
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BEYOND SURFACE REASONING: UNVEILING THE TRUE
LONG CHAIN-OF-THOUGHT CAPACITY OF DIFFUSION
LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, Diffusion Large Language Models (DLLMs) have offered high through-
put and effective sequential reasoning, making them a competitive alternative
to autoregressive LLMs (ALLMs). However, parallel decoding, which enables
simultaneous token updates, conflicts with the causal order often required for
rigorous reasoning. We first identify this conflict as the core Parallel–Sequential
Contradiction (PSC). Behavioral analyses in both simple and complex reasoning
tasks show that DLLMs exhibit genuine parallelism only for directly decidable
outputs. As task difficulty increases, they revert to autoregressive-like behavior,
a limitation exacerbated by autoregressive prompting, which nearly doubles the
number of decoding steps with remasking without improving quality. Moreover,
PSC restricts DLLMs’ self-reflection, reasoning depth, and exploratory breadth.
To further characterize PSC, we introduce three scaling dimensions for DLLMs:
parallel, diffusion, and sequential. Empirically, while parallel scaling yields con-
sistent improvements, diffusion and sequential scaling are constrained by PSC.
Based on these findings, we propose several practical mitigations, parallel-oriented
prompting, diffusion early stopping, and parallel scaling, to reduce PSC-induced
ineffectiveness and inefficiencies.

1 INTRODUCTION

In recent years, diffusion large language models (DLLMs) have emerged as a novel generative
paradigm, attracting increasing research attention (Li et al., 2025; Yang et al., 2025). Represen-
tative works such as LLaDA (Nie et al., 2025b) and Dream (Ye et al., 2025) adopt a two-stage
mask-denoising training strategy combined with parallel decoding for masked token prediction, effec-
tively mitigating the “reversal curse” in traditional autoregressive large language models (ALLMs).
Mercury (Inception Labs, 2025) and Fast-DLLM (Wu et al., 2025) further demonstrate the parallel
efficiency of DLLMs, achieving an impressive generation speed in code tasks.

Meanwhile, the rapid development of the Long Chain-of-Thought (Long CoT) (Guo et al., 2025;
Chen et al., 2024; 2025) has spurred increasing research on applying DLLMs to extended reasoning
tasks (Wang et al., 2025b;a). Zhao et al. (2025) and Tang et al. (2025) employ diffusion-augmented
SFT and GRPO to further improve reasoning (Gong et al., 2025). Moreover, Trado (Wang et al.,
2025b) exploits overlooked information in sampling trajectories, achieving substantial gains.

As shown in Figure 1 (a), DLLMs generate text in parallel, producing a few non-sequential words in a
single diffusion step. In sequential reasoning scenarios (Figure 1 (b)), the generation of stepi requires
the completion of stepi−1, leading to lower entropy (Cui et al., 2025; Agarwal et al., 2025). In
contrast, Figure 1 (c) shows DLLMs to parallel-decode by generating stepi+1 before stepi, resulting
in high entropy. Nevertheless, these parallel and sequential processes are inherently contradictory:
parallelism involves simultaneous processing, while sequential reasoning requires ordered steps.
To address this, we introduce the Parallel–Sequential Contradiction (PSC), which explores the
underlying mechanisms and practical implications of diffusion-based reasoning.

To investigate this issue systematically, as shown in Figure 1 (d, e), we focus on two central
research questions: (1) Do DLLMs truly perform parallel reasoning that avoids PSC? (2) What
challenges do DLLMs meet in Long CoT based on PSC? To address the first question, we analyze

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Poor Reasoning Efficiency Ineffective AR Strategy Limited Capability Limited Inference-Time Scaling

[MASK] …[MASK] [MASK] [MASK]

Decoding Steps x2

Sequential Prompting

Constraint-Guided Prompting

Parallel-Encourage Prompting

Self-Reflection

Self-Exploration

Deep Reasoning

Parallel Scaling

Sequential Scaling

(d) Surficial Parallel Decoding

[MASK] [MASK]

[MASK] [MASK][MASK]

