., an MLP) trained on a
limited set of labeled data (Xiwin, Yirain), Where each X, corresponds to F and i, is the
performance label (e.g., binary success/failure or a scalar score). We instantiate the objective
to match the label type. For binary labels, we use a binary cross-entropy loss, i.e., Lpeq =

- fil [eilogé; + (1 — e;)log(1 — &;)], where é; is the predicted success probability. For nu-
meric labels, we can use mean squared error, i.e., Lpred = % Zi\il(sZ — §i)2. By operating on
semantically rich pretrained embeddings, the predictor attains strong accuracy in the low-data regime,

enabling label-efficient search.

Integration with Workflow Optimization. With the trained predictor in place, we can perform
predictor-guided search to efficiently explore the workflow configuration space. Rather than evaluating
each configuration via full execution, we embed candidates into their joint representations JF and score
them using the predictor. The top-scoring candidates are selected for evaluation. This substantially
reduces computational cost by focusing on the most promising regions of the search space. A simple
yet effective instantiation of this strategy uses random search to sample K workflow candidates from
the full configuration space, and then ranks them using the learned predictor. We select the top-k
configurations, averaged across samples in the benchmark, for evaluation. This predictor-as-ranker
setup transforms random search into a label-efficient guided procedure without requiring complex
heuristics. Since our main contribution is the performance predictor rather than the optimization
algorithm, we focus evaluation on prediction accuracy and ranking quality (i.e., workflow utility) in
the following section. Additional results on workflow optimization appear in §B.6.

4 EXPERIMENTS

We conduct a comprehensive evaluation of the proposed Agentic Predictor framework from mul-
tiple perspectives, guided by the following questions: (Q1) How does Agentic Predictor perform
as a predictor of agentic workflow performance compared to relevant baselines? (Q2) How do
different design choices of Agentic Predictor affect its predictive accuracy? (Q3) Is the pretraining
phase helpful for maintaining prediction quality under varying numbers of labels? (Q4) Does Agen-
tic Predictor maintain strong predictive performance under out-of-distribution shifts? (QS) How does
Agentic Predictor compare against few-shot LLM-based workflow performance predictors?

4.1 SETUP
Benchmarks. To evaluate performance Table 2: Summary of benchmark statistics.
predictors for agentic workflows, we use Domains Code Generation Math Reasoning
FLORA-Bench (Zhang et al., 2025¢), the (GD/AF) (GD/AF) (GD/AF)
only publicly available benchmark (to the  # workflows 739/38 300/ 42 189/30
best of our knowledge) that enumerates di- Qvgk# nodes 5222 ; 3-3131 67-(8)2 5 2;‘29 254-(9)(7) ; gigo

: : tasks X K
verse workflows across multiple domains & o 30,683/7,362  12,561/4,059 453,600 /72,000

and LLM backbones. It spans five datasets
covering three core areas: code generation (HumanEval (Chen et al., 2021), MBPP (Austin et al.,
2021)), mathematical problem solving (GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al.,
2021b)), and general reasoning (MMLU (Hendrycks et al., 2021a)). Table 2 summarizes the bench-
marks. Here, GD and AF denote the independently developed G-Designer (Zhang et al., 2025a)
and AFlow (Zhang et al., 2025b) agentic frameworks, respectively. We emphasize structural and
procedural diversity over raw difficulty; even for datasets often considered solved by prompting (e.g.,
GSMBSK), predicting success across workflow variants remains nontrivial. For each dataset, we
randomly split instances into training (80%), validation (10%), and test (10%) sets.
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Table 3: Performance comparison between Agentic Predictor and baselines. The best and second-best
results are highlighted in bold and underlined, respectively. GD is G-Designer, and AF is AFlow.

Domain | CodeGD | CodeAF | MathGD | MathAF | ReasonGD | ReasonAF | Average
Model | Accuracy  Utility | Accuracy Utility | Accuracy Utility | Accuracy Utility | Accuracy Utility | Accuracy  Utility | Accuracy Utility
MLP 83.88 76.16 78.02 63.22 64.13 . 69.64 71.54 62.41 78.45 88.48 74.81 72.46
. (£0.04) (£0.03) (£0.59) (£0.30) (£0.44) (+0.31) (£0.29) (£0.09) (£1.67) (£0.08) (£0.63) (£0.24) (£0.74)
GCN 84.23 79.31 84.35 64.12 63.03 66.52 2.22 59.18 37 91.82 8.04 2.10
(20.04)  (20.10) | (£0.34) (*0.17)  (20.59) (£1.66) | (£0.03)  (20.85) (20.46) | (x0.19)
GAT 85.14 79.50 84.49 64.84 62.32 66.51 72.16 59.44 89.40 78.36
(£0.25) (0.14) (£0.56) (£0.96) (0.93) (*1.28) (£0.03) (x1.06) (£0.68) (0.42)
GeNIT 83.81 78.45 83.72 : 63.56 66.02 64.33 72.29 59.10 89.92 77.62
(*0.07) (0.74) (+0.98) (+0.74) (£0.10) (0.47) (£0.09) (*1.02) (£1.90) (£0.29)
. . 85.24 80.20 74.09 63.25 64.97 66.48 72.26 60.92 90.60 71.97
Graph Transformer |~ .575)  (20.64) (#035) | (20.70)  (£0.36) (+0.96) ) (£1.79) (#197) | (032)  (1.01)
Dir-GNN 84.85 79.81 83.45 76.08 63.01 64.68 67.97 62.64 90.07 78.05 73.54
: (0.11)  (20.69) | (041)  (£0.92) | (20.54)  (x1.66) (0.16) (x0.92) (£1.68) | (£033)  (x1.01)
One For All 83.74 75.93 81.05 73.42 63.17 66.65 69.08 60.35 87.64 76.33 72.18
(20.09)  (20.12) | (¥034)  (£1.39) | (2021)  (20.82) (20.64) (1.25) (*1.98) | (#0.19)  (*1.03)
\centic Predicor | 8533 8142 | 85.62 80.08 | 66.20 6788 | 79.56 7408 | 75.13 63.06 | 87.96 9147 | 7997 76.33
v | (£0.05)  (20.26) | (20.47)  (x0.46) | (x0.17)  (0.21) | (*0.25)  (2047) | (20.01)  (20.45) | (0.02) (x044) | (#0.16)  (x0.38)
A vs. best baseline | +0.09 +1.22 | 4091 3| +1.36 +1.23 | 4312 +4.44 | +0.88 +0.42 | +0.68 -0.35 | +1.61 +2.79
(% Improvement) | (0.11%)  (1.52%) | (1.07%) 6) | (2.09%)  (1.85%) | (4.08%) (6.38%) | (1.19%) (0.67%) | (0.78%) -(0.38%) | (2.05%) (3.79%)

Evaluation Metrics. To ensure a fair and consistent comparison, we strictly adhere to the official
evaluation protocols specified by the benchmark.

¢ Accuracy quantifies how well a model predicts agentic workflow performance. It is defined as
accuracy = ﬁ lewl 1(é; = e;), where |D""| is the size of the test split, and é; and e;
denote the predicted and ground-truth performance, respectively. 1(-) is the indicator function,
which returns 1 if €; = ¢;, and 0 otherwise.

