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Abstract

Making controlled perturbations is essential
for various tasks (e.g., data augmentation),
but building task-specific generators can be
expensive. We introduce Tamor, a task-
agnostic generation system that perturbs text
in a semantically-controlled way. With un-
likelihood training, TAILOR’S generator is de-
signed to follow a series of control codes de-
rived from semantic roles. Through modifica-
tions of these control codes, TAILOR can pro-
duce fine-grained perturbations. We imple-
ment a set of operations on control codes that
can be composed into complex perturbation
strategies, and demonstrate their effectiveness
in three applications. First, TaLor facilitates
the construction of high-quality contrast sets
that are lexically diverse and less biased than
original task test data. Second, paired with au-
tomated labeling heuristics, TAlLorR helps im-
prove model generalization through data aug-
mentation: we obtain an average gain of 1.73
on an (natural language inference) NLI chal-
lenge set by perturbing just ~5% of train-
ing data. Third, without any finetuning over-
head, TaiLor’s perturbations effectively im-
prove compositionality in fine-grained style
transfer, outperforming fine-tuned baselines
on 5 transfers.

1 Introduction

Controllable text generation through semantic per-
turbations, which modifies sentences to match
certain target attributes, has been widely applied
to a variety of tasks, e.g., changing sentence
styles (Reid and Zhong, 2021), mitigating dataset
biases (Gardner et al., 2021), explaining model be-
haviors (Ross et al., 2020), and improving model
generalization (Teney et al., 2020; Wu et al., 2021).
Existing work trains controlled generators with
task-specific data, e.g., training a style transferer
requires instances labeled with positive and nega-
tive sentiments (Madaan et al., 2020b). As a result,
transferring to a new application is prohibitive, and

PATIENT:CHANGE_SPEC(partial)
PATIENT+complete—partial: the athlete

In the operation room|, |the doctor|| |comforted | | the athlete |.

VERB: CHANGE _VTENSE (present)

VERB+active+past—present: comfort

LOCATIVE : CHANGE _TAG (TEMPORAL)
LOCATIVE—~TEMPORAL+partial: in

<id_0>, the doctor <id_2> <id_3> <id_4>.

Input
In the midst of the earthquakel, the doctor
Output is comforting : the athlete panicking
Figure 1: A compositional perturbation using Tar-

Lor.! Given (A) an original sentence, we abstract
each span into a structured header that contains
its semantic roles and keywords. We specify de-
sired perturbations by modifying each control code
(e.g., changing role LOCATIVE-TEMPORAL in (B), verb
tense past>present, and patient keyword specificity
complete-partial). Given these perturbed control codes
in the input (C), TaiLor generates a new sentence (D)
that reflects the desired perturbations.

requires costly annotation efforts and re-training
for every task of interest.

In this work, we introduce TAILOR, a system that
supports application-agnostic perturbations with-
out the need for retraining. At the core of TaiLor
is a controlled generator (§2) that flexibly gener-
ates full sentences from target semantic features.
We combine structured control codes in our in-
puts to represent desired linguistic properties of
outputs. As shown in Figure 1, each code builds on
the PropBank semantic parse (Palmer et al., 2005)
of the original sentence, and specifies a semantic
role argument span. We use unlikelihood train-
ing (Welleck et al., 2020) to encourage control
code following, by penalizing generations that are
not aligned with designated codes.

The multi-dimensionality of semantic roles al-

"We opensource TaILor at [URL omitted].



lows TaILor to perform fine-grained changes to in-
dividual arguments in a sentence (e.g., one can just
change the patient in Figure 1). This is critical for
generating datasets that evaluate and improve mod-
els’ language understanding (Kaushik et al., 2020;
Wu et al., 2021). Instead of representing a change
with a single target property positive-negative, we
can decompose it into specific linguistic transfor-
mations (e.g., changing sentiment polarity through
negation or antonym replacement).

To highlight perturbations that are feasible with
TarLor, we identify and implement a list of primary
perturbation operations (§3) on inputs to the gen-
erator; these can be easily composed to achieve
more complex perturbations. Take Figure 1 as an
example: while it would be nontrivial to train a
generator to directly transform sentence A to D, it
can be achieved through the composition of a se-
ries of perturbations: syntactic rewriting (changing
verb tense), then sentence expansion (extending
“the athlete”), and finally data recombination (i.e.,
sourcing text with the TEMPORAL control).

TarLor’s flexible control codes allow for broad,
easily extendable applicability. We demonstrate
TaiLor’s utility in three distinct applications: 1)
We use TAILOR to replicate existing contrast sets
(85) on four diverse tasks, with much less manual
annotation effort. Our analysis suggests that these
contrast sets not only have high rates of validity, but
also promote lexical diversity and reduce dataset
bias. 2) Augmenting training data with just a small
ratio of TATLOR perturbations (~5%) improves the
robustness of natural language inference (NLI)
models to inference heuristics, increasing perfor-
mance on the HANS evaluation set by an average
of 1.73 points (McCoy et al., 2019). 3) Without
any finetuning, TAiLOR achieves impressive perfor-
mance on fine-grained and compositional style
transfer (§7) in the STyLEPTB benchmark (Lyu
et al., 2021), even outperforming models trained
on the dataset on 5 transfers.

2 Tamwor’s Controllable Generator

We provide an overview of the TAILOR generator.
We first outline the controllable dimensions useful
for semantic perturbations (§2.1), and then explain
how to embed them within inputs to the generator
(§2.2). Finally, we describe how we use unlikeli-
hood training to train our generator to follow the
controls (§2.3).

2.1 Controllable Dimensions

To allow for control over sentence semantics at
varying levels of granularity, we incorporate a com-
bination of semantic roles and content keywords.

To denote shallow semantics, we use the Prop-
Bank semantic formalism, which represents sen-
tences’ meanings with predicate-argument struc-
tures (Palmer et al., 2005). Predicates reflect events
(what happened), and are usually evoked by verbs,
like “comforted” in Figure 1. Arguments, usually
spans of tokens, realize the thematic roles of the
predicates, including core arguments such as who
(e.g., “the doctor”) and to whom (“the athlete”),
as well as adjunct arguments like where (“In the
operation room”), how, etc. PropBank semantic
analyses provide well-established feature represen-
tations for meanings and are generalizable across
different verb predicates and languages (Hajic€ et al.,
2009), making it an appealing choice for represent-
ing high level semantics.

We further use content keywords to drive the
generation of actual predicates and arguments. De-
pending on to what extent we would like to re-
trieve new text from the generator, the keywords
can either be sparse (e.g., adding a random tempo-
ral constraint), or fully specified (adding a fixed “in
the midst of the earthquake”). As later shown in
Table 3, such control is important for supporting
different perturbation strategies and use cases.

Since the same set of thematic roles can be com-
bined in different ways, we add further controls on
span ordering. We use predicate form to control
the order of core arguments. For example, to dis-
tinguish “the athlete was comforted by the doctor”
from the semantically equivalent “the doctor com-
forted the athlete,” we target the former ordering
through a passive control on the predicate, and the
latter through an active control. Additionally, we
use the location of blank tokens (<id_*> in Fig-
ure 1 and Table 1) to determine the position of gen-
erated arguments (Wu et al., 2021) — e.g., where
“in the operating room” appears in the generation.

2.2 Input Format Design

We aim to integrate the aforementioned controls
into an input format, and finetune language models
to output full sentences reflecting them.

