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Abstract

Making controlled perturbations is essential001
for various tasks (e.g., data augmentation),002
but building task-specific generators can be003
expensive. We introduce Tailor, a task-004
agnostic generation system that perturbs text005
in a semantically-controlled way. With un-006
likelihood training, Tailor’s generator is de-007
signed to follow a series of control codes de-008
rived from semantic roles. Through modifica-009
tions of these control codes, Tailor can pro-010
duce fine-grained perturbations. We imple-011
ment a set of operations on control codes that012
can be composed into complex perturbation013
strategies, and demonstrate their effectiveness014
in three applications. First, Tailor facilitates015
the construction of high-quality contrast sets016
that are lexically diverse and less biased than017
original task test data. Second, paired with au-018
tomated labeling heuristics, Tailor helps im-019
prove model generalization through data aug-020
mentation: we obtain an average gain of 1.73021
on an (natural language inference) NLI chal-022
lenge set by perturbing just ∼5% of train-023
ing data. Third, without any finetuning over-024
head, Tailor’s perturbations effectively im-025
prove compositionality in fine-grained style026
transfer, outperforming fine-tuned baselines027
on 5 transfers.028

1 Introduction029

Controllable text generation through semantic per-030

turbations, which modifies sentences to match031

certain target attributes, has been widely applied032

to a variety of tasks, e.g., changing sentence033

styles (Reid and Zhong, 2021), mitigating dataset034

biases (Gardner et al., 2021), explaining model be-035

haviors (Ross et al., 2020), and improving model036

generalization (Teney et al., 2020; Wu et al., 2021).037

Existing work trains controlled generators with038

task-specific data, e.g., training a style transferer039

requires instances labeled with positive and nega-040

tive sentiments (Madaan et al., 2020b). As a result,041

transferring to a new application is prohibitive, and042

LOCATIVE→TEMPORAL+partial: in

LOCATIVE
In the operation room

AGENT
the doctor

VERB
comforted,

PATIENT
the athlete .

[   |   |   ] <id_0>, the doctor <id_2> <id_3> <id_4>.

[TEMPORAL: In the midst of the earthquake], the doctor 
[VERB: is comforting][PATIENT: the athlete panicking].

PATIENT+complete→partial: the athlete

VERB+active+past→present: comfort

A

D

B

Input

Output

C

LOCATIVE:CHANGE_TAG(TEMPORAL)

VERB:CHANGE_VTENSE(present)

PATIENT:CHANGE_SPEC(partial)

Figure 1: A compositional perturbation using Tai-
lor.1 Given (A) an original sentence, we abstract
each span into a structured header that contains
its semantic roles and keywords. We specify de-
sired perturbations by modifying each control code
(e.g., changing role LOCATIVE)TEMPORAL in (B), verb
tense past)present, and patient keyword specificity
complete)partial). Given these perturbed control codes
in the input (C), Tailor generates a new sentence (D)
that reflects the desired perturbations.

requires costly annotation efforts and re-training 043

for every task of interest. 044

In this work, we introduce Tailor, a system that 045

supports application-agnostic perturbations with- 046

out the need for retraining. At the core of Tailor 047

is a controlled generator (§2) that flexibly gener- 048

ates full sentences from target semantic features. 049

We combine structured control codes in our in- 050

puts to represent desired linguistic properties of 051

outputs. As shown in Figure 1, each code builds on 052

the PropBank semantic parse (Palmer et al., 2005) 053

of the original sentence, and specifies a semantic 054

role argument span. We use unlikelihood train- 055

ing (Welleck et al., 2020) to encourage control 056

code following, by penalizing generations that are 057

not aligned with designated codes. 058

The multi-dimensionality of semantic roles al- 059

1We opensource Tailor at [URL omitted].
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lows Tailor to perform fine-grained changes to in-060

dividual arguments in a sentence (e.g., one can just061

change the patient in Figure 1). This is critical for062

generating datasets that evaluate and improve mod-063

els’ language understanding (Kaushik et al., 2020;064

Wu et al., 2021). Instead of representing a change065

with a single target property positive)negative, we066

can decompose it into specific linguistic transfor-067

mations (e.g., changing sentiment polarity through068

negation or antonym replacement).069

To highlight perturbations that are feasible with070

Tailor, we identify and implement a list of primary071

perturbation operations (§3) on inputs to the gen-072

erator; these can be easily composed to achieve073

more complex perturbations. Take Figure 1 as an074

example: while it would be nontrivial to train a075

generator to directly transform sentence A to D, it076

can be achieved through the composition of a se-077

ries of perturbations: syntactic rewriting (changing078

verb tense), then sentence expansion (extending079

“the athlete”), and finally data recombination (i.e.,080

sourcing text with the TEMPORAL control).081

Tailor’s flexible control codes allow for broad,082

easily extendable applicability. We demonstrate083

Tailor’s utility in three distinct applications: 1)084

We use Tailor to replicate existing contrast sets085

(§5) on four diverse tasks, with much less manual086

annotation effort. Our analysis suggests that these087

contrast sets not only have high rates of validity, but088

also promote lexical diversity and reduce dataset089

bias. 2) Augmenting training data with just a small090

ratio of Tailor perturbations (∼5%) improves the091

robustness of natural language inference (NLI)092

models to inference heuristics, increasing perfor-093

mance on the HANS evaluation set by an average094

of 1.73 points (McCoy et al., 2019). 3) Without095

any finetuning, Tailor achieves impressive perfor-096

mance on fine-grained and compositional style097

transfer (§7) in the StylePTB benchmark (Lyu098

et al., 2021), even outperforming models trained099

on the dataset on 5 transfers.100

2 Tailor’s Controllable Generator101

We provide an overview of the Tailor generator.102

We first outline the controllable dimensions useful103

for semantic perturbations (§2.1), and then explain104

how to embed them within inputs to the generator105

(§2.2). Finally, we describe how we use unlikeli-106

hood training to train our generator to follow the107

controls (§2.3).108

2.1 Controllable Dimensions 109

To allow for control over sentence semantics at 110

varying levels of granularity, we incorporate a com- 111

bination of semantic roles and content keywords. 112

To denote shallow semantics, we use the Prop- 113

Bank semantic formalism, which represents sen- 114

tences’ meanings with predicate-argument struc- 115

tures (Palmer et al., 2005). Predicates reflect events 116

(what happened), and are usually evoked by verbs, 117

like “comforted” in Figure 1. Arguments, usually 118

spans of tokens, realize the thematic roles of the 119

predicates, including core arguments such as who 120

(e.g., “the doctor”) and to whom (“the athlete”), 121

as well as adjunct arguments like where (“In the 122

operation room”), how, etc. PropBank semantic 123

analyses provide well-established feature represen- 124

tations for meanings and are generalizable across 125

different verb predicates and languages (Hajič et al., 126

2009), making it an appealing choice for represent- 127

ing high level semantics. 128

We further use content keywords to drive the 129

generation of actual predicates and arguments. De- 130

pending on to what extent we would like to re- 131

trieve new text from the generator, the keywords 132

can either be sparse (e.g., adding a random tempo- 133

ral constraint), or fully specified (adding a fixed “in 134

the midst of the earthquake”). As later shown in 135

Table 3, such control is important for supporting 136

different perturbation strategies and use cases. 137

Since the same set of thematic roles can be com- 138

bined in different ways, we add further controls on 139

span ordering. We use predicate form to control 140

the order of core arguments. For example, to dis- 141

tinguish “the athlete was comforted by the doctor” 142

from the semantically equivalent “the doctor com- 143

forted the athlete,” we target the former ordering 144

through a passive control on the predicate, and the 145

latter through an active control. Additionally, we 146

use the location of blank tokens (<id_*> in Fig- 147

ure 1 and Table 1) to determine the position of gen- 148

erated arguments (Wu et al., 2021) — e.g., where 149

“in the operating room” appears in the generation. 150

2.2 Input Format Design 151

We aim to integrate the aforementioned controls 152

into an input format, and finetune language models 153

to output full sentences reflecting them. 154

As shown in Table 1, we start our input with 155

a bracketed header, a series of abstract control 156

codes (Table 2) with each denoting the seman- 157

2We use http://spacy.io/ for verb or POS detection.
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Input Target Output Description

A
[VERB+active+past: comfort | AGENT+complete: the doctor
| PATIENT+partial: athlete | LOCATIVE+partial: in]
<id_0>, <id_1> <id_2> <id_3>.