« Utility evaluates the consistency between the workflow rankings predicted by the model and the
ground-truth rankings, emphasizing the model’s ability to determine the relative order of different
workflows. First, we calculate the ground-truth and predicted success rates of a workflow W; by
averaging e and é across all tasks in D**, Then, we rank the workflows and extract the top-k
workflows according to the respective scores, resulting in two ordered sets: H = {W;}¥_, and

H = {W!}E_ . Formally, utility = + S°F_ 1(0W] € H).

Baselines. Since there is no direct baseline method specifically designed for performance prediction
in agentic systems, we adopt comparison baselines from the benchmark paper. Some of these methods
have previously been used as performance predictors for NAS (White et al., 2021). The selected
baselines include one naive MLP and several strong graph-based models: GCN (Kipf & Welling,
2017), GAT (Velickovic et al., 2018), GCN-II (Chen et al., 2020), Graph Transformer (Shi et al.,
2021), Dir-GNN (Rossi et al., 2024) and One For All (Liu et al., 2024a).

Implementation Details. For all methods, we follow the same setup as suggested by Zhang et al.
(2025¢). Specifically, we use a 2-layer backbone with a hidden dimension of 512, set dropout to
0.5, and use a batch size of 512. Models are optimized with the Adam optimizer (Kingma & Ba,
2014) using a learning rate of 1 x 10~* and weight decay of 5 x 10~*. Training is conducted for
200 epochs on a single NVIDIA A100-SXM4-80GB GPU, and the best checkpoint is selected by the
highest accuracy on the validation subset. Our framework is encoder-agnostic by design. To ensure a
controlled comparison, we reuse the al1-MiniLM-L6-v2 (Wang et al., 2020) text encoder and
adopt CodeRankEmbed (Suresh et al., 2025) for code, both via SentenceTransformers (Reimers &
Gurevych, 2019) with default hyperparameters. Text inputs are truncated to 256 tokens and encoded
into 384-dimensional vectors, while code inputs (function-level nodes and full-workflow files) are
tokenized and truncated to model limits (up to 8,192 tokens) producing 768-dimensional vectors. All
embeddings are finally mapped into a unified 512-dimensional space using a 2-layer MLP (L = 2).

4.2 MAIN RESULTS (Q1)

We report all experimental results for agentic workflow performance prediction, averaged over three
runs with different random seeds on the same dataset. Table 3 presents the main performance scores
and standard deviations for all datasets. Our proposed framework, Agentic Predictor, consistently
outperforms baseline methods across the three task domains. For accuracy, Agentic Predictor
achieves top results in each domain—=85.62%, 79.56%, and 87.96%, respectively—yielding the
highest overall average accuracy of 79.97%. This corresponds to improvements of 2.05% to 6.90%
over the comparison baselines. Utility scores show a similar pattern. Agentic Predictor attains
the highest utility in code generation (81.42%) and math problem solving (74.08%), as well as
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Table 4: Results of ablation study on different input view variations.

Variations | Code Generation | Math Problem | Common Reasoning | Average

Code Graph Text | Accuracy Utility | Accuracy Utility | Accuracy  Utility | Accuracy Utility

v 82.04 75.66 75.70 68.52 83.19 91.51 80.31 78.56
v 84.44 77.22 79.14 67.99 87.00 91.03 83.53 78.75

v 79.87 70.34 76.60 68.45 68.06 71.04 74.84 69.94

v v 83.72 73.97 75.86 70.18 86.88 86.14 82.15 76.76
v v 82.27 77.28 76.03 66.66 54.17 53.21 70.82 65.72
v v 8245 74.64 75.70 67.83 69.47 70.55 75.87 71.01

v v v 85.62 80.08 79.56 74.08 87.96 91.47 84.38 81.88

Table 5: Results of ablation study on different input graph variations.

Variations | Code Generation | Math Problem | Commong Reasoning | Average

Single View ~ Multi View | Accuracy Utility | Accuracy Utility | Accuracy  Utility | Accuracy Utility

v 82.58 78.52 78.57 67.51 86.95 90.14 82.70 78.72
v 84.44 7722 79.14 67.99 87.00 91.03 83.53 78.75

a near-best score in reasoning tasks (91.47%), second only to GCN (91.82%). On average, it
achieves the highest utility score of 76.33%, representing improvements of 3.79% to 5.87% over the
baselines. These results demonstrate that Agentic Predictor not only enhances predictive accuracy but
also improves downstream utility across diverse agentic workflows, highlighting its robustness and
generalizability. The consistent performance gains further underscore the advantages of leveraging
multi-view encoding for heterogeneous agentic workflows.

4.3 ADDITIONAL ANALYSES

Ablation Study (Q2). To substantiate our contributions on specific design of multi-view workflow
encoding in Agentic Predictor, we conduct ablation study on two main components using the AFlow
subset: multi-view encoder and multi-graph encoding techniques. According to the results in Table 4,
we find that incorporating all three input views—code, graph, and text—results in the best overall
performance across all tasks. Specifically, the full model configuration achieves the highest average
accuracy (84.38%) and utility (81.88%), underscoring the complementary value of each modality.
Notably, the removal of any single view leads to a consistent drop in performance, demonstrating the
synergistic role of multimodal inputs in prediction capabilities of Agentic Predictor.

Furthermore, results in Table 5 reveal the significance of multi-graph encoding. When multiple graphs
are used instead of a single graph, the model shows a clear performance improvement, particularly in
code generation (accuracy improves from 82.58% to 84.44%) and reasoning tasks (utility rises from
90.14% to 91.03%). This supports our hypothesis that different graph perspectives enrich structural
context and lead to more robust representations. Together, these findings validate the architectural
choices in Agentic Predictor, demonstrating that both multi-view and multi-graph designs are integral
to its superior performance.

Effects of Pretraining Phase (Q3). Since acquiring a large ~ -mp - GcN - GAT - GENAI - Graph Transformer
amount of ground-truth labels from agentic workflows is expen- ~ sefe ForAll = Agent Predictor = Agent Predictors

sive, we examine whether cross-domain unsupervised pretrain-
ing (denoted as Agentic Predictor+) benefits settings where
labeled instances are limited. We vary the label ratio from
0.1 to 0.5, selecting labeled samples from the training split
of all datasets in the benchmark. We pretrain the proposed | | ; |
multi-view encoder on the remaining 50% (/) of the training 05 04 03 02 04

set with a batch size of 32 for 20 epochs. See more details in

§B.5. On average, the results shown in Figure 3 indicate that Figure 3: Accuracy comparison
Agentic Predictor+ consistently outperforms all baseline mod- between Agentic Predictor and the
els across all label ratios, demonstrating the effectiveness of baselines across varying label ratios.
our unsupervised pretraining strategy. The gains are especially

pronounced in low-label regimes: at a 0.1 label ratio, Agentic Predictor+ maintains an accuracy
above 73%, while other models drop closer to 70%. These findings underscore the importance
of leveraging cross-domain structure through pretraining for generalizable workflow performance
prediction, especially when direct supervision is limited.