As shown in Table 1, we start our input with
a bracketed header, a series of abstract control
codes (Table 2) with each denoting the seman-

2We use http://spacy.io/ for verb or POS detection.
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| Input

| Target Output | Description

[VERB+active+past: comfort | AGENT+complete: the doctor

[LOCATIVE: In the operating room],

A | | PATIENT+partial: athlete | LOCATIVE+partial: in] [AGENT: the doctor] [VERB: comforted] | Mask all roles
<id_0>, <id_1><id_2> <id_3>. [PATIENT: the athlete].

B [VERB+active+past: comfort | LOCATIVE+partial: in] [LOCATIVE: In the operating room], the Empiv blanks
<id_0>, the doctor <id_1> <id_2> the athlete <id_3>. doctor [VERB: comforted] the athlete. Py

C [VERB+active+past: comfort | LOCATIVE+partial: in] [LOCATIVE: In the operating room], the | Mask subset of
<id_0>, the doctor <id_1> the athlete. doctor comforted the athlete. arguments

[VERB+passive+present: comfort | PATTENT+complete:
N | the doctor | AGENT+partial: athlete | TEMPORAL+partial:
in] <id_0>, <id_1> <id_2> <id_3>.

[TEMPORAL: In the operating room],
[PATIENT: the doctor] [VERB: comforted]
[AGENT: the athlete].

Negative sample

Table 1: Example input/output formats for sentence “In the operating room, the doctor comforted the athlete.” A—
C show different input formats the generator can accept, each with a header containing control codes and context
with blanks denoting where to insert new texts. The last input (N) is a negative sample for unlikelihood training.

Type | Predicate control: VERB+active+past: comfort
Primary predicate label (Always VERB)
. Lemma (Any verb lemma)
Signals . . RN
Voice (active, passive)
Tense (past, present, future)
Type ‘ Argument control: PATIENT+partial: athlete
Primary argument label (AGENT, PATIENT,
Signals TEMPORAL, LOCATIVE, MANNER, CAUSE, etc.)
g Content (* symbol or any text)
Specificity (complete, partial, sparse)

Table 2: Overview of TaILoR’s control codes. Primary
controls build on predicate/argument labels, and others
further affect the form and content of generations.

tic role and keywords for a span to realize. We
map original semantic roles in PropBank to human-
readable labels (i.e., ARGO — AGENT) in order to
leverage knowledge learned by pretrained models
about roles’ meanings (Paolini et al., 2021). After
the header, we append the context, consisting of
text to be preserved and blanks to be infilled.

Note that we explicitly separate the header from
the context. This is to detach the placement of
a role from its semantic representation, such that
given any combination of target roles in the header
— whose optimal ordering is usually unknown —
the generator can recombine them in the most flu-
ent way. We further remove possible correlations
between the control codes and the blanks in the con-
text in two ways: First, we order the control codes
in an input-independent way (see §A.1) to discour-
age the generator from solely following their rela-
tive orders. Second, we insert extra empty blanks
into the context (e.g., <id_3> in Table 1B), so the
generator can learn to generate spans in the blank
locations that result in the most fluent text.

With this flexibility in argument reordering
comes the challenge of making strict controls on
a single argument: even when we only want to

change verb tense, the generator may reorder other
arguments. To trade off generation flexibility and
strict control, which facilitates minimal perturba-
tions (Ross et al., 2020), we further vary the num-
ber of arguments encoded in the header. As in
Table 1C, our generator can take inputs that only
mask a subset of arguments, such that, e.g., any
changes on the LOCATIVE constraint or the VERB
do not affect the agent and patient. More details
about input formats are in §A.1.

2.3 Training

We create our generator by finetuning T5-Base (Raf-
fel et al., 2020) on pairs of inputs and outputs de-
rived from the gold semantic roles in OntoNotes
5.0 train (Pradhan et al., 2013), as in Table 1. In or-
der to make our generator sensitive to the different
input formats described in the previous section, for
each original input, we randomly sample the num-
ber of arguments to mask, number of extra empty
blanks, and keyword content/specificity for each
role (details in §A.2).

Standard maximum likelihood estimation (MLE)
is insufficient for training our generator to follow
the control codes, as there may exist signals be-
yond the codes for the generation form. Con-
sider the input: [VERB+active+past: comfort
| AGENT+partial: athlete | PATIENT+complete:
the doctor] In the operating room, <id_0>, <id_1>
<id_2>. A generator trained with MLE may ignore
controls AGENT and PATIENT and instead output
text “The doctor comforted the athlete” rather than
“The athlete comforted the doctor,” as the former is
more natural given context “in the operation room.”

In order to encourage reliance on controls, we
incorporate unlikelihood training (Welleck et al.,
2020) to penalize our generator for generating text
that conflicts with inputs. That is, besides Table 1A—



(a) Syntactically controlled rewriting

(b) Sentence expansion and abstraction

Strategy| CHANGE_VTENSE (present)

- [VERB+active+past-present: comfort]
Perturb. | In the operation room, the doctor comforts the athlete.
Strategy| CHANGE_VVOICE(passive)

- [VERB+active~passive+past: comfort]
Perturb. \ In...room, the athlete was comforted by the doctor.
Strategy| CHANGE_IDX(4:0)

-+ <id_0> In the operation room <id_0>
Perturb. | The doctor comforted the athlete in the operation room.
Strategy| CORE(SWAP_CORE)

-+ [AGENT+complete: the athlete~doctor

| PATIENT+complete: the doctor-athlete ]
Perturb. | In the operation room, the athlete comforted the doctor.

Strategy| LOCATIVE:CHANGE_SPEC(partial)
-+ [LOCATIVE+complete»partial: in the operation room]
Perturb. | Under the dim light in the operation room, the doctor com-
forted the athlete.
Strategy| LOCATIVE:DELETE
- {EOCATIVE+ecompleteinthe-operationroom}
Perturb. | In-the-operationroom: the doctor comforted the athlete.

(c) Data recombination (with external labels and/or contents)

Perturb. ‘

Strategy| CAUSE:CHANGE_CONTENT (because he was in pain)
-+[CAUSE+complete: because he was in pain]
In the operation room the doctor comforted the athlete

because he was in pain.

Table 3: We design a list of primitive operations on input controls to guide perturbations with the TALorR generator.

C which are used for MLE, we also create “neg-
ative” samples by randomly perturbing the con-
trol codes in our header (as in Table 1N, last row),
such that most spans in the target output are not
aligned with the control codes anymore. As de-
tailed in §A.1, we create three negative samples per
input, which randomly perturb: 1) verb voice/tense
and primary controls for arguments, 2) keyword
contents, and 3) keyword specificities. After data
processing, our training data consists of 223,619
positive and 541,424 negative examples.

3 Creating Perturbations with TaiLor

With TamLor, we can create diverse perturbations
by varying controls in inputs. Given an original
sentence, we transform it to an input for TAILOR by
extracting its semantic parses, masking spans we
wish to modify, and adding their control codes to
the input header.® Then, we modify the controls in
this derived input to generate perturbed sentences
with TAILoR, filtering out degenerate ones. We de-
tail the changes on the controls below.