[LOCATIVE: In the operating room],
[AGENT: the doctor] [VERB: comforted]
[PATIENT: the athlete].

Mask all roles

B [VERB+active+past: comfort | LOCATIVE+partial: in]
<id_0>, the doctor <id_1> <id_2> the athlete <id_3>.

[LOCATIVE: In the operating room], the
doctor [VERB: comforted] the athlete. Empty blanks

C [VERB+active+past: comfort | LOCATIVE+partial: in]
<id_0>, the doctor <id_1> the athlete.

[LOCATIVE: In the operating room], the
doctor comforted the athlete.

Mask subset of
arguments

N
[VERB+passive+present: comfort | PATIENT+complete:
the doctor | AGENT+partial: athlete | TEMPORAL+partial:
in] <id_0>, <id_1> <id_2> <id_3>.

[TEMPORAL: In the operating room],
[PATIENT: the doctor] [VERB: comforted]
[AGENT: the athlete].

Negative sample

Table 1: Example input/output formats for sentence “In the operating room, the doctor comforted the athlete.” A–
C show different input formats the generator can accept, each with a header containing control codes and context
with blanks denoting where to insert new texts. The last input (N) is a negative sample for unlikelihood training.

Type Predicate control: VERB+active+past: comfort

Signals

Primary predicate label (Always VERB)
Lemma (Any verb lemma)
Voice (active, passive)2

Tense (past, present, future)

Type Argument control: PATIENT+partial: athlete

Signals

Primary argument label (AGENT, PATIENT,
TEMPORAL, LOCATIVE, MANNER, CAUSE, etc.)
Content (* symbol or any text)
Specificity (complete, partial, sparse)

Table 2: Overview of Tailor’s control codes. Primary
controls build on predicate/argument labels, and others
further affect the form and content of generations.

tic role and keywords for a span to realize. We158

map original semantic roles in PropBank to human-159

readable labels (i.e., ARG0 → AGENT) in order to160

leverage knowledge learned by pretrained models161

about roles’ meanings (Paolini et al., 2021). After162

the header, we append the context, consisting of163

text to be preserved and blanks to be infilled.164

Note that we explicitly separate the header from165

the context. This is to detach the placement of166

a role from its semantic representation, such that167

given any combination of target roles in the header168

— whose optimal ordering is usually unknown —169

the generator can recombine them in the most flu-170

ent way. We further remove possible correlations171

between the control codes and the blanks in the con-172

text in two ways: First, we order the control codes173

in an input-independent way (see §A.1) to discour-174

age the generator from solely following their rela-175

tive orders. Second, we insert extra empty blanks176

into the context (e.g., <id_3> in Table 1B), so the177

generator can learn to generate spans in the blank178

locations that result in the most fluent text.179

With this flexibility in argument reordering180

comes the challenge of making strict controls on181

a single argument: even when we only want to182

change verb tense, the generator may reorder other 183

arguments. To trade off generation flexibility and 184

strict control, which facilitates minimal perturba- 185

tions (Ross et al., 2020), we further vary the num- 186

ber of arguments encoded in the header. As in 187

Table 1C, our generator can take inputs that only 188

mask a subset of arguments, such that, e.g., any 189

changes on the LOCATIVE constraint or the VERB 190

do not affect the agent and patient. More details 191

about input formats are in §A.1. 192

2.3 Training 193

We create our generator by finetuning T5-base (Raf- 194

fel et al., 2020) on pairs of inputs and outputs de- 195

rived from the gold semantic roles in OntoNotes 196

5.0 train (Pradhan et al., 2013), as in Table 1. In or- 197

der to make our generator sensitive to the different 198

input formats described in the previous section, for 199

each original input, we randomly sample the num- 200

ber of arguments to mask, number of extra empty 201

blanks, and keyword content/specificity for each 202

role (details in §A.2). 203

Standard maximum likelihood estimation (MLE) 204

is insufficient for training our generator to follow 205

the control codes, as there may exist signals be- 206

yond the codes for the generation form. Con- 207

sider the input: [VERB+active+past: comfort 208

| AGENT+partial: athlete | PATIENT+complete: 209

the doctor] In the operating room, <id_0>, <id_1> 210

<id_2>. A generator trained with MLE may ignore 211

controls AGENT and PATIENT and instead output 212

text “The doctor comforted the athlete” rather than 213

“The athlete comforted the doctor,” as the former is 214

more natural given context “in the operation room.” 215

In order to encourage reliance on controls, we 216

incorporate unlikelihood training (Welleck et al., 217

2020) to penalize our generator for generating text 218

that conflicts with inputs. That is, besides Table 1A– 219
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(a) Syntactically controlled rewriting

Strategy CHANGE_VTENSE(present)
) [VERB+active+past )present: comfort]

Perturb. In the operation room, the doctor comforts the athlete.

Strategy CHANGE_VVOICE(passive)
) [VERB+active )passive+past: comfort]

Perturb. In...room, the athlete was comforted by the doctor.

Strategy CHANGE_IDX(4:0)
) <id_0> In the operation room <id_0>

Perturb. The doctor comforted the athlete in the operation room.

Strategy CORE(SWAP_CORE)
) [AGENT+complete: the athlete )doctor
| PATIENT+complete: the doctor )athlete ]

Perturb. In the operation room, the athlete comforted the doctor.

(b) Sentence expansion and abstraction

Strategy LOCATIVE:CHANGE_SPEC(partial)
) [LOCATIVE+complete )partial: in the operation room]

Perturb. Under the dim light in the operation room, the doctor com-
forted the athlete.

Strategy LOCATIVE:DELETE
) [LOCATIVE+complete: in the operation room]

Perturb. In the operation room, the doctor comforted the athlete.

(c) Data recombination (with external labels and/or contents)

Strategy CAUSE:CHANGE_CONTENT(because he was in pain)
)[CAUSE+complete: because he was in pain]

Perturb. In the operation room the doctor comforted the athlete
because he was in pain.

Table 3: We design a list of primitive operations on input controls to guide perturbations with the Tailor generator.

C which are used for MLE, we also create “neg-220

ative” samples by randomly perturbing the con-221

trol codes in our header (as in Table 1N, last row),222

such that most spans in the target output are not223

aligned with the control codes anymore. As de-224

tailed in §A.1, we create three negative samples per225

input, which randomly perturb: 1) verb voice/tense226

and primary controls for arguments, 2) keyword227

contents, and 3) keyword specificities. After data228

processing, our training data consists of 223,619229

positive and 541,424 negative examples.230

3 Creating Perturbations with Tailor231

With Tailor, we can create diverse perturbations232

by varying controls in inputs. Given an original233

sentence, we transform it to an input for Tailor by234

extracting its semantic parses, masking spans we235

wish to modify, and adding their control codes to236

the input header.3 Then, we modify the controls in237

this derived input to generate perturbed sentences238

with Tailor, filtering out degenerate ones. We de-239

tail the changes on the controls below.240

Primitive perturbation operations. While the241

input can be modified arbitrarily, we provide an242

easily-extendable set of macros as in Table 3, which243

capture three common themes in the literature.244

First, syntactic rewriting primarily involves shuf-245

fling text to create paraphrases (Zhang et al., 2019)246

or adversarial examples (Iyyer et al., 2018). We247

implement such shuffling through operations that248

perturb predicate forms, move blank tokens, and249

swap keyword contents of arguments. Second, ex-250

pansion and abstraction adds or removes text frag-251

3External semantic role labelers can be used when gold
annotations are not available. Our experiments use the open-
sourced implementation of Shi and Lin (2019): https:
//demo.allennlp.org/semantic-role-labeling.