Parallel Decoding Sequential Reasoning

(e) Limited Long CoT Capability

Step 2: Then, we should … High
Entropy

Low
Entropy

(c) Parallel-Sequential Contradiction(b) Reasoning Scenario

DLLM
Sequential

Diffusion Scaling

Upper bound

Upper bound

(a) Diffusion LLM

Parallel

Complex

Simple

Step1: First, let’s analysis the …

Step 3: After that, we need to …

Step 3: After that, we need to …

Step 2: Then, we should …

Step1: First, let’s analysis the …

Step 3: After that, we need …

Step 2: Then, we should …

Step1: First, let’s analysis …

Step 4: Therefore, the …

processingnaturalI

I processing

processingnaturalI languagelove

Figure 1: Overview of our work. Applying DLLMs to reasoning scenarios reveals an inherent
contradiction between parallel processing and sequential reasoning, leading to high entropy, surficial
parallel decoding, and limited Long CoT capabilities.

the decoding behavior of DLLMs in both simple and complex reasoning scenarios. Our findings
show that DLLMs fail to achieve genuine parallel reasoning due to the PSC. They perform superficial
parallel computation when outputs can be directly produced, but revert to an autoregressive mode
under higher reasoning demands. This reliance on autoregression affects computational efficiency,
which nearly doubles the computational cost with low confidence remasking. Furthermore, while
autoregressive prompting is effective in ALLMs, it conflicts with DLLMs’ parallel decoding design,
amplifying the PSC of DLLMs. In contrast, strategies that reduce contradiction, such as conditional
prompting or prompts that encourage parallel generation, effectively enhance prompting performance.

To understand the second question, we examine the core capabilities of Long CoT in DLLMs. Our
analysis reveals that, when faced with PSC, DLLMs often demonstrate limited self-reflection, shallow
reasoning depth, and constrained exploratory behavior. Furthermore, we introduce three scaling
dimensions for inference time, specifically designed for DLLMs: parallel, diffusion, and sequential
scaling. Our findings show that both diffusion and sequential scaling are significantly constrained by
PSC, while the parallel scaling law remains unaffected due to its vertical relationship with PSC.

In summary, our key contributions are as follows:

• Identification of Parallel-Sequential Contradictions: To our knowledge, we first identify the
Parallel-Sequential Contradiction (PSC) in DLLMs for Long CoT. We demonstrate that PSC
leads to superficial parallel reasoning and reduced efficiency, requiring twice the decoding steps.

• Systematic Exploration of DLLM Reasoning Limitation: We conduct a systematic evaluation
of DLLM reasoning, identifying the degradation of three core Long CoT capabilities, confirming
the ineffectiveness of traditional autoregressive prompting methods, and demonstrating that
diffusion scaling and sequential scaling are upper-bounded by PSC limitations.

• Novel Mitigation Strategies: We propose novel strategies to mitigate these issues and enhance
DLLM reasoning. Our methods include parallel-encouraging prompting, diffusion early stopping,
and parallel scaling, which substantially alleviate the constraints imposed by PSC.

2 PARALLEL-SEQUENTIAL CONTRADICTION

2.1 PARALLEL MASKED DIFFUSION LANGUAGE MODELS

In Diffusion Large Language Models (DLLMs), inference reconstructs missing spans by predicting
masked tokens conditioned on a partially masked input. Its goal is modelling the conditional
likelihood pθ(x

i
0|xl) for masked positions:

−El,x0,xl

[
L

l

L∑
i=1

1[xi
l ∈ M] log pθ(x

i
0|xl)

]
, (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Decoding Order

(d) Decoding order in complex
reasoning tasks on d1.

(a) Decoding order in simple reasoning
tasks on Trado.

