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Prototype-Guided Dual-Transformer Reasoning for Video
Individual Counting

Anonymous Authors

ABSTRACT
Video Individual Counting (VIC), which focuses on accurately tally-
ing the total number of individuals in a video without duplication, is
crucial for urban public space management and densely-populated
areas planning. Existing methods suffer from limitations in terms
of expensive manual annotation, and the efficiency of location or
detection algorithms. In this work, we contribute a novel Prototype-
guided Dual-Transformer Reasoning framework, termed PDTR,
which takes both similarity and difference of adjacent frames into
account to achieve accurate counting in an end-to-end regression
manner. Specifically, we first design a multi-receptive field feature
fusion module to acquire initial comprehensive representations.
Subsequently, the dynamic prototype generation module memo-
rizes consistent representations of similar information to generate
prototypes. Additionally, to further dig out the shared and private
features from different frames, a prototype cross-guided decoder
and a privacy-decoupling module are designed. Extensive experi-
ments conducted on two existing VIC datasets, consistently demon-
strate the superiority of PDTR over state-of-the-art baselines.

CCS CONCEPTS
• Computing methodologies → Computer vision problems;
Computer vision tasks.

KEYWORDS
Video Individual Counting, Prototype Learning, Dual-Transformer

1 INTRODUCTION
With the ongoing increase in urban population density, effective
crowd management and safety control in densely populated public
areas are of utmost importance. Consequently, Video Crowd Count-
ing (VCC) is developed to estimate the number of individuals in
each frame, which has been widely used in various applications
[7, 9, 40]. However, despite the fact that VCC has achieved amazing
improvement, it fails to accurately count the total number of indi-
viduals appearing in a video, which follows a constraint that each
pedestrian is counted only once. Therefore, a more challenging
task termed Video Individual Counting (VIC) is proposed. Obvi-
ously, removing duplication counting and achieving accurate total
enumeration from a video play as a critical issue in VIC.
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Figure 1: Illustration of different VIC methods. (a) Single
frame-based counting, adding the number of people detected
in each frame as the total number. (b) Cross-line counting,
counting the number of individuals crossing the virtual line
as inflow. (c) MOT-based counting, using locators to generate
head descriptors for different frames for feature matching.
(d) Regression-based counting (Ours), mapping input frames
into shared and private coordinate sets directly.

Over the decades, VCC [1, 9, 42, 46] has witnessed significant
advancements. Current methodologies generally fall into two cate-
gories: single frame-based counting and cross-line counting, neither
of which is directly applicable to the VIC task. The single frame-
based counting methods [11, 20, 29, 37, 52] inevitably lead to repet-
itive counting of the same target in adjacent frames, resulting in
an inaccurate representation of the total count of people in a video,
as shown in Fig. 1(a). The cross-line methods [4, 28, 47, 48] solely
focus on counting the pedestrians crossing predetermined lines,
disregarding pedestrians in stationary or intermittent motion states,
as shown in Fig. 1(b). Additionally, the manual marking operation
required by cross-line methods necessitates labor-intensive effort,
and lead to prohibitive costs when dealing with highly dense con-
ditions. Inspired by multi-object tracking (MOT) methods, VIC was
initially defined by Han et al. [12] who proposed a new counting
paradigm DRNet to tally the individuals in the initial video frame
and increment this count with new entrants in subsequent frames.
DRNet extracts head descriptors from density maps of adjacent
frames and uses feature matching inference to infer inflow (the
number of people entering the current frame) and outflow (the
number of people who left the previous frame). Recently, Liu et
al. [26] also proposed a weakly supervised method based on con-
trastive learning with group-level matching, to further reduce the
reliance of MOT-based methods on trajectory labels. Unfortunately,
these MOT-based methods (shown in Fig. 1(c)) heavily depend on
the accuracy of density maps and descriptors.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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In addition, the aforementioned methods all rely on convolu-
tional neural network architecture and involve additional prepro-
cessing operations. To reduce the reliance on these operations,
Liang et al. [22] takes the lead in applying DETR [3] to crowd lo-
calization, thereby achieving an end-to-end regression localization.
Despite the fact that this straightforward and efficient method is pri-
marily suited for single image and cannot be directly applied to VIC,
it prompts us to pose the hypothesis: can video individual counting
also be addressed using a uncomplicated regression approach? Gener-
ally, the VIC task has higher difficulty andmeets two key challenges:
i) if the model can generate semantic and consistent representations
of individuals across consecutive frames, it can effectively address
the issue of target repetition in temporal individual counting; and
ii) Given the continual motion state of target in a video, it becomes
even more critical to thoroughly address the fusion of information
pertaining to the same target across different frames.

Inspired by aforementioned analysis, we propose the Prototype-
guided Dual-Transformer Reasoning (PDTR) framework, fully lever-
aging the advantages of prototype learning and dual-stream infer-
ence, as shown in Fig. 1(d). In particular, our PDTR is composed
of four main components: i) multi-receptive field feature fusion
module (MRF3), ii) dynamic prototype generation (DPG), iii) pro-
totype cross-guided decoder (PCD), and iv) privacy-decoupling
module (PDM). Obviously, the sizes of targets in a frame are rich
diverse for the sake of distances between targets and the camera.
We propose the MRF3 to acquire and merge multi-scale represen-
tations. Subsequently, these representations are input into DPG
to extract probability distribution of similar information across
different frames, thereby directing the model’s attention towards
similarity and aiding in prototypes generation. Afterwards, a pro-
totypes cross-guided mechanism is designed to efficiently train the
transformer decoder to extract shared features from comprehensive
representations of different frames, thereby inferring targets that
present in both frames. Lastly, PDM is utilized to separate private
features from each frame for complementary accounting.

The core contributions of this work are as follows:

• We propose a novel prototype-guided dual-transformer rea-
soning framework for VIC, which converts the featurematch-
ing process of conventional models to an end-to-end regres-
sion reasoning procedure. To the best of our knowledge, this
represents the initial endeavor to employ Transformer in a
dual-stream cross-guidance manner for VIC.

• A novel dynamic prototype generationmodule is deployed to
bridge and mine consistency information from comprehen-
sive representations of adjacent frames, assisting decoder in
cross-generating semantic consistency features, thereby rea-
sonably utilizing the motion information of targets between
frames to reduce duplicate counting.

• Extensive experiments are conducted on two challenging
benchmarks for video individual counting, which demon-
strate: (a) the favorable comparison of our model with other
state-of-the-art methods, and (b) the effectiveness of each
module through ablation studies.

