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Abstract

Learning invariant representations has been the long-standing approach to self-supervised
learning. However, recently progress has been made in preserving equivariant properties in
representations, yet do so with highly prescribed architectures. In this work, we propose an
invariant-equivariant self-supervised architecture that employs Capsule Networks (CapsNets),
which have been shown to capture equivariance with respect to novel viewpoints. We
demonstrate that the use of CapsNets in equivariant self-supervised architectures achieves
improved downstream performance on equivariant tasks with higher efficiency and fewer
network parameters. To accommodate the architectural changes of CapsNets, we introduce
a new objective function based on entropy minimisation. This approach, which we name
CapslE (Capsule Invariant Equivariant Network), achieves state-of-the-art performance
on the equivariant rotation tasks on the 3DIEBench dataset compared to prior equivariant
SSL methods, while performing competitively against supervised counterparts. Our results
demonstrate the ability of CapsNets to learn complex and generalised representations for
large-scale, multi-task datasets compared to previous CapsNet benchmarks. Code is available
at \hitps://github.com/Aberdeen ML /CapsIE.

1 Introduction

Equivariance and invariance have become increasingly important properties and objectives of deep learning
in recent times, with precedence being largely placed on the latter. The task of invariance, i.e., being able to
classify a specific object regardless of the camera perspective or augmentation applied, has driven progress
in modern self-supervised learning approaches, specifically those that follow a joint embedding architecture
(Assran et all [2022} Bardes et al.l 2022; |(Chen et al.| |2020). Equivariance, on the other hand, is the task
of capturing embeddings which equally reflect the translations applied to the input space in the latent
space. Equivariance thus has become an important property to capture to enable the learning of high-quality
representations in the real world, where transformations such as viewpoint are essential.
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(a) Schematic overview of the CapslE architecture. (b) Generalised visualisation of the CapsNet projector.

Figure 1: Left: Schematic overview of the proposed CapslIE architecture. Representations are fed
into a CapsNet projector, and the output embeddings Z,c; and Zpese correspond to invariant and equivariant
embeddings, respectively. Right: Generalised view of a Capsule projection head. CNN feature
maps are transformed via the primary capsules into poses u;, represented by cylinders, and activations a;,
represented by circles. Poses are transformed to votes, which represent a lower-level capsule’s prediction for
each of the higher-level capsules. The routing process then determines how well these votes match the concept
represented by the upper-level capsule, thereby creating the coupling coefficients. Coupling coefficients inform
u; and a;, the output of the capsule projector head.

Self-supervised learning owes its success to invariant objectives, where all recent progress, whether that is
by contrastive (Chen et all 2020]), information-maximisation (Bardes et al) [2022; Zbontar et al., [2021)),
or clustering-based methods (Caron et al. 2021; |Assran et al., [2022) rely on ensuring invariance in their
representations under augmentation. This setting ensures performance in classification-based tasks; however,
when employing the representations in alternative tasks, preserving information is essential to improve
generalisation. To maintain properties of the transformation, one can predict the augmentations applied
(Dangovski et all, 2022} [Lee et all [2021), yet this is typically not considered truly equivariant, given that the
mapping of transformations is not represented in the latent space. Methods that employ such a prediction
methodology are typically considered equivariant, as the transformation in the input space is preserved in the
latent space. Here, prediction networks are employed to reconstruct the view prior to transformation
2022)), learn symmetric representations (Park et all 2022)), or predict the latent representation of the
transformed view from the representation of the original view given the transformation parameters

et ], 2023).

The above methods, although promising, enforce equivariance via objective functions on vector representations,
yet these methods fail to employ architectural approaches that have been shown to be capable of better
capturing these properties. Capsule Networks (CapsNets), which utilise a process called routing (Sabour
et all, 2017} Hinton et al. 2018} [Everett et al., 2023} [Hahn et al.l [2019; De Sousa Ribeiro et al, [2020; Liu;
et al.l [2024)), are one such architecture, exhibiting desirable properties that other state-of-the-art (SOTA)
architectures, such as Vision Transformers (ViTs) and CNNs, lack. Specifically, CapsNets have demonstrated
a natural ability to possess strong viewpoint equivariance and viewpoint invariance properties. They achieve
this through their ability to capture equivariance with respect to viewpoints in neural activities, and invariance
in the weights. In addition, viewpoint changes have nonlinear effects on pixels but linear effects on object
relationships (De Sousa Ribeiro et all 2020} [Hinton et all, [2018). Ideally, these properties could lead to the
development of more sample-efficient models that can exploit robust representations to better generalise to
unseen cases and new samples.

However, a common argument is that CapsNets have only shown these properties on toy examples such as
the smallNORB dataset (LeCun et all [2004)), which many would consider irrelevant for modern architectures.
Despite this, small CapsNets outperform much larger CNN and ViT counterparts (Everett et al. [2023)). In
this work, we propose a novel CapsNet formulation and corresponding objective function, achieving SOTA
on equivariant viewpoint rotation tasks on the 3DIEBench dataset (Garrido et al., 2023), which has been
created to specifically benchmark equivariant and invariant properties of deep learning models. We prove
that CapsNets retain their desirable properties on this dataset, which is considerably more difficult than what
has been previously achieved with CapsNets, while also establishing new SOTA for this dataset.
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To summarise, our contributions are:

¢ We propose a novel architecture (Figure [1) based on a Capsule Network projection head that utilises
the key assumptions of capsule architectures to learn equivariant and invariant representations, which
does not require the explicit split of representations.

o We design a new objective function to accommodate the employment of a CapsNet projector, enforcing
invariance through entropy minimisation.

e We show state-of-the-art performance on 3DIEBench classification for equivariance benchmark tasks
from our CapsNet-based architecture.