Accuracy
N NN
2 o ®

~
N

~
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Out-of-Distribution (OOD) Performance (Q4). We evaluate OOD robustness under cross-system
generalization (training on one agentic framework and testing on another) and cross-domain gen-
eralization (training on one task domain and testing on disjoint domains). As shown in §B.4,
Agentic Predictor consistently generalizes beyond in-distribution memorization, maintaining strong
performance and preserving relative workflow rankings across both settings. For example, when
trained on AFlow and tested on G-Designer, Agentic Predictor improves average accuracy from
59.52% (best baseline) to 62.05% and utility from 55.33% to 58.49%. Similar gains hold in the
reverse direction and under cross-domain splits.

Comparison with LLM Predictors (Q5). We evaluate 5-shot, prompt-based LLM classi-
fiers (temperature 0) using the standardized LLM-PP template (Jawahar et al., 2023) with GPT-4.1,
Claude 4 Sonnet, and Gemini 2.5 Flash. As shown in Table 9, these prompt-only LLM predictors
substantially underperform our graph-based model, indicating that they struggle to exploit the struc-
tured nature of agentic workflows. Agentic Predictor achieves 84.97% accuracy and 81.37% utility,
far exceeding the second-best GPT-4.1 at 62.86% and 58.92%, while also avoiding the considerable
latency and monetary overhead of LLM inference. Overall, few-shot LLMs serve as a useful baseline
but remain less effective and less economical for large-scale agent search.

4.4 RESOURCE COST

We further examine the efficiency of Agentic Predictor Table 6: Computation cost comparison.
measured by computation time and memory usage. As Model
shown in Table 6, our framework remains competitive with
standard GNN baselines despite its higher model capac-
ity and richer input features, requiring only 0.054ms and
0.49GB to score a workflow at inference—orders of mag-
nitude faster and cheaper than few-shot LLM predictors.
A full run of Agentic Predictor involves a one-time cost of
~ 1.2 A100 GPU-hours (200 supervised epochs plus 20
optional pretraining epochs), with modest memory requirements that fit on a single 16 GB GPU. In
contrast, LLM-based scoring costs about $21 per 1,000 candidates (=$0.021 per sample with Gemini
2.5 Flash), implying a break-even point after only 110-120 evaluations assuming a $2/hr A100 rate.
As realistic searches involve thousands of candidates and the trained predictor is reusable across tasks
and frameworks, this modest one-time cost is quickly amortized, making Agentic Predictor far more
economical than repeated LLM calls while offering near-zero marginal latency and higher accuracy.

Training | Inference

Time (s/epoch) Memory (GB) | Time (ms/sample) Memory (GB)
0.195 0.033 | 0.002 0.020

5.108 0.058 0.023 0.042
4623 0.058 0.015 0.040
5372 0.023 0.060
0.023 0.050
0.018 0.038

5372 0.087
1.965 0.077

|

1

|

4.867 0.058 0.017 0.040
6.140 0.038

(via OpenRouter APT) ', NA

0.054 0.490

N/A ‘
1.840 2.760
(168.104) (13.520)

Full experimental results on different underlying LL.Ms, various GNN backbones, LLM classifier
comparison, and out-of-distribution test are reported in Tables 7 8, 9, 10, 11 and 12, respectively.
An additional evaluation of performance predictors used as a reward function for agentic workflow
optimization, and case study findings are also provided in §B.6 and §C.

5 CONCLUSIONS

This paper introduces Agentic Predictor, a novel framework for efficient prediction of agentic work-
flow performance that leverages a multi-view predictive approach. By integrating multi-view graph
structures, code semantics, and prompt embeddings into a unified representation, Agentic Predictor
captures the diverse characteristics of agentic systems. Moreover, it employs cross-domain unsuper-
vised pretraining to mitigate the challenge of limited labeled data, thereby enhancing generalization
across varied tasks. Through comprehensive experiments spanning three domains, Agentic Predictor
consistently outperforms strong baselines in predictive accuracy and workflow utility.

Limitations and Future Work. While Agentic Predictor exhibits strong performance, it has certain
limitations. The current predictor focuses on binary success metrics, constrained by the available
benchmark, which may overlook more nuanced aspects of workflow behavior. Evaluating on new,
independently curated agentic benchmarks is an important direction for future work. Additionally,
adapting to highly specialized domains may still require some labeled data. Future work includes
expanding to multi-objective optimization (e.g., balancing accuracy and cost), incorporating richer
views such as temporal traces and user feedback, and exploring human-in-the-loop workflows for real-
time refinement. These directions aim to make Agentic Predictor more generalizable and interactive
in complex, real-world settings.

10
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REPRODUCIBILITY STATEMENT

We facilitate reproducibility by providing an anonymous repository with all source code at ht tps: //
anonymous.4open.science/r/agent-predictor. Algorithm 1 provides the complete
pseudocode of the proposed framework. For experimental consistency, the random seed for each run
is 2", where r is the running index starting from O.

REFERENCES

Yash Akhauri and Mohamed S Abdelfattah. Encodings for prediction-based neural architecture
search. In Forty-first International Conference on Machine Learning, 2024. 4, 6

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021. 7

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374,2021. 7

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In Proceedings of the 37th International Conference on Machine Learning,
pp. 1725-1735, 2020. 8

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong
Sun, and Jie Zhou. Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors. In The Telfth International Conference on Learning Representations, 2024. 2, 3

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021. 7

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, 2024. 2, 3

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp.
2368-2378, 2019. 19

Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas Lane.
Brp-nas: Prediction-based nas using gens. In Advances in neural information processing systems,
pp. 10480-10490, 2020. 3

Mourad Gridach, Jay Nanavati, Khaldoun Zine El Abidine, Lenon Mendes, and Christina Mack.
Agentic ai for scientific discovery: A survey of progress, challenges, and future directions. arXiv
preprint arXiv:2503.08979, 2025. 1, 2

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf
Wiest, and Xiangliang Zhang. Large language model based multi-agents: a survey of progress
and challenges. In Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, pp. 8048—8057, 2024. 2

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021a. 7

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021b. 7

11


https://anonymous.4open.science/r/agent-predictor
https://anonymous.4open.science/r/agent-predictor

Under review as a conference paper at ICLR 2026

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jiirgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representations,
2024. 1,2

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. In The Thirteenth
International Conference on Learning Representations, 2025a. 1, 3

Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui Liu, Zijie Yu, Yuchen Hou, Shuo Tang, and
Siheng Chen. Self-evolving multi-agent networks for software development. In The Thirteenth
International Conference on Learning Representations, 2025b. 1

Dongyeong Hwang, Hyunju Kim, Sunwoo Kim, and Kijung Shin. Flowerformer: Empowering neural
architecture encoding using a flow-aware graph transformer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 6128-6137, 2024. 3

Ganesh Jawahar, Muhammad Abdul-Mageed, Laks VS Lakshmanan, and Dujian Ding. LIm perfor-
mance predictors are good initializers for architecture search. arXiv preprint arXiv:2310.16712,
2023. 10, 16

Han Ji, Yuqi Feng, and Yanan Sun. Cap: a context-aware neural predictor for nas. In Proceedings of
the Thirty-Third International Joint Conference on Artificial Intelligence, pp. 4219-4227, 2024. 3