2 RELATEDWORK
2.1 Video Individual Counting
Video individual counting (VIC), as it involves counting each per-
son in a video only once, presents a higher level of complexity than
frame-by-frame video crowd counting (VCC). One possible solu-
tion is the multi-object tracking methods [2, 23, 27, 30, 33, 34, 38],
which detect and track multiple objects in consecutive frames of a
given video, thereby achieving pedestrians counting. This scheme
has made some research progress in VCC. Ren et al. [30] modeled
the detection, counting, and tracking problems as a network flow
problem. Sundararaman et al. [34] developed two frameworks for
head detection and tracking, based on motion models and a color
histogram-based re-identification module. However, multi-object
tracking methods need to capture continuous trajectories of ob-
jects and consider frequent ID switching, they cannot effectively
be applied to VIC. Motivated by these methods, Han et al. [12] in-
novatively converted VIC into a feature matching task by utilizing
the descriptors of each located head in adjacent frames to match
and determine pedestrian inflow. Liu et al. [26] proposed a novel
baseline equipped with a newly designed group level matching
soft contrastive loss. To our knowledge, these are the only two
studies that completely focus on VIC. Unlike these methods, our
approach reformulates the mainstream object matching process
into a more reliable, prototype-guided similarity and difference
reasoning procedure.

2.2 Prototype Learning
Prototype refers to the feature representations of instances within
the same class [31]. Thanks to its exemplar-driven nature and sim-
pler inductive bias [14], it holds significant potential across various
tasks. In image classification, each prototype acted as a representa-
tion of a specific category, enhancing model performance through
the regulation of inter-prototype distances [31, 43]. In semantic
segmentation, prototype vectors represented the masked object
features of support images and were utilized to search for pixel
positions with similar features in the query image, thereby aiding
in accurate target segmentation. [18, 39, 50]. In crowd counting,
Huang et al. [15] established a weather bank for gathering vari-
ous weather prototypes, and devised prototype loss to improve the
adaptability under various weather conditions. Our study adopts
the concept of prototypes to signify similarity and implements
prototype aggregation within dual-transformer framework.

2.3 Visual Transformers
Transformer, initially proposed for modeling sequential data in
machine translation [35], has recently demonstrated remarkable
success in various tasks, including object detection [3, 5, 44], image
recognition [8, 32], and semantic segmentation [49]. This success
has led to increased interest in exploring transformer-based archi-
tectures for crowd counting [21, 22, 24]. For instance, Liang et al.
[22] devised a novel approach by treating crowd localization as a re-
gression task and developed an end-to-end transformer framework.
Lin et al. [24] enhanced transformer by introducing learnable region
attention and an instance attention mechanism, which effectively
integrated global and local features to address scale differences.
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Figure 2: An overview of our proposed PDTR. Our model includes four main parts, i.e., multi-receptive field feature fusion
(MRF3), dynamic prototype generation (DPG), prototype cross-guided decoder (PCD) and privacy-decoupling module (PDM).
MRF3 integrates multi-scale and global information through an extractor and an encoder to generate multi-receptive field
fusion features. DPG learns and extracts semantic consistency representations via clustering similar features across adjacent
frames. PCD employs comprehensive features and prototypes to cross-guide a decoder for generating shared representations.
PDM distinguishes private features from comprehensive ones to facilitate coordinate prediction.

Moreover, researchers have explored the potential of transformers
in VCC. Fang et al. [9] thoroughly investigated the complemen-
tarity between density maps of consecutive frames, and addressed
pedestrian occlusion in videos. Inspired by those methods, we first
attempt to apply transformer to VIC and design a dual-transformer
framework to handle temporal information in videos.

3 METHOD
3.1 Problem Formulation
Suppose that we have a video 𝑰 = {𝐼𝑖 }𝑇 −1

𝑖=0 containing 𝑇 frames.
Given the similarity between adjacent frames, it is possible that the
flow of people has remained constant due to minor variations in
information. Thus, we sample every 𝜀 frames to create frame pairs
{𝐼𝑧 , 𝐼𝑧+𝜀 }. For each frame in {𝐼𝑧 , 𝐼𝑧+𝜀 }, taking 𝐼𝑧 as an example, its
corresponding label is 𝐿𝑧 =

{
𝑐𝑧𝑛, 𝑠

𝑧
𝑛

}𝑁𝑧

𝑛=1. Specifically, 𝑐
𝑧
𝑛 = (𝑥𝑧𝑛, 𝑦𝑧𝑛)

represents the coordinates of all 𝑁𝑖 pedestrians in frame 𝐼𝑧 , while
𝑠𝑧𝑛 ∈ {0, 1} denotes corresponding state of pedestrian 𝑛. Here, 0 in-
dicates the pedestrian appears in both frames, and 1 denotes that it
only exists in frame 𝐼𝑧 . The objective of this paper is to accomplish
video individual counting (VIC), which involves accurately deter-
mining the total number of individuals in video 𝑰 while ensuring
no duplication in the count.

Building upon the works of [12, 26], VIC is broken down into two
sub-problems: counting the total number of people𝑀 (𝐼0) in the ini-
tial frame, and inferring the number of new individuals𝑀𝑖𝑛 (𝐼𝑧 , 𝐼𝑧+𝜀 )
who appear in subsequent frames. The total number of people in

video 𝐼 can be calculated:
𝑇𝑜𝑡𝑎𝑙 ≈ 𝑀 (𝐼0) +𝑀𝑖𝑛 (𝐼𝑧 , 𝐼𝑧+𝜀 )

= 𝑐𝑜𝑢𝑛𝑡 (𝑐0) +
𝑜=(𝑇−𝜀 )/𝜀∑︁

𝑜=0
𝑐𝑜𝑢𝑛𝑡 (

{
𝑐𝑧+𝜀 |𝑠𝑧+𝜀 = 1, 𝑧 = 𝑜𝜀

}
),

where 𝑐𝑜𝑢𝑛𝑡 (·) is the count operation and 𝜀 denotes the sample
interval.

3.2 Overview of PDTR
Based on the analysis in Sec. 3.1, we have designed an end-to-end
regression network, named PDTR, which can directly predict the
point coordinates of pedestrians belonging to different states. For
ease of understanding, we will use superscripts (∗) in the following
description to uniformly represent different frames. Specifically,
as shown in Fig. 2, PDTR is composed of four components: (a)
MRF3, which includes a feature extractor (backbone) F𝜃1 and a
fusion encoder F𝜃2 . Extractor F𝜃1 extracts multi-scale feature from
input frames 𝐼1 and 𝐼2 ∈ R𝐻×𝑊 ×3 respectively. Encoder F𝜃2 cap-
tures long-distance global information and integrates them into ex-
tracted features to yield multi-receptive field fusion representations
𝐹 (∗) ∈ Rℎ×𝑤×𝑐 . (b) DPG, which learns and stores shared prototypical
representations 𝑋 (∗) from different frames. In this paper, 𝑘 proto-
types 𝑋 = {𝑥1, ..., 𝑥𝑘 } ∈ R𝑘×𝑐 are learned from features 𝐹 (∗) via EM
mechanism, to excavate consistent representations of the same tar-
get across neighboring frames. We expect that these learned proto-
types can assist the model in tackling challenges arising from scene
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diversity. (c) PCD, which leverages the learned 𝐹 (∗) and 𝑋 (∗) to gen-
erate shared feature 𝑍 (∗)

𝑐 ∈ Rℎ×𝑤×𝑐 in a cross guidance manner, i.e.,
U𝜗 : ((𝐹 1, 𝑋 2), (𝐹 2, 𝑋 1)) → 𝑍

(∗)
𝑐 . (d) PDM, which decouples dis-

criminative and private features contained in different frames from
comprehensive representations:V𝜓 : (𝐹 (∗) , 𝑍

(∗)
𝑐 ) → 𝑍

(∗)
𝑠 . Finally, a

decoder D𝜙 is adopted to map the learned features to final point
coordinates and confidence scores A, i.e., D𝜙 : (𝑍 (∗)

𝑐 , 𝑍
(∗)
𝑠 ) → A.