ments from a sentence (Wu et al., 2021). We recre- 252

ate these through deletions and operations on key- 253

words. Finally, data recombination involves recom- 254

bining existing textual fragments, within or across 255

inputs (Akyürek et al., 2020; Andreas, 2020). With 256

CHANGE_CONTENT, we can integrate additional con- 257

text (e.g., from corresponding paragraphs in ques- 258

tion answering tasks) into generations. 259

These primitive perturbation operations can be 260

used in conjunction with external knowledge bases 261

to achieve targeted edits.4 Additionally, these oper- 262

ations can be composed to achieve more complex 263

perturbation strategies, as shown in §5, §6, and §7. 264

Filtering generations. We notice that the Tailor 265

generator produces degenerate outputs for some 266

inputs; we exclude these using heuristics on content 267

and perplexity scores (see §F for details). 268

4 Intrinsic Evaluation 269

Following Polyjuice (Wu et al., 2021) and 270

MiCE (Ross et al., 2020), we evaluate Tailor gen- 271

erations on fluency, controllability, and closeness.5 272

Metrics. Fluency measures whether the gener- 273

ated text is grammatically correct and semantically 274

meaningful. Following Ross et al. (2020), we ask 275

whether perturbing a sentence with Tailor drasti- 276

cally changes its likelihood. We compute the loss 277

value for both the original and edited texts using a 278

pretrained GPT-2, and report the ratio of edited / 279

original. We aim for a value of 1.0, which indicates 280

equivalent losses for the original and edited texts. 281

4For example, if combined with WordNet (Miller, 1998),
Tailor perturbations can recreate natural logic (MacCartney
and Manning, 2014): In Table 3, doctor )adult creates an en-
tailment relationship, with “doctor” a hyponym of “adult.”

5We omit the diversity evaluation in Polyjuice, as the key-
word content control inherently impacts lexical diversity.
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Generator Closeness with the original Controllability on predicates Controllability on arguments
F1 Precision Recall Lemma Tense Voice Role Content Specificity

Tailor 64.3% 66.5% 73.4% 74.3% 80.3% 81.6% 70.5% 64.5% 64.5%
TailorMLE 58.5% 59.5% 68.6% 72.2% 70.2% 76.1% 60.3% 45.1% 45.1%

Table 4: Tailor generates perturbations that are close to the original sentence, while reasonably following all the
controls specified in Table 2. Through an ablation study where unlikelihood training is removed (TailorMLE), we
see that the controllability and closeness are both core benefits from unlikelihood training.

Controllability measures if the generator re-282

sponds to the designated control criteria. We rely283

on cycle consistency to evaluate the controls in Ta-284

ble 2, checking e.g., whether the predicted semantic285

roles on the generated text from an SRL predictor286

match the control codes in the input (i.e., whether287

“in the midst of the earthquake” in Figure 1 gets288

detected with a TEMPORAL tag). Since SRL predic-289

tions can be noisy, we manually inspected a subset290

of 98 generated spans, and verified that the cycle291

consistency measures positively correlate with true292

controllability measures (with Matthews correla-293

tion coefficient φ = 0.49, more details in §B).294

Closeness captures whether the generated sen-295

tence involves only necessary changes. Since our296

generator takes controls on the argument span level,297

we measure closeness with a weighted F1 score298

on the expected-to-change and actually-changed299

spans in the original sentence. We identify ex-300

pected changes from perturbation operations; in301

Figure 1A, all spans should be changed except for302

agent “the doctor.” Then, we deem a span actually303

edited if ≥ 50% tokens within a span is changed304

(e.g., “operation room” in LOCATIVE). We weigh305

spans by their lengths to arrive at the final F1.306

Results. We evaluate Tailor by perturbing 1,000307

randomly selected sentences from the OntoNotes308

5.0 development set, created the same way as we309

create negative samples during training (details in310

§A.1).6 Tailor generates fluent perturbations, with311

a loss ratio of 0.982, indicating no notable change312

in language modeling loss after the edit. As shown313

in Table 4, its generations also tend to be close to314

the original sentence (F1 = 64.3%), with reason-315

ably correct predicates (75%-80% of the time) and316

arguments (with 70% controllability on semantic317

roles, and ~65% on contents.) Through an ablation318

study comparing Tailor with a baseline that is fine-319

6Because these perturbations are generated randomly,
some result in sets of controls that are impossible to follow.
Thus, these results represent a lower bound on Tailor’s con-
trollability in downstream applications, for which strategies
would be designed in a more principled, targeted manner, re-
stricting the perturbations to result in more plausible sets of
controls. See §B for more details.

tuned on T5 without unlikelihood training (called 320

TailorMLE), we show that unlikelihood training en- 321

courages controls and minimal perturbations, with 322

the metrics increasing by up to 20%. 323

Further, as mentioned in §2.2, our input format 324

supports modulating fluency and closeness at gen- 325

eration time. In §B, we quantify the effects of 326

masking subsets of arguments or including more 327

empty blank tokens on closeness and fluency. 328

5 Application 1: Contrast Set Creation 329

We use Tailor to replicate contrast and challenge 330

sets for a variety of NLP tasks, including question 331

answering (BoolQ: Clark et al., 2019; SQuAD: Ra- 332

jpurkar et al., 2016), dependency tree parsing (UD 333

English: Nivre et al., 2016), and temporal relation 334

extraction (MATRES: Ning et al., 2018). 335

5.1 Replicating Contrast Sets with Tailor 336

As shown in Table 5, we take advantage of two key 337

properties of Tailor:7 First, Tailor can make per- 338

turbations that are context-dependent. To recreate 339

the BoolQ contrast set, we replicate change events 340

in Gardner et al. (2020) by replacing content key- 341

words in questions with words in the paragraph 342

that have the same semantic roles. For example, 343

the paragraph in Table 5 indicates “his bride” can 344

serve as an AGENT. Second, Tailor allows for com- 345

positonal changes. As in Table 5, we change prepo- 346

sitional phrase (PP) attachments from verb to noun 347

to recreate the UD Parsing contrast set through 348

the following composition of perturbation oper- 349

ations: append the preposition to the patient key- 350

word (e.g., “ham or sausages with”), change patient 351

keyword specificity from complete)partial (to 352

generate a new PP attaching to the patient), and 353

delete the argument with original verb attachment 354

(e.g., ADVERBIAL “with your breakfast”). 355

Manually creating contrast sets is expensive,8 356

whereas validating existing ones is more effi- 357

cient (Wu et al., 2021). We consider our perturba- 358

7Details on implementing perturbation strategies are in §C.
8e.g., Gardner et al. (2020) reported spending 10-15 min-

utes per perturbation for UD Parsing
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Dataset & Task Top-K validity

BoolQ contrast set (Gardner et al., 2020) 82% (k=1)

Original Paragraph:...his bride was revealed...Deadpool also discovers that he has a daughter...from a former flame.
Question: does [AGENT: Deadpool] [VERB: have] [PATIENT: a kid in the comics]? (Answer: True)

Strategy Change entity (AGENT:CHANGE_CONTENT(his bride))
Perturb. Question: does [AGENT: his bride] [VERB: have] [PATIENT: a kid in the comics]? (Answer: False)

UD parsing contrast set (PP attachment) (Gardner et al., 2020) 65% (k=10)

Original Sentence: Do [AGENT: you] [VERB: prefer] [PATIENT: ham or sausages] [ADVERBIAL: with your breakfast]?
PP attachment: Verb (“with your breakfast” attaches to “prefer”)