2 Problem Statement

Typically, self-supervised learning maximises the sim-

ilarity between embeddings of two augmented views | ariant
of an image such that they are invariant to augmen-  Objective
tations, and instead capture semantically meaningful
information of the original image. Views x and '
are each transformed from an image d € R®*"xw px(a) - 21
sampled from dataset D by image augmentations ~  FEER SEEE  EEEEEEEEE oy
7,7 ~ T sampled from a set of augmentations
T. Embeddings are obtained by feeding each view
through an encoder fy, where the output represen-
tations y,y’ are fed through a projection head hy to  Equivariant
produce embeddings z,z’ whose similarity is max-  Objective
imised. However, it is detrimental in many settings
that f is invariant to all transformations; instead,
in this work, we are focused on ensuring that f is
equivariant to viewpoint transformations. To train
for and evaluate such properties, we base our study ) ) DT
on the challenging 3DIEBench dataset and the cor- 2% encod('er .network: _TOP the invariance obqectlve
responding problem definition presented in is to maximise the similarity between embeddings of

ot al] (2023). views originating from the same image. Bottom the
- equivariance objective aim to learn the transformations

As defined in |Garrido et al| (2023) in which the py(g) -z applied to z.

dataset was proposed the goal (visually depicted in

Figure is to learn an encoder network f and predictor network P to construct representations that
are equivariant to viewpoint transformations when the transformation group action p on the input is not
known, but the group elements g that parameterise the transformations are known. Further details of these
transformations and the benchmark 3DIEBench dataset and the group theory defining the problem statement
are given in Sections [A-1] and [AZ2] respectively.

Minimise Maximise
Similarity Similarity

Zo

Predict Rotation
Figure 2: Visual depiction of the problem state-
ment. Two images are represented by subscripts 0, 1

while view under transformation g is given by /. Ar-
rows represent the construction of embeddings from

3 Method

3.1 Architecture

Our method, which we name CapsIE (Capsule Network Invariant Equivariant), follows the general joint
embedding architecture previously described in Section [2] and extends those proposed by VICReg
and Split Invariant Equivariant (SIE) |Garrido et al| (2023) methods. Like previous methods, we
employ a ResNet-18 He et al. encoder as the core feature extractor fy of our network. Yet, unlike STE
|Garrido et al.| (2023), we do not split the representations, and therefore do not require the use of separate
invariant and equivariant projection heads. Instead, we employ a single CapsNet (described in Section
which takes as input the full representation of the encoder in place of the multi-layer perceptron (MLP) in
the projection head hy. Given the architectural design of CapsNets, our projection head outputs both an




Published in Transactions on Machine Learning Research (10/2025)

activation scalar, representing how active the capsule is, and a 4 x 4 pose for each capsule. A simplified visual
representation can be seen in Figure

To align with the above problem statement and Equation 8] we aim to simultaneously learn invariant and
equivariant representations by optimising our network f with respect to the output activations and poses.
In this case, we consider the vector of activations to capture the existence of semantic concepts/objects
of the input; thus, the invariant information is preserved by the transformation. The pose, on the other
hand, is designed to encode positional information related to each corresponding capsule (De Sousa Ribeiro|
(i.e. semantic concept), therefore, it contains equivariant information that was changed by
the transformation. Akin to the SIE method, we therefore consider two embedding vectors for each image
view, Zact and Zpose, Which correspond to the capsule activation and pose, and invariant and equivariant
components, respectively.

To enforce our network to learn equivariant properties we utilise a prediction network p,;, , which takes as input
the transformation g and zpese to predict zgose, and hence learn py (g). In our setting, g € R? corresponds to
Tait-Bryan angles of the rotation applied [6] For prediction and the subsequent evaluation, quarterions are
employed in place of the Tait-Bryan angles. In this work, we employ the hypernetwork approach proposed by
(Garrido et all,[2023), which uses a linear projector that takes as input the transformation parameters g to
parameterise an MLP predictor. Such a network avoids the case where the transformation parameters g are
ignored and the predictor provides invariant solutions. We present more details of the predictor network in
the appendix, and visually depict the full CapsIE architecture in Figure [I]

3.2 Capsule Network Projector

Image Activation Pose
Capsule Viewpoint Equivariance CapsNets are de-
signed to handle spatial hierarchies and recognise objects = 8;?;0 p /
regardless of their orientation or location, achieving equiv- :i; PN & g

ariance through their structure (Ribeiro et al., [2020). A 00 0 1
capsule is a group of neurons — vector-based represen-
tations — representing instantiation parameters such as

position, orientation, and size. Before any routing process . 0504 O? 0
begins, lower-level capsule poses u; are transformed to n % 0.9 ojg;g
upper-level capsule poses wuj); which align with concepts = 00 oo
represented by higher-level capsules, preserving spatial

relationships and hierarchical information. It is then de-

termined through the routing process how well these trans- R 1804068 O
formed poses correspond with the concept represented by SN % o 0?2: 3
the upper-level capsule. CapsNets, unlike convolution, & 00 o

excel in achieving viewpoint invariance and viewpoint
equivariance as they can capture equivariance with re-
spect to viewpoints in neural activities, and invariance
in the network’s weights (De Sousa Ribeiro et al. [2024)).
Consequently, capsule routing aims to detect objects by
looking for agreement between their parts, thereby per-
forming equivariant inference.

Figure 3: Simplified visual representation of
CapsNet outputs. Vector of activations outputs
the probability of each capsule being activated,
whereas the pose matrix corresponds to the object
pose in relation to the frame.

Self Routing Capsule We use the Self Routing Cap-

sNet (SRCaps) (Hahn et al., [2019) based on the efficiency of its non-iterative routing algorithm. We consider
the trade-off of a small amount of classification accuracy to be acceptable when comparing the performance
of SRCaps to other capsule architectures, which require significantly more resources to train. Based on the
size of the 3DIEBench dataset, these other routing algorithms would be unsuitable.

SRCaps calculates the coupling coefficients between each capsule in lower layer ¢ with each capsule in upper
layer j to produce the coupling coefficients ¢;;. It does so by using a learnable routing matrix W7oute
multiplied with the lower capsule pose vector u;, mimicking a single-layer perceptron to produce routing
coeflicients b;; which when passed through a softmax function produce coupling coefficients ¢;;. Additionally,



Published in Transactions on Machine Learning Research (10/2025)

we determine the activation of upper-level capsules a; by first multiplying a; by c;; to create votes and then
dividing this by a; to create weighted votes.