It is noteworthy that our model, configured as a dual-stream trans-
former for neighboring frames, shares weights across components
since each branch executes identical functions.

3.3 Multi-receptive Field Feature Fusion
Existing studies [21, 22] have illustrated a direct approach to capture
fine-grained image features for overcoming the limitation of rely-
ing solely on local information. They employ neural networks to
extract detailed information, and then integrate them into the trans-
former encoder to model pixel-wise spatial dependencies. However,
these approaches overlook the irrationality of feature extraction
at the same scale, as objects of various sizes and distances have
different scales. To this end, we incorporate multi-scale information
into transformer reasoning to comprehensively capture features of
targets with different sizes, as depicted in Fig. 3(a). By involving
multi-receptive field information, our model effectively identifies
target regions targets with various sizes.

Specifically, we design MRF3 to fuse multi-scale and global con-
text information, comprising two main components: feature extrac-
tor F𝜃1 and fusion encoder F𝜃2 . The former enhances the receptive
field by progressively deepening network layers, offering diverse
multi-scale information, whereas the latter emphasizes global con-
text and integrates varied spatial details. Initially, extractor F𝜃1
takes a pair of adjacent frames 𝐼 (∗) ∈ R𝐻×𝑊 ×3 as inputs, generat-
ing 𝑐-dimensional multi-scale feature sets

{
𝐹1, 𝐹2, 𝐹3, 𝐹4

} (∗) with
resolutions of 1/32, 1/16, 1/8 and 1/4 respectively. Subsequently,
MRF3 employs a feature alignment pyramid to align embeddings
of various scales 𝐹 (∗)

𝑖
(excluding 𝐹 (∗)

4 ) to 𝐹 (∗)
𝑖

of the same resolution.
Different layers of feature alignment pyramid incorporate varying
numbers of feature alignment (FA) blocks, according to the feature
size. The specific configuration is outlined below:

𝐹
(∗)
𝑖

= 𝑖 × 𝐹𝐴(𝐹 (∗)
𝑖

;𝜃𝐹𝐴𝑖
), 𝑖 = {1, 2, 3} , (1)

where the FA block comprises an average pooling layer and a con-
volution layer, and 𝜃𝐹𝐴𝑖

represents trainable parameters of the 𝑖-th
FA block. Finally, the encoder F𝜃2 adopts 𝐻 transformer blocks
to comprehensively integrate feature representations of varying
scales:

𝑄ℎ = 𝐹
(∗)
ℎ

·𝑊𝑄

ℎ
, 𝐾ℎ = 𝐹

(∗)
4 ·𝑊𝐾

ℎ
,𝑉ℎ = 𝐹

(∗)
4 ·𝑊𝑉

ℎ
,

𝐻𝑒𝑎𝑑ℎ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄ℎ, 𝐾ℎ,𝑉ℎ),
𝑀𝐻 (𝑄,𝐾,𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝐻𝑒𝑎𝑑1, ..., 𝐻𝑒𝑎𝑑𝐻 ),

(2)

where 𝑄ℎ , 𝐾ℎ and 𝑉ℎ denote learnable parameters for the ℎ-th
head, and 𝑄ℎ , 𝐾ℎ and 𝑉ℎ denote 𝑞𝑢𝑒𝑟𝑦, 𝑘𝑒𝑦 and 𝑣𝑎𝑙𝑢𝑒 , respectively.
𝐻 = 8 heads are used in our implementation. It is important to
highlight that multi-scale features are integrated solely into the
initial three encoder layers, and subsequent blocks maintain self-
attention mechanism. By employing cross attention mechanism, we
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Figure 3: Illustration of MRF3 (a), DPG and PCD (b). MRF3

captures comprehensive features while DPG utilizes mem-
ory to generate prototypes that contain similar information.
PCD reasons over prototypes and features to learn shared
representations for VIC.

obtain fusion features 𝐹 (∗) that amalgamate rich spatial information
from multiple receptive fields.

3.4 Dynamic Prototype Generation
Effectively utilizing similar information between adjacent frames to
solve duplicate counting is a key insight in the VIC tasks. To delve
deeper into the consistency information across frames in varied
scenes, it is crucial to thoroughly consider the high-level semantic
details within the scene. However, for the task of counting individu-
als in videos, traditional techniques like global average pooling are
unreliable due to object-to-image issues and the dynamic nature
of targets’ motion [51]. Consequently, we employ metric learning
to craft a dynamic prototype generation module (DPG), denoted
as P𝛿 , to capture discriminative prototypical representations 𝑋 (∗) ,
as shown in Fig. 3(b). Motivated by the expectation-maximization
(EM) strategy [6], DPG applies iterative clustering to dynamically
group similar features and address motion-induced uncertainty.
The feature inputs from different frames can then be expressed as
the weighted sum of respective stored prototypes. This approach
ensures the generation of semantic consistency representations for
the same targets across neighboring frames.

To begin, reshape the given feature embedding 𝐹 (∗) ∈ Rℎ×𝑤×𝑐

into a set of local features by collapsing the spatial dimension of
𝐹 (∗) to one dimension, denoted as 𝐹 (∗) =

{
𝑓
(∗)
𝑖

}ℎ𝑤
1 , where 𝑓 (∗)

𝑖
∈ R𝑐 .