Strategy Swap attachment from verb to noun (verb→noun)
PATIENT:CHANGE_CONTENT(ham or sausages with),CHANGE_SPEC(partial);ADVERBIAL:DELETE

Perturb. Sentence: Do [AGENT: you] [VERB: prefer] [PATIENT: ham or sausages with bacon on them]?
PP attachment: Noun (“with bacon on them” attaches to “sausages”)

Matres contrast set (Gardner et al., 2020) 71% (k=1)

QA implication (Ribeiro et al., 2019) 81% (k=1)

Table 5: A demonstration of how we recreate contrast sets. Using primitive operations in Table 3, Tailor supports
context-aware and compositional changes. More examples (e.g., changing PP attachment noun→verb) are in §C.

tion strategies successful if they help reduce human359

labor, i.e., a contrast set author can easily label or360

take inspiration from Tailor’s generations. Two361

authors sampled 100 original instances per task,362

inspected the top-K Tailor perturbations, and la-363

beled an instance to be valid if there is at least one364

perturbation that changes the groundtruth answer365

while being fluent or requiring only minor fixes.9366

Table 5 shows that these Tailor perturbation strate-367

gies generate contrast sets with high validity.10368

5.2 Measuring Contrast Set Quality369

We assess the quality of Tailor-generated contrast370

sets by measuring their lexical diversity and im-371

pact on feature-level artifacts, both of which play372

important roles in dataset debiasing.373

We measure lexical diversity on UD Parsing con-374

trast sets because it involves sufficient generation375

of new content. We compare Tailor- and human-376

generated (Gardner et al., 2020) contrastive edits377

for the same 100 original UD instances: we ran-378

domly sample one contrastive edit for each valid379

instance, heuristically extract modified PPs, and380

compute diversity as the ratio of unique to total381

new tokens in the PPs, filtering stopwords. The382

ratios are 0.783 and 0.883 for Tailor and humans,383

respectively, for noun→verb, and are both 1.0 for384

9Because we exercised controls at different granularity (i.e.,
UD requires sourcing contents from the generator while others
mostly require syntactic rewrites with predetermined content),
we set k = 10 for UD—an upper bound for not overloading
the human inspector—and k = 1 for other tasks.

10As expected, Tailor achieves higher validity changing
PP attachment types noun→verb (82%) than verb→noun, as
the arguments by design attach to verb predicates, while noun
attachment is not an explicit part of the training objective and
is therefore harder for the generator.

verb→noun. Thus, Tailor can help generate con- 385

trast sets without significantly reducing lexical di- 386

versity. Tailor generations are also distinguishable 387

from humans’: their unique tokens only overlap for 388

< 15% in verb→noun, and ∼6% for noun→verb, 389

suggesting that Tailor can work as a collaborative 390

tool to diversify the pool of tokens. 391

Gardner et al. (2021) show that making minimal 392

perturbations reduces single-feature artifacts when 393

(1 + ei)/s = 2, where ei is the probability that 394

feature i is edited, and s is the probability that an 395

edit changes the label. We manually label the same 396

number of Tailor-perturbed examples as in the 397

original BoolQ contrast set, and find that Tailor 398

produces edits with an average value of (1+ei)/s = 399

1.74, which is close to that produced by humans 400

(1.94). Thus, making perturbations with Tailor can 401

help mitigate dataset biases (visualization in §C). 402

6 Application 2: Data Augmentation 403

We show that Tailor can be combined with (noisy) 404

automated labeling for data augmentation. Specifi- 405

cally, for the Stanford Natural Language Inference 406

(SNLI) task (Bowman et al., 2015), augmenting 407

training data with perturbations created by Tailor 408

increases model robustness to inference heuristics. 409

Following Min et al. (2020), we create aug- 410

mented data by perturbing SNLI hypotheses, such 411

that original hypothesis→premise and perturbed 412

hypothesis→hypothesis. We define five pertur- 413

bation strategies for NLI (§D), all of which ex- 414

press high lexical overlap, an inference heuristic 415

on which NLI models have been shown to rely 416

(Dasgupta et al., 2018; Naik et al., 2018). These 417

perturbations either preserve or alter the meaning 418
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HANS Subset
Training Data SNLI All Entail. Non-Entail.

SNLI Train 91.12 64.72 98.95 30.46
+ Tailor Perturb. 91.12 66.45 97.97 34.92

Table 6: Tailor augmentations lead to statistically sig-
nificant gains on the HANS challenge set, without de-
creasing in-domain accuracy.

of original hypotheses. For example, we change419

sentence meaning by replacing keywords of core420

arguments with noun chunks of other arguments421

(The judge behind the manager saw the doctors. →422

The doctors saw the manager.) Following Min et al.423

(2020), we map meaning-preserving perturbations424

to label entailment and others to neutral.425

We train classifiers built on RoBERTa-base (Liu426

et al., 2019) on different subsets of data: original427

SNLI train data (baseline) and SNLI train data with428

∼5% of hypotheses augmented with Tailor pertur-429

bations.11 For each subset, we train 20 models,430

each with a different random seed. We evaluate431

each classifier on the in-domain SNLI test set and432

the out-of-domain HANS test set (McCoy et al.,433

2019), which is designed to diagnose inference434

heuristics built on superficial syntactic properties.12435

As shown in Table 6, the augmentation leads436

to an out-of-distribution gain of +1.73 points on437

overall HANS and +4.46 points on the “non-438

entailment” subset. The gains are significant, with439

t = −3.26, p = 0.002 using Student’s t-test. Thus,440

Tailor perturbations decrease reliance on a well-441

known, lexical-overlap inference heuristic for NLI.442

7 Application 3: Style Transfer443

Here, we show how Tailor can be applied to style444

transfer. We evaluate Tailor without any fine-445

tuning13 on the StylePTB benchmark (Lyu et al.,446

2021), which builds on the Penn Treebank and as-447

sesses fine-grained stylistic changes, both on single448

transfers (e.g., To Future Tense) and compositional449

ones that concurrently edit multiple stylistic dimen-450

sions (e.g., To Future Tense+ Active To Passive).451

11We augment the original 549,367 SNLI train instances
with 30,147 total new instances. See §D for more details.

12For HANS, which contains binary labels, we collapse
neutral and contradiction predictions to non-entailment.

13This evaluation is zero-shot in spirit, as Tailor is not
trained on any paired transfers present in StylePTB. However,
it is unclear if the test inputs in StylePTB overlap with the
Ontonotes 5.0 training data, since the two do share some data
points (van Son et al., 2018), and StylePTB does not seem to
preserve original PTB splits. This leakage may advantage the
external SRL predictor in parsing StylePTB test inputs. Still,
this advantage should be minor, as the evaluated transfers do
not require complex semantic role parsing.

