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ABSTRACT

Temporal Point Processes have undergone increasing relevance in the modeling
of continuous-time event streams. Regarding their applicability, one important
aspect is that of detecting anomalous, or out-of-distribution, sequences. Recent
works have focused on parametric models for this out-of-distribution detection.
In the present work, we give a theoretical background treatment of the anomaly
detection problem applied to TPPs, describe our fully neural-based strategy, show
how a fully neural-based strategy of improved generalization outperforms tradi-
tional parametric approaches, and validate its effectiveness against a state-of-the-
art approach on data of controlled generation.

1 INTRODUCTION

The ubiquity of asynchronous temporal behaviour in a myriad of both natural and social phenom-
ena has prompted a surge of works investigating the applications of Temporal Point Process (TPP)
(Daley & Vere-Jones, 2003) modeling to domains such as earthquake aftershock prediction (Ogata,
1999), retweeting behaviour modeling (Zhao et al., 2015; Rizoiu et al., 2018), academic citation
counting (Xiao et al., 2016) and high-frequency financial transactions (Bacry et al., 2015b;a).
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Figure 1: Our framework for fully neural-based out-of-
distribution detection of temporal point processes.

TPP modeling equates the problem
of modeling one or more real-valued
event time arrival sequences to that of
finding an underlying corresponding
Conditional Intensity Function (CIF)
λ(t), which is the expected arrival
rate of new events as a function of
time.

Several strategies have been used to
approximate a CIF best suited to a
given set of sequences, ranging from
simple parametric models (Ogata,
1981; Kobayashi & Lambiotte, 2016;
Etesami et al., 2016) and grid-based
methods (Mohler et al., 2012; Zhou
et al., 2020; Achab et al., 2017; Bacry
& Muzy, 2016; Lewis & Mohler,
2011; Zhou et al., 2013; Yang et al., 2017) to the more contemporary approaches using Recur-
rent Neural Networks (Du et al., 2016; Upadhyay et al., 2018; Xiao et al., 2018; 2017b; Yang et al.,
2018), Generative Adversarial Networks (Xiao et al., 2017a; Goodfellow et al., 2014), as well as
self-attentive models and Transformers (Zuo et al., 2020; Zhang et al., 2019).

A related problem to that of abstracting a set of sequences to a CIF model is that of detecting
anomalous sequences (Shchur et al., 2021), i.e., those sequences which present a time arrival be-
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haviour rather uncommon w.r.t. the typical behaviour of the event arrivals corresponding to a given
set of sequences. That is of major importance in situations as diagnosing server failures, identify-
ing intrusions from malicious users in a system, and detecting frauds or shifts in a given market
structure, to name a few examples.

The current approach makes use of a combination of a Goodness-of-Fit (GoF) statistic test with
a TPP model which is learned over the distribution of inter-event times, and thus is insensitive to
permutations of the given sequences. Time-clustering behaviour on natural and social phenomena,
however, often possess a history-dependent behaviours which have been widely investigated with
models such as self-exciting and self-damping point processes (Bacry et al., 2015b; Rizoiu et al.,
2018).

In the present work, we propose a fully neural-based strategy (Omi et al., 2019) for the TPP model
subjected to the GoF testing for anomaly detection problem in TPPs, as a means of capturing history-
dependent information on the TPP modeling for improving the reliability of the detection tests. In
the following, we give a theoretical background treatment of the anomaly detection problem applied
to TPPs, describe our fully neural-based strategy, and validate its effectiveness against state-of-the-
art approaches on real and simulated data.

2 THEORETICAL BACKGROUND

In the following, we give a theoretical treatment of Temporal Point Processes (TPPs), the anomaly
detection problem applied to TPPs, and describe our fully neural-based approach.

2.1 TEMPORAL POINT PROCESSES

Temporal Point Process (TPP) modeling equates the problem of modeling one or more real-valued
event time arrival sequences, such as (t0, t1, ..., tN ) (t ∈ R), to that of finding an underlying corre-
sponding Conditional Intensity Function (CIF) λ(t) such that

λ(t) = E{dNt = 1|H(t)}, (1)
where Nt is denoted the Counting Process, while H(t) = {ti} (ti < t) is referred to as the History
of the TPP up to time t, and dNt = 1, if there is an event at time t, and dNt = 0, otherwise.

2.2 ANOMALY DETECTION OF TEMPORAL POINT PROCESSES

The Anomaly Detection for TPPs is equated to a type of an Out-of-Distribution (OoD) Detection
problem, which aims to define if a given random instance of time-event sequence ∫̃ belongs to an
underlying unknown TPP which is manifested by a given set of sequences S.