Zixuan Ke, Fangkai Jiao, Yifei Ming, Xuan-Phi Nguyen, Austin Xu, Do Xuan Long, Minzhi Li,
Chengwei Qin, Peifeng Wang, Silvio Savarese, et al. A survey of frontiers in 1lm reasoning:
Inference scaling, learning to reason, and agentic systems. arXiv preprint arXiv:2504.09037, 2025.
1,2

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 8

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. 8

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. In The Twelfth
International Conference on Learning Representations, 2024a. 8

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic LLM-powered agent
network for task-oriented agent collaboration. In First Conference on Language Modeling, 2024b.
L3

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA:
a benchmark for general Al assistants. In The Twelfth International Conference on Learning
Representations, 2024. 1

Boye Niu, Yiliao Song, Kai Lian, Yifan Shen, Yu Yao, Kun Zhang, and Tongliang Liu. Flow: Modu-
larized agentic workflow automation. In The Thirteenth International Conference on Learning
Representations, 2025. 2

Yameng Peng, Andy Song, Vic Ciesielski, Haytham M. Fayek, and Xiaojun Chang. Pre-nas: predictor-
assisted evolutionary neural architecture search. In Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 1066—1074, 2022. 3

Aske Plaat, Max van Duijn, Niki van Stein, Mike Preuss, Peter van der Putten, and Kees Joost
Batenburg. Agentic large language models, a survey. arXiv preprint arXiv:2503.23037,2025. 1, 2

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. ChatDev:
Communicative agents for software development. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 15174-15186, 2024. 2, 3

12



Under review as a conference paper at ICLR 2026

Shuofei Qiao, Runnan Fang, Zhisong Qiu, Xiaobin Wang, Ningyu Zhang, Yong Jiang, Pengjun Xie,
Fei Huang, and Huajun Chen. Benchmarking agentic workflow generation. In The Thirteenth
International Conference on Learning Representations, 2025. 2

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, 11
2019. 8

Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan Giinnemann,
and Michael M Bronstein. Edge directionality improves learning on heterophilic graphs. In
Learning on graphs conference, pp. 25-1. PMLR, 2024. 8

Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. Agentsquare: Automatic
IIm agent search in modular design space. In The Thirteenth International Conference on Learning
Representations, 2025. 1, 3

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. In Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 1548-1554, 8
2021. 8

Tarun Suresh, Revanth Gangi Reddy, Yifei Xu, Zach Nussbaum, Andriy Mulyar, Brandon Duderstadt,
and Heng Ji. CoRNStack: High-quality contrastive data for better code retrieval and reranking. In
The Thirteenth International Conference on Learning Representations, 2025. 8

Patara Trirat and Jae-Gil Lee. MONAQ: Multi-objective neural architecture querying for time-series
analysis on resource-constrained devices. In Findings of EMNLP, 2025a. 2

Patara Trirat and Jae-Gil Lee. Pasta: Neural architecture search for anomaly detection in multivariate
time series. IEEE Transactions on Emerging Topics in Computational Intelligence, 9(4):2924-2939,
2025b. 4,6

Patara Trirat, Wonyong Jeong, and Sung Ju Hwang. AutoML-agent: A multi-agent LLM framework
for full-pipeline autoML. In Forty-second International Conference on Machine Learning, 2025. 2

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,

2018. 8

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers. Advances in neural
information processing systems, 33:5776-5788, 2020. 8

Colin White, Willie Neiswanger, Sam Nolen, and Yash Savani. A study on encodings for neural
architecture search. In NeurIPS, pp. 20309-20319, 2020. 4, 6

Colin White, Arber Zela, Binxin Ru, Yang Liu, and Frank Hutter. How powerful are performance
predictors in neural architecture search? In Advances in Neural Information Processing Systems,
2021. 1,8

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. AutoGen: Enabling next-gen LLM applications via multi-agent conversations. In First
Conference on Language Modeling, 2024. 1

Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Dingwen
Yang, Chenyang Liao, Xin Guo, Wei He, Songyang Gao, Lu Chen, Rui Zheng, Yicheng Zou,
Tao Gui, Qi Zhang, Xipeng Qiu, Xuanjing Huang, Zuxuan Wu, and Yu-Gang Jiang. AgentGym:
Evolving large language model-based agents across diverse environments, 2024. 1

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. Science China Information Sciences, 68(2):121101, 2025. 1,2

13



Under review as a conference paper at ICLR 2026

Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z. Wang,
Xuhui Zhou, Zhitong Guo, Murong Cao, Mingyang Yang, Hao Yang Lu, Amaad Martin, Zhe Su,
Leander Maben, Raj Mehta, Wayne Chi, Lawrence Jang, Yiging Xie, Shuyan Zhou, and Graham
Neubig. TheAgentCompany: Benchmarking llm agents on consequential real world tasks, 2024. 2

Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, and Mi Zhang. Does unsupervised architecture representa-
tion learning help neural architecture search? Advances in neural information processing systems,
33:12486-12498, 2020. 6

Shen Yan, Kaiqgiang Song, Fei Liu, and Mi Zhang. Cate: Computation-aware neural architecture
encoding with transformers. In International Conference on Machine Learning, pp. 11670-11681.
PMLR, 2021. 6

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2369-2380, 2018. 19

Rui Ye, Shuo Tang, Rui Ge, Yaxin Du, Zhenfei Yin, Siheng Chen, and Jing Shao. MAS-GPT: Training
LLMs to build LLM-based multi-agent systems. In Forty-second International Conference on
Machine Learning, 2025. 3

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. Evoagent: Towards
automatic multi-agent generation via evolutionary algorithms. In NAACL, 2025. 1

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
Tianlong Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication topologies
via graph neural networks. In ICML, 2025a. 3,7, 16

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
Wu. AFlow: Automating agentic workflow generation. In The Thirteenth International Conference
on Learning Representations, 2025b. 1, 3,7, 16, 18

Yuanshuo Zhang, Yuchen Hou, Bohan Tang, Shuo Chen, Muhan Zhang, Xiaowen Dong, and Siheng
Chen. FLORA: GNNs as predictors of agentic workflow performances. In The Fourth Learning
on Graphs Conference, 2025c. 3,5,6,7, 8, 15, 16, 18

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jiirgen
Schmidhuber. GPTSwarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024. 1,3

14



Under review as a conference paper at ICLR 2026

A PSEUDOCODE OF AGENTIC PREDICTOR

We present the pseudocode of the proposed Agentic Predictor framework in Algorithm 1 below.