D icq, Ciji
Eieﬂz @

The output pose of a capsule layer is calculated using a learnable weight matrix WP°%¢ which when multiplied
with u; provides a capsule pose of each lower-level capsule for each upper-layer capsule i.e u;|;. Following the
same procedure as the activations, u; is the weighted sum of these poses by a;.

c;j = softmax(W/""“u;);, a; =

(1)

D icq Cijaitly)i

{11, = WPy, R
Uy =Wy u,  uj = > o
1€Q T

(2)

3.3 Objective Functions

Invariant Criterion. To train our aforementioned architecture, we first introduce an invariant objective
as the cross entropy between activation probability vectors, H (Zact, Z!..) where Z refers to the matrix
embeddings over a batch. The aim is to enforce embedding probability pairs originating from the same image
to be matched. To avoid trivial solutions and collapse to a single capsule, we employ the mean entropy
maximisation regularisation (Assran et al., 2021} 2022)) on the same activation probability vectors to encourage
the model to utilise the full set of capsules over a batch. This regularisation maximises the entropy of the
mean probabilities H(Zact) and H(Z..,), where Zoox = + Zf;l Zact and B is the batch size.

Equivariant Criterion. As previously stated in Section [2| our goal is to learn the predictor py 4 to
model py(g) as to enforce equivariant representations. This is achieved by minimising a L2 (Euclidean
Distance) objective between the output vector of the predictor py, 4(Zpose) given translation parameters g and
equivariant representation Zpese, and the augmented view’s equivariant representation vector Zj .. To avoid
collapse and improve training stability we also regularise the output of py ¢(Zpese) by ensuring the variance
of the predicted equivariance representation is 1 to avoid collapse. Whereas, SIE (Garrido et al., |2023) finds
this to be an optional but recommended component, we found in practice, without such regularisation the

predictor would consistently collapse to trivial solutions.

As with the activation vector, we employ variance—covariance regularisation on the pose to prevent the
representations from collapsing into trivial solutions. The variance objective V' ensures that all dimensions d
in the embedding vector are equally utilised while the covariance objective C' decorrelates the dimensions to
reduce redundancy across dimensions. The regularisation for equivariant vectors L.c, is given by

Lieg(Z) =X C(Z)+ Ay V(Z), where (3)

Zcov )7, and V(Z ;zd: ax(O 1—+/Var(Z. )) (4)

15 =1

The final objective function is given by the weighted sum of the individual objectives:

‘C(Zacta Zalwt’ Zposm Z;ose) )‘ian(Zacb Z;ot) (H(Zact) + H(Zz;ct)) (5)
1 N

Aequiﬁ Z ||pw,gi (ZLPOSE) Z/ poquQ (6)
i=1

EFEg(Zpose) + ‘CrEg( pose) + AvV(pw gl(Zi,pose))- (7)

4 Experimentation

4.1 Training Protocol

To directly compare with prior works employing the 3DIEBench dataset, we follow an identical training
protocol, as defined in |Garrido et al.| (2023)). All methods employ a ResNet-18 encoder network (fy). For the
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Table 1: Evaluation of invariant properties via downstream classification task. Representations are
learnt under the invariance and rotation equivariant objective. We evaluate both the representations and the
intermediate embeddings of the projection head under varying numbers of capsules. FLOPs and Parameters
correspond to computation during training, -’ refers to non-compatible experiments. For non-capsule models,
‘AIl, ‘Inv., and ‘Equi’ refer to the full vector representation, the "left" half representation optimised under the
invariant objective, and the "right" half representation optimised under the equivariant objective, respectively.
For capsule networks, ‘Inv.’, and ‘Equi’ refer to the activation vector and pose matrices, respectively.

Computational Load Embedding Dims Classification (Top-1%)
Method Parameters # FLOPs Inv. Equi. | All Inv. Equi.
Supervised
ResNet-18 11.2M 3.09G - - 87.47 - -
SR-Caps - 16 11.0M 3.16G - - - 73.85 -
SR-Caps - 32 13.0M 4.27G - - - 59.70 -
SR-Caps - 64 18.7M 8.22G - - - 69.45 -
Encoder Representation
SIE 20.1M 13.07G 512 512 82.94 82.08 80.32
CapslE - 16 12.7M 3.49G 16 256 76.51 - -
CapslE - 32 14.7M 4.57G 32 512 79.14 - -
CapslE - 64 20.4M 8.69G 64 1024 79.60 - -
Projector - 1st Intermediate Embedding
SIE 20.1M 13.07G 512 512 - 80.53 77.64
CapslE - 16 12.7M 3.49G 16 256 - 74.90 -
CapslE - 32 14.7TM 4.57G 32 512 - 78.60 -
CapslE - 64 20.4M 8.69G 64 1024 - 79.24 -

projection head (hg), we compare various hyperparameterisations, which we describe in the following sections.
For primary benchmarking we train our model for 2000 epochs using the Adam |[Kingma & Ba| (2014) optimiser
with default settings, a fixed learning rate of le-3 and a batch size of 1024. For ablations and sensitivity
analyses we train for 500 epochs and employ a batch size of 512, with other settings remaining unchanged.
We have found in practice that 500 epochs presents a strong correlation with performance. For all evaluations,
pre-training was done with the equivariant criterion optimising for viewpoint rotation transformations. Full
details on these transformation groups and the criteria are given in prior sections. By default the objective
function weighting are as follows, Ainy = 0.1, Aequi = 5, Ay = 10, A¢ = 1. Each self-supervised 2000-epoch
pretraining run took approximately 22 hours using three Nvidia A100 80GB GPUs for the 32 capule model,
whereas the 64 capsule models, and required approximately 25 hours using six Nvidia A100 80GB GPUs. For
comparison SIE training took approximately 26 hours using three Nvidia A100 80GB GPUs. All evaluation
tasks are completed on a single Nvidia A100 80GB GPU and take approximately 6 hours for angle prediction,
and 3 hours for classification. Given the computational overheads involved, all results are presented as a
single run where the seed is set to “2224” with exception to Table. [ where the mean and standard deviation
of 5 seeds are reported.