Primitive perturbation operations. While the
input can be modified arbitrarily, we provide an
easily-extendable set of macros as in Table 3, which
capture three common themes in the literature.
First, syntactic rewriting primarily involves shuf-
fling text to create paraphrases (Zhang et al., 2019)
or adversarial examples (Iyyer et al., 2018). We
implement such shuffling through operations that
perturb predicate forms, move blank tokens, and
swap keyword contents of arguments. Second, ex-
pansion and abstraction adds or removes text frag-

3External semantic role labelers can be used when gold
annotations are not available. Our experiments use the open-
sourced implementation of Shi and Lin (2019): https:
//demo.allennlp.org/semantic-role-labeling.

ments from a sentence (Wu et al., 2021). We recre-
ate these through deletions and operations on key-
words. Finally, data recombination involves recom-
bining existing textual fragments, within or across
inputs (Akyiirek et al., 2020; Andreas, 2020). With
CHANGE_CONTENT, we can integrate additional con-
text (e.g., from corresponding paragraphs in ques-
tion answering tasks) into generations.

These primitive perturbation operations can be
used in conjunction with external knowledge bases
to achieve targeted edits.* Additionally, these oper-
ations can be composed to achieve more complex
perturbation strategies, as shown in §5, §6, and §7.

Filtering generations. We notice that the TAILOR
generator produces degenerate outputs for some
inputs; we exclude these using heuristics on content
and perplexity scores (see §F for details).

4 Intrinsic Evaluation

Following Poryjuice (Wu et al., 2021) and
MiCE (Ross et al., 2020), we evaluate TaiLor gen-
erations on fluency, controllability, and closeness.’

Metrics. Fluency measures whether the gener-
ated text is grammatically correct and semantically
meaningful. Following Ross et al. (2020), we ask
whether perturbing a sentence with Tarmor drasti-
cally changes its likelihood. We compute the loss
value for both the original and edited texts using a
pretrained GPT-2, and report the ratio of edited /
original. We aim for a value of 1.0, which indicates
equivalent losses for the original and edited texts.

“For example, if combined with WordNet (Miller, 1998),
TarLor perturbations can recreate natural logic (MacCartney
and Manning, 2014): In Table 3, doctor-adult creates an en-
tailment relationship, with “doctor” a hyponym of “adult.”

3We omit the diversity evaluation in PoLyJuick, as the key-
word content control inherently impacts lexical diversity.
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Controllability on predicates

Controllability on arguments

Generator Closeness with the original

F1 | Precision | Recall || Lemma | Tense | Voice Role | Content | Specificity
TAILOR 64.3% 66.5% | 73.4% 74.3% | 80.3% 81.6% || 70.5% 64.5% 64.5%
TAILORMLE 58.5% 59.5% | 68.6% 72.2% | 70.2% 76.1% 60.3% 45.1% 45.1%

Table 4: TaiLor generates perturbations that are close to the original sentence, while reasonably following all the
controls specified in Table 2. Through an ablation study where unlikelihood training is removed (TAILORp ), We
see that the controllability and closeness are both core benefits from unlikelihood training.

Controllability measures if the generator re-
sponds to the designated control criteria. We rely
on cycle consistency to evaluate the controls in Ta-
ble 2, checking e.g., whether the predicted semantic
roles on the generated text from an SRL predictor
match the control codes in the input (i.e., whether
“in the midst of the earthquake” in Figure 1 gets
detected with a TEMPORAL tag). Since SRL predic-
tions can be noisy, we manually inspected a subset
of 98 generated spans, and verified that the cycle
consistency measures positively correlate with true
controllability measures (with Matthews correla-
tion coefficient ¢ = 0.49, more details in §B).

Closeness captures whether the generated sen-
tence involves only necessary changes. Since our
generator takes controls on the argument span level,
we measure closeness with a weighted F1 score
on the expected-to-change and actually-changed
spans in the original sentence. We identify ex-
pected changes from perturbation operations; in
Figure 1A, all spans should be changed except for
agent “the doctor.” Then, we deem a span actually
edited if > 50% tokens within a span is changed
(e.g., “operation room” in LOCATIVE). We weigh
spans by their lengths to arrive at the final F1.

Results. We evaluate Tarmor by perturbing 1,000
randomly selected sentences from the OntoNotes
5.0 development set, created the same way as we
create negative samples during training (details in
§A.1).% TaiLor generates fluent perturbations, with
a loss ratio of 0.982, indicating no notable change
in language modeling loss after the edit. As shown
in Table 4, its generations also tend to be close to
the original sentence (F1 = 64.3%), with reason-
ably correct predicates (75%-80% of the time) and
arguments (with 70% controllability on semantic
roles, and ~65% on contents.) Through an ablation
study comparing TaiLor with a baseline that is fine-

®Because these perturbations are generated randomly,
some result in sets of controls that are impossible to follow.
Thus, these results represent a lower bound on TAILOR’S con-
trollability in downstream applications, for which strategies
would be designed in a more principled, targeted manner, re-
stricting the perturbations to result in more plausible sets of
controls. See §B for more details.

tuned on TS without unlikelihood training (called
TALorMLE), We show that unlikelihood training en-
courages controls and minimal perturbations, with
the metrics increasing by up to 20%.

Further, as mentioned in §2.2, our input format
supports modulating fluency and closeness at gen-
eration time. In §B, we quantify the effects of
masking subsets of arguments or including more
empty blank tokens on closeness and fluency.

5 Application 1: Contrast Set Creation

We use TaILOR to replicate contrast and challenge
sets for a variety of NLP tasks, including question
answering (BoolQ: Clark et al., 2019; SQuAD: Ra-
jpurkar et al., 2016), dependency tree parsing (UD
English: Nivre et al., 2016), and temporal relation
extraction (MATRES: Ning et al., 2018).

5.1 Replicating Contrast Sets with TamLor

As shown in Table 5, we take advantage of two key
properties of Taror:” First, TAILOR can make per-
turbations that are context-dependent. To recreate
the BoolQ contrast set, we replicate change events
in Gardner et al. (2020) by replacing content key-
words in questions with words in the paragraph
that have the same semantic roles. For example,
the paragraph in Table 5 indicates “his bride” can
serve as an AGENT. Second, TarLor allows for com-
positonal changes. As in Table 5, we change prepo-
sitional phrase (PP) attachments from verb to noun
to recreate the UD Parsing contrast set through
the following composition of perturbation oper-
ations: append the preposition to the patient key-
word (e.g., “ham or sausages with”), change patient
keyword specificity from completespartial (to
generate a new PP attaching to the patient), and
delete the argument with original verb attachment
(e.g., ADVERBIAL “with your breakfast”).
Manually creating contrast sets is expensive,
whereas validating existing ones is more effi-
cient (Wu et al., 2021). We consider our perturba-

8

"Details on implementing perturbation strategies are in §C.
8¢.g., Gardner et al. (2020) reported spending 10-15 min-
utes per perturbation for UD Parsing



Dataset & Task | Top-K validity

BoolQ contrast set (Gardner et al., 2020) 82% (k=1)

Paragraph:...his bride was revealed...Deadpool also discovers that he has a daughter...from a former flame.
Question: does [AGENT: Deadpool| [VERB: have| [PATIENT: a kid in the comics|? (Answer: True)

Strategy | Change entity (AGENT : CHANGE_CONTENT Chis bride))
Perturb. | Question: does [AGENT: his bride| [VERB: have| [PATTENT: a kid in the comics|? (Answer: False)

Original

UD parsing contrast set (PP attachment) (Gardner et al., 2020) |  65% (k=10)

Original | Sentence: Do [AGENT: you] [VERB: prefer| [PATIENT: ham or sausages| [ADVERBIAL: with your breakfast|?
PP attachment: Verb (“with your breakfast” attaches to “prefer”)

PATIENT:CHANGE_CONTENT (ham or sausages with),CHANGE_SPEC(partial) ; ADVERBIAL:DELETE

Strategy ‘ Swap attachment from verb to noun (verb—noun)

Perturb. | Sentence: Do [AGENT: you]| [VERB: prefer| [PATIENT: ham or sausages with bacon on them|?