Algorithm 1 Overall Procedure of Agentic Predictor

Initialization: Multi-View Encoder Enc(-) and Performance Predictor Model Mg
Input: User Instruction (or Task Description) 7' € 7 and Training Data D"
1: > Multi-View Graph Construction (§3.3)
2: Construct a node-aligned view set G = {G, = (V,&,X,) | v € {prompt, code, operator} }
where X, is the view-specific node features.
3: > Cross-Domain Unsupervised Pretraining (§3.4, Optional)
4: Sample M unlabeled workflows Wy, W, ..., W), from multiple domains
5: for each W; = (G;,C;, P;) do
6: Z; + Enc(G;,C;, P;) > Encode multiview graph, code, and prompts
7: (Gi, Ci, P;) + Dec(Z;) > Decode reconstructions
8: end for
9: Lone = Lyee + Leon > Minimize total pretraining loss
10: > Training Performance Predictor (§3.5)
11: Obtain (small) labeled dataset {(WV;, T}, e;)} ;-Vzl from DUrain
12: for each (W;,T;) do

13: Z; < Enc(Wj) > Encode workflow
14: T “— TaskEncoder(TJ) > Encode task description
15: ]: < MLP([Z;, T,]) > Form joint representation
16: éj — Mo (F; ) > Predict performance
17: end for

18: Train Me using binary cross-entropy 10ss Lca(€;, €;), where {e; } 1

19: > Predictor-Guided Candidate Ranking

20: Sample K candidate workflows {Wk}szl

21: for each Wy, do

22: Zj, < Enc(Wy) > Encode workflow
23: Fi < MLP([Zy, T]) > Encode task
24: ér — Mo (Fr) > Predict score

25: end for
26: Rank all {W},} by predicted scores é,
27: return top-k ranked workflows for final evaluation

B ADDITIONAL EXPERIMENTAL RESULTS

This section provides complementary studies that further characterize our approach: robustness when
the agent-controller LLM backbone varies (§B.1); an ablation over multiple GNN backbones (§B.2);
a comparison to few-shot LLM predictors (§B.3); and out-of-distribution (OOD) generalization
evaluations (§B.4).

B.1 PERFORMANCE ON DIFFERENT LLM BACKBONES

As shown in Table 7, we assess whether predictor performance is robust when the agentic work-
flows are driven by different LLMs. Concretely, we replicate our evaluation while swapping the
controller LLM among GPT-40-mini, DeepSeek, Qwen 7B, and Mistral 7B, holding the training
data construction, multi-view encoder, and evaluation protocol fixed. Except for the Mistral 7B case,
Agentic Predictor exhibits stable performance and preserves the relative ranking of workflows across
these backbones, indicating that it captures structural and behavioral regularities of agentic programs
rather than idiosyncrasies of any single LLM.

B.2 PERFORMANCE ON DIFFERENT GNN BACKBONES

Our main experiments use a 2-layer GCN (hidden size 512) following the standard setup in FLORA-
Bench (Zhang et al., 2025c), enabling a controlled comparison to baseline predictors. To test
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Table 7: Results on different backbones driven agentic workflows.

Domain |  GPT-4o-mini | DeepSeek | Qwen 7B |  Mistral 7B
Model | Accuracy Utility | Accuracy Utility | Accuracy Utility | Accuracy Utility
MLP 83.88 76.16 85.89 71.72 84.25 80.52 89.23 85.07
GCN 82.94 80.40 86.56 75.69 86.71 84.48 92.58 88.48
GAT 83.03 80.25 84.42 75.18 86.98 84.26 92.62 88.72
GCN-II 82.81 79.48 84.34 75.68 85.17 82.71 90.94 85.89
Graph Transformer 83.42 79.83 86.34 73.06 86.76 84.65 92.80 88.87
Dir-GNN 84.85 79.81 85.38 71.27 86.36 84.50 91.87 88.47
One For All 81.24 71.92 84.73 73.23 84.51 80.42 89.13 85.06

Agentic Predictor ‘ 85.33 81.42 ‘ 88.39 76.64 ‘ 86.99 85.02 ‘ 92.33 88.69

architecture sensitivity, we conduct an ablation over five diverse GNN backbones—GCN, GAT,
GCN-II, Graph Transformer, and Dir-GNN—while keeping the prompt and code views fixed. As
presented in Table 8 All backbones yield comparable predictive accuracy and replicate the same
trends, reinforcing that the performance improvements stem from the multi-view encoding and
pretraining rather than a specific GNN design. These results support the architecture-agnostic nature
of the Agentic Predictor.

B.3 COMPARISON WITH LLM PREDICTORS

We compare against few-shot, prompt-based LLM classifiers implemented with a standardized
LLM-PP—style template (Jawahar et al., 2023) with 5-shot and temperature set to 0 using GPT-4.1,
Claude 4 Sonnet, and Gemini 2.5 Flash. The results in Table 9 are consistent with prior findings
on FLORA-Bench (Zhang et al., 2025c¢) (which evaluated DeepSeek-v3), these prompted LLMs
underperform even a simple MLP predictor and substantially trail our graph-based approach. A
likely reason is that prompted LLM classifiers do not exploit the structured execution patterns and
tool-usage dynamics present in agentic workflows. Beyond accuracy, prompted LLM inference incurs
a per-sample monetary and latency cost, whereas our predictor amortizes cost at training time. In
our setup, generating predictions for up to 1,000 samples per task with LLM prompting required
approximately $300, implying considerably higher expense at full-benchmark scale. By contrast,
the learned predictor scales to large candidate sets with constant per-sample computational cost at
inference. Overall, while few-shot LLMs provide a useful baseline, they are less effective and less
economical for large-scale agent search.

B.4 OUT-OF-DISTRIBUTION (OOD) GENERALIZATION PERFORMANCE

We study two factors that enable OOD robustness. First, the multi-view encoder jointly represents
workflows via graph, code, and prompt views, all of which are architecture-agnostic. This design
allows unseen agents and tools to be incorporated as long as their implementations and textual
descriptions are available; the graph encoder embeds novel entities through structural and attribute
signals without relying on fixed IDs. Second, cross-domain unsupervised pretraining over diverse
unlabeled workflows equips the encoder with priors over common structural and behavioral motifs
(e.g., tool invocation patterns and reasoning flows), improving robustness to unseen configurations.

Regarding evaluation, following RQ3 in FLORA-Bench (Zhang et al., 2025c), we perform two
levels of OOD generalization. Cross-system generalization: train on one agentic framework (e.g.,
AFlow (Zhang et al., 2025b)) and test on another (e.g., G-Designer (Zhang et al., 2025a)) as well as
cross-domain generalization: train on one set of downstream tasks (e.g., math) and test on disjoint
tasks (e.g., coding) not observed during training. As presented in Table 10, Table 11 and Table 12,
across both settings, Agentic Predictor maintains strong performance and preserves relative workflow
rankings, indicating that it generalizes beyond in-distribution memorization.

B.5 EFFECTS OF PRETRAINING PHASE (FULL RESULTS)

Since acquiring a large amount of ground-truth labels from agentic workflows is expensive, we
examine whether cross-domain unsupervised pretraining (denoted as Agentic Predictor+) benefits
settings where labeled instances are limited. We vary the label ratio from 0.1 to 0.5, selecting
labeled samples from the training split of all datasets in the benchmark. Concretely, we construct an
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Table 8: Results on different GNN backbones of Agentic Predictor.

Domain | Code Generation | Math Problem | Common Reasoning | Average

GNN Backbone | Accuracy Utility | Accuracy Utility | Accuracy  Utility | Accuracy Utility

GCN 85.62 80.08 79.56 74.08 87.96 91.47 84.38 81.88

GAT 83.74 73.11 75.86 67.03 86.95 87.20 82.19 75.78
GCN-II 84.71 73.83 76.68 68.41 86.76 86.04 82.72 76.09
Graph Transformer 83.22 78.17 76.64 70.03 86.88 89.50 82.25 79.23
Dir-GNN 84.62 79.64 80.26 75.03 87.93 94.77 84.27 83.15

Table 9: Comparison between Agentic Predictor and LLM-based few-show classification.