4.2 Downstream Evaluation

To evaluate the quality of representations learnt under the invariant and viewpoint rotation equivariant
self-supervised criterion, we use the standard benchmark approach of learning downstream task-specific
networks with frozen representations as input. In our case, we evaluate the representations in three distinct
tasks to evaluate both invariant and equivariant properties. We use a linear evaluation training protocol of
the frozen representations. Further details of the evaluation protocol are given in the appendix

Invariant Evaluation. To evaluate invariant properties of the representation, we train a classifier on either
the frozen representations output from the encoder network or the intermediate embeddings of the capsule
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network projector. Given our advocacy for CapsNets, we evaluate using both the standard linear classification
and a capsule layer whose number of output capsules is set to the number of classes. All methods are trained
for 300 epochs by cross entropy.

Equivariant Evaluation. Evaluating equivariant properties is achieved through a rotation prediction task
in which a three layer MLP is trained to predict the quaternions defining the rotation between two views of
the same object. We train for 300 epochs using MSE loss. Similar to rotation prediction, we evaluate the
representation’s equivariant properties by regressing the colour hue of an object view. We train a single linear
layer for 50 epochs using MSE. For evaluating the performance of predicting equivariance, we use the metric
)2

R2=1- % where {y;} are the ground truth (target values of the equivariance), g is the mean value
of these targets, and {f;} are the predictions. Higher R? indicates the model has a better fit for predicting
equivariant transformations.

Table 2: Evaluation of equivariant properties via downstream rotation prediction (left) and
colour prediction (right) tasks. Representations are learnt under the invariance and rotation equivariant
objective, we evaluate both the representations and the intermediate embeddings of the projection head under
varying number of capsules. ‘-’ refers to non-compatible experiments. For non-capsule models, ‘All’, ‘Inv.,
and ‘Equi’ refer to the full vector representation, the "left" half representation optimised under the invariant
objective, and the "right" half representation optimised under the equivariant objective, respectively. For
capsule networks, ‘Inv., and ‘Equi.’ refer to the activation vector and pose matrices, respectively.

Rotation Prediction (R?) Colour Prediction (R?)
Method All Inv. Equi. ‘ All Inv. Equi.
Supervised
ResNet-18 0.76 - - 0.99 - -
SR-Caps - 16 - - 0.83 - - 0.99
SR-Caps - 32 - - 0.84 - - 0.99
SR-Caps - 64 - - 0.80 - - 0.99
Encoder Representation
SIE 0.73 0.23 0.73 0.07 0.05 0.02
CapslE - 16 0.68 - - 0.02 - -
CapslE - 32 0.74 - - 0.04 - -
CapslE - 64 0.72 - - 0.01 - -
Projector - 1st Intermediate Embedding
SIE - 0.38 0.58 - 0.45 0.09
CapslE - 16 - - 0.64 - - -0.01
CapslE - 32 - - 0.71 - - -0.04
CapslE - 64 - - 0.67 - - -0.09

Representation Quality. The performance of CapslE for both invariant and equivariant benchmark tasks
is given in Tables [1] and [2], respectively. We evaluate both the representations produced by the ResNet-18
encoder and the intermediate embeddings of the capsule layer projection head given different values for
the number of capsules. We observe that across all models that the invariant properties captured within
the representations marginally suffer compared to the MLP projector of SIE. This observation is expected
given the significantly reduced number of embeddings employed in the invariant criterion compared to SIE.
However, the evaluation of equivariant properties captured by the representations demonstrates that the use
of a capsule projector in place of an MLP can lead to marginally improved performance in rotation prediction
(1 0.01 R?) advancing the prior state-of-the-art whist also approaching the supervised baseline.

Additionally, we include a colour prediction task as a diagnostic test to determine whether the capsule
projector additionally encodes colour changes, an additional group element, without being explicitly optimised
to do so. We hypothesise that poor colour prediction from CapsIE’s pose is due to its optimisation being
directly for angle and pose changes only. Since we observe these results with R? slightly below zero. However,
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given the negative score is very marginal, around the zero mark, we do not interpret this as a significant
negative correlation. Future investigations into the more significant negative correlation of the 64-capsule
model, and whether the score negatively correlates with the number of capsules, are warranted. In Table
[2l we can conclude that capsules do not inherently encode colour information under such strong objectives.
This is beneficial as it allows for more finegrained control for properties that are optimised for and does not
arbritarily encode additional group elements.

Intermediate Projector Embeddings. The role of the projector is primarily employed to decorrelate
the embeddings on which the objective function operates on from the representations employed downstream.
The premise is to avoid representations that are over-fit to the self-supervised objective (Bordes et al., [2023).
However, it has been well studied that it can be beneficial to maintain a number of projector layers and instead
utilise intermediate projector embeddings for downstream tasks. Specifically, the equivariant information
that has been shown to be captured in the object pose (De Sousa Ribeiro et al., [2024)).

We evaluate the intermediate embeddings output from the primary capsule layer in the same manner as the
representations; however, the activations and pose are given over a spatial region, so we perform average
pooling to return an activation vector and a 4 x 4 pose for each capsule, which we then flatten into a vector.
As with the representation evaluation, we report our invariant and equivariant task performance in Tables
and [2] respectively. We find that evaluating the intermediate embeddings of the capsule projector consistently
leads to improved performance on rotation-equivariant tasks compared to SIE intermediate embeddings across
all settings. In our case, we demonstrate that the preservation of capsule layers for downstream tasks results
in significantly better evaluation performance of the representations, suggesting that capsule nets preserve
such properties of interest compared to MLPs. Further investigations into this phenomenon are left to future
research.

4.3 Quantitative Evaluation of Equivariance

To quantitatively evaluate the equivariant performance of our method and capsule projector, we provide
evaluations in line with those proposed in |Garrido et al.| (2023). We report the Mean Reciprocal Rank (MRR)
and Hit Rate at k (HQk) on the multi-object setting. Given a source and target pose of an object, we first
compute the embeddings of each image and pass the source embedding through the predictor. We then use
the resulting vector to retrieve the nearest neighbours.

The MRR is the average reciprocal rank of the target embedding in the retrieved nearest neighbour graph.
H@k in this case is computed to be 1 if the target embedding is in the k-NN graph of the predicted embedding,
where we only look for nearest neighbours among the views of the same object.