PP attachment: Noun (“with bacon on them” attaches to “sausages”)
Matres contrast set (Gardner et al., 2020) | 71% (k=1)
QA implication (Ribeiro et al., 2019) | 81% (k=1)

Table 5: A demonstration of how we recreate contrast sets. Using primitive operations in Table 3, TAlLor supports
context-aware and compositional changes. More examples (e.g., changing PP attachment noun—verb) are in §C.

tion strategies successful if they help reduce human
labor, i.e., a contrast set author can easily label or
take inspiration from TA1LorR’s generations. Two
authors sampled 100 original instances per task,
inspected the top-K TarLor perturbations, and la-
beled an instance to be valid if there is at least one
perturbation that changes the groundtruth answer
while being fluent or requiring only minor fixes.?
Table 5 shows that these TaiLor perturbation strate-
gies generate contrast sets with high validity.'”

5.2 Measuring Contrast Set Quality

We assess the quality of TaiLor-generated contrast
sets by measuring their lexical diversity and im-
pact on feature-level artifacts, both of which play
important roles in dataset debiasing.

We measure lexical diversity on UD Parsing con-
trast sets because it involves sufficient generation
of new content. We compare TArLor- and human-
generated (Gardner et al., 2020) contrastive edits
for the same 100 original UD instances: we ran-
domly sample one contrastive edit for each valid
instance, heuristically extract modified PPs, and
compute diversity as the ratio of unique to total
new tokens in the PPs, filtering stopwords. The
ratios are 0.783 and 0.883 for TArLor and humans,
respectively, for noun—verb, and are both 1.0 for

Because we exercised controls at different granularity (i.e.,
UD requires sourcing contents from the generator while others
mostly require syntactic rewrites with predetermined content),
we set k = 10 for UD—an upper bound for not overloading
the human inspector—and k = 1 for other tasks.

10As expected, TaiLor achieves higher validity changing
PP attachment types noun—verb (82%) than verb—noun, as
the arguments by design attach to verb predicates, while noun
attachment is not an explicit part of the training objective and
is therefore harder for the generator.

verb—noun. Thus, TAILOR can help generate con-
trast sets without significantly reducing lexical di-
versity. TAILOR generations are also distinguishable
from humans’: their unique tokens only overlap for
< 15% in verb—noun, and ~6% for noun—verb,
suggesting that TATLOR can work as a collaborative
tool to diversify the pool of tokens.

Gardner et al. (2021) show that making minimal
perturbations reduces single-feature artifacts when
(1 + e;)/s = 2, where ¢; is the probability that
feature i is edited, and s is the probability that an
edit changes the label. We manually label the same
number of Tarmor-perturbed examples as in the
original BoolQ contrast set, and find that TaiLor
produces edits with an average value of (1+e¢;)/s =
1.74, which is close to that produced by humans
(1.94). Thus, making perturbations with TarLor can
help mitigate dataset biases (visualization in §C).

6 Application 2: Data Augmentation

We show that TALOR can be combined with (noisy)
automated labeling for data augmentation. Specifi-
cally, for the Stanford Natural Language Inference
(SNLI) task (Bowman et al., 2015), augmenting
training data with perturbations created by Tamor
increases model robustness to inference heuristics.

Following Min et al. (2020), we create aug-
mented data by perturbing SNLI hypotheses, such
that original hypothesis—premise and perturbed
hypothesis—hypothesis. We define five pertur-
bation strategies for NLI (§D), all of which ex-
press high lexical overlap, an inference heuristic
on which NLI models have been shown to rely
(Dasgupta et al., 2018; Naik et al., 2018). These
perturbations either preserve or alter the meaning



HANS Subset
Training Data SNLI | All Entail. Non-Entail.
SNLI Train 91.12 | 64.72  98.95 30.46
+ Taror Perturb. | 91.12 | 66.45 97.97 34.92

Table 6: TarLor augmentations lead to statistically sig-
nificant gains on the HANS challenge set, without de-
creasing in-domain accuracy.

of original hypotheses. For example, we change
sentence meaning by replacing keywords of core
arguments with noun chunks of other arguments
(The judge behind the manager saw the doctors. —
The doctors saw the manager.) Following Min et al.
(2020), we map meaning-preserving perturbations
to label entailment and others to neutral.

We train classifiers built on ROBERTA-BASE (Liu
et al., 2019) on different subsets of data: original
SNLI train data (baseline) and SNLI train data with
~5% of hypotheses augmented with TAILOR pertur-
bations.!! For each subset, we train 20 models,
each with a different random seed. We evaluate
each classifier on the in-domain SNLI test set and
the out-of-domain HANS test set (McCoy et al.,
2019), which is designed to diagnose inference
heuristics built on superficial syntactic properties. '

As shown in Table 6, the augmentation leads
to an out-of-distribution gain of +1.73 points on
overall HANS and +4.46 points on the “non-
entailment” subset. The gains are significant, with
t = =3.26, p = 0.002 using Student’s t-test. Thus,
TamLor perturbations decrease reliance on a well-
known, lexical-overlap inference heuristic for NLI.

7 Application 3: Style Transfer

Here, we show how TaiLor can be applied to style
transfer. We evaluate Tamor without any fine-
tuning'® on the STYLEPTB benchmark (Lyu et al.,
2021), which builds on the Penn Treebank and as-
sesses fine-grained stylistic changes, both on single
transfers (e.g., To Future Tense) and compositional
ones that concurrently edit multiple stylistic dimen-
sions (e.g., To Future Tense+ Active To Passive).

""We augment the original 549,367 SNLI train instances
with 30,147 total new instances. See §D for more details.

2For HANS, which contains binary labels, we collapse
neutral and contradiction predictions to non-entailment.

BThis evaluation is zero-shot in spirit, as TAILOR is not
trained on any paired transfers present in STyLEPTB. However,
it is unclear if the test inputs in STYLEPTB overlap with the
Ontonotes 5.0 training data, since the two do share some data
points (van Son et al., 2018), and StyLEPTB does not seem to
preserve original PTB splits. This leakage may advantage the
external SRL predictor in parsing STYLEPTB test inputs. Still,
this advantage should be minor, as the evaluated transfers do
not require complex semantic role parsing.

We evaluate TaiLor on transfers for which Lyu
et al. (2021) show model results in the paper, ex-
cluding some that our semantic-role-derived inputs
are not well-suited (see §E). For each transfer, we
create perturbations for each predicate in the orig-
inal input, and report mean BLEU scores.'* Be-
cause this process results in multiple perturbations
(one per verb), we choose the one with the low-
est perplexity from GPT-2 to represent the transfer.
Unsuccessful transfers, either due to a failure of
perturbation strategy (e.g., no verbs are found by
our SRL predictor) or due to a degenerate output
(see §F), are given a BLEU score of 0.0.