Domain | Code Generation | Math Problem | Common Reasoning | Average
Model | Accuracy Utility | Accuracy Utility | Accuracy  Utility | Accuracy Utility
GPT-4.1 (~$59) 62.42 57.00 67.08 52.97 59.10 66.79 62.86 58.92
Claude 4 Sonnet (~$202) 56.72 51.65 64.62 57.32 44.50 41.25 55.28 50.07
Gemini 2.5 Flash (~$21) 60.52 58.94 51.60 55.21 59.20 63.17 57.10 59.11
Agentic Predictor | 8440 7884 | 8010  77.61 | 9040  87.67 | 8497 8137
< MLP == GON - - GAT = - GCNdI - - Graph Transformer =~ WLP == GGN ~ ~ GAT = ~ GONAI ~  Graph Transformer = ~ MLP = = GON ~ ~ GAT = ~ GNJI = = Graph Transformer = = MLP = = GCN - GAT = = GCNAI = - Graph Tranformer
" OnaFor Al - Agenic Prcitor - AenePctors 2 GnaFor Al - Agenic Prcitor - AgenePsictors i oneFr AL et - gt Pt 2 0Pl At - gric Pt
L 72 80 78
78 S 3 g
7 £ H
2 66 o 72
- “ o o
o or o3 oz o os o 03 oz o o ) o3 oz o os ot o3 oz o1
(a) Code Generation. (b) Math Problem. (c) Reasoning Tasks. (d) Average.
©~MLP -~ GON -~ GAT ~ - GCNIl -~ GT ~ - OFA < MLP -~ GON - GAT - - GONIl - - GT - - OFA < MLP -~ GON GAT - - GONIl -~ GT - - OFA < MLP -~ GON ~  GAT - - GONIl -~ GT - - OFA
o e prcctor — AgencPredctors o e precor ~ Agotc Pracctor ) o agemcpreactor ~ Ageic Precctors w2 7 pgenicpractor — Ageic recictars
w0 . w ©
2 z E £
70 © 80 70
65 60 -+ 75 + 65
os ot os o2 o1 os or o3 oz o os o 03 oz o os ot o3 o2 o1
Label Raio Lobe Ratio Lobe Ratio Label Rato
(e) Code Generation. (f) Math Problem. (g) Reasoning Tasks. (h) Average.

Figure 4: Comparison of accuracy (upper) and utility (lower) between Agentic Predictor and the
baselines across varying label ratios.

unlabeled corpus by pooling all workflow configurations from the remaining training splits of the
FLORA-Bench across Code, Math, and Reasoning tasks and both AFlow and G-Designer frameworks,
sampling uniformly over the pool without additional deduplication or domain re-weighting. This
yields M 232,104 distinct samples (=~ 6.56% Code, 2.86% Math, 90.58% Reasoning). No
validation and test workflows or labels are included to avoid leakage. We pretrain the proposed
multi-view encoder with a batch size of 32 for 20 epochs.

Following the average results in the main text, we provide a comprehensive comparison of accuracy
(top row) and utility (bottom row) across three task domains—code generation, math problems, and
reasoning—under varying label ratios from 0.5 to 0.1 (Figure 4).

Across all settings, our proposed framework, Agentic Predictor, and its pretrained variant, Agen-
tic Predictor+, consistently outperform baseline models, especially in low-resource scenarios. In the
code generation domain (Figures 4a, 4e), Agentic Predictor+ achieves superior accuracy and notably
higher utility as the label ratio decreases, outperforming all graph-based and non-graph baselines.
Similarly, for math problems (Figures 4b, 4f), Agentic Predictor+ maintains a stable accuracy even
as labeled data diminishes, while significantly improving utility, indicating better performance in
label-scarce conditions. In reasoning tasks (Figures 4c, 4g), although accuracy deltas narrow between
models, Agentic Predictor+ sustains strong utility across all label ratios, highlighting its robustness
in generalization. When averaged across domains (Figures 4d, 4h), Agentic Predictor+ shows clear
advantages in both metrics under limited supervision. The utility improvements are particularly
prominent, suggesting that our pretrained encoder captures transferable representations that enhance
decision-making, even when fine-tuning data is sparse. These findings validate the efficacy of the
unsupervised pretraining phase and highlight the importance of cross-domain datasets for pretraining.
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Table 10: Results when train on AFlow and test on G-Designer.

Domain | Code Generation | Math Problem | Common Reasoning | Average
Model | Accuracy Utility | Accuracy Utility | Accuracy  Utility | Accuracy Utility
GCN 56.76 54.29 49.64 51.92 61.37 54.13 55.92 53.45
GAT 57.25 56.05 48.29 48.71 57.03 53.12 54.19 52.63
GCN-II 64.16 62.67 48.85 50.56 65.55 52.76 59.52 55.33
Graph Transformer 60.83 58.39 47.73 46.65 55.88 48.87 54.81 51.30
One For All 58.97 53.25 50.60 51.02 63.84 55.22 57.80 53.16

Agentic Predictor | 65.02 6491 | 53.62 5283 | 6751 5774 | 62.05 58.49

Table 11: Results when train on G-Designer and test on AFlow.

Domain | Code Generation | Math Problem | Common Reasoning | Average
Model | Accuracy Utility | Accuracy Utility | Accuracy  Utility | Accuracy Utility
GCN 58.21 57.33 67.57 54.63 57.51 53.37 61.10 55.11
GAT 59.29 59.68 66.34 52.70 56.07 50.38 60.57 54.25
GCN-II 58.75 61.17 67.32 52.96 55.93 52.19 60.67 55.44
Graph Transformer 60.52 61.44 58.97 57.49 56.50 54.86 58.66 57.93
One For All 62.01 54.57 58.72 61.23 59.40 54.17 60.04 56.66

Agentic Predictor | 60.94 5975 | 69.11 63.02 | 5856 5673 | 62.87 59.83

B.6 WORKFLOW OPTIMIZATION RESULTS

In the main experiments, we demonstrate the feasibility and robustness of predicting agentic work-
flow performance. However, it remains an open question whether such predictions can effectively
contribute to improving efficiency and to what extent they may introduce performance degradation in
agentic workflows. To investigate this, we evaluate whether using Agentic Predictor as a predictor
enhances the optimization of agentic workflows compared to alternative baselines. Specifically, we
measure the performance improvement (or loss) incurred when using performance predictors.

To ensure a fair comparison, we adopt the same experimental setup as Zhang et al. (2025c), which
provides a unified platform for optimizing agentic workflows and evaluating their performance.
During the optimization process on each benchmark, a predictor is used to estimate the performance
of candidate agentic workflows. These predicted performance values are treated as rewards to guide
the optimization. Upon completion of the optimization, the quality of the resulting workflows is
assessed based on their accuracy score on held-out test tasks.