Next, establish a collection of 𝑘 learnable visual atoms stored in an
external memory as𝑀 =

{
𝑚 𝑗

}𝑘
1. To continually enhance memory

performance, we initially sample from a normal distribution with
a mean of 0 and a standard deviation of

√︁
2/𝑘 to initialize the

prototype embedding, i.e., 𝑚 𝑗 ∼ N(0,
√︁

2/𝑘), and calculate the
correlation map 𝐶 by:

𝐶𝑖, 𝑗 =
𝑒
𝜌𝑚𝑇

𝑗
𝑓
(∗)
𝑖∑ℎ𝑤

𝑖=1 𝑒
𝜌𝑚𝑇

𝑗
𝑓
(∗)
𝑖

, (3)

where 𝑓 (∗)
𝑖

∈ 𝐹 (∗) indicates the 𝑖-th feature,𝑚 𝑗 ∈ 𝑀 denotes the
𝑗-th memory item, and 𝜌 represents an adjusting parameter. In
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order to better fit the sample distribution in the input feature space,
we update the memory 𝑀 based on the correlation map between
samples and memory items calculated above:

𝑥 𝑗 =

∑ℎ𝑤
𝑖=1𝐶𝑖, 𝑗 𝑓

(∗)
𝑖∑ℎ𝑤

𝑖=1𝐶𝑖, 𝑗
. (4)

We then normalize the updated vector 𝑥 𝑗 to maintain unit length,
which ensures placement in a standardized space, and contributes
to model convergence and generalization:

𝑥 𝑗 =
𝑥 𝑗

𝜖 +
√︃∑𝑘

𝑗=1 𝑥
2
𝑗

, (5)

where 𝜖 = 1𝑒 − 6, serves as a coefficient to prevent the denominator
from being 0.

Followed bymultiple iterations of the operations described above,
the initial cluster centroids 𝑋 = {𝑥1, ..., 𝑥𝑘 } ∈ R𝑘×𝑐 that have ad-
justed to the input feature distribution are acquired. To enhance the
discriminative ability of these centroids, we introduce prototyping
multi-layer perceptron (ProMLP) blocks to enhance representation
𝑋 (∗) for individual frames:

𝑥
(∗)
𝑗

= 𝑃𝑟𝑜𝑀𝐿𝑃 (𝑥 𝑗 ;𝜃 (∗)𝑚𝑙𝑝
), (6)

where ProMLP consists of a stack of N = 2 identical MLP with
residual connections, and 𝜃𝑚𝑙𝑝 represents the trainable parameters.
Note that ProMLP is the only part of PDTR that does not share
weights.

Ultimately, DPG generates the prototypical representations 𝑋 (∗) ,
capturing the similar semantics across various frames. In accor-
dance with [44], an unsupervised prototyping loss is introduced to
enforce a significant separation between the acquired prototypes:

L𝑝𝑟𝑜 =
∑︁

𝑥𝑖 ,𝑥 𝑗 ∈𝑋 (∗)

𝑚𝑎𝑥 ((𝑤 −
𝑥𝑖 , 𝑥 𝑗 2

2), 0), (7)

where𝑤 is a pre-set hyperparameter.

3.5 Prototype Cross-guided Decoder
The prototype representations acquired through DPG contain rich
inter-frame consistency information, which help model infer pedes-
trians that exist in both frames. To investigate shared information
across adjacent frames utilizing the extracted features 𝐹 (∗) and pro-
totype 𝑋 (∗) , we develop a prototype cross-guided decoder (PCD) de-
noted as U𝜗 . The decoder fully combines all available information
and produces unified representations, i.e.,U𝜗 : ((𝐹 1, 𝑋 2), (𝐹 2, 𝑋 1)) →
(𝑍 1
𝑐 , 𝑍

2
𝑐 ). Leveraging the effectiveness of transformers in modeling

long-distance dependencies, PCD employs a standard transformer
architecture to capture inter-frame similarity and global informa-
tion, as shown in Fig. 3(b). In contrast to prior methods [9, 22] that
focused on learning close relationships within patches of single
frame, we implement a cross-guidance strategy using prototypes
from different frames to emphasize common regions. For frame 𝐼1
in PCD, multi-head cross-attention mechanism computes the 𝑞𝑢𝑒𝑟𝑦
using the prototype 𝑋 2 from the current frame 𝐼2 and derives the

𝑘𝑒𝑦 and 𝑣𝑎𝑙𝑢𝑒 from the multi-scale feature 𝐹 1:

�̃�ℎ = 𝑋 2 · �̃�𝑄

ℎ
, �̃�ℎ = 𝐹 1 · �̃�𝐾

ℎ
, �̃�ℎ = 𝐹 1 · �̃�𝑉

ℎ
,

˜𝐻𝑒𝑎𝑑ℎ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(�̃�ℎ, �̃�ℎ, �̃�ℎ),

𝑀𝐻 (𝑄,𝐾,𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡 ( ˜𝐻𝑒𝑎𝑑1, ..., ˜𝐻𝑒𝑎𝑑𝐻 ),

(8)

where �̃�ℎ , �̃�ℎ and �̃�ℎ represent the learnable parameters of project
layers corresponding to the ℎ-th head. Additionally, we also make
the same cross-attention operation on the current frame 𝐼2 utiliz-
ing information from previous frame 𝐼1. In a word, the semantic
information from various frames can be amalgamated into the
shared features 𝑍 1

𝑐 and 𝑍 2
𝑐 through a prototypes cross-guided cross-

attention operation. This strategy enables model to focus more
effectively on similar regions and maintain semantic consistency.

3.6 Privacy-decoupling Module
Following the inference of shared pedestrians between two frames,
it is necessary to additionally separate private features from com-
prehensive representation to infer pedestrians that only exist in
their respective frames. To distinguish their distinct private domain
information, we developed a privacy-decoupling module (PDM)
V𝜓 for decoupling comprehensive feature 𝐹 (∗) and shared features
𝑍

(∗)
𝑐 , sufficiently examining the disparities between two frames, i.e.,

V𝜓 : (𝐹 (∗) , 𝑍
(∗)
𝑐 ) → 𝑍

(∗)
𝑠 . Specifically, we assess spatial positional

variances through feature subtraction, represented as:

𝑍
(∗)
𝑠 = 𝑛𝑜𝑟𝑚(𝐹 (∗) − 𝑑𝑟𝑜𝑝 (𝑍 (∗)

𝑐 )), (9)

where 𝑛𝑜𝑟𝑚(·) is LayerNorm and 𝑑𝑟𝑜𝑝 (·) is Dropout [41].
At this point, the model outputs shared features 𝑍 (∗)

𝑐 and private
features 𝑍 (∗)

𝑠 from adjacent frames, which are used to predict the
point coordinates (regression head) and confidence scores (classifi-
cation head). A decoder D𝜙 uses a simple MLP layer and a linear
projection layer to achieve coordinate prediction and confidence
scoring, respectively, i.e, D𝜙 : (𝑍 (∗)

𝑐 , 𝑍
(∗)
𝑠 ) → A.

To address the problem of ambiguous matching between adja-
cent targets in the video, we utilize KMO-based Hungarian bipartite
matching [22] to guarantee the quality and rationality of the match-
ing outcomes. The proposed PDTR is optimized using multiple loss
functions, namely prototyping loss, regression loss, and classifica-
tion loss. The first loss function has been defined in Section 3.4. The
regression loss L𝑟𝑒𝑔 aims to regulate the learning of coordinate
positioning and we employ the commonly-used𝑀𝐴𝐸 loss:

L𝑟𝑒𝑔 =
A (∗)

𝑐 − Â (∗)
𝑐


1
+
A (∗)

𝑠 − Â (∗)
𝑠


1

(10)

where Â (∗)
𝑐 and Â (∗)

𝑠 represent the true coordinate sets of shared
and private targets, respectively. In addition, A (∗)

𝑐 and A (∗)
𝑠 de-

note respective predicted subsets obtained through the KMO-based
Hungarian bipartite matching.