To solve the given functional equation:
f(x) + f(y) = f(x + y) - xy - 1
for all real numbers x and y, and given that f(1) = 1, we
need to find all integers n such that f(n) = n.
First, let's analyze the functional equation by substituting
specific values for \(x \) and \(y \).
Step 1: Substitute \(x = y = 0 \)
f(0) + f(0) = f(0 + 0) - 0 \cdot 0 - 1
2f(0) = f(0) - 1
f(0) = -1
Step 2: Substitute \(y = 0 \)
f(x) + f(0) = f(x + 0) - x \cdot 0 - 1
f(x) - 1 = f(x) - 1
This does not provide new information.
Step 3: Substitute \(x = 1 \)
f(1) + f(y) = f(1 + y) - 1 \cdot y - 1
1 + f(y) = f(y + 1) - y - 1
f(y + 1) = f(y) + y + 2
Step 4: Substitute \(y = 1 \)
f(x) + f(1) = f(x + 1) - x \cdot 1 - 1
f(x) + 1 = f(x + 1) - x - 1
f(x + 1) = f(x) + x + 2
Step 5: Substitute \(x = 1 \) and \(y = 1 \)
f(1) + f(1) = f(1 + 1) - 1 \cdot 1 - 1
2 = f(2) - 2
f(2) = 4
Step 6: Substitute \(y = 1 \) into the equation \(f(x + 1)
= f(x) + x + 2 \)
f(x + 1) = f(x) + x + 2
Using the known values, we can compute \(f(n) \) for
various \(n \)…

(b) Decoding order in simple reasoning
tasks on d1.

(c) Decoding order in complex reasoning
tasks on Trado.

Given the functional equation:
f(x) + f(y) = f(x + y) - xy - 1
and the condition:
f(1) = 1
we want to find all integers n such that f(n) = n .
First, let's substitute \(x = 1 \) and \(y = 1 \) into the
functional equation:
f(1) + f(1) = f(1 + 1) - 1 \cdot 1 - 1
2 = f(2) - 2
f(2) = 4
Next, let's substitute \(x = 2 \) and \(y = 1 \) into the
functional equation:
f(2) + f(1) = f(2 + 1) - 2 \cdot 1 - 1
4 + 1 = f(3) - 2 - 1
f(3) = 7
Now, let's substitute \(x = 3 \) and \(y = 1 \) into the
functional equation:
f(3) + f(1) = f(3 + 1) - 3 \cdot 1 - 1
7 + 1 = f(4) - 3 - 1
f(4) = 11
Next, let's substitute \(x = 4 \) and \(y = 1 \) into the
functional equation:
f(4) + f(1) = f(4 + 1) - 4 \cdot 1 - 1
11 + 1 = f(5) - 4 - 1
f(5) = 16
Thus, the integers \(n \) such that \(f(n) = n \) are:
\boxed{1, 2}

30%

17%

18%

23%

12% <15% Step
15-30% Step
30-60% Step
60-90% Step
>90% Step

(e) First answer generated
diffusion step in simple reasoning
tasks on d1.

2%

83%

15% <15% Step
15-30% Step
30-60% Step
60-90% Step

>90% Step

(f) First answer generated
diffusion step in complex
reasoning tasks on d1.

To determine the number of bushels of wheat that
Charlotte owns, we will start by finding out how many
bushels of wheat Evelyn possesses.
Step 1 : Evelyn possesses 310 bushels of wheat (given).
Step 2: Since Charlotte possesses 15 times as many
bushels as Evelyn , we need to multiply Evelyn 's
bushels by 15.
310 times 15 = 4650
Therefore, Charlotte owns 4650 bushels of wheat.

To solve the equation $x^2 - 2x + 1 = 0$, we start by
examining the quadratic expression:
$$x^2 - 2x + 1$$
First, we check if it can be factored directly. The
quadratic expression $x^2 - 2x + 1$ might be a
perfect square trinomial. To verify this, we use the
method of completing the square or checking the
discriminant.
The discriminant of a quadratic equation $ax^2 - 2bx
+ c = 0$ is given by $\Delta = b^2 - 4ac$. For our
equation:
$$a = 1, \quad b = -2, \quad c = 1$$
The discriminant $\Delta = (-2)^2 - 4(1)(1) = 4 - 4 =
0$. Since the discriminant is zero….

Figure 2: Diffusion order analysis with d1 (Zhao et al., 2025) and Trado (Wang et al., 2025b), where
later decoding orders are indicated by shallower colors.

where L denotes the total number of tokens; l is the number of masked tokens, uniformly sampled
from {1, 2, . . . , L}; x0 is the complete original sequence. xl is the partially masked sequence obtained
by replacing those l positions in x0 with mask tokens, which serves as the conditional input. The
indicator 1[xi

l ∈ M] equals 1 if position i is masked and 0 otherwise.