We compare Agentic Predictor against four baselines: (1) the ground truth baseline, which directly
evaluates agentic workflows to obtain ground-truth performance scores (as done in the original
AFlow (Zhang et al., 2025b)); (2) two strong GNN-based predictors GCN and GAT; and (3) a random
baseline, which assigns random performance scores as rewards. This experiment is conducted across
five benchmarks: MATH, GSM8K, MBPP, HumanEval, and MMLU.

As in Table 13, Agentic Predictor consistently outperforms the random, GCN, and GAT baselines,
achieving an average accuracy score of 74.43 %, significantly higher than random (62.56%), GCN
(68.42%), and GAT (71.00%). Notably, as a predictor incurs zero search cost compared to the ground-
truth’s cost of $39.83, this result underscores the effectiveness and efficiency of Agentic Predictor
as a reliable predictor for optimizing agentic workflows. Note that the search cost is 0 because the
predictors do not incur any LLM inference cost. Note that the search cost when using the performance
predictor is effectively zero because the predictor incurs no LLLM inference calls (i.e., no downstream
task executions of task queries) to decide whether the current workflow has failed. The lightweight
LLM update applied after each pass/fail decision, whose cost is about 0.005 — 0.01 per update round
with GPT-4.1-mini on the existing workflow, is excluded from the reported costs for all methods.

In real-world deployments, Agentic Predictor can be combined with any workflow generator (e.g.,
AFlow). In such cases, the overall cost decomposes into (1) the candidate-generation LLM cost
(shared across all search strategies) and (2) the evaluation cost. Our predictor reduces (2) by replacing
most candidate evaluations with cheap, yet more accurate predictions, while incurring only a one-time
training cost (see §4.4). This analysis applies equally to the other predictors as well.
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Table 12: Results on cross-domain OOD test.

Domain | Code-Math | Code-Reason | Math-Reason | Math-Code |  Reason-Code | Reason-Math | Average
Model | Accuracy Utility | Accuracy Utility | Accuracy Utility | Accuracy Utility | Accuracy Utility | Accuracy Utility | Accuracy Utility
GCN 48.89 54.07 52.61 53.29 49.38 46.69 50.07 48.75 32.56 50.53 33.42 50.57 44.49 50.65
GAT 45.95 49.42 53.71 57.90 46.83 38.90 51.02 47.40 33.79 52.62 33.42 51.10 44.12 49.56
GCN-II 56.02 44.49 53.44 45.93 50.38 47.36 39.48 51.55 38.13 51.35 36.61 57.93 45.68 49.77
Graph Transformer 47.67 56.18 53.71 57.95 47.90 43.63 54.00 56.20 60.92 52.37 41.77 5291 51.00 53.21
One For All 36.61 61.11 50.33 39.82 44.92 45.88 65.40 56.24 63.36 50.60 38.08 45.27 49.78 49.82

Agentic Predictor | 57.17 61.03 | 5422 6299 | 53.86 6175 | 59.88 60.25

61.60 5452 | 6290 5269 | 5827 58.87

Table 13: Workflow optimization performance based on the selected workflow across methods.

Methods | Math Problems | Code Generation | Reasoning | Average
| MATH GSMSK | MBPP HumanEval | MMLU DROP HotpotQA | Score Search Cost ($)
Ground Truth (AFlow) ‘ 87.38 94.53 ‘ 73.22 97.20 ‘ 83.10 84.25 69.94 ‘ 84.23 39.83
Random 78.40 75.23 67.84 76.34 42.87 80.42 16.86 62.56 0.00
GCN 79.22 86.16 68.23 97.46 46.43 82.33 19.14 68.42 0.00
GAT 80.11 86.22 68.62 97.71 57.00 85.83 21.47 71.00 0.00
Agentic Predictor | 8189 92.65 | 6842 9873 | 7970 8625 1337 | 7443 0.00

B.7 TRANSFERABILITY

Considering that the MMLU benchmark encompasses various reasoning tasks, we further investigate
the transferability of predictors trained on MMLU datasets to determine whether they can be used
to optimize similar reasoning tasks, specifically DROP (Dua et al., 2019) and HotpotQA (Yang
et al., 2018). As reported in Table 13, the workflow optimized using Agentic Predictor achieves
competitive performance on these tasks: 86.25% on DROP and 13.37% on HotpotQA, demonstrating
notable transferability. While performance on HotpotQA is lower than the baselines, the results
remain broadly comparable, indicating that the workflows optimized via Agentic Predictor maintain
substantial effectiveness when transferred to closely related reasoning tasks. This highlights the
practical potential of Agentic Predictor for broader applicability in workflow optimization scenarios.

C CASE STUDY

This section presents qualitative results from the workflow optimization process using Agen-
tic Predictor as the reward function across three domains.

C.1 CODE GENERATION

The code generation workflow on the HumanEval dataset demonstrates that the initial solution
generation step often required subsequent refinement through explicit review and revision cycles. By
systematically reviewing the initially generated code, and conditionally revising based on feedback
from automated tests, the workflow substantially improved the final solution’s correctness. This
iterative approach effectively balanced computational cost and performance, resulting in solutions
that were consistently more robust and accurate compared to single-step generations.

Workflow for Code Generation (HumanEval)

from typing import Literal

import workspace.HumanEval.workflows.template.operator as operator
import workspace.HumanEval.workflows.round 19.prompt as prompt_custom
from metagpt.provider.llm_provider_registry import create_llm_instance
from metagpt.utils.cost_manager import CostManager

DatasetType = Literal["HumanEval", "MBPP", "GSM8K", "MATH", "HotpotQA", "DROP", "MMLU"]

class Workflow:
def _ init_ (
self,
name: str,
1lm_config,
dataset: DatasetType,
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) —> None:
self.name = name
self.dataset = dataset
self.llm = create_llm instance (llm_config)
self.llm.cost_manager = CostManager ()
self.custom = operator.Custom(self.llm)
self.custom_code_generate = operator.CustomCodeGenerate (self.1llm)
self.test = operator.Test (self.llm)

async def _ call_ (self, problem: str, entry point: str):
W
Implementation of the workflow
1. Generate initial solution using custom_code_generate.
2. Review the solution using custom operator.
3. Test the solution; if test fails, revise using custom operator and retest.
W
# Step 1: Generate initial solution
initial_solution = await self.custom_code_generate (problem=problem, entry_point=
entry_point, instruction="")

# Step 2: Review the solution to improve quality
reviewed = await self.custom(input=initial_solution[’response’], instruction=
prompt_custom.REVIEW_PROMPT)

# Step 3: Test the reviewed solution
test_result = await self.test (problem=problem, solution=reviewed[’response’],
entry_point=entry_point)

# If test fails, revise solution based on test feedback and retest once
if not test_result[’result’]:
revised = await self.custom(input=reviewed[’ response’] + "\n" + test_result[’
solution’], instruction=prompt_custom.REVISE_PROMPT)
test_result = await self.test (problem=problem, solution=revised[’response’],
entry_point=entry_point)
final_solution = revised[’response’] if test_result[’result’] else reviewed[’
response’ ]
else:
final_solution = reviewed[’response’]

return final solution, self.llm.cost_manager.total_ cost

C.2 MATH PROBLEM

In addressing mathematical problems using the MATH dataset, the workflow leverages an ensemble
strategy by producing multiple candidate solutions, subsequently selecting the most consistent one via
a self-consistency ensemble step. The selected solution was then further refined through an additional
review process. This combined ensemble and review mechanism significantly enhanced solution
quality, highlighting the value of ensemble techniques in solving complex mathematical reasoning
tasks, while maintaining a controlled computational budget.