Moreover, we employ the focal loss [25] as the classification loss
L𝑐𝑙𝑠 to distinguish whether predicted point belongs to key target
or "background". The overall loss function of PDTR is:

L𝑃𝐷𝑇𝑅 = L𝑝𝑟𝑜 + 𝛼1L𝑟𝑒𝑔 + 𝛼2L𝑐𝑙𝑠 , (11)

where 𝛼1 and 𝛼2 are scaling factors.
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Table 1: Counting performance on CroHD dataset. CroHD11−CroHD15 are five test videos, and 133−321 correspond to ground
truth. ‘-’ denotes results that are unavailable due to unreleased code. ‘(·)’ means the difference between the prediction and
ground truth. ‘T’, ‘L’, ‘M’ and ‘R’ represent methods based on MOT, cross-line, feature matching and regression, respectively. ‘↓’
indicates that the lower the better. The best and second-best results are highlighted in red and blue fonts.

Methods Venue Key MAE↓ MSE↓ RMAE(%)↓
Counting results in five testing scenes

CroHD11 CroHD12 CroHD13 CroHD14 CroHD15
133 737 734 1040 321

PHDTT[36] IW-FCV 2022
T

2130.4 2808.3 401.6 380 (247) 4530 (3793) 5528 (4794) 1531 (491) 1648 (1327)
FairMOT[45] IJCV 2021 256.2 300.8 44.1 144 (11) 1164 (427) 1018 (284) 632 (408) 472 (151)

HeadHunter-T[34] CVPR 2021 253.2 351.7 32.7 198 (65) 636 (101) 219 (515) 458 (582) 324 (3)

LOI[47] ECCV 2016 L 305.0 371.1 46.0 72.4 (60) 493.1 (243) 275.3 (458) 409.2 (630) 189.9 (131)

DRNet[12] CVPR 2022 M 141.1 192.3 27.4 164.6 (31) 1075.5 (338) 752.8 (18) 784.5 (255) 382.3 (61)
CGNet[26] CVPR 2024 75.0 95.1 14.5 - (7) - (72) - (14) - (144) - (138)

PDTR (Ours) - R 60.6 73.7 12.7 109 (24) 678 (59) 729 (5) 935 (105) 431 (110)

4 EXPERIMENTS
4.1 Experimental Settings
Datasets.Two publicly available benchmark datasets, namely CroHD
[34] and SenseCrowd [19], are utilized for performance evaluation.
Both datasets include annotations for point coordinates as well
as inflow and outflow statistics. CroHD comprises 11,463 frames
distributed over 9 full-HD resolution sequences, with 4 videos allo-
cated for training and validation, and 5 videos designated for testing.
SenseCrowd, a large-scale dataset with various scenes categoriza-
tions (e.g., density, time, and space), encompasses 634 sequences
totaling 62,938 frames. The distribution of training, validation, and
testing sets aligns with the experimental setups in [12].
Evaluation Metric.We uses Mean Absolute Error (MAE), Mean
Square Error (MSE) andWeighted Relative Absolute Errors (WRAE)
to evaluate performance. The first two metrics represent fundamen-
tal measures for crowd counting [46]. Additionally, in line with
[12], we utilize WRAE to precisely assess the variance between
video length and pedestrian count:

𝑊𝑅𝐴𝐸 =

𝐾∑︁
𝑖=1

𝑇𝑖∑𝐾
𝑗=1𝑇𝑗

��𝑁𝑖 − 𝑁𝑖 ��
𝑁𝑖

× 100%, (12)

where 𝐾 signifies the total count of videos, 𝑇𝑖 denotes the overall
number of frames in 𝑖-th video, while𝑁𝑖 and �̂�𝑖 represent the actual
and predicted pedestrian quantities in 𝑖-th video.
Implementation Details. During training, the underlying extrac-
tor F𝜃1 is initialized by ResNet-50 [13] pre-trained on ImageNet [17],
and the remaining modules (i.e., encoder F𝜃2 , DPG P𝛿 , transformer
decoderU𝜗 and decoderD𝜙 ) are randomly initialized. Encoder F𝜃2
and transformer decoder U𝜗 both consist of 3 transformer layer
with 8 heads. The learning rate is set as 1𝑒 − 4 along with Adam
[16] with weight decay 5𝑒 − 4. The proposed network is trained
on the Nvidia RTX 3090 GPU and implemented using the PyTorch
framework. The scaling factor of losses 𝛼1 and 𝛼2 are both set to 0.5.
The sampling interval for image pairs ranges from 2s to 8s, while it
is set to 3s during testing.
Comparisonmethods. Currently, there is limited research on VIC

tasks, DRNet [12] and GCNet [26] are the only two for VIC. We cate-
gorize such approaches as feature matching-based methods, labeled
as M. Furthermore, to assess the efficacy of our method, we also
compared it with two distinct types of approaches: those based on
multi-object tracking and those based on cross-line counting. The
tracking-based method employs statistical analysis of object trajec-
tories, including PHDTT [36], FairMOT [45], and HeadHunter-T
[34], denoted as T. The cross-line method, LOI [48], involves count-
ing the individuals crossing predefined lines, denoted as L.

4.2 Experimental Results
Results on CroHD. In Table 1, we present a comparison of our
PDTR with 6 existing methods using three commonly-used metrics.
The results indicate that our PDTR outperforms all competitors
by a significant margin. For example, MAE and MSE of PDTR are
remarkably low at 60.6 and 73.7, representing approximately one-
fourth and one-fifth of those obtained by the tracking-based and
cross-line methods, respectively. At the same time, it significantly
surpasses feature matching-based methods, which proves the im-
portance of reasoning over the similarity and difference between
adjacent frames. For specific performance on five testing scenes, our
method achieves the best prediction results, with the exception of
CroHD11 and CroHD15.We achieve similar prediction results to the
state-of-the-art on CroHD11 and CroHD15, mainly due to diversity
of perspectives in the scene. As PDTR is trained solely on data from
a fixed perspective, it exhibits limited adaptability to variations
in shooting angles. Furthermore, PDTR demonstrates outstanding
performance on several other high-density videos (e.g., CroHD12:
183.0, CroHD13: 259.6, and CroHD14: 245.9 person/frame), under-
scoring the effectiveness of our method in managing scenes with
high density.
Results on SenseCrowd. Table 2 presents the model’s perfor-
mance on the larger dataset, SenseCrowd. It is evident that our
model has attained performance comparable to the state-of-the-art
in three metrics. Additionally, PDTR has exhibited commendable
adaptability and robustness across varying scene conditions, i.e.,
time and space. Moreover, as scene density increases, occlusion
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Table 2: Counting performance on SenseCrowd dataset. 𝐷0 − 𝐷4 represent five density ranges respectively: [0, 50), [50, 100),
[100, 150), [150, 200) and [200, +∞). ‘-’ denotes unavailable results due to unreleased code. ‘↓’ indicates that the lower the better.
The best and second-best results are highlighted in red and blue fonts.