More formally, it is defined as a null hypothesis test:
H0 : s̃ ∼ PS H1 : s̃ ∼ Q ̸= PS , (2)

where PS is the true underlying TPP generating the set S , while Q is a distinct TPP.

Associated to this OoD Detection formulation is the Goodness-of-Fit (GoF) testing, which corre-
sponds to a hypothesis test over a known generating probability distribution PM:

H0 : s̃ ∼ PM H1 : s̃ ∼ Q ̸= PM, (3)
where M corresponds to a known model for the TPP.

This knowledge of the model allows us to compute a test statistic ∫(s̃) and its associated two-sided
p-value pS(s̃)

pS(s̃) = 2min{Pr(∫(S) ≤ ∫(s̃)|H0), 1− Pr(∫(S) ≤ ∫(s̃)|H0)} (4)

3 FULLY NEURAL-BASED OUT-OF-DISTRIBUTION DETECTION FOR
TEMPORAL POINT PROCESSES

Several Neural-based variants have been recently proposed for modeling TPPs, as a way of lever-
aging modern Deep Learning techniques and approaches to increase the accuracy and variance of
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these time event-sequence models. Most notably, Recurrent Neural Networks (Du et al., 2016), Long
Short Term Memory networks (Mei & Eisner, 2017), and Transformers (Zuo et al., 2020) have been
applied to TPPs.

A highly performing approach, the fully neural-based TPP (Omi et al., 2019), proposes the use of a
dense neural network to model the time integrated value of the CIF, also know as the Compensator
function

Φθ(τ) =

∫ τ

0

λ(τ)dτ t ∈ [0, T ] (5)

From that, by making use of the automatic differentiation techniques widely available in Machine
Learning frameworks, it constructs a loss function equivalent to the Loglikelihood (LLH) of the
TPP-realized sequence:

LLH(s̃) =

Ns̃∑
i=1

log(λ(ti))−
∫ Ts̃

0

λ(t)dt =

Ns̃∑
i=1

log

(
∂Φθ(τ = ti+1 − ti)

∂τ

)
− Φθ(τ = ti+1 − ti)

(6)

By choosing θMAX ∈ Θ, the model parameters, such that

θMAX = argmax
Θ

LLH(Φθ(S)), (7)

we are left with a Maximum Likelihood Estimator which we may use as the known model for GoF
testing.

The present work consists of, given θMAX as defined in Equation 7, we define a test statistic

∫(·) = eLLH(ΦθMAX (·)) (8)

from where we can perform a two-sided test for a sequence s̃ as

pS(s̃) = 2min{Pr(eLLH(ΦθMAX (S)) ≤ eLLH(ΦθMAX (s̃))|H0), 1− Pr(eLLH(ΦθMAX (S)) ≤ eLLH(ΦθMAX (s̃))|H0)}
(9)

to classify those sequences as ID or OOD based on a p-value (pS(s̃)) threshold of 0.05.

4 DISCUSSION OF ARCHITECTURE SEARCH

4.1 ARCHITECTURE DESCRIPTION

Figure 2: Our proposed neural architecture for out-of-
distribution detection of time event sequences.

In this section, we present the archi-
tecture of our model, which had its
performance evaluated using a vari-
ety of synthetic data.

The core of our model consists of an
RNN that is trained to learn tempo-
ral patterns by processing sequences
of events. The sequences of events
that are used as input to the RNN
are windowed into subsequences of
length 20 for avoiding potential gra-
dient vanishing/explosion. Our archi-
tecture follows the proposed method-
ology by (Omi et al., 2019), where
the first hidden layer receives the
elapsed time (τ ) and the hidden state
of the RNN as inputs.

The units of the RNN and the Dense layers were determined using a grid search between
[16, 32, 64, 128], and the units that produced the best results were selected. Particularly the number
of units for the RNN was set to 128 and the number of units for the Dense layer to 32. We initialize
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our weights using Glorot Uniform initialization and similar to (Omi et al., 2019), we constrain the
weights to be positive. We apply a hyperbolic tangent activation function to the RNN and subsequent
hidden layers. Constraining the weights to be positive ensures that the output of the tanh function is
preserved, allowing the distinction of different sequences.

For the output layer, since the Cumulative Hazard Function is a monotonically increasing function,
a single unit with an equally monotonically increasing activation function of exponential type is
utilized for modelling this behavior.