2.2 SEQUENTIAL LONG CHAIN-OF-THOUGHT REASONING

Long Chain-of-Thought (Long CoT) allows LLMs to tackle complex problems by generating a
sequence of reasoning steps. This method solves a problem P by following an ordered series of steps
S1, S2, . . . , Sn, leading to the final answer A. Formally, it can be defined as:

pθ(A|P) =

n+1∏
t=1

pθ(St|P, S<t). (2)

Here, Sn+1 = A, meaning the final answer is treated as the last step of the reasoning sequence. When
generating each step St, the model computes the conditional probability based on the problem P and
all previously generated steps S<t.

2.3 PARALLEL-SEQUENTIAL CONTRADICTION

We propose the term "Parallel-Sequential Contradiction (PSC)" to capture the fundamental tension
faced by diffusion models in reasoning tasks. This contradiction manifests at two levels:

• Mechanism Level: The inherent parallel decoding nature of diffusion models directly conflicts
with the sequential dependency logic required for CoT reasoning at the computational level.

• Behavioral Level: This conflict causes the model’s generation process to oscillate between “fol-
lowing low-entropy sequential logic” and “falling into high-entropy parallel guessing”, reflecting
an inherent inconsistency.

For tasks with high parallelism, downstream states typically yield predictable, high-probability
outcomes, resulting in low predictive entropy. In these cases, optimizing the conditional probability
pθ(Sk | S1) is efficient, making non-autoregressive or semi-parallel generation methods advantageous.
In contrast, tasks with strong sequential dependencies exhibit high entropy when predicting distant
future states in parallel. This uncertainty leads to significant predictive loss. To reduce this loss, the
model is encouraged to break down the generation process into a sequence of low-entropy, step-by-
step predictions. As a result, parallel generation conflicts with the model’s objective of identifying a
low-loss, high-probability sequential path. The formal proof is provided in Appendix B.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) The impact of diffusion/decoding steps and generated token length.

LLaDA LLaMA-3.1-8B

A
cc

ur
ac

y
(%

)

Dec
oding Step

s (
↓)

Generated Token Length
050100150200250

100
300

500

0
10
20
30
40
50

(b) Impact of the mismatch between diffusion steps and the multiple of max
token length on model performance.

Generated Token Length

A
cc

ur
ac

y
(%

)

Dec
oding Step

s (
↓)

Dream Qwen2.5-Instruct

050100150200250

100
300

500

0
10
20
30
40
50

Max Token Length
4 16 64 256

D
re

am
A

cc
ur

ac
y

(%
)

0

10

20

30

40

50

100% Accuracy 90% Accuracy

Max Token Len / Diffusion-Step= 1

Max Token Len / Diffusion-Step= 2

Max Token Len / Diffusion-Step= 4

Max Token Len / Diffusion-Step= 8

Max Token Len / Diffusion-Step = 16

Max Token Length
4 16 64 256 1024

LL
aD

A
 A

cc
ur

ac
y

(%
)

0

10

20

30

40

50

100% Accuracy 90% Accuracy

Max Token Len / Diffusion-Step= 1
Max Token Len / Diffusion-Step= 2

Max Token Len / Diffusion-Step= 4

Max Token Len / Diffusion-Step= 8

Max Token Len / Diffusion-Step = 16

1024

Figure 3: Diffusion speed analysis in Long-CoT-needed tasks with LLaDA-8B-Instruct (Nie et al.,
2025a) and Dream-7B-Instruct (Ye et al., 2025) on BigGSM benchmark (Chen et al., 2024).