We work with baselines reported by Lyu et al.
(2021): GPT-2 and ReTriEVEEDIT are the best-
performing single-transfer models evaluated but
require separate models to be trained for each trans-
fer. CS-GPT#* are models trained on compositional
subsets of data (e.g., Tense+Voice, detailed in Ta-
ble 7 caption). CS-Sys-GEN are ablations of CS-
GPT* trained only on corresponding individual
changes but evaluated on compositional transfers. '

We report a subset of the comparisons in Ta-
ble 7 (b), and the full result in Appendix E. On
compositional transfers, we find that TarLor out-
performs the baseline system trained without com-
positional fine-tuning, CS-Sys-GeN, on 8/9 compo-
sitions, and even outperforms CS-GPT* — mod-
els with compositional finetuning — on 5 cases.
It also achieves compatible or better results than
GPT-2 and ReTrRIEVEEDIT On single transfers. Low
TarLor performance on some transfers (e.g., 7o-
Future+ActiveloPassive) appears to be driven by
unsuccessful transfers, rather than generations that
do not follow controls, as indicated by the higher
performances on the subset where unsuccessful
transfers are removed (Filtered Test). Importantly,
TaiLor achieves these gains with a single model
and without any transfer-specific finetuning.

8 Related Work

Controllable text generation has been widely used
to influence various properties of generated text for
text summarization (Peng et al., 2019), data aug-
mentation (Lee et al., 2021), style transfer (Reid
and Zhong, 2021; Madaan et al., 2020a), adver-
sarial example generation (Iyyer et al., 2018), etc.
Most generators take simple labels like tense (Hu
et al., 2017), topic (Keskar et al., 2019), and sen-

“We report Bleu_1 from nlg-eval (Sharma et al., 2017).
15CS-Sys-Gen refers to CS-GPT-Zero in Lyu et al. (2021).



Single Finetune
GPT-2*

Compos. Finetune No Finetune

(a) Single transfers RetrieveEpit* | CS-GPT-TV ~ CS-GPT-TP TAILOR
|| Test Test Test Test | Test Filtered Test
To Future Tense 0.895 0.899 0.727 0.810 0.873  0.889 (357/364)
ADJ or ADV Removal 0.647 0.897 — — 0.781  0.843 (224/243)
PP Front to Back 0.398 0.541 — — 0.842 0.969 (20/23)
Active to Passive 0.476 0.681 0.472 — 0.556  0.778 (98/137)

(b) Compositional transfers ‘

Compos. Finetune

Multi-Single Finetune No Finetune

CS-GPT* CS-Sys-GEn* TAILOR
I Test | Test |  Test Filtered Test
ToPast+ActiveToPassive 0.409 0.337 0.660 0.660 (30/30)
Tense + ToPast+PassiveToActive 0.474 0.365 0.702 0.702 (65/65)
Voice ToPresent+ActiveToPassive 0.503 0.445 0.315 0.614 (43/84)
ToPresent+PassiveToActive 0.523 0.424 0.699 0.699 (95/95)
Tense + ToPast+PPRemoval 0.772 0.542 0.738  0.797 (100/108)
PPRemoval ToFuture+PPRemoval 0.738 0.465 0.743  0.792 (215/229)

Table 7: BLEU scores for a subset of single and compositional style transfers in STYLEPTB (more in §E). Baseline
results are taken from Tables 14-16 and 19-20 in Lyu et al. (2021). * represents the same type of models finetuned
on different subsets of styles, e.g.,CS-GPT* in (b) includes CS-GPT-TV, trained on all Tense+Voice compositional
transfers, and CS-GPT-TP, on Tenses+PP Removal. A single TarL.or model helps achieve comparable performance
on single transfers compared to finetuned baselines, and is more capable on multiple compositional transfers.

timent polarity (Dathathri et al., 2020), which un-
derspecify desired transformations. Recent work
has explored using syntactic signals for paraphras-
ing (Iyyer et al., 2018; Kumar et al., 2020), which
are similar to ours in their high-dimensional specifi-
cation. To the best of our knowledge, TaILOR is the
first to incorporate fine-grained semantic controls.
Structured generation methods, which reconstruct
sentences based on semantic representations, are
also closely related. Abstract Meaning Represen-
tation (Banarescu et al., 2013; Mager et al., 2020)
is an alternative representation worth exploring,
as it may further enable controls on entity recur-
sions (Damonte and Cohen, 2019), though express-
ing such relationships is nontrivial.

Controlled generators have also been success-
fully used to perturb text for model training,
evaluation, and explanation. They usually rely
on application-specific labels (Ross et al., 2020;
Madaan et al., 2020b; Sha et al., 2021; Akyiirek
et al., 2020) or require pairs of original and per-
turbed sentences (Wu et al., 2021), which are ex-
pensive to generalize. Recently, Huang and Chang
(2021) design SynPG, a paraphraser that can mimic
parse tree structures learned from non-paired data.
In contrast, we focus on fine-grained semantic per-
turbations that can be composed.

Also related are prior works creating minimally
edited datasets through extensive human efforts,
either through manual rewriting (Gardner et al.,
2020; Kaushik et al., 2020), or perturbation func-
tions and templates (e.g., (Andreas, 2020; Li et al.,

2020; Ribeiro et al., 2020; Wu et al., 2019)).

9 Conclusion

We propose TaILOR, a flexible system that enables
complex and context-aware perturbations useful for
various downstream applications. TAlLorR demon-
strates that it is possible to drive fine-grained per-
turbations with semantic features directly derived
from an instance. Crucially, it also shows that lan-
guage models can be finetuned to learn representa-
tions of control codes, if paired with unlikelihood
training, which encourages reliance on structured
controls, rather than surrounding natural text. Be-
yond the perturbation oriented tasks, we envision
TaiLor supporting broader controlled generation
tasks, and encourage future work to explore alter-
native control signals for different objectives (e.g.,
AMR and syntactic roles as in §8).

While being widely applicable, TaiLor’s effec-
tiveness varies for different inputs. For example,
some inputs derived from SRL predictors may miss
rare semantic roles; Fortunately, this did not seem
to be a bottleneck, as empirically most tasks mod-
ify common arguments already recognized by the
predictors. Moreover, some text leads to occasional
degeneration. Future work can explore the effect
of penalizing generation at the span levels (vs. se-
quences) or more strategically balancing positive
and negative samples (as detailed in §F). Having
noted these opportunities, we believe TAILOR is al-
ready a powerful tool for perturbations, and we
opensource it at [URL omitted].
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A TawLor Generator Details

A.1 Input and Output Formats

All headers in inputs to the TAiLOR generator be-
gin with predicate controls, followed by core
argument controls (first AGENT, then PATIENT),
and then randomly ordered adjunct argument con-
trols (LOCATIVE, TEMPORAL, etc.). Secondary con-
trols are always given in the order of control
code+voice+tense:lemma for verbs and control
code+keyword specificity:keyword content for ar-
guments. We also blank the auxiliary verbs of the
predicate in an input, using spacy to detect them.
We exclude discontinuous arguments (e.g., those
with raw SRL labels B-C-*), as well as those with
referents (e.g., those with raw SRL labels B-R-*),
from input headers. We map ARGO — AGENT and
ARG1 — PATIENT. For other numbered arguments,
we create human-readable labels by using argument
functions included in the PropBank frame for the
given predicate (Palmer et al., 2005).

On the output side, we ask the model to generate
the full sentence (Table 1). We add the semantic
roles for all the generated arguments, to help the
generator build explicit mappings between the in-
put control codes and the output spans — this can be
important when the input codes are ambiguous (e.g.,
a TEMPORAL argument and a LOCATIVE argument
that both have keywords “in”). To use generations
in downstream applications, we remove these con-
trol codes to obtain cleaned outputs using regular
expression matching.