4.2 DISCUSSION

Throughout our experiments, we initially noticed mixed performance when detecting OoD se-
quences. Specifically, the model was successful in detecting the OoD sequences when trained on a
particular distribution and tested on another. However, when the model was trained on the same dis-
tribution as the OoD sequences, it was unable to detect them well. In such cases, the model seemed
to overfit to the training data, and consequently becoming unable to generalize when subjected to
new sequences.

To remedy this issue, we subsequently performed a grid search for detecting the best units for each
layer and experimented with different activation functions. For the prediction (output) layer we
utilized a Dense layer with a single unit with an exponential activation function, for simulating the
monotonically increasing behavior of the CHF.

5 EXPERIMENTS

For evaluating the effectiveness of our fully neural-based approach for detecting OoD sequences in
TPP, we perform experiments with data sets comprising 100 sequences of synthetic data. The data
are simulated from seven different known types of point processes. The processes and their intensity
functions are described below:

• Stationary Poisson Process (SPP): The arrival rate of events remains constant over time,
and is defined by a constant unitary intensity function

λSPP (t) = λ = 1, ∀t ∈ [0, T ]. (10)

• Non-Stationary Poisson Process (NSPP): The arrival rate varies with time.Consists of a
non-constant intensity value which is conditionally independent of past events:

λ(t) = E{dNt = 1|H(t)} = E{dNt = 1} = A sin

(
2πt

L

)
+ 1 ∈ R+, ∀t ∈ [0, T ], (11)

with A = 0.99 and L = 20000.

• Stationary Renewal Process (SRP): The inter-arrival time distribution remains constant
over time. Each sequence {ti}Ni=1 is sampled by:

yi ∼
1

s ∗ yi ∗
√
2π

e
−
log2(yi)

2s2 , with yi =
ti

e
−
s2

2

(12)

• Non-Stationary Renewal Process (NSRP): The inter-arrival time distribution changes
over time. Each sequence {ti}Ni=1 is sampled by:

λ(t− ti) = sin

(
2 ∗ π ∗ (t− ti)

20000

)
∗ 0.99 + 1 (13)

• Self-Correcting Process (SCP): The inter-arrival time between events depends on the time
elapsed since the last event. Each sequence {ti}Ni=1 is sampled by:

ti = ti−1 +
(
log

e ∗ µ
ex

+ 1
)
/µ, with e ∼ Exp(β = 1) (14)

where t0 = 0 and xi = xi−1 − 1.
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• Hawkes Process Type I (HP-I): The occurrence of an event increases the probability of
the occurrence of another event. Its intensity function λ(t) for a sequence {ti}Ni=1 is given
by Hawkes (1971a;b):

λHP−I(t) = µ+
∑
ti<t

ϕ1(t− ti), with µ ∈ R∗
+ and ϕ1(t) = 0.8 ∗ e−t. (15)

• Hawkes Process Type II (HP-II): The intensity function λ(t) for a sequence {ti}Ni=1 is
given by: λHP−II(t) = µ+

∑
ti<t

ϕ2(t− ti) +
∑
ti<t

ϕ3(t− ti), (16)

with µ ∈ R∗
+,ϕ2(t) = 0.4 ∗ e−t and ϕ3(t) = 0.4 ∗ e−20∗t.

The goal of our experiments was to gauge the ability of our fully-neural strategy to accurately dis-
tinguish between in-distribution (ID) and out-of-distribution (OoD) sequences. We evaluated the
model’s performance on sequences generated from the same process as the training data versus se-
quences generated from a different process. The results are presented in Figure 3 and are determined
by the detection rate for each scenario. In this paradigm, the desired outcome is to have a low de-
tection rate for ID sequences (generated from the same process) and a high detection rate for OoD
sequences (generated from a different process).
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Figure 3: Comparison of Out-of-Distribution detection rate between our fully neural-based approach
(FNOOD) and the baseline (Weibull distribution). Both models were trained on 100 sequences from each
process, represented by the horizontal axis, and evaluated on sequences from all other processes, represented
by the vertical axis. The performance is measured by the detection of 100 test sequences that were correctly
classified as OoD.

6 CONCLUSION

In this work, we propose a fully-neural based approach for detecting Out-of-Distribution sequences
in temporal point processes. We show the effectiveness of our proposal by testing it in a wide variety
of synthetic data. The results are evaluated using a GoF test, allowing to compute a test statistic for
detecting anomalous sequences. Our experiments show that our method consistently outperforms
the Weibull distribution, which serves as a baseline, when both are evaluated on data of controlled
generation.
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