Methods Venue Key MAE↓ MSE↓ RMAE(%)↓ Density levels Time Space
𝐷0 𝐷1 𝐷2 𝐷3 𝐷4 Day Night Indoor Outdoor

FairMOT[45] IJCV 2021 T 35.4 62.3 48.9 13.5 22.4 67.9 84.4 145.8 27.3 35.6 27.7 34.9
HeadHunter-T[34] CVPR 2021 30.0 50.6 38.6 11.8 25.7 56.0 92.6 131.4 29.2 32.8 31.7 29.5

LOI[47] ECCV 2016 L 24.7 33.1 37.4 12.5 25.4 39.3 39.6 86.7 26.8 17.8 22.6 25.4

DRNet[12] CVPR 2022 M 12.3 24.7 12.7 4.1 8.0 23.3 50.0 77.0 11.8 14.1 12.6 12.2
CGNet[26] CVPR 2024 8.9 17.7 12.6 5.0 5.8 8.5 25.0 63.4 - - - -

PDTR (Ours) - R 9.6 17.6 11.4 4.6 6.8 14.7 23.6 60.6 10.5 13.5 10.5 10.4

GT inflow: 1

Previous predict inflow: 1 Current predict inflow: 1

GT inflow: 1 GT inflow: 5

Previous predict inflow: 6 Current predict inflow: 8

GT inflow: 6 GT inflow: 1

Previous predict inflow: 1 Current predict inflow: 1

GT inflow: 1

Figure 4: Results on the SenseCrowd dataset. The top/bottom rows are predictions and ground truth, respectively. Red/light
blue/green dots represent pedestrians present in both frames, outflow and inflow, respectively.

problems become more prevalent, which leads to insufficient avail-
ability of feature information. This hampers the fulfillment of de-
tection and association operations as necessitated by alternative
methods, ultimately resulting in suboptimal model performance.
On the contrary, our method’s performance advantage becomes
increasingly evident, as it directly converts input into coordinate
points by leveraging the similarity and difference between two
frames. Fig. 4 displays qualitative results of three representative
scenarios (i.e., square, mall and street), demonstrating our model’s
ability to achieve accurate inference across various environments.
Nonetheless, some erroneous examples may arise, as observed in
current frame of second scene, where predicted inflow exceeds true
inflow. Upon comparing adjacent frames, it becomes evident that
PDTR provides more plausible prediction results.

4.3 Ablation study
Impact of FAP. The variety of perspectives across different scenar-
ios result in pedestrian targets suffer from inconsistent scales. To
assess the effectiveness of FAP developed in this study, we excluded
this module from the original framework. Instead, we directly em-
ployed features obtained from extractor F𝜃1 as input for encoder
F𝜃2 to generate comprehensive representations, as shown in Table
3 (i.e., w/o FAP). The counting performance exhibits a notable de-
cline, particularly in CroHD13 and CroHD14 where scale issues are
more prominent. Thus, the effectiveness and robustness of feature
alignment pyramid in integrating multi-scale features and global
information have been confirmed.

(a) (b) (c) (d)

Figure 5: Learned prototypes visualization for similar infor-
mation on SenseCrowd dataset. The top/bottom rows repre-
sent previous and current frames, respectively. (a) Frames;
(b)-(d) Visualizations of prototypes from different groups.
Notably, (b) focuses on pedestrians; (c)-(d) pay attention to
same targets between adjacent frames.

Impact ofDPG. Similarity information between neighboring frames
is pivotal in addressing duplicate counting, guiding decoding and
generating shared features. To verify the effectiveness of dynamic
prototype generation devised in this study, we remove it from
the overall model and directly utilize the outputs F 1 and F 2 of
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Table 3: Ablation studies on CroHD datasets. ‘w/o FAP’, ‘w/o DPG’, ‘w/o L𝑝𝑟𝑜 ’ and ’w/o Cross-guide’ indicate that removing
feature alignment pyramid, dynamic prototype generation, prototyping loss and cross-guidance mode from the overall model,
respectively. ‘↓’ indicates that the lower the better. The best results are highlighted in red font.

Methods MAE↓ MSE↓ RMAE(%)↓
Counting results in five testing scenes

CroHD11 CroHD12 CroHD13 CroHD14 CroHD15
133 737 734 1040 321

w/o FAP 117.2 149.7 18.0 195 (62) 718 (19) 989 (255) 839 (201) 272 (49)
w/o DPG 99.2 119.7 15.5 170 (37) 674 (63) 868 (134) 1255 (215) 274 (47)
w/o L𝑝𝑟𝑜 90.8 123.5 13.2 180 (47) 758 (21) 842 (108) 793 (247) 290 (31)

w/o Cross-Guide 141.6 163.2 23.0 181 (48) 622 (115) 967 (233) 1282 (242) 251 (70)
PDTR (Ours) 60.6 73.7 12.7 109 (24) 678 (59) 729 (5) 935 (105) 431 (110)

Table 4: Impact of parameter settings on CroHD dataset. ‘L’ denotes transformer size (i.e., the number of layers), and ‘𝑘’ is the
number of learnable visual atoms. ‘↓’ indicates that the lower the better. The best results are highlighted in red font.

Settings Counting results in five testing scenes

L 𝑘 MAE↓ MSE↓ RMAE(%)↓ CroHD11 CroHD12 CroHD13 CroHD14 CroHD15
133 737 734 1040 321

3 128 75.6 82.9 15.7 177 (44) 602 (135) 790 (56) 948 (92) 372 (51)
3 256 60.6 73.7 12.7 109 (24) 678 (59) 729 (5) 935 (105) 431 (110)
3 512 86.4 110.29 16.4 145 (12) 589 (148) 741 (7) 865 (175) 411 (90)

6 256 116.4 146.6 21.8 160 (27) 578 (159) 746 (12) 786 (254) 451 (130)
9 256 123.8 174.6 19.9 139 (6) 657 (80) 761 (27) 694 (346) 481 (160)

encoder F𝜃2 as "prototypes" to cross-guide decoder U𝜗 . The re-
sults are shown in Table 3 (i.e., w/o DPG). Evidently, the model
without DPG experiences a significant decline compared to the
fully-equipped model, suggesting that DPG enhances counting
performance. Furthermore, we group prototypes and present visu-
alizations of some groups in Fig. 5. It’s evident that DPG effectively
clusters semantically similar pixels, facilitating a more comprehen-
sive understanding of same targets in different frames.
Impact of L𝑝𝑟𝑜 . The prototyping loss is designed to enhance the
discriminative ability of prototypical representations obtained from
the memory module by maximizing their inter-distance. We re-
move it from the overall model to illustrate its role in constraining
prototype generation, as shown in Table 3 (i.e., w/o L𝑝𝑟𝑜 ). Clearly,
the model trained without prototyping loss function exhibits a no-
table performance decrease compared to the full-equipped model.
Additionally, Table 4 demonstrates that setting 𝑘=256 visual atoms
empowers our model to achieve outstanding performance.
Impact of Cross-guide. Effectively fusing information from adja-
cent frames using cross-guidance mode is another crucial aspect
of achieving rational reasoning. To further clarify the role of cross-
guidance mode in aiding generation of shared representations, we
omit it and instead utilize outputs of encoder F𝜃2 to direct the
decoding processes of each frame, as depicted in Table 3 (w/o Cross-
Guide). Without cross-guidance mode, the model regresses into
a single-frame counting model, lacking the ability to supplement
information from adjacent frames and incapable of addressing inter-
frame similarities and differences, consequently leading to a sub-
stantial decline in model performance.