3 DO DLLMS TRUELY PERFORM PARALLEL REASONING THAT AVOIDS PSC?

3.1 PARALLEL-SEQUENTIAL CONTRADICTIONS CAUSE SUPERFICIAL PARALLEL REASONING.

To examine whether DLLMs can genuinely perform parallel reasoning, we analyze their decoding
behavior in both simple and complex scenarios. We have two key observations:

Parallel-Sequential Contradictions cause superficial parallel reasoning in simple scenarios As
shown in Figure 2 (a, b), DLLMs demonstrate parallel reasoning in simple cases where the model
can direct output results without reasoning. For instance, when solving "x2 + 2x + 1 = 0", the
model may simultaneously generate the Quadratic Formula "∆ = b2 − 4ac" and the final solution
"x = −1" within a few diffusion steps. Following this, DLLMs complete the remaining reasoning
steps in parallel, demonstrating the ability to leverage diffusion-based decoding to arrive at direct
solutions without relying heavily on sequential reasoning. To further explore this, we analyze the
distribution of answers generated in the initial diffusion steps. As shown in Figure 2 (e), over 47% of
answers are produced within the first 30% of diffusion steps. This suggests that in simple scenarios,
DLLMs are capable of performing parallel reasoning, even though the underlying thought process,
such as applying the Quadratic Formula before deriving the result, is inherently sequential.

For complex reasoning, DLLMs converge toward autoregressive-like behavior to avoid PSC
To examine DLLM behavior in complex reasoning tasks, we validate PSC where the model cannot
directly output the correct answer. Figure 2 (c, d) shows that DLLMs increasingly resemble autore-
gressive models. For example, when addressing tasks beyond direct generation, the model defaults to
an autoregressive process. This suggests difficulty in sustaining parallel reasoning, which shifts to
step-by-step processing. Figure 2 (f) further confirms this observation: in complex tasks, answers
emerge later in the diffusion steps, reflecting a stronger reliance on ordered reasoning. These findings
indicate that DLLMs face inherent PSC challenges in balancing parallel generation with sequential
reasoning, ultimately converging toward autoregressive-like processing in complex scenarios.

PSC are relevant to stronger context dependencies, which even amplified by RL. Through an
information-theoretic analysis of conditional entropy and a dependency index, we show that stronger
contextual dependencies intensify the PSC and cause marked performance degradation in DLLMs (see
Appendix J). This behavior follows from inherent limitations of the parallel generation architecture,
providing additional support for our theoretical interpretation of the PSC phenomenon.Additionally,
reinforcement learning-based fine-tuning further amplifies the PSC in DLLMs (see Appendix I),
suggesting that common post-training methods may worsen underlying architectural mismatches. Our
analysis reveals that an increase in dependency strength (i.e., lower conditional entropy or higher DI)
based on RL has a significant negative impact on DLLM performance, particularly when modeling
long-range dependencies is required.

3.2 DIFFUSION-STEP DILEMMA: SACRIFICING EFFICIENCY UNDER PSC

To investigate the reasoning efficiency of current DLLMs, we systematically categorize questions in
BigGSM (Chen et al., 2024) into different sampling lengths and diffusion steps (with low-confidence
remasking). We evaluate two representative DLLMs under exponentially increasing diffusion steps
and max token lengths (ranging from 1 to 1024). See Appendix D for more details.

When complex reasoning, DLLMs require significantly more diffusion steps than ALLMs. As
shown in Figure 3 (a), achieving comparable length and accuracy to ALLMs demands over 25% more

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Model Name BigGSM (Acc.) GSM8K (Acc.) Math-500 (Acc.) HumanEval (Pass@1) Average
Dream-7B-Instruct 41.15 (+0.00) 80.52 (+0.00) 37.00 (+0.00) 51.22 (+0.00) 52.47 (+0.00)

+Zero-CoT 41.15 (−0.00) 77.26 (−3.26) 34.00 (−3.00) 48.78 (−2.44) 50.30 (−2.18)

+Plan-and-Solve 34.75 (−6.40) 78.85 (−1.67) 20.20 (−16.80) 48.78 (−2.44) 45.65 (−6.83)

+Least-to-Most 35.25 (−5.90) 77.03 (−3.49) 16.20 (−20.80) 43.29 (−7.93) 42.94 (−9.53)

+Complex-CoT 41.80 (+0.65) 80.95 (+0.43) 37.40 (+0.40) 52.44 (+1.22) 53.15 (+0.68)

+MARP 42.95 (+1.80) 80.52 (+0.00) 37.20 (+0.20) 51.22 (+0.00) 52.97 (+0.50)