A.2 Training details

Training inputs. During training, we randomly
select, with equal probabilities, whether to mask
all arguments or a subset of arguments. If a subset,
we uniformly select the proportion of arguments
to mask. To determine the number of extra blank
tokens, we uniformly select a value less than 10
and set the number of blanks to be the maximum of
that selected value and the number of arguments to
mask. Any extra blank tokens (i.e., remaining after
masking arguments) are inserted between subtrees
of the predicate.

We also randomly select keyword contents and
keyword specificities. For each argument span, we
extract, using spacy, four keyword types from the
span: noun chunks, random subtrees, exact key-
words, and prefixes. For prefixes, we uniformly
select a number of tokens to include as the key-
word (from 1 to the entire span). Once we extract
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all keyword candidates, we create corresponding
keyword specificities: A keyword is complete if
it contains all tokens in the original span, partial
if it contains at least all but 5 tokens, and sparse
otherwise. Then, we uniformly select a keyword
content/specificity pair for each span from the set
of keyword candidates (including the * symbol).'6

To generate unlikelihood samples, we use three
perturbation strategies on inputs: 1) Change seman-
tic roles by swapping thematic role control codes
(agent/patient), changing adjunct argument control
codes to a uniformly selected other adjunct control
code, and changing verb tense/voice. We swap verb
tense/voice because the control code VERB does not
have natural candidate swaps, given that predicates
are the building block for semantic parses. We
also swap the control codes in the target output. 2)
Change keyword contents by replacing verb lem-
mas and keywords for both the predicate and all
arguments. To make content swaps, we first gather
the most commonly occurring keyword contents
for each argument and predicate in Ontonotes 5.0
train, extracted according to the same process as
described above for creating training inputs. For
each primary control code and keyword specificity
(e.g., TEMPORAL+partial), we store the 15 most
commonly occurring keyword contents. To create
the negative inputs, for each span, we uniformly
sample from these stored keywords given the span’s
control code and keyword specificity. This pertur-
bation is designed to discourage the generator from
ignoring the keyword content and merely generat-
ing commonly occurring text for particular seman-
tic roles. 3) Change keyword specificities by uni-
formly selecting a different specificity. We weight
each unlikelihood sample equally, with a reward of
-1 (vs +1 for positive samples).

Hyperparameters. We train the TaLorR genera-
tor using Transformers (Wolf et al., 2020) for 10
epochs with early stopping. We use batch size 4
and default values for other parameters (learning

!6Because of how keywords are sampled, we notice that
the generator is sensitive to the case of keyword contents.
For example, if the keyword for a temporal span is In 1980
instead of in 1980, TAILOR is biased towards generating it at
the beginning of the sentence. We hypothesize that because
some of the keywords we sample during training are cased
(e.g., exact will lead to a cased keyword for a capitalized span
beginning a sentence), the generator learns a bias towards
generating spans with uppercase keyword at the beginning of
the sentence. In applying the generator to perturbations, the
case of keyword contents can be used to manipulate the order
of generated roles when a certain order of generated contents
is desired; otherwise, uncased keywords can be used.



rate of Se-5, Adam optimizer).

B Intrinsic Evaluation Details

Effectiveness of cycle consistency. To evaluate
to what extent cycle consistency reflects true con-
trollability, we conducted additional manual an-
notation on role-following. We sampled 25 sen-
tences from the Ontonotes 5.0 development set,
transformed them into inputs with varying num-
bers of masked arguments and blank tokens, and
created up to two perturbed inputs per sentence
by randomly replacing their blanked adjunct argu-
ments with other candidate semantic roles (using
CHANGE_TAG). The candidate roles were extracted
from the frameset for each predicate verb. We
also changed the keyword specificity to SPARSE, to
make these role swaps more plausible.

We collected TarLor and TAILOR ps7 g generations
from both the original and perturbed inputs, and
one author manually validated the generated span
for each specified argument (98 in total). Our anno-
tations were following or not following the control
(i.e., the span matches/does not match the desig-
nated semantic role), or the set of controls can be
impossible to follow if the human annotator could
not think of any generation that would satisfy the
control codes, due to a conflict between the role,
keywords, and blank placement. We then com-
puted the Matthews correlation coefficient (MCC)
between the controllability of the role label as mea-
sured by the SRL predictor with the gold controlla-
bility annotations for the subset of roles without an-
notation impossible. The MCCs are 0.49 and 0.51
for TaLor »y7 g and TAILOR, respectively, suggest-
ing that the cycle consistency measures positively
correlate with true controllability measures.

Additionally, we measure to what extent the con-
trollability measures from cycle consistency cor-
relate with whether a set of controls is impossible
to follow. The MCCs are -0.33 for both TarLor
and TA1LOR 77 £; thus, incorrect role-following as
measured by cycle consistency is positively corre-
lated with controls that are impossible to follow.
14/98 instances were manually annotated as hav-
ing impossible-to-follow controls, suggesting that
a nontrivial proportion of the generations for which
our intrinsic evaluation measures in §4 found to be
unaligned with designated role control codes may
be explained by impossible-to-follow controls.

Modulating fluency and closeness. As men-
tioned in §2.2, our input format supports modu-
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lating fluency and closeness at generation time. We
can increase closeness by only masking the argu-
ments we want to perturb. To quantify this effect,
we randomly select only one argument to perturb
for 1,000 sentences, but vary the number of argu-
ments masked, and the number of empty blanks
inserted. We maximize closeness when we only
mask the target argument to perturb in the format
of Table 1B (with F'1 = 67.4%), whereas masking
two extra arguments and inserting six extra blanks
decreases closeness by 3% and 6%, respectively.
On the other hand, we can trade-off closeness to
prioritize fluency by adding more empty blank to-
ken (e.g., when we insert extra roles whose optimal
locations are not known in advance). We experi-
ment with this setting on another 1,000 sentences,
and observe that adding six extra blanks increases
the fluency ratio from 0.93 to 0.95.

C Contrast Set Details (§5)

In Table 8, we illustrate our perturbation proce-
dures for creating contrast sets. Besides BoolQ and
UD English '7 already introduced in §5, the Matres
contrast set Gardner et al. (2020) relies on within-
sentence context: As a task that requires detecting
and changing the temporal order of two verbs, our
perturbations heavily rely on their syntactic rela-
tionships. For example, to change the appearance
order of verbs in text (as described in (Gardner
et al., 2020)), we would take the parent verb as the
base predicate, and MOVE the text span containing
the child verb. For QA implication (Ribeiro et al.,
2019), we combine TaiLor with semantic heuris-
tics: by defining mappings between WH-words and
answer types (e.g., “who” and “the Huguenots”),
we can easily create new questions that are about
different targets.

As mentioned in §5, the TamL.or-generated con-
trast sets contain fewer artifacts compared to the
original BoolQ validation set. Here, we provide
a straightforward visualization to show the effect.
As shown in Figure 2, many tokens in the origi-
nal BoolQ validation data are biased towards the
positive class (with the red dots distributed in the
> 0.5 region), while most tokens in the edited set
fall within the confidence region denoting no sig-
nificant feature-level biases.

"For UD Parsing contrast set generation, we use con-
strained decoding (Hokamp and Liu, 2017) to prevent genera-
tion of the original prepositional phrase.