Impact of Transformer. Increasing the number of transformer
layer can enhance the model’s representational capacity and more
effectively capture the intricate relationshipswithin input sequences
[10, 35]. However, the excessive number of transformer layers may
inflate computational costs and parameter numbers, increasing the
difficulty of model optimization. We examine the impact of the
encoder/decoder layer number on counting performance, as shown
in Table 4. It is evident that with increasing layers, network per-
formance decreases. At L=3, the network’s counting performance
peaks and generally surpasses that of higher layer counts.

5 CONCLUSION
In this paper, we presented a prototype-guided dual transformer
reasoning (PDTR) framework to solve video individual counting
(VIC) in an end-to-end regression manner. PDTR fully leveraged
the advantages of prototype learning and dual-stream inference,
innovatively using transformer to capture similarity and differ-
ences between adjacent frames for accurate counting. Initially, a
multi-receptive field feature fusion module (MRF3) learned compre-
hensive representations of various frames. Subsequently, a dynamic
prototype generation module (DPG) extracted similar information
from these representations to cross-guide decoder (PCD) for shared
features. Finally, a privacy-decoupling module (PDM) was imple-
mented to extract frame-specific private information from compre-
hensive features. Extensive experiments conducted on two public
datasets showed promising performance compared to state-of-the-
art methods on VIC.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Prototype-Guided Dual-Transformer Reasoning for Video Individual Counting ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Deepak Babu Sam, Shiv Surya, and R Venkatesh Babu. 2017. Switching convolu-

tional neural network for crowd counting. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 5744–5752.

[2] Seung-Hwan Bae and Kuk-Jin Yoon. 2017. Confidence-based data association and
discriminative deep appearance learning for robust online multi-object tracking.
IEEE transactions on pattern analysis and machine intelligence 40, 3 (2017), 595–
610.

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexan-
der Kirillov, and Sergey Zagoruyko. 2020. End-to-end object detection with
transformers. In European conference on computer vision. Springer, 213–229.

[4] Yang Cong, Haifeng Gong, Song-Chun Zhu, and Yandong Tang. 2009. Flow
mosaicking: Real-time pedestrian counting without scene-specific learning. In
2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 1093–
1100.

[5] Zhigang Dai, Bolun Cai, Yugeng Lin, and Junying Chen. 2021. Up-detr: Unsuper-
vised pre-training for object detection with transformers. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 1601–1610.

[6] Arthur P Dempster, NanM Laird, and Donald B Rubin. 1977. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the royal statistical society:
series B (methodological) 39, 1 (1977), 1–22.

[7] Li Dong, Haijun Zhang, Jianghong Ma, Xiaofei Xu, Yimin Yang, and QM Jonathan
Wu. 2022. CLRNet: a cross locality relation network for crowd counting in videos.
IEEE Transactions on Neural Networks and Learning Systems (2022).

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[9] Yanyan Fang, Biyun Zhan, Wandi Cai, Shenghua Gao, and Bo Hu. 2019. Locality-
constrained spatial transformer network for video crowd counting. In 2019 IEEE
international conference on multimedia and expo (ICME). IEEE, 814–819.

[10] Xin Feng, Haobo Ji, Wenjie Pei, Jinxing Li, Guangming Lu, and David Zhang.
2023. U 2-Former: Nested U-shaped Transformer for Image Restoration via Multi-
view Contrastive Learning. IEEE Transactions on Circuits and Systems for Video
Technology (2023).

[11] Junyu Gao, Yuan Yuan, and Qi Wang. 2020. Feature-aware adaptation and
density alignment for crowd counting in video surveillance. IEEE transactions on
cybernetics 51, 10 (2020), 4822–4833.

[12] Tao Han, Lei Bai, Junyu Gao, Qi Wang, and Wanli Ouyang. 2022. Dr. vic: De-
composition and reasoning for video individual counting. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3083–3092.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[14] Wenke Huang, Mang Ye, Zekun Shi, He Li, and Bo Du. 2023. Rethinking federated
learning with domain shift: A prototype view. In 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, 16312–16322.

[15] Zhi-Kai Huang, Wei-Ting Chen, Yuan-Chun Chiang, Sy-Yen Kuo, and Ming-
Hsuan Yang. 2023. Counting Crowds in Bad Weather. arXiv preprint
arXiv:2306.01209 (2023).

[16] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012).

[18] Gen Li, Varun Jampani, Laura Sevilla-Lara, Deqing Sun, Jonghyun Kim, and
Joongkyu Kim. 2021. Adaptive prototype learning and allocation for few-shot
segmentation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 8334–8343.

[19] Haopeng Li, Lingbo Liu, Kunlin Yang, Shinan Liu, Junyu Gao, Bin Zhao, Rui
Zhang, and Jun Hou. 2022. Video crowd localization with multifocus gaussian
neighborhood attention and a large-scale benchmark. IEEE Transactions on Image
Processing 31 (2022), 6032–6047.

[20] Yuhong Li, Xiaofan Zhang, and Deming Chen. 2018. Csrnet: Dilated convolutional
neural networks for understanding the highly congested scenes. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 1091–1100.

[21] Dingkang Liang, Xiwu Chen, Wei Xu, Yu Zhou, and Xiang Bai. 2022. Transcrowd:
weakly-supervised crowd counting with transformers. Science China Information
Sciences 65, 6 (2022), 160104.

[22] Dingkang Liang, Wei Xu, and Xiang Bai. 2022. An end-to-end transformer model
for crowd localization. In European Conference on Computer Vision. Springer,
38–54.

[23] Ningxin Liang, Guile Wu, Wenxiong Kang, Zhiyong Wang, and David Dagan
Feng. 2018. Real-time long-term tracking with prediction-detection-correction.
IEEE Transactions on Multimedia 20, 9 (2018), 2289–2302.

[24] Hui Lin, Zhiheng Ma, Rongrong Ji, Yaowei Wang, and Xiaopeng Hong. 2022.
Boosting Crowd Counting via Multifaceted Attention. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 19628–
19637.