We evaluate Tailor on transfers for which Lyu 452

et al. (2021) show model results in the paper, ex- 453

cluding some that our semantic-role-derived inputs 454

are not well-suited (see §E). For each transfer, we 455

create perturbations for each predicate in the orig- 456

inal input, and report mean BLEU scores.14 Be- 457

cause this process results in multiple perturbations 458

(one per verb), we choose the one with the low- 459

est perplexity from GPT-2 to represent the transfer. 460

Unsuccessful transfers, either due to a failure of 461

perturbation strategy (e.g., no verbs are found by 462

our SRL predictor) or due to a degenerate output 463

(see §F), are given a BLEU score of 0.0. 464

We work with baselines reported by Lyu et al. 465

(2021): GPT-2 and RetrieveEdit are the best- 466

performing single-transfer models evaluated but 467

require separate models to be trained for each trans- 468

fer. CS-GPT* are models trained on compositional 469

subsets of data (e.g., Tense+Voice, detailed in Ta- 470

ble 7 caption). CS-Sys-Gen are ablations of CS- 471

GPT* trained only on corresponding individual 472

changes but evaluated on compositional transfers.15 473

We report a subset of the comparisons in Ta- 474

ble 7 (b), and the full result in Appendix E. On 475

compositional transfers, we find that Tailor out- 476

performs the baseline system trained without com- 477

positional fine-tuning, CS-Sys-Gen, on 8/9 compo- 478

sitions, and even outperforms CS-GPT* — mod- 479

els with compositional finetuning — on 5 cases. 480

It also achieves compatible or better results than 481

GPT-2 and RetrieveEdit on single transfers. Low 482

Tailor performance on some transfers (e.g., To- 483

Future+ActiveToPassive) appears to be driven by 484

unsuccessful transfers, rather than generations that 485

do not follow controls, as indicated by the higher 486

performances on the subset where unsuccessful 487

transfers are removed (Filtered Test). Importantly, 488

Tailor achieves these gains with a single model 489

and without any transfer-specific finetuning. 490

8 Related Work 491

Controllable text generation has been widely used 492

to influence various properties of generated text for 493

text summarization (Peng et al., 2019), data aug- 494

mentation (Lee et al., 2021), style transfer (Reid 495

and Zhong, 2021; Madaan et al., 2020a), adver- 496

sarial example generation (Iyyer et al., 2018), etc. 497

Most generators take simple labels like tense (Hu 498

et al., 2017), topic (Keskar et al., 2019), and sen- 499

14We report Bleu_1 from nlg-eval (Sharma et al., 2017).
15CS-Sys-Gen refers to CS-GPT-Zero in Lyu et al. (2021).
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(a) Single transfers
Single Finetune Compos. Finetune No Finetune

GPT-2* RetrieveEdit* CS-GPT-TV CS-GPT-TP Tailor
Test Test Test Test Test Filtered Test

To Future Tense 0.895 0.899 0.727 0.810 0.873 0.889 (357/364)
ADJ or ADV Removal 0.647 0.897 — — 0.781 0.843 (224/243)
PP Front to Back 0.398 0.541 — — 0.842 0.969 (20/23)
Active to Passive 0.476 0.681 0.472 — 0.556 0.778 (98/137)

(b) Compositional transfers
Compos. Finetune Multi-Single Finetune No Finetune

CS-GPT* CS-Sys-Gen* Tailor
Test Test Test Filtered Test

Tense +
Voice

ToPast+ActiveToPassive 0.409 0.337 0.660 0.660 (30/30)
ToPast+PassiveToActive 0.474 0.365 0.702 0.702 (65/65)
ToPresent+ActiveToPassive 0.503 0.445 0.315 0.614 (43/84)
ToPresent+PassiveToActive 0.523 0.424 0.699 0.699 (95/95)

Tense +
PPRemoval

ToPast+PPRemoval 0.772 0.542 0.738 0.797 (100/108)
ToFuture+PPRemoval 0.738 0.465 0.743 0.792 (215/229)

Table 7: BLEU scores for a subset of single and compositional style transfers in StylePTB (more in §E). Baseline
results are taken from Tables 14-16 and 19-20 in Lyu et al. (2021). * represents the same type of models finetuned
on different subsets of styles, e.g.,CS-GPT* in (b) includes CS-GPT-TV, trained on all Tense+Voice compositional
transfers, and CS-GPT-TP, on Tenses+PP Removal. A single Tailormodel helps achieve comparable performance
on single transfers compared to finetuned baselines, and is more capable on multiple compositional transfers.

timent polarity (Dathathri et al., 2020), which un-500

derspecify desired transformations. Recent work501

has explored using syntactic signals for paraphras-502

ing (Iyyer et al., 2018; Kumar et al., 2020), which503

are similar to ours in their high-dimensional specifi-504

cation. To the best of our knowledge, Tailor is the505

first to incorporate fine-grained semantic controls.506

Structured generation methods, which reconstruct507

sentences based on semantic representations, are508

also closely related. Abstract Meaning Represen-509

tation (Banarescu et al., 2013; Mager et al., 2020)510

is an alternative representation worth exploring,511

as it may further enable controls on entity recur-512

sions (Damonte and Cohen, 2019), though express-513

ing such relationships is nontrivial.514

Controlled generators have also been success-515

fully used to perturb text for model training,516

evaluation, and explanation. They usually rely517

on application-specific labels (Ross et al., 2020;518

Madaan et al., 2020b; Sha et al., 2021; Akyürek519

et al., 2020) or require pairs of original and per-520

turbed sentences (Wu et al., 2021), which are ex-521

pensive to generalize. Recently, Huang and Chang522

(2021) design SynPG, a paraphraser that can mimic523

parse tree structures learned from non-paired data.524

In contrast, we focus on fine-grained semantic per-525

turbations that can be composed.526

Also related are prior works creating minimally527

edited datasets through extensive human efforts,528

either through manual rewriting (Gardner et al.,529

2020; Kaushik et al., 2020), or perturbation func-530

tions and templates (e.g., (Andreas, 2020; Li et al.,531

2020; Ribeiro et al., 2020; Wu et al., 2019)). 532

9 Conclusion 533

We propose Tailor, a flexible system that enables 534

complex and context-aware perturbations useful for 535

various downstream applications. Tailor demon- 536

strates that it is possible to drive fine-grained per- 537

turbations with semantic features directly derived 538

from an instance. Crucially, it also shows that lan- 539

guage models can be finetuned to learn representa- 540

tions of control codes, if paired with unlikelihood 541

training, which encourages reliance on structured 542

controls, rather than surrounding natural text. Be- 543

yond the perturbation oriented tasks, we envision 544

Tailor supporting broader controlled generation 545

tasks, and encourage future work to explore alter- 546

native control signals for different objectives (e.g., 547

AMR and syntactic roles as in §8). 548

While being widely applicable, Tailor’s effec- 549

tiveness varies for different inputs. For example, 550

some inputs derived from SRL predictors may miss 551

rare semantic roles; Fortunately, this did not seem 552

to be a bottleneck, as empirically most tasks mod- 553

ify common arguments already recognized by the 554

predictors. Moreover, some text leads to occasional 555

degeneration. Future work can explore the effect 556

of penalizing generation at the span levels (vs. se- 557

quences) or more strategically balancing positive 558

and negative samples (as detailed in §F). Having 559

noted these opportunities, we believe Tailor is al- 560

ready a powerful tool for perturbations, and we 561

opensource it at [URL omitted]. 562
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A Tailor Generator Details907