Dataset & Task | Top-K validity

Matres contrast set (Gardner et al., 2020) \ 71% (k=1)

Original | Sentence: Volleyball is a popular sport in the area, and [AGENT: more than 200 people| would be [VERB:
watching| [PATIENT: the game], the chief said.
Order: watching happens after said
Perturbation strategy: Change tense

Edits | VERB: CHANGE_VFORM (past)
— [VERB+active+present-past: watch] Volleyball is...200 people <id_0> the game, the chief said.
Perturbed | Sentence: Volleyball is a popular sport in the area, and [AGENT: more than 200 people| [VERB: watched]|
[PATIENT: the game], the chief said.
Order: watched happens before said
Perturbation strategy: Change order

Edits | PATIENT:MOVE
— [VERB+active+past: say | AGENT+complete: Volleyball...the game] <id_0>, the chief said <id_0> .
Perturbed | Sentence:|AGENT: the chief] [VERB: said| [PATIENT: Volleyball is a popular sport in the area, and more than
200 people would be watching the game].
Order: said happens before watch

BoolQ contrast set (Gardner et al., 2020) ‘ 82% (k=1)

Original | Paragraph:...his bride was revealed in the webcomic...Deadpool also discovers that he has a daughter by the
name of Eleanor, from a former flame of Deadpool named Carmelita.
Q: does [AGENT: Deadpool] [VERB: have| [PATIENT: a kid in the comics]|? (A: True)

Perturbation strategy: Change entity

Edits | AGENT: CHANGE_CONTENT (his bride);
— [VERB+active+present: have | AGENT+complete: Deadpool-his bride] does <id_0> <id_1> a kid in
the comics?

Perturbed \ Q: does [AGENT: his bride| [VERB: have| [PATIENT: a kid in the comics|? (A: False)
UD parsing contrast set (pp attachment) (Gardner et al., 2020) \ 65% (k=10)

Original | Sentence: Do [AGENT: you| [VERB: prefer| [PATIENT: ham, bacon or sausages| [ADVERBIAL: with your
breakfast|?
PP attachment: Verb (“with your breakfast” attaches to “prefer”)

Perturbation strategy: Swap attachment to Noun

Edits | PATIENT : CHANGE_CONTENT (ham, bacon or sausages with),CHANGE_SPEC(partial)
ADVERBIAL:DELETE
— [VERB+active+present: prefer | PATIENT+completespartial: ham, bacon or sausages

with-+ADVERBTAL+complete:with-yourbreakfast] <id_0> you <id_1> <id_2> <id_3>?

Perturbed | Sentence: Do [AGENT: you] [VERB: prefer| [PATIENT: ham, bacon or sausages with bacon on them|?
PP attachment: Noun (“with bacon them” attaches to “sausages”)

Original | Sentence: [AGENT: It] has [PATIENT: local boutiques and a diverse range of food at all prices and styles].
PP attachment: Noun (“at all prices and styles” attaches to “food”)
Perturbation strategy: Swap attachment to Verb
Edits | PATIENT : CHANGE_CONTENT (local boutiques and a diverse range of food)
LOCATIVE:CHANGE_CONTENT (at) ,CHANGE_SPEC(partial)
— [VERB+active+present: have | PATIENT+complete: local boutiques and a diverse range of food
atall-prices-andstyles | LOCATIVE+partial: at] <id_0> you <id_1> <id_2> <id_3>?

Perturbed | Sentence: [AGENT: It] has [PATIENT: local boutiques and a diverse range of food| [LOCATIVE: at every turn].
PP attachment: Verb (“at every turn” attaches to “has”)

QA implication (Ribeiro et al., 2019) ‘ 81% (k=1)

Original | Q: [MANNER: How] did [AGENT: the Huguenots| [VERB: defend| [PATIENT: themselves|?
A their own militia

Perturbation strategy: Swap answer to be agent

Edits | AGENT: CONTENT (who) ; MANNER:CONTENT (their own militia),SPEC(partial)
— [VERB+active+past: defend | AGENT+complete: the Huguenots-who | PATIENT+complete: them-
selves | MANNER+completespartial: how-their own militia] <id_0> <id_1> <id_2> <id_3>?

Perturbed | Q: [AGENT: Who| has [VERB: defended| [PATIENT: themselves] [MANNER: by setting up their own militia|?
A: the Huguenots

Table 8: A demonstration of how we recreate contrast sets for different tasks (§5). Using primitive operations in
Table 3, TalLor supports context-aware and compositional changes.
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Meaning Preserving Strategies

Untangle relative clause: For verbs with args containing relative clauses (i.e., roles with R-), delete context.

Original ‘ The [PATIENT: athlete] who was [VERB: seen| [AGENT: by the judges| [TEMPORAL: yesterday| called the manager

Edits | CONTEXT (DELETE_TEXT)

— [VERB+passive+past: see | AGENT+complete: by the judges | PATIENT+complete: the athlete |
TEMPORAL+complete: yesterday] <id_0> whe <id_1> <id_2> <id_3> <id_4> ealled-the- manager

Perturb. ‘ The [PATIENT: athlete| was [VERB: seen| [AGENT: by the judges| [TEMPORAL: yesterday|

Shorten core: Change keywords for core args to root of original arg spans.

Original ‘ The [AGENT: athlete who was seen by the judges yesterday| [VERB: called| [PATIENT: the manager].

Edits | AGENT: CHANGE_CONTENT (The athlete whe—was——)
— [VERB+active+past: call | AGENT+complete: The athlete
PATIENT+complete: the manager] <id_0> <id_1> <id_2> <id_3> <id_4>

Perturb. \ The [AGENT: athlete| [VERB: called| [PATIENT: the manager]|.

Change voice: Swap active/passive verb controls.

Original \ The [AGENT: athlete who was seen by the judges yesterday| [VERB: called| [PATIENT: the manager].

Edits | VERB:CHANGE_VOICE(passive) | AGENT: CHANGE_CONTENT (by the athlete who was...)

— [VERB+activespassive+past: call | AGENT+complete: by the athlete who was seen by the judges yesterday
| PATIENT+complete: the manager] <id_0> <id_1> <id_2> <id_3> <id_4>

Perturb. ‘ [PATIENT: The manager| was [VERB: called| [AGENT: by the athlete who was seen by the judges yesterday]|.

Meaning Changing Strategies

Replace core with subsequences: Change keywords of core args to noun chunks from other args.

Original ‘ [AGENT: The judge behind the manager| [VERB: saw| [PATIENT: the doctors].

Edits | [VERB+activespassive+past: call | AGENT+complete: by the athlete who was seen by the judges yesterday |
PATIENT+complete: the manager] <id_0> <id_1> <id_2> <id_3> <id_4>

Perturb. \ [AGENT: The doctors| [VERB: saw| [PATIENT: the manager]|.

Swap core: Swap agent/patient.

Original \ [PATIENT: The athlete| who was [VERB: seen| [AGENT: by the judges| called the manager.

Edits | SWAP_CORE

— [VERB+passive+past: see | AGENT+complete: by the judgesathlete | PATIENT+complete: by the
athlete-judges] <id_0> <id_1> <id_2> <id_3> <id_4>

Perturb. ‘ [PATIENT: The judges| who were [VERB: seen| [AGENT: by the athlete] called the manager.

Table 9: Overview of perturbation strategies we apply to SNLI hypotheses in our augmentation experiments ($6).
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Artifact statistics for BoolQ before and after local edits
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Figure 2: A comparison of the dataset artifacts in the
original BoolQ validation set and contrast set created
with Tarwor. The figure is plotted in the same way as
Figure 2 in (Gardner et al., 2021).