[25] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision. 2980–2988.

[26] Xinyan Liu, Guorong Li, Yuankai Qi, Ziheng Yan, Zhenjun Han, Anton van den
Hengel, Ming-Hsuan Yang, and Qingming Huang. 2024. Weakly Supervised
Video Individual CountingWeakly Supervised Video Individual Counting. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
1–10.

[27] Zhihao Liu, Yuanyuan Shang, Timing Li, Guanlin Chen, Yu Wang, Qinghua Hu,
and Pengfei Zhu. 2023. Robust multi-drone multi-target tracking to resolve target
occlusion: A benchmark. IEEE Transactions on Multimedia (2023).

[28] ZhengMa and Antoni B Chan. 2015. Counting people crossing a line using integer
programming and local features. IEEE Transactions on Circuits and Systems for
Video Technology 26, 10 (2015), 1955–1969.

[29] Zhiheng Ma, Xing Wei, Xiaopeng Hong, and Yihong Gong. 2019. Bayesian loss
for crowd count estimation with point supervision. In Proceedings of the IEEE/CVF
international conference on computer vision. 6142–6151.

[30] Weihong Ren, Xinchao Wang, Jiandong Tian, Yandong Tang, and Antoni B Chan.
2020. Tracking-by-counting: Using network flows on crowd density maps for
tracking multiple targets. IEEE Transactions on Image Processing 30 (2020), 1439–
1452.

[31] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for
few-shot learning. Advances in neural information processing systems 30 (2017).

[32] Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel,
and Ashish Vaswani. 2021. Bottleneck transformers for visual recognition. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
16519–16529.

[33] Shijie Sun, Naveed Akhtar, Huansheng Song, Chaoyang Zhang, Jianxin Li, and
Ajmal Mian. 2019. Benchmark data and method for real-time people count-
ing in cluttered scenes using depth sensors. IEEE Transactions on Intelligent
Transportation Systems 20, 10 (2019), 3599–3612.

[34] Ramana Sundararaman, Cedric De Almeida Braga, Eric Marchand, and Julien
Pettre. 2021. Tracking pedestrian heads in dense crowd. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3865–3875.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[36] Xuan-Thuy Vo, Van-Dung Hoang, Duy-Linh Nguyen, and Kang-Hyun Jo. 2022.
Pedestrian head detection and tracking via global vision transformer. In Interna-
tional Workshop on Frontiers of Computer Vision. Springer, 155–167.

[37] Jia Wan, Wenhan Luo, Baoyuan Wu, Antoni B Chan, and Wei Liu. 2019. Residual
regression with semantic prior for crowd counting. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 4036–4045.

[38] Bing Wang, Gang Wang, Kap Luk Chan, and Li Wang. 2016. Tracklet association
by online target-specific metric learning and coherent dynamics estimation. IEEE
transactions on pattern analysis and machine intelligence 39, 3 (2016), 589–602.

[39] Kaixin Wang, Jun Hao Liew, Yingtian Zou, Daquan Zhou, and Jiashi Feng. 2019.
Panet: Few-shot image semantic segmentation with prototype alignment. In
proceedings of the IEEE/CVF international conference on computer vision. 9197–
9206.

[40] Xingjiao Wu, Baohan Xu, Yingbin Zheng, Hao Ye, Jing Yang, and Liang He. 2020.
Fast video crowd counting with a temporal aware network. Neurocomputing 403
(2020), 13–20.

[41] Chunlong Xia, Xinliang Wang, Feng Lv, Xin Hao, and Yifeng Shi. 2024. ViT-
CoMer: Vision Transformer with Convolutional Multi-scale Feature Interaction
for Dense Predictions. (2024), 1–10.

[42] Feng Xiong, Xingjian Shi, and Dit-Yan Yeung. 2017. Spatiotemporal modeling for
crowd counting in videos. In Proceedings of the IEEE international conference on
computer vision. 5151–5159.

[43] Wenjia Xu, Yongqin Xian, Jiuniu Wang, Bernt Schiele, and Zeynep Akata. 2020.
Attribute prototype network for zero-shot learning. Advances in Neural Informa-
tion Processing Systems 33 (2020), 21969–21980.

[44] Fan Yang, Qiang Zhai, Xin Li, Rui Huang, Ao Luo, Hong Cheng, and Deng-Ping
Fan. 2021. Uncertainty-guided transformer reasoning for camouflaged object
detection. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 4146–4155.

[45] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng, and Wenyu Liu. 2021.
Fairmot: On the fairness of detection and re-identification in multiple object
tracking. International Journal of Computer Vision 129 (2021), 3069–3087.

[46] Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao, and Yi Ma. 2016.
Single-image crowd counting via multi-column convolutional neural network.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
589–597.

[47] Zhuoyi Zhao, Hongsheng Li, Rui Zhao, and Xiaogang Wang. 2016. Crossing-line
crowd counting with two-phase deep neural networks. In Computer Vision–ECCV
2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016,



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Proceedings, Part VIII 14. Springer, 712–726.
[48] Huicheng Zheng, Zijian Lin, Jiepeng Cen, ZeyuWu, and Yadan Zhao. 2018. Cross-

line pedestrian counting based on spatially-consistent two-stage local crowd
density estimation and accumulation. IEEE transactions on circuits and systems
for video technology 29, 3 (2018), 787–799.

[49] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao
Wang, Yanwei Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr, et al. 2021. Re-
thinking semantic segmentation from a sequence-to-sequence perspective with
transformers. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 6881–6890.

[50] Tianfei Zhou, Wenguan Wang, Ender Konukoglu, and Luc Van Gool. 2022. Re-
thinking semantic segmentation: A prototype view. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2582–2593.

[51] Pengfei Zhu, Tao Peng, Dawei Du, Hongtao Yu, Libo Zhang, and Qinghua Hu.
2021. Graph regularized flow attention network for video animal counting from
drones. IEEE Transactions on Image Processing 30 (2021), 5339–5351.

[52] Zhikang Zou, Xiaoye Qu, Pan Zhou, Shuangjie Xu, Xiaoqing Ye, Wenhao Wu,
and Jin Ye. 2021. Coarse to fine: Domain adaptive crowd counting via adversarial
scoring network. In Proceedings of the 29th ACM International Conference on
Multimedia. 2185–2194.


	Abstract
	1 Introduction
	2 RELATED WORK
	2.1 Video Individual Counting
	2.2 Prototype Learning
	2.3 Visual Transformers

	3 Method
	3.1 Problem Formulation
	3.2 Overview of PDTR
	3.3 Multi-receptive Field Feature Fusion
	3.4 Dynamic Prototype Generation
	3.5 Prototype Cross-guided Decoder
	3.6 Privacy-decoupling Module

	4 Experiments
	4.1 Experimental Settings
	4.2 Experimental Results
	4.3 Ablation study

	5 Conclusion
	References