The Prediction Retrieval Error (PRE) gives an evaluation of predictor quality, and is given by the distance
between its rotation ¢; € H and the target rotation ¢ as d = 1— < q1, gz >2 of the nearest neighbour of the
predicted embedding averaged over the whole dataset.

All the results evaluated by the aforementioned metrics are given in Table[3] Our CapsIE network outperforms
EquiMod, Only Equivariance and SIE by a considerable margin across all metrics and for all dataset splits. We
achieve strong perfromance on PRE, reporting 0.21 PRE on the validation set compared to 0.48 for EquiMod
and Only Equivariance and 0.29 for SIE. The same significant gains in equivariant performance are shown for
MRR and H@Q1 and HQ5. Note, a random HQ1 results in a performance of 2% (0.02), demonstrating that
our method lies well above random.

4.4 Number of Capsules

Each capsule, in theory, should represent a unique concept; thus when the number of capsules is increased,
logically so should the network’s representation ability to capture an increasing number of semantic concepts.
Observing the invariant performance during training (Figure [4)) and downstream evaluation in Table|l} CapsIE
gains a slight improvement with the addition of more capsules. Here, online training refers to a co-optimisation
scheme where an evaluation network is trained in parallel during standard pretraining procedure, this allows
for analysis and visualisation of training dynamics rather than relying on the losses of each term directly.
Since this evaluation network has been trained for far longer and on a much more diverse representation
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Table 3: Quantitative evaluation of the predictor when using a Capsule network projector, using
PRE, MRR and H@k. The source dataset, for which embeddings are computed, and the dataset used for
retrieval are given in the format source-retrieval for PRE and source for MRR and HQk. Here source refers
to the set from which embeddings are computed (train or val), while retrieval corresponds to the set used for
comparison/retrieval (train, val, or all = train + val).

PRE (1) MRR (1)  Hal (1)  H@5 (1)
Method train-train val-val wval-all train val train val train val
EquiMod 0.47 0.48 0.48 0.17 0.16 0.06 0.05 0.24 0.22
Only Equivariance 0.47 0.48 0.48 0.17 0.17 0.06 0.05 0.24 0.22
SIE 0.26 0.29 0.27 0.51 041 041 030 0.60 0.51
CapslE 0.17 0.21 0.20 0.60 0.47 0.50 0.36 0.71 0.58

set during training, the performance is typically higher. The performance however, demonstrates that our
model has better utilised the additional representational power to improve performance. This pattern is also
observed when evaluating equivariant properties (shown in Figure , yet it is less pronounced. However, in
Table [I] we also show that increasing the number of capsules in a supervised SR-Caps model trained in a
standard supervised fashion is not an indicator of increased performance, aligning with prior capsule research
(Everett et al., 2023). This differentiation in behaviour provides an interesting direction for future research.
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Figure 4: Invariant and equivariant performance of encoder representations during training
when varying the number of capsules. (left) Classification evaluation performance (top-1 %) and (right)
Rotation prediction online evaluation performance (R?) both learned encoder representations. This evaluation
is co-optimised during training and hence differs from the downstream evaluation reported in the Table [I] and
[2l We observe that as capsule numbers increase so does performance; however, at low capsule numbers, later
in training invariant objective takes precedence.

4.5 Additional Quantitative Results

4.5.1 Objaverse

Datasets such as 3DIEBench, derived from ShapeNet [Chang et al.| (2015), have some limitations, considering
that they are synthetically generated, although photorealistic. However, datasets such as Objaverse
contain real-world scans, therefore providing the possibility of evaluating equivariant models on
different settings. To further validate CapsIE on a randomly rotated multi-view dataset, we used a subset of
Objaverse-LVIS Deitke et al| (2023) with six classes (airplane, bench, car automobile, chair, coffee table, and
gun), following the class selection of Wang et al.| (2024). We evaluated classification and rotation prediction
using two approaches. Firstly, we perform transfer learning by fine-tuning the entire network pre-trained
on 3DIEBench as described previously. Secondly, we take the model pre-trained on 3DIEBench, freeze the
backbone encoder, and train only the task-specific heads from scratch following the same evaluation procedure
as described in
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Table 4: Evaluation on a subset of Objaverse-LVIS using a ResNet-18 backbone. Representations are evaluated
on an invariant task (classification) and an equivariant task (rotation prediction). Each model is evaluated
five times with different random seeds.

Pre-training (Frozen Backbone) Transfer Learning (Fine-tuning)

Method  Classification (Top-1) Rotation (R?) Classification (Top-1) Rotation (R?)

VICReg 80.43£1.11 0.2940.008 90.22+0.70 0.62+0.012
SimCLR 83.4440.88 0.29+£0.003 91.08+0.72 0.63+0.011
AugSelf 83.87+£0.38 0.30£0.015 90.75£0.70 0.64+0.009
SEN 82.90£1.17 0.30+0.011 90.86+0.38 0.64+0.015
EquiMod 83.76+£0.45 0.30+0.013 89.89+0.24 0.63+0.011
SIE 75.27+£1.26 0.2940.005 89.78+0.66 0.62+0.007
CapslE 72.58+0.85 0.43+0.014 90.75+£0.45 0.64+0.010

Table 5: Transfer learning via DETR fine-tuning with frozen backbone on MOVi-E.

Method Classification (Top-1) Rotation (R?) mAP mAP5y mAPrs

SIE 3.7 0.20 26.47  41.83 28.26
CapslE 72.5 0.23 28.26 4341 31.38

Results shown in Table [4] demonstrate that CapsIE performs competitively against other methods and, in
some cases, outperforms them by a large margin, e.g. rotation with a frozen backbone. We do note that
in the fine-tuning case our capsule architecture outperforms the SIE invariant baseline demonstrating that
the learned invariant representations may be generally well expressed but need a further small amount of
supervised tuning to better structure the representations more effectively. This introduces a promising
direction for future work, and the applicability of pretrained capsule networks.