D Data Augmentation Details (§6)

Augmented data. Our five perturbation strate-
gies are shown in Table 9. To create our augmented
data, we first filter generations by perplexity scores
from GPT-2 such that we retain 75% of generations.
Then, for each hypothesis we perturb, we uniformly
sample a successful perturbation. (An example of
a failed perturbation would be one requiring both
agent/patient roles, applied to a sentence without
both roles.) This process results in a slight skew
towards entailment labels (i.e., ~ 2.75:1, entail-
ment:neutral). Future work can investigate to what
extent label imbalance affects augmentation results.

Classifiers. We train all SNLI classifiers, which
build on ROBERTA-BASE (Liu et al., 2019), using
AllenNLP (Gardner et al., 2018). We train for 10
epochs using the Adam optimizer with a learning
rate of 2e-05 and batch size 32; we use early stop-
ping with a patience of 3.

E Style Transfer Details (§7)

Transfers Evaluated. We evaluate on the trans-
fers in STYLEPTB for which Lyu et al. (2021) report
results, as their baselines require training separate
models for each transfer. Within this subset of
transfers, we exclude PP Back to Front and Pas-
sive to Active from evaluation, as they contain < 5
test inputs. We also exclude the transfers Substate-
ment Removal, Information Addition, Adjective Em-
phasis, and Verb/Action Emphasis, for which our
semantic-role-derived inputs are not well-suited.
For example, Substatement Removal involves re-
moving substatements that represent “referring”
and “situations,” both of which are technical philo-
sophical concepts that cannot be straightforwardly

17

detected through semantic roles. As another ex-
ample, Information Addition requires adding un-
ordered keyword contents to a sentence (eg the
work force provides the third arm of the alliance;
add keywords: force black — the work force pro-
vides the third arm of the black alliance force.
While the TaiLor generator was only trained with
ordered arguments, one could extend the keyword
contents to also include unordered target tokens.

Perturbation strategies. For transfers modify-
ing only verb tense (e.g., To Future Tense), we
mask the verb, modal arguments, and negation ar-
guments, as these are relevant to verb conjugations,
and make relevant perturbations on the secondary
verb control specifying tense. For transfers mod-
ifying verb voice, we mask the verb, agent, and
patient. For transfers requiring removal of certain
parts of speech (POS)—i.e., ADJ or ADV Removal,
PP Removal, and all compositional Tense + PP
Removal sub-transfers —we first use spacy to de-
tect such POS, next mask all arguments containing
them, and finally perturb the keyword contents to
remove the POS for these arguments. For PP Front
to Back, we mask the argument at the beginning of
the original text and implement the change using
CHANGE_IDX.

We use cased keywords (A.2) to encourage gen-
erations with similarly ordered arguments as the
original sentence, except for the PP Front to Back
transfer, which calls for differently ordered argu-
ments. For transfers modifying verb form only, we
set the number of extra blanks to be 2 to allow for
generation of helper verbs; for other transfers, we
allow for 0 extra blanks to preserve the original
order of generated spans.

We decode perturbed sentences greedly using
beam search (with beam width 10) and preventing
repeated bigrams.

F Degenerate Outputs

We observe that TaiLor produces degenerate out-
puts for some inputs, as shown in Table 11. We
hypothesize that this is a byproduct of unlikeli-
hood training: The generator may learn to reduce
the likelihood of negative sequences by generating
tokens that are very unlikely to appear in natural
text. Certain generation hyperparameters, such as
the number of beams, can reduce the number of
degenerate outputs. While we perform unlikeli-
hood training at the sequence level, future work
can investigate the effect of penalizing generation



H Single Finetune Compos. Finetune No Finetune
() Single transfers GPT-2  RerrieveEpiT CS-GPT-TV CS-GPT-TP TAILOR
|| Test Test | Test Test |  Test Filtered Test

To Future Tense 0.895 0.899 0.727 0.810 0.873  0.889 (357/364)
To Past Tense 0.836 0.935 0.694 0.834 0.884  0.893 (216/218)
To Present Tense 0.754 0.909 0.733 0.826 0.710  0.847 (175/209)
ADJ or ADV Removal 0.647 0.897 — — 0.781 0.843 (224/243)
PP Front to Back 0.398 0.541 — — 0.842 0969 (20/23)
PP Removal 0.763 0.798 — 0.760 0.717  0.857 (199/238)
Active to Passive 0.476 0.681 0.472 — 0.556  0.778 (98/137)

(b) Compositional transfers ‘

Compos. Finetune

Multi-Single Finetune

No Finetune

CS-GPT* CS-Sys-GEn* TAILOR
I Test | Test Test Filtered Test
ToPast+ActiveToPassive 0.409 0.337 0.660 0.660 (30/30)
Tense + ToFuture+ActiveToPassive 0.496 0.419 0468 0.670 (90/131)
Voice ToFuture+PassiveToActive 0.528 0.399 0.683 0.683 (131/131)
ToPast+PassiveToActive 0.474 0.365 0.702 0.702 (65/65)
ToPresent+PassiveToActive 0.523 0.424 0.699 0.699 (95/95)
ToPresent+ActiveToPassive 0.503 0.445 0.315 0.614 (43/84)
Tense + ToFuture+PPRemoval 0.738 0.465 0.743  0.792 (215/229)
PPRemoval ToPast+PPRemoval 0.772 0.542 0.738  0.797 (100/108)
ToPresent+PPRemoval 0.709 0.545 0.691 0.704 (153/156)
Table 10: The full stylePTB results, extending Table 7.
Input | Degenerate Output

[VERB+passive+past: lower | AGENT: * | PATIENT+partial:
corporate bonds | TEMPORAL+complete: this year] One indication
of a growing number of junk defaults , Mr. Asquith says , is that
about half of the $ 3 billion of <id_0> that <id_1><id_2><id_3>
to a default rating <id_4> <id_5> are junk bonds sold during the

market ’s big issue years of 1984 through 1986 ..

pastra pastra sanatate sanatate pastraurmatoarele
sanatateurmatoarele pastradatorita sanatatedatorita
pastracresterea sanatate urmeaza sanatateinformatiile
sanatatecresterea pastra urmeaza urmeaza
pastrainformatiileinformatiiledatoritadatoritaurmatoarele.

[VERB+active+present: visit | AGENT: * | PATIENT+partial:
Galilee | TEMPORAL: *] <id_0> went to <id_1> <id_2> <id_3>.

AG pastra

pastra sanatate

sanatate pastraurmatoarele

sanatateurmatoareleurmatoarele pastrainformatiile sanatate-
informatiileinformatiile pastradatorita sanatatedatoritadatori-
taurmatoareledatoritainformatiile dumneavoastra sanatate
urmeaza sanatatecresterea

Table 11: Example inputs from the validation set for which the TAIlLOR generator outputs degenerate text.

at the level of tokens or spans, which may provide
finer-grained signals for which spans should be
considered unlikely, as well as more strategically
balancing positive and negative samples.

Filtering. To exclude degenerations when using
TarLor generations in downstream applications, we
employ a combination of heuristics and perplexity-
based filtering. As shown by the examples in Ta-
ble 11, degenerate outputs are easy to detect: We
can simply search for whether the output includes
“sanatate.” We also use cutoffs in perplexity scores
computed with GPT-2 to filter degenerations, as
degenerations have significantly lower perplexities
than non-degenerate outputs: For generations for
300 randomly sampled validation inputs, the TamL.or
generator produced generations with a mean per-
plexity of -346.46 for degenerate outputs (12/300)
compared to -86.747 for others.
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