A.1 Input and Output Formats908

All headers in inputs to the Tailor generator be-909

gin with predicate controls, followed by core910

argument controls (first AGENT, then PATIENT),911

and then randomly ordered adjunct argument con-912

trols (LOCATIVE, TEMPORAL, etc.). Secondary con-913

trols are always given in the order of control914

code+voice+tense:lemma for verbs and control915

code+keyword specificity:keyword content for ar-916

guments. We also blank the auxiliary verbs of the917

predicate in an input, using spacy to detect them.918

We exclude discontinuous arguments (e.g., those919

with raw SRL labels B-C-*), as well as those with920

referents (e.g., those with raw SRL labels B-R-*),921

from input headers. We map ARG0→ AGENT and922

ARG1→ PATIENT. For other numbered arguments,923

we create human-readable labels by using argument924

functions included in the PropBank frame for the925

given predicate (Palmer et al., 2005).926

On the output side, we ask the model to generate927

the full sentence (Table 1). We add the semantic928

roles for all the generated arguments, to help the929

generator build explicit mappings between the in-930

put control codes and the output spans – this can be931

important when the input codes are ambiguous (e.g.,932

a TEMPORAL argument and a LOCATIVE argument933

that both have keywords “in”). To use generations934

in downstream applications, we remove these con-935

trol codes to obtain cleaned outputs using regular936

expression matching.937

A.2 Training details938

Training inputs. During training, we randomly939

select, with equal probabilities, whether to mask940

all arguments or a subset of arguments. If a subset,941

we uniformly select the proportion of arguments942

to mask. To determine the number of extra blank943

tokens, we uniformly select a value less than 10944

and set the number of blanks to be the maximum of945

that selected value and the number of arguments to946

mask. Any extra blank tokens (i.e., remaining after947

masking arguments) are inserted between subtrees948

of the predicate.949

We also randomly select keyword contents and950

keyword specificities. For each argument span, we951

extract, using spacy, four keyword types from the952

span: noun chunks, random subtrees, exact key-953

words, and prefixes. For prefixes, we uniformly954

select a number of tokens to include as the key-955

word (from 1 to the entire span). Once we extract956

all keyword candidates, we create corresponding 957

keyword specificities: A keyword is complete if 958

it contains all tokens in the original span, partial 959

if it contains at least all but 5 tokens, and sparse 960

otherwise. Then, we uniformly select a keyword 961

content/specificity pair for each span from the set 962

of keyword candidates (including the * symbol).16 963

To generate unlikelihood samples, we use three 964

perturbation strategies on inputs: 1) Change seman- 965

tic roles by swapping thematic role control codes 966

(agent/patient), changing adjunct argument control 967

codes to a uniformly selected other adjunct control 968

code, and changing verb tense/voice. We swap verb 969

tense/voice because the control code VERB does not 970

have natural candidate swaps, given that predicates 971

are the building block for semantic parses. We 972

also swap the control codes in the target output. 2) 973

Change keyword contents by replacing verb lem- 974

mas and keywords for both the predicate and all 975

arguments. To make content swaps, we first gather 976

the most commonly occurring keyword contents 977

for each argument and predicate in Ontonotes 5.0 978

train, extracted according to the same process as 979

described above for creating training inputs. For 980

each primary control code and keyword specificity 981

(e.g., TEMPORAL+partial), we store the 15 most 982

commonly occurring keyword contents. To create 983

the negative inputs, for each span, we uniformly 984

sample from these stored keywords given the span’s 985

control code and keyword specificity. This pertur- 986

bation is designed to discourage the generator from 987

ignoring the keyword content and merely generat- 988

ing commonly occurring text for particular seman- 989

tic roles. 3) Change keyword specificities by uni- 990

formly selecting a different specificity. We weight 991

each unlikelihood sample equally, with a reward of 992

-1 (vs +1 for positive samples). 993

Hyperparameters. We train the Tailor genera- 994

tor using Transformers (Wolf et al., 2020) for 10 995

epochs with early stopping. We use batch size 4 996

and default values for other parameters (learning 997

16Because of how keywords are sampled, we notice that
the generator is sensitive to the case of keyword contents.
For example, if the keyword for a temporal span is In 1980
instead of in 1980, Tailor is biased towards generating it at
the beginning of the sentence. We hypothesize that because
some of the keywords we sample during training are cased
(e.g., exact will lead to a cased keyword for a capitalized span
beginning a sentence), the generator learns a bias towards
generating spans with uppercase keyword at the beginning of
the sentence. In applying the generator to perturbations, the
case of keyword contents can be used to manipulate the order
of generated roles when a certain order of generated contents
is desired; otherwise, uncased keywords can be used.
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rate of 5e-5, Adam optimizer).998

B Intrinsic Evaluation Details999

Effectiveness of cycle consistency. To evaluate1000

to what extent cycle consistency reflects true con-1001

trollability, we conducted additional manual an-1002

notation on role-following. We sampled 25 sen-1003

tences from the Ontonotes 5.0 development set,1004

transformed them into inputs with varying num-1005

bers of masked arguments and blank tokens, and1006

created up to two perturbed inputs per sentence1007

by randomly replacing their blanked adjunct argu-1008

ments with other candidate semantic roles (using1009

CHANGE_TAG). The candidate roles were extracted1010

from the frameset for each predicate verb. We1011

also changed the keyword specificity to SPARSE, to1012

make these role swaps more plausible.1013

We collected Tailor and Tailor MLE generations1014

from both the original and perturbed inputs, and1015

one author manually validated the generated span1016

for each specified argument (98 in total). Our anno-1017

tations were following or not following the control1018

(i.e., the span matches/does not match the desig-1019

nated semantic role), or the set of controls can be1020

impossible to follow if the human annotator could1021

not think of any generation that would satisfy the1022

control codes, due to a conflict between the role,1023

keywords, and blank placement. We then com-1024

puted the Matthews correlation coefficient (MCC)1025

between the controllability of the role label as mea-1026

sured by the SRL predictor with the gold controlla-1027

bility annotations for the subset of roles without an-1028

notation impossible. The MCCs are 0.49 and 0.511029

for Tailor MLE and Tailor, respectively, suggest-1030

ing that the cycle consistency measures positively1031

correlate with true controllability measures.1032

Additionally, we measure to what extent the con-1033

trollability measures from cycle consistency cor-1034

relate with whether a set of controls is impossible1035

to follow. The MCCs are -0.33 for both Tailor1036

and Tailor MLE; thus, incorrect role-following as1037

measured by cycle consistency is positively corre-1038

lated with controls that are impossible to follow.1039

14/98 instances were manually annotated as hav-1040

ing impossible-to-follow controls, suggesting that1041

a nontrivial proportion of the generations for which1042

our intrinsic evaluation measures in §4 found to be1043

unaligned with designated role control codes may1044

be explained by impossible-to-follow controls.1045

Modulating fluency and closeness. As men-1046

tioned in §2.2, our input format supports modu-1047

lating fluency and closeness at generation time. We 1048

can increase closeness by only masking the argu- 1049

ments we want to perturb. To quantify this effect, 1050

we randomly select only one argument to perturb 1051

for 1,000 sentences, but vary the number of argu- 1052

ments masked, and the number of empty blanks 1053

inserted. We maximize closeness when we only 1054

mask the target argument to perturb in the format 1055

of Table 1B (with F1 = 67.4%), whereas masking 1056

two extra arguments and inserting six extra blanks 1057

decreases closeness by 3% and 6%, respectively. 1058

On the other hand, we can trade-off closeness to 1059

prioritize fluency by adding more empty blank to- 1060

ken (e.g., when we insert extra roles whose optimal 1061

locations are not known in advance). We experi- 1062

ment with this setting on another 1,000 sentences, 1063

and observe that adding six extra blanks increases 1064

the fluency ratio from 0.93 to 0.95. 1065

C Contrast Set Details (§5) 1066

In Table 8, we illustrate our perturbation proce- 1067

dures for creating contrast sets. Besides BoolQ and 1068

UD English 17 already introduced in §5, the Matres 1069

contrast set Gardner et al. (2020) relies on within- 1070

sentence context: As a task that requires detecting 1071

and changing the temporal order of two verbs, our 1072

perturbations heavily rely on their syntactic rela- 1073

tionships. For example, to change the appearance 1074

order of verbs in text (as described in (Gardner 1075

et al., 2020)), we would take the parent verb as the 1076

base predicate, and MOVE the text span containing 1077

the child verb. For QA implication (Ribeiro et al., 1078

2019), we combine Tailor with semantic heuris- 1079

tics: by defining mappings between WH-words and 1080

answer types (e.g., “who” and “the Huguenots”), 1081

we can easily create new questions that are about 1082

different targets. 1083

As mentioned in §5, the Tailor-generated con- 1084

trast sets contain fewer artifacts compared to the 1085

original BoolQ validation set. Here, we provide 1086

a straightforward visualization to show the effect. 1087

As shown in Figure 2, many tokens in the origi- 1088

nal BoolQ validation data are biased towards the 1089

positive class (with the red dots distributed in the 1090

> 0.5 region), while most tokens in the edited set 1091

fall within the confidence region denoting no sig- 1092

nificant feature-level biases. 1093

17For UD Parsing contrast set generation, we use con-
strained decoding (Hokamp and Liu, 2017) to prevent genera-
tion of the original prepositional phrase.