+Diff-MARP 47.21 (+6.06) 82.64 (+2.21) 43.60 (+6.60) 52.44 (+1.22) 56.47 (+4.00)

LLaDA-8B-Instruct 48.03 (+0.00) 75.36 (+0.00) 34.80 (+0.00) 32.32 (+0.00) 47.63 (+0.00)

+ Zero-CoT 35.57 (−12.46) 73.46 (−1.90) 32.40 (−2.40) 28.05 (−4.27) 42.37 (−5.26)

+ Plan-and-Solve 31.64 (−16.39) 72.33 (−3.03) 29.00 (−5.80) 27.44 (−4.88) 40.10 (−7.53)

+ Least-to-Most 34.75 (−13.28) 73.31 (−2.05) 30.80 (−4.00) 27.44 (−4.88) 41.58 (−6.05)

+ Complex-CoT 48.03 (+0.00) 76.50 (+1.14) 36.20 (+1.40) 36.59 (−4.27) 49.33 (+1.70)

+ MARP 48.20 (+0.17) 76.35 (+0.99) 34.40 (−0.40) 35.37 (−3.05) 48.58 (+0.95)

+Diff-MARP 55.74 (+7.71) 76.80 (+1.44) 38.20 (+3.40) 38.41 (+6.09) 52.29 (+4.66)

LLaDA-v1.5 41.80 (+0.00) 74.98 (+0.00) 38.00 (+0.00) 36.59 (+0.00) 47.84 (+0.00)

+ Zero-CoT 36.39 (−5.41) 71.87 (−3.11) 37.20 (−0.80) 35.98 (−0.61) 45.36 (−2.48)

+ Plan-and-Solve 30.16 (−11.54) 74.37 (−0.61) 34.40 (−3.60) 35.98 (−0.61) 43.73 (−4.12)

+ Least-to-Most 35.90 (−5.90) 73.69 (−1.29) 34.60 (−3.40) 31.71 (−4.88) 43.98 (−3.87)

+ Complex-CoT 50.16 (+8.41) 75.51 (+0.53) 39.40 (+1.40) 39.02 (+2.43) 51.04 (+3.19)

+ MARP 42.13 (+0.33) 74.37 (0.61) 38.20 (+0.20) 37.20 (+0.61) 47.98 (+0.13)

+Diff-MARP 54.49 (+12.79) 76.50 (+1.52) 42.80 (+4.80) 38.41 (+1.82) 53.08 (+5.23)

LLaDOU-Math 42.13 (+0.00) 81.88 (+0.00) 45.80 (+0.00) 39.02 (+0.00) 52.21 (+0.00)

+Zero-CoT 38.52(−3.61) 80.95(−0.93) 45.80(−0.00) 37.80(−1.22) 50.77(−1.44)

+Plan-and-Solve 40.82(−1.31) 81.12(−0.76) 43.20(−2.60) 38.41(−0.61) 50.89(−1.32)

+Least-to-Most 40.16(−1.97) 79.08(−2.80) 43.00(−2.80) 36.59(−2.43) 49.71(−2.50)

+ Complex-CoT 43.77(+1.64) 83.70(+1.82) 45.80(+0.00) 42.07 (+3.05) 52.47(+0.26)

+ MARP 41.15(−0.98) 82.18(+0.30) 45.60(−0.20) 40.26(+1.24) 52.30(+0.09)

+Diff-MARP 54.26 (+12.13) 84.76 (+2.88) 49.00 (+3.20) 40.85(+1.83) 57.22 (+5.01)

Table 1: Performance comparison across 4 benchmarks. Bold marks the best baseline score per metric.
For each method, we report its most token-efficient variant. Here, “ ”: prompting strategies, “ ”:
offline strategies, “ ”: online strategies. See results in Table 4 with different decoding methods.

diffusion or decoding steps with remasking. In extreme cases, DLLMs require up to twice the token
length in diffusion steps to match the performance and output length of autoregressive models when
generating over 256 tokens. It indicates that effective reasoning entails roughly double the diffusion
steps relative to the answer length, underscoring a notable efficiency challenge in reasoning tasks.