Workflow for Math Problem (MATH)

from typing import Literal

import workspace.MATH.workflows.template.operator as operator

import workspace.MATH.workflows.round_88.prompt as prompt_custom

from metagpt.provider.llm_provider_registry import create_llm_instance
from metagpt.utils.cost_manager import CostManager

DatasetType = Literal["HumanEval", "MBPP", "GSM8K", "MATH", "HotpotQA", "DROP", "MMLU"]

class Workflow:

def _ _init__ (
self,
name: str,
1lm_config,
dataset: DatasetType,

) —> None:
self.name = name
self.dataset = dataset
self.llm = create_llm instance(llm_config)
self.llm.cost_manager = CostManager ()
self.custom = operator.Custom(self.llm)
self.sc_ensemble = operator.ScEnsemble(self.llm)
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async def _ _call__ (self, problem: str):
wnn

Implementation of the workflow with ensemble and review step
wnn
# Generate multiple candidate solutions using custom operator with different
instructions
candidates = []
for i in range (3):
response = await self.custom(input=problem, instruction=prompt_custom.SOLVE_PROMPT
+ f" Attempt {i+1}.")
candidates.append (response [’ response’ ])

# Use self-consistency ensemble to select the best solution
ensemble_result = await self.sc_ensemble (solutions=candidates, problem=problem)
best_solution = ensemble_result[’response’]

# Review and refine the best solution

review_response = await self.custom(input=problem + "\nSolution to review:\n" +
best_solution, instruction=prompt_custom.REVIEW_PROMPT)

final_ solution = review_response [’ response’ ]

return final solution, self.llm.cost_manager.total_ cost

C.3 REASONING TASK

For reasoning tasks on the MMLU dataset, the workflow combines multiple generation techniques,
including custom-generated solutions with varying prompts and answers produced by specialized
answer-generation operators, to diversify initial candidate answers. The self-consistency ensemble
step effectively selected the most consistent candidate, which was subsequently subjected to rigorous
review and format verification steps. This meticulous process, which included conditional regenera-
tion and revision to ensure strict adherence to specified answer formats, proved highly effective in
enhancing both accuracy and reliability of the final responses.

Workflow for Reasoning Task (MMLU)

from typing import Literal

import workspace.MMLU.workflows.template.operator as operator

import workspace.MMLU.workflows.round_19.prompt as prompt_custom

from metagpt.provider.llm_provider_registry import create_llm_instance
from metagpt.utils.cost_manager import CostManager

DatasetType = Literal ["HumanEval", "MBPP", "GSM8K", "MATH", "HotpotQA", "DROP", "MMLU"]

class Workflow:

def _ init__ (
self,
name: str,
1lm_config,
dataset: DatasetType,

) —> None:
self.name = name
self.dataset = dataset
self.llm = create_llm instance (llm_config)
self.llm.cost_manager = CostManager ()
self.custom = operator.Custom(self.llm)
self.answer_generate = operator.AnswerGenerate (self.llm)
self.sc_ensemble = operator.ScEnsemble (self.llm)

async def _ call_ (self, problem: str):
W
Implementation of the workflow with multiple custom answers, multiple AnswerGenerate
answers, ensemble, review, and revision
W
# Step 1: Generate multiple candidate answers using custom operator with a concise
prompt
custom_answers = []
for _ in range(2):
custom_response = await self.custom(input=problem, instruction=prompt_custom.
CUSTOM_PROMPT)
custom_answer = custom_response[’response’ ]
custom_answers.append (custom_answer)
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# Add 1 answer with diversity prompt to increase answer variety

custom_diverse_response = await self.custom(input=problem, instruction=prompt_custom.
CUSTOM_DIVERSE_PROMPT)

custom_answers.append (custom_diverse_response [’ response’])

# Step 2: Generate multiple candidate answers using AnswerGenerate operator to
increase diversity
answergen_answers = []
for _ in range(2):
answergen_response = await self.answer_generate (input=problem)
answergen_answer = answergen_response[’answer’]
answergen_answers.append (answergen_answer)

# Step 3: Ensemble all candidate answers to select the most consistent answer
all_answers = custom_answers + answergen_answers

ensemble_response = await self.sc_ensemble (solutions=all_answers)
ensemble_answer = ensemble_response ([’ response’ ]

# Step 4: Review the ensemble answer to ensure format and correctness

review_input = problem + "\nAnswer: " + ensemble_answer

review_response = await self.custom(input=review_input, instruction=prompt_custom.
REVIEW_PROMPT)

reviewed_answer = review_response[’response’]

# Step 5: If reviewed answer 1is not in correct format, regenerate with a stricter
prompt
if not reviewed_answer.startswith ("Answer: Option "):
strict_regen_input = problem + "\nPlease provide the final answer strictly in the
format ’Answer: Option X’ ."
strict_regen_response = await self.custom(input=strict_regen_input, instruction=
prompt_custom.STRICT_REGEN_PROMPT)
reviewed_answer = strict_regen_response[’ response’]

# Step 6: Revision step to refine the reviewed answer for strict format adherence

revision_input = problem + "\nAnswer: " + reviewed_answer

revision_response = await self.custom(input=revision_input, instruction=prompt_custom.
REVISION_PROMPT)

final_answer = revision_response[’response’]

return final answer, self.llm.cost_manager.total_ cost

D USE OF LARGE LANGUAGE MODELS

In preparing this submission, we employed ChatGPT-5 strictly as a tool for language refinement,
including polishing text, improving clarity, and correcting grammatical and typographical errors.
Its role was limited to grammar correction, sentence restructuring, and rephrasing for readability.
All model-generated content was thoroughly reviewed and revised by the human authors to ensure
accuracy, originality, and adherence to research-integrity standards. The LLMs did not contribute
to the core research ideas, experimental design, or any substantive intellectual components of the
work. Note that LLMs also served as baselines for LLM-based prediction (§B.3) and case-study (§C)
experiments, as described above.

22



	Introduction
	Related Work
	Methodology: Agentic Predictor
	Problem Formulation
	Framework Overview
	Multi-View Workflow Encoding
	Encoder Networks
	Decoder Networks

	Cross-Domain Unsupervised Pretraining
	Performance Predictor

	Experiments
	Setup
	Main Results (Q1)
	Additional Analyses
	Resource Cost

	Conclusions
	Pseudocode of Agentic Predictor
	Additional Experimental Results
	Performance on Different LLM Backbones
	Performance on Different GNN Backbones
	Comparison with LLM Predictors
	Out-of-Distribution (OOD) Generalization Performance
	Effects of Pretraining Phase (Full Results)
	Workflow Optimization Results
	Transferability

	Case Study
	Code Generation
	Math Problem
	Reasoning Task

	Use of Large Language Models