14



Dataset & Task Top-K validity

Matres contrast set (Gardner et al., 2020) 71% (k=1)

Original Sentence: Volleyball is a popular sport in the area, and [AGENT: more than 200 people] would be [VERB:
watching] [PATIENT: the game], the chief said.
Order: watching happens after said

Perturbation strategy: Change tense
Edits VERB:CHANGE_VFORM(past)

→ [VERB+active+present )past: watch] Volleyball is...200 people <id_0> the game, the chief said.
Perturbed Sentence: Volleyball is a popular sport in the area, and [AGENT: more than 200 people] [VERB: watched]

[PATIENT: the game], the chief said.
Order: watched happens before said

Perturbation strategy: Change order
Edits PATIENT:MOVE

→ [VERB+active+past: say | AGENT+complete: Volleyball...the game] <id_0> , the chief said <id_0> .
Perturbed Sentence:[AGENT: the chief] [VERB: said] [PATIENT: Volleyball is a popular sport in the area, and more than

200 people would be watching the game].
Order: said happens before watch

BoolQ contrast set (Gardner et al., 2020) 82% (k=1)

Original Paragraph:...his bride was revealed in the webcomic...Deadpool also discovers that he has a daughter by the
name of Eleanor, from a former flame of Deadpool named Carmelita.
Q: does [AGENT: Deadpool] [VERB: have] [PATIENT: a kid in the comics]? (A: True)

Perturbation strategy: Change entity
Edits AGENT:CHANGE_CONTENT(his bride);

→ [VERB+active+present: have | AGENT+complete: Deadpool )his bride] does <id_0> <id_1> a kid in
the comics?

Perturbed Q: does [AGENT: his bride] [VERB: have] [PATIENT: a kid in the comics]? (A: False)

UD parsing contrast set (pp attachment) (Gardner et al., 2020) 65% (k=10)

Original Sentence: Do [AGENT: you] [VERB: prefer] [PATIENT: ham, bacon or sausages] [ADVERBIAL: with your
breakfast]?
PP attachment: Verb (“with your breakfast” attaches to “prefer”)

Perturbation strategy: Swap attachment to Noun
Edits PATIENT:CHANGE_CONTENT(ham, bacon or sausages with),CHANGE_SPEC(partial)

ADVERBIAL:DELETE
→ [VERB+active+present: prefer | PATIENT+complete )partial: ham, bacon or sausages
with | ADVERBIAL+complete: with your breakfast] <id_0> you <id_1> <id_2> <id_3>?

Perturbed Sentence: Do [AGENT: you] [VERB: prefer] [PATIENT: ham, bacon or sausages with bacon on them]?
PP attachment: Noun (“with bacon them” attaches to “sausages”)

Original Sentence: [AGENT: It] has [PATIENT: local boutiques and a diverse range of food at all prices and styles].
PP attachment: Noun (“at all prices and styles” attaches to “food”)

Perturbation strategy: Swap attachment to Verb
Edits PATIENT:CHANGE_CONTENT(local boutiques and a diverse range of food)

LOCATIVE:CHANGE_CONTENT(at),CHANGE_SPEC(partial)
→ [VERB+active+present: have | PATIENT+complete: local boutiques and a diverse range of food
at all prices and styles | LOCATIVE+partial: at] <id_0> you <id_1> <id_2> <id_3>?

Perturbed Sentence: [AGENT: It] has [PATIENT: local boutiques and a diverse range of food] [LOCATIVE: at every turn].
PP attachment: Verb (“at every turn” attaches to “has”)

QA implication (Ribeiro et al., 2019) 81% (k=1)

Original Q: [MANNER: How] did [AGENT: the Huguenots] [VERB: defend] [PATIENT: themselves]?
A: their own militia

Perturbation strategy: Swap answer to be agent
Edits AGENT:CONTENT(who); MANNER:CONTENT(their own militia),SPEC(partial)

→ [VERB+active+past: defend | AGENT+complete: the Huguenots )who | PATIENT+complete: them-
selves | MANNER+complete )partial: how )their own militia] <id_0> <id_1> <id_2> <id_3>?

Perturbed Q: [AGENT: Who] has [VERB: defended] [PATIENT: themselves] [MANNER: by setting up their own militia]?
A: the Huguenots

Table 8: A demonstration of how we recreate contrast sets for different tasks (§5). Using primitive operations in
Table 3, Tailor supports context-aware and compositional changes.
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Meaning Preserving Strategies

Untangle relative clause: For verbs with args containing relative clauses (i.e., roles with R-), delete context.

Original The [PATIENT: athlete] who was [VERB: seen] [AGENT: by the judges] [TEMPORAL: yesterday] called the manager

Edits CONTEXT(DELETE_TEXT)
→ [VERB+passive+past: see | AGENT+complete: by the judges | PATIENT+complete: the athlete |
TEMPORAL+complete: yesterday] <id_0> who <id_1> <id_2> <id_3> <id_4> called the manager

Perturb. The [PATIENT: athlete] was [VERB: seen] [AGENT: by the judges] [TEMPORAL: yesterday]

Shorten core: Change keywords for core args to root of original arg spans.

Original The [AGENT: athlete who was seen by the judges yesterday] [VERB: called] [PATIENT: the manager].

Edits AGENT:CHANGE_CONTENT(The athlete who was...)
→ [VERB+active+past: call | AGENT+complete: The athlete who was seen by the judges yesterday |
PATIENT+complete: the manager] <id_0> <id_1> <id_2> <id_3> <id_4>

Perturb. The [AGENT: athlete] [VERB: called] [PATIENT: the manager].

Change voice: Swap active/passive verb controls.

Original The [AGENT: athlete who was seen by the judges yesterday] [VERB: called] [PATIENT: the manager].

Edits VERB:CHANGE_VOICE(passive)|AGENT:CHANGE_CONTENT(by the athlete who was...)
→ [VERB+active )passive+past: call | AGENT+complete: by the athlete who was seen by the judges yesterday
| PATIENT+complete: the manager] <id_0> <id_1> <id_2> <id_3> <id_4>

Perturb. [PATIENT: The manager] was [VERB: called] [AGENT: by the athlete who was seen by the judges yesterday].

Meaning Changing Strategies

Replace core with subsequences: Change keywords of core args to noun chunks from other args.

Original [AGENT: The judge behind the manager] [VERB: saw] [PATIENT: the doctors].

Edits [VERB+active )passive+past: call | AGENT+complete: by the athlete who was seen by the judges yesterday |
PATIENT+complete: the manager] <id_0> <id_1> <id_2> <id_3> <id_4>

Perturb. [AGENT: The doctors] [VERB: saw] [PATIENT: the manager].

Swap core: Swap agent/patient.

Original [PATIENT: The athlete] who was [VERB: seen] [AGENT: by the judges] called the manager.

Edits SWAP_CORE
→ [VERB+passive+past: see | AGENT+complete: by the judges )athlete | PATIENT+complete: by the
athlete )judges] <id_0> <id_1> <id_2> <id_3> <id_4>

Perturb. [PATIENT: The judges] who were [VERB: seen] [AGENT: by the athlete] called the manager.

Table 9: Overview of perturbation strategies we apply to SNLI hypotheses in our augmentation experiments (§6).
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Figure 2: A comparison of the dataset artifacts in the
original BoolQ validation set and contrast set created
with Tailor. The figure is plotted in the same way as
Figure 2 in (Gardner et al., 2021).