4.5.2 MOVi-E

To assess performance under more realistic and challenging conditions, we evaluate our approach on the
Multi-Object Video (MOVi-E) dataset |Greff et al.| (2022). MOVI-E is a synthetic benchmark containing
scenes with up to 17 distinct objects placed in photorealistic environments, often with occlusions and complex
backgrounds. Each scene is generated through a 2-second rigid-body simulation in which multiple objects
fall and interact. While MOVi-E provides sequences with a linearly moving camera, in our experiments, we
sample individual frames and process them independently rather than using the temporal dimension. More
information on the dataset can be found in the original paper |Greff et al.| (2022)) and the public repositoryﬂ

In this setting, the task involves detecting every object (via bounding boxes), classifying its type, and estimating
its pose relative to the camera frame. For object detection, we adopt the DETR architecture |Carion et al.
(2020), initialising the ResNet-50 backbone with weights pre-trained on 3DIEBench. The backbone is frozen,
while the transformer encoder, decoder, and prediction heads are fine-tuned on MOVi-E. To enable pose
estimation, we extend DETR with an additional MLP head that regresses rotation quaternions. This predictor
mirrors the bounding box regression module, using a three-layer MLP with 256 hidden units. The quaternion
regression loss is defined as mean squared error and added to the overall training objective, which is a weighted
sum of individual DETR losses |Carion et al.| (2020]).

Training is carried out for 200 epochs with a batch size of 64, starting from a learning rate of 0.0001 that
is reduced tenfold after epoch 100. The quaternion loss is assigned a weight of 2, and the Generalised
Intersection over Union loss a weight of 3, while all other hyperparameters remain unchanged from the
original DETR setup.

Thttps://github.com/google-research/kubric/blob/main/challenges/movi
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The results of classification, detection, and rotation regression are summarised in Table Our method
outperforms SIE in all tasks except classification, and it is the strongest competing equivariant approach,
indicating strong generalisation and robustness to complex multi-object scenarios. Although CapslE performs
competitively, its performance remains constrained by the difficulty of MOVi-E and the fact that the ResNet-50
backbone was trained only in single-object settings. We view this as a promising direction for future work,
particularly through adapting the method to exploit temporal video information.

5 Related Work

5.1 Equivariant Self-Supervised Learning

Self-supervised learning has seen the majority of its success in the invariant setting by contrastive (Chen
et al., [2020), information maximisation (Zbontar et all [2021; Bardes et al., 2022), or clustering methods
(Caron et al., 2021} |Assran et al.l [2022)). All families of approaches rely on training a network to be invariant
to transformations by increasing the similarity between embeddings of the same image under augmentation.
The differing approaches emerge from alternative methods to avoid collapse, a phenomenon where embeddings
fall into a lower-dimensional subspace rather than the entire available embedding space, resulting in a
trivial solution (Hua et al., 2021)). Although these methods differ, they all produce similarly performing
representations, hence we employ information maximisation methods as the basis of this work due to their
computational efficiency.

Learning to be invariant to transformations is typically useful for semantic discrimination tasks, yet preserving
information about the transformations can be highly beneficial. Some approaches have attempted to capture
specific information regarding transformations by predicting the applied augmentation parameters (Lee et al.,
2021)), preserving the strength of augmentations (Xie et al. 2022) and introducing rotational transformations
(Dangovski et al., 2022)). However, as stated in |Garrido et al.| (2023), these methods provide no guarantee
that a mapping is learnt in the latent space that reflects the transformations in the input space. Hence,
methods have been employed that address this limitation (Devillers & Lefort| |2023; [Park et al., [2022; |Garrido
et al] 2023). All of these methods employ predictor networks to predict displacement representations in the
latent space, given a single view representation and the transformation parameters. The latter, SIE |Garrido
et al.| (2023), is the basis of our work, which further extends prior methods by splitting representation vectors
into invariant and equivariant parts to better separate differing information.

5.2 Capsule Networks

CapsNets present an alternative architecture to CNNs, addressing their limitations by explicitly preserving
hierarchical spatial relationships between features (Sabour et al., 2017). CapsNets replace scalar neurons
with vector or matrix poses, representing specific concepts at different levels of a parse tree as the network
goes deeper. The first layer (primary capsules) corresponds to the most basic parts, while capsules in deeper
layers represent more complex concepts composed of simpler concepts as they get closer to the final layer,
where each capsule corresponds to a specific class.

The key components of the CapsNet are the pose and the activation. The pose of a capsule is an embedding
vector or matrix which provides a representation for the concept. The activation scalar is a value between 0
and 1 which represents how certain the network is that the concept is present and can be calculated directly
from the values of the pose or via other means via the routing mechanism.

The key novelty in CapsNets is the routing mechanism, which determines the contributions of lower-level
capsules to higher-level capsules. Numerous routing algorithms, both iterative and non-iterative, have been
proposed to address the efficiency and effectiveness of this process (Sabour et al., [2017; |[Mazzia et al., [2021;
Feng et al.| [2024; Ribeiro et al., 2020; [Hinton et al., 2018} |De Sousa Ribeiro et al.l 2020; [Yang et al., [2021;
Everett et al., [2024). Among these, SRCaps [Hahn et al.| (2019)) introduces a non-iterative routing mechanism.
This method retains all the desirable properties of CapsNets, such as equivariance, while largely mitigating
the time cost of iterative methods at the expense of a slight performance loss. However, SRCaps faces the
same limitations as other CapsNets where high-resolution or high-class datasets are beyond the network’s
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abilities when trained in a standard fashion. For a more detailed description of capsule routing mechanisms,
please check this review |[De Sousa Ribeiro et al.| (2024).

5.3 Part-Whole Decomposition and Interpretability

Capsule networks naturally lend themselves to an explicit part—whole decomposition because each capsule
encodes an entity’s instantiation parameters (pose, presence and related attributes) and lower-level capsules
cast “votes” for higher-level capsules so that coherent clusters of votes identify which parts belong to which
whole — an idea formalised as routing-by-agreement in the original capsule proposals (Sabour et al., |2017)).
This voting/routing mechanism produces structured, disentangled representations (pose matrices or vectors
plus activation lengths) that are directly interpretable: pose parameters report geometric transformations
while activation magnitudes reflect part/object presence, enabling inspection of what parts drove a decision
(Hinton et al.,|2018} De Sousa Ribeiro et al, [2024)). Work on stacked/autoencoding capsule models has further
shown that object-level capsules can be learned (even unsupervised) from part poses, strengthening the claim
that capsules implement an intrinsic compositional (part—object) inductive bias (Kosiorek et al.,|2019)). Other
formulations that treat routing as posterior inference or introduce explicit routing uncertainty demonstrate
how probabilistic/variational routing makes the part—whole assignments and the model’s confidence in them
explicit, improving robustness and giving a principled way to read out uncertainty about which parts compose
a given object (De Sousa Ribeiro et al., |2020)).

6 Conclusion

Our proposed method demonstrates how self-supervised CapsNets can be employed to better learn equivariant
representations, leveraging architectural assumptions, removing the need to explicitly split representation
vectors and train separate projector networks. The resulting solution, CapsIE, achieves state-of-the-art
performance in equivariant downstream benchmarks with an improvement of 0.01 R? on prior self-supervised
rotation prediction tasks. Our results contribute significantly to the application of CapsNets in self-supervised
representation learning, introducing desirable properties with improved effectiveness over MLP projectors.

This work aims to learn higher quality and more applicable representations of images without human-generated
annotations; therefore, such methods can lead to positive societal impacts and the development of more
accurate or informative models for a number of downstream tasks. However, as is the case with all vision
systems, there is potential for exploitation and security concerns; therefore, one should consider Al misuse
when extending our method.

As stated in the original dataset proposal and the problem setting, the methodology presented relies on the
group elements being known. Hence, the applicability of the proposed method is only possible in settings
where group elements are known. We additionally explore alternative equivariant tasks that were not explicitly
optimised for as a diagnostic task to evaluate if the capsule projector additionally encodes additional group
elements. Our findings determine that our method retains the fine-grained control of learning equivariant
embeddings specified by the objective function, a beneficial property presented in prior methods to avoid
learning of arbitrary group elements.

While our capsule networks perform well on the equivariant tasks, the invariant performance has suffered as a
consequence. We attribute this to the reduced capacity of capsule networks, where the number of embeddings
is significantly lower than that of the MLP counterpart. To improve performance, alternative capsule networks
other than SRCaps could be employed, which have shown improved classification performance, or the number
of capsules can be scaled up, where Figure 4] demonstrated improved top-1 performance with greater capsule
number. Lastly, a further limitation of our work is the absence of multiple seed runs in most experiments
(with the exception of Table [4)), consistent with (Bardes et al., [2022)) and (Garrido et all [2023)), due to the
disproportionately high computational costs.
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A Appendix

A.1 3DIEBench Dataset

3d Model

Figure 5: The 3DIEBench dataset, one 3d model is used to create 50 different views in a synthetic
environment, which are saved as images along with the latent values by which they are transformed.

Typical equivariant datasets are generally handcrafted and simple, with a small number of classes and
instances within each class. This is due to the time needed in order to ensure correctness. While standard
image datasets do allow for testing invariance in the form of augmenting the same image in two different ways,
they do not allow for the precise transformation of the subject. Thus, there is a need for a new, synthetic
dataset.

We use the 3DIEBench (Garrido et al} [2023) dataseﬂ which has been created specifically to be a hard yet
controlled test-bed for invariant and equivariant methods. The dataset consists of 52,472 3d objects across 55
classes of 3d objects from ShapeNetCorev2 (Chang et al., 2015) posed in 50 different views as well as the
latent information of the view. This can be seen in figure[5] For training we then randomly select two views

from each model in the training set. The parameters by which the model could have been augmented are
listed in Table

A.2 3DIEBench Problem Statement

First, we define equivariance by defining a Group consisting of a set G and a binary operation - on G,
- G X G — G such that - are associative; there is an identity e which satisfies e-a =a =a - ¢,Va € G; and
for each a € G there exists an inverse a~! such that a-a~! = e = a~! - a. Group actions are concerned with
how groups manipulate sets, where the left group action can be defined as a function « of group G and set
S, a: G xS — S such that a(e,s) = s,Vs € S, and a(g, a(h,s)) = a(gh,s),Vs € S,and Vg,h € G. In our
setting, we are concerned with group representations which are linear group actions acting on vector space
V', which we define as p : G — GL(V) where GL(V) is the general linear group on V. Here p(g) describes
the transformation applied to both the input data z and latent f(x) given parameters g (Park et al., 2022}

2The full dataset and splits employed can be found at https://github.com/facebookresearch/SIE
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Table 6: Values of the factors of variation used for the generation of 3DIEBench. Each value is
sampled uniformly from the given interval. Object rotation is generated as Tait-Bryan angles using extrinsic
rotations. Light position is expressed in spherical coordinates. This table is sourced from (Garrido et al.l
2023)).

Parameter Minimum value Maximum value
Object rotation X -z z
Object rotation Y -z z
Object rotation Z -z z
Floor hue 0 1
Light hue 0 1
Light 6 0 z
Light ¢ 0 o

Garrido et al., [2023). Transformations comprise colour scaling and shifting, and rotations around a fixed
point.

Following this, we can define the function f : X — Y as being equivariant with respect to a group G with
representations px and py if Vo € X, and Vg € G,

flpx(9) - ) = py(g) - f(x). (8)

The goal is to therefore learn f and py to construct representations that are equivariant to viewpoint
transformations when px is not known, but the group elements g that parameterise the transformations are
known.

A.3 Training protocols
A.3.1 CapslE Pre-training

Our proposed CaplE model is comprised of a ResNet-18 encoder, SR-CapsNet comprised of a primary capsule
layer routed to a second capsule layer. The SR-CapsNet projector takes as input the activation map output
of the ResNet prior to the final global average pooling. The predictor network employed is that described in
(Garrido et al.| [2023]). All details of the architectural design are given in the main paper.

Training of our CapsIE model is done over 2000 epochs with a batch size of 1024, optimised via the Adam
optimiser with learning rate 0.001, and default parameters, 51 = 0.9, 52 = 0.999. By default the objective
function weighting are as follows, Ajny = 0.1, Acqui = 95, Ay = 10, A¢ = 1 where we empirically found these
optimal for our setting. Further performance gains could be achieved by the tuning of such parameters,
however, we deemed this unnecessary.

For ablation studies, where we explicitly state, we train for fewer epochs and with a smaller batch size, 500
and 512, respectively. We find in practice that this setting is a strong proxy for full training performance and
significantly saves computational resources.