D Data Augmentation Details (§6)1094

Augmented data. Our five perturbation strate-1095

gies are shown in Table 9. To create our augmented1096

data, we first filter generations by perplexity scores1097

from GPT-2 such that we retain 75% of generations.1098

Then, for each hypothesis we perturb, we uniformly1099

sample a successful perturbation. (An example of1100

a failed perturbation would be one requiring both1101

agent/patient roles, applied to a sentence without1102

both roles.) This process results in a slight skew1103

towards entailment labels (i.e., ≈ 2.75:1, entail-1104

ment:neutral). Future work can investigate to what1105

extent label imbalance affects augmentation results.1106

Classifiers. We train all SNLI classifiers, which1107

build on RoBERTa-base (Liu et al., 2019), using1108

AllenNLP (Gardner et al., 2018). We train for 101109

epochs using the Adam optimizer with a learning1110

rate of 2e-05 and batch size 32; we use early stop-1111

ping with a patience of 3.1112

E Style Transfer Details (§7)1113

Transfers Evaluated. We evaluate on the trans-1114

fers in StylePTB for which Lyu et al. (2021) report1115

results, as their baselines require training separate1116

models for each transfer. Within this subset of1117

transfers, we exclude PP Back to Front and Pas-1118

sive to Active from evaluation, as they contain < 51119

test inputs. We also exclude the transfers Substate-1120

ment Removal, Information Addition, Adjective Em-1121

phasis, and Verb/Action Emphasis, for which our1122

semantic-role-derived inputs are not well-suited.1123

For example, Substatement Removal involves re-1124

moving substatements that represent “referring”1125

and “situations,” both of which are technical philo-1126

sophical concepts that cannot be straightforwardly1127

detected through semantic roles. As another ex- 1128

ample, Information Addition requires adding un- 1129

ordered keyword contents to a sentence (eg the 1130

work force provides the third arm of the alliance; 1131

add keywords: force black→ the work force pro- 1132

vides the third arm of the black alliance force. 1133

While the Tailor generator was only trained with 1134

ordered arguments, one could extend the keyword 1135

contents to also include unordered target tokens. 1136

Perturbation strategies. For transfers modify- 1137

ing only verb tense (e.g., To Future Tense), we 1138

mask the verb, modal arguments, and negation ar- 1139

guments, as these are relevant to verb conjugations, 1140

and make relevant perturbations on the secondary 1141

verb control specifying tense. For transfers mod- 1142

ifying verb voice, we mask the verb, agent, and 1143

patient. For transfers requiring removal of certain 1144

parts of speech (POS)—i.e., ADJ or ADV Removal, 1145

PP Removal, and all compositional Tense + PP 1146

Removal sub-transfers —we first use spacy to de- 1147

tect such POS, next mask all arguments containing 1148

them, and finally perturb the keyword contents to 1149

remove the POS for these arguments. For PP Front 1150

to Back, we mask the argument at the beginning of 1151

the original text and implement the change using 1152

CHANGE_IDX. 1153

We use cased keywords (A.2) to encourage gen- 1154

erations with similarly ordered arguments as the 1155

original sentence, except for the PP Front to Back 1156

transfer, which calls for differently ordered argu- 1157

ments. For transfers modifying verb form only, we 1158

set the number of extra blanks to be 2 to allow for 1159

generation of helper verbs; for other transfers, we 1160

allow for 0 extra blanks to preserve the original 1161

order of generated spans. 1162

We decode perturbed sentences greedly using 1163

beam search (with beam width 10) and preventing 1164

repeated bigrams. 1165

F Degenerate Outputs 1166

We observe that Tailor produces degenerate out- 1167

puts for some inputs, as shown in Table 11. We 1168

hypothesize that this is a byproduct of unlikeli- 1169

hood training: The generator may learn to reduce 1170

the likelihood of negative sequences by generating 1171

tokens that are very unlikely to appear in natural 1172

text. Certain generation hyperparameters, such as 1173

the number of beams, can reduce the number of 1174

degenerate outputs. While we perform unlikeli- 1175

hood training at the sequence level, future work 1176

can investigate the effect of penalizing generation 1177
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(a) Single transfers
Single Finetune Compos. Finetune No Finetune

GPT-2 RetrieveEdit CS-GPT-TV CS-GPT-TP Tailor
Test Test Test Test Test Filtered Test

To Future Tense 0.895 0.899 0.727 0.810 0.873 0.889 (357/364)
To Past Tense 0.836 0.935 0.694 0.834 0.884 0.893 (216/218)
To Present Tense 0.754 0.909 0.733 0.826 0.710 0.847 (175/209)
ADJ or ADV Removal 0.647 0.897 — — 0.781 0.843 (224/243)
PP Front to Back 0.398 0.541 — — 0.842 0.969 (20/23)
PP Removal 0.763 0.798 — 0.760 0.717 0.857 (199/238)
Active to Passive 0.476 0.681 0.472 — 0.556 0.778 (98/137)

(b) Compositional transfers
Compos. Finetune Multi-Single Finetune No Finetune

CS-GPT* CS-Sys-Gen* Tailor
Test Test Test Filtered Test

Tense +
Voice

ToPast+ActiveToPassive 0.409 0.337 0.660 0.660 (30/30)
ToFuture+ActiveToPassive 0.496 0.419 0.468 0.670 (90/131)
ToFuture+PassiveToActive 0.528 0.399 0.683 0.683 (131/131)
ToPast+PassiveToActive 0.474 0.365 0.702 0.702 (65/65)
ToPresent+PassiveToActive 0.523 0.424 0.699 0.699 (95/95)
ToPresent+ActiveToPassive 0.503 0.445 0.315 0.614 (43/84)

Tense +
PPRemoval

ToFuture+PPRemoval 0.738 0.465 0.743 0.792 (215/229)
ToPast+PPRemoval 0.772 0.542 0.738 0.797 (100/108)
ToPresent+PPRemoval 0.709 0.545 0.691 0.704 (153/156)

Table 10: The full stylePTB results, extending Table 7.

Input Degenerate Output

[VERB+passive+past: lower | AGENT: * | PATIENT+partial:
corporate bonds | TEMPORAL+complete: this year] One indication
of a growing number of junk defaults , Mr. Asquith says , is that
about half of the $ 3 billion of <id_0> that <id_1> <id_2> <id_3>
to a default rating <id_4> <id_5> are junk bonds sold during the
market ’s big issue years of 1984 through 1986 ..

pastra pastra sanatate sanatate pastraurmatoarele
sanatateurmatoarele pastradatorita sanatatedatorita
pastracresterea sanatate urmeaza sanatateinformatiile
sanatatecresterea pastra urmeaza urmeaza
pastrainformatiileinformatiiledatoritadatoritaurmatoarele.

[VERB+active+present: visit | AGENT: * | PATIENT+partial:
Galilee | TEMPORAL: *] <id_0> went to <id_1> <id_2> <id_3> .

AG pastra pastra sanatate sanatate pastraurmatoarele
sanatateurmatoareleurmatoarele pastrainformatiile sanatate-
informatiileinformatiile pastradatorita sanatatedatoritadatori-
taurmatoareledatoritainformatiile dumneavoastra sanatate
urmeaza sanatatecresterea

Table 11: Example inputs from the validation set for which the Tailor generator outputs degenerate text.

at the level of tokens or spans, which may provide1178

finer-grained signals for which spans should be1179

considered unlikely, as well as more strategically1180

balancing positive and negative samples.1181

Filtering. To exclude degenerations when using1182

Tailor generations in downstream applications, we1183

employ a combination of heuristics and perplexity-1184

based filtering. As shown by the examples in Ta-1185

ble 11, degenerate outputs are easy to detect: We1186

can simply search for whether the output includes1187

“sanatate.” We also use cutoffs in perplexity scores1188

computed with GPT-2 to filter degenerations, as1189

degenerations have significantly lower perplexities1190

than non-degenerate outputs: For generations for1191

300 randomly sampled validation inputs, the Tailor1192

generator produced generations with a mean per-1193

plexity of -346.46 for degenerate outputs (12/300)1194

compared to -86.747 for others.1195
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