Training time for 2000 epochs with batch size of 1024, as previously stated, took approximately 22 hours
using three Nvidia A100 80GB GPUs, with 64 capsule models taking approximately 25 hours using six Nvidia
A100 80GB GPUs.

A.3.2 Downstream Evaluation

In our work, we perform evaluation on both the frozen ResNet-18 representations and the representations
from the primary capsules layer, which are evaluated using either a linear classifier or an additional capsule
layer acting as class capsules, i.e the number of capsules is set to the number of classes and activations are
used as the logits. Here, we detail the exact training protocols to ensure complete reproducability.
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For our evaluations we use two different depths of MLP heads, these are: 1. Deep MLP referring to an MLP
with layers containing in_ dim - 1024 - out_ dim neurons, with intermediate ReLU activations. 2. Shallow
MLP referring to a single MLP layer with in_ dim in neurons and out_dim out neurons. When we evaluate
our primary capsules for angle and colour prediction, we average the 8x8 feature map so that we only have
a single pose vector for the entire image. For our Capsule Classification task, we do not have an in_ dim
as we do not use a MLP, but instead use a capsule layer which operates on the primary capsules pose and
activations.

Table 7: Training settings for our evaluations. Settings are the same for all number of capsules. NC is
used as shorthand for number of capsules. - denotes that this element is not used. * denotes multiplication.

Representations Representations Representations  Capsule Capsule Capsule
Angle Colour Classification Angle Colour Classification

Caps Head - - - - - Yes
MLP Head Deep Shallow - Deep Shallow -
in_dim 512 512 512 NC *16 NC * 16 N/A
out_ dim 4 2 55 4 2 55
Optimizer Adam Adam Adam Adam Adam Adam
LR 0.001 0.001 0.001 0.001 0.001 0.001
51 0.9 0.9 0.9 0.9 0.9 0.9
B2 0.999 0.999 0.999 0.999 0.999 0.999
Batch Size 256 256 64 256 256 256
Epochs 300 50 300 300 50 300
Objective MSE MSE Cross Entropy MSE MSE Cross Entropy

A.3.3 Supervised Training of SR-Caps

In our work we train a Self Routing Capsule Network model in a supervised fashion for the downstream tasks
to evaluate whether our pretrained model improves the quality of downstream evaluations. The training
setting of these runs can be found in table

Deep MLP refers to an MLP with layers containing number_caps * 16 * 2 - 1024 - 4 neurons, with intermediate
ReLU activations. Shallow MLP head refers to a single MLP layer with number_ caps * 16 * 2 in neurons
and either 4 (for rotation prediction) or 2 (for colour prediction) out neurons.

Table 8: Training settings for our supervised Self Routing Capsule Network model. Settings are
the same for all numbers of capsules. - denotes that this element is not used.

Angle  Colour  Classification

Caps Head - - Yes
MLP Head Deep Shallow -
Optimizer = Adam  Adam Adam
LR 0.001 0.001 0.001
B1 0.9 0.9 0.9
Ba 0.999 0.999 0.999
Batch Size 256 256 64
Epochs 300 50 300

Objective MSE MSE Cross Entropy

A.3.4 Invariant and Equivariant SSL Benchmarks

We report below the classification (invariant, Table E[), rotation prediction, and colour prediction (equivariant,
Table performance of baseline self-supervised methods. The below baseline results are acquired from
(Garrido et all [2023]), with the exception of those denoted by ‘*’ which corresponds to our re-implementation.
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Table 9: Evaluation of invariant properties on downstream classification task for baseline SSL
methods. We evaluate both the representations and the intermediate embeddings of the projection head

when different numbers of capsules in the projection head is used. ‘-’ refers to non-compatible experiments.
Embedding Dims Classification (Top-1%)
Method Inv. Equi. ‘ All Inv. Equi.
Encoder Representation
VICReg - - 84.74 - -
VICReg, g kept identical - - 72.81 - -
SimCLR - - 86.73 - -
SimCLR, ¢ kept identical - - 71.21 - -
SimCLR + AugSelf - - 85.11 - -
EquiMod (Original predictor) - - 87.19 - -
EquiMod (SIE predictor) - - 87.19 - -
SIE (Garrido et al., [2023)) 512 512 82.94 82.08 80.32
SIE * 512 512 82.54 82.11 80.74
CapslE - 16 16 256 76.51 - -
CapslE - 32 32 512 79.14 - -
CapslE - 64 64 1024 79.60 - -
Capsule Projector - 1st Intermediate Embedding
SIE 1024 1024 - 80.53 77.64
CapslE - 16 16 256 - 74.90 -
CapslE - 32 32 512 - 78.60 -
CapslE - 64 64 1024 - 79.24 -

Table 10: Evaluation of equivariant properties on downstream rotation prediction (left) and
colour prediction (right) tasks for baseline SSL methods. We evaluate both the representations and
the intermediate embeddings of the projection head when different numbers of capsules in the projection
head is used.

Rotation Prediction (R?)  Colour Prediction (R?)

Method All  Inv. Equi. ‘ All  Inv. Equi.
Encoder Representation
VICReg 0.41 - - 0.06 - -
VICReg, g kept identical 0.56 - - 0.25 - -
SimCLR 0.50 - - 0.30 - -
SimCLR, g kept identical 0.54 - - 0.83 - -
SimCLR + AugSelf 0.75 - - 0.12 - -
EquiMod (Original predictor)  0.47 - - 0.21 - -
EquiMod (SIE predictor) 0.60 - - 0.13 - -
SIE (Garrido et al., [2023) 0.73 0.23 0.73 0.07 0.05 0.02
SIE * 0.72 0.21 0.71 0.06 0.05 0.03
CapslE - 16 0.68 - - 0.02 - -
CapslE - 32 0.74 - - 0.04 - -
CapslE - 64 0.72 - - 0.01 - -
Projector - 1st Intermediate Embedding
SIE - 0.38 0.58 - 0.45 0.09
CapslE - 16 - - 0.64 - - -0.01
CapslE - 32 - - 0.71 - - -0.04
CapslE - 64 - - 0.67 - - -0.09
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