In reasoning scenarios, a large number of diffusion steps for autoregressive reasoning is
unavoidable for acceptable accuracy. Each generated token requires a sufficient number of
diffusion iterations to allow the model to reason effectively and produce high-quality outputs. As
illustrated in Figure 3 (b), performance sharply declines when diffusion steps fall below the target
token length. For example, generating 80 tokens with a maximum length of 128 but only 64
diffusion steps results in over a 10% accuracy drop; with 32 steps, accuracy decreases by about 40%.
This demonstrates that inadequate diffusion severely impairs reasoning, as the model lacks enough
refinement iterations. Thus, diffusion steps should at least match the planned token length to maintain
reasoning quality. Nonetheless, excessive diffusion can significantly reduce efficiency.

3.3 RETHINKING THE PROMPTING STRATEGIES IN DLLMS FROM PSC PERSPECTIVE

In general, traditional autoregressive inference methods are typically categorized into two types:
pipeline-guided approaches and condition-following approaches (see Appendix F for details). In this
section, we will begin by reviewing the theoretical foundations and representative implementations
of these two categories. We will then examine their practical limitations and challenges. Furthermore,
we introduce a parallel-encouraging prompting to improve DLLM effectiveness.

Sequential Reasoning Prompting will enlarge PSC’s negative impact for DLLMs. Sequential
prompting strategies, which facilitate sequential reasoning, have been shown to significantly improve
the performance of ALLMs on complex tasks. However, as indicated in purple rows of Table 1,
we observed a notable decline in performance as tasks required an increasing number of reasoning
steps. We attribute this decline to the fact that sequential reasoning prompts exacerbate the negative
impact of PSC, thereby impairing the reasoning performance in DLLMs. Additionally, we conducted
evaluations under high computational budgets. The results in Appendix F.6 indicate that even with
sufficient inference resources, performance remains limited.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Constraint-guided Reasoning Prompting enhances model performance by preventing the in-
troduction of additional PSC. By incorporating explicit constraints into the reasoning process,
constraint-guided prompting effectively narrows the model’s search space, thereby preventing the
emergence of additional PSC during the reasoning process in DLLMs. This focused approach results
in more accurate and reliable solutions. As shown blue rows of in Table 1, methods based on
this principle, such as Complex-CoT (Fu et al., 2022) and MARP (Chen et al., 2024), demonstrate
superior reasoning capabilities in DLLMs compared to traditional sequential prompting methods.

Parallel-encouraging Prompting reduces the sequential feature so that it further improves
performance. Parallel-encouraging prompting refers to the technique of presenting multiple re-
lated tasks or questions simultaneously. This approach reduces the impact of PSC and minimizes
the sequential features in the prompting process. By encouraging the model to make connections
across these tasks, as illustrated in green rows of Table 1, it effectively fosters DLLMs’ perfor-
mance, leading to more efficient reasoning and information integration (See more examples in
Appendix F.4). Leveraging the parallel processing capabilities of DLLMs, this method has the
potential to significantly enhance performance, particularly in complex reasoning tasks, by promoting
more comprehensive and coherent solutions (See more analysis in Appendix F.5). To inspire concrete
ideas for a DLLM-friendly dataset, we discuss this in Appendix F.8 to guide future work.

Takeaways

1. Due to PSC, DLLMs engage in superficial parallel reasoning and exhibit autoregressive
behavior in complex scenarios, which compromises their reasoning efficiency.

2. Sequential prompts prove ineffective for DLLMs, requiring PSC-free or PSC-reduced ap-
proaches like constraint-guided and parallel-encouraging prompts to guide their operation.

4 WHAT CHALLENGES DO DLLMS MEET IN LONG COT BASED ON PSC?

Despite impressive empirical results, DLLMs’ genuine reasoning abilities and scalability under
Parallel-Sequential Contradictions remain open questions. We systematically evaluate Long CoT to
assess these fundamental capabilities and scaling strategies.

4.1 DLLMS DO NOT HAVE SUFFICIENT BASIC CAPABILITIES TO SUPPORT LONG COT.

Long CoT is the primary innovation in recent reasoning large language models, leveraging inference-
time scaling for self-exploration, self-reflection, and deep reasoning (Chen et al., 2025). Evaluation
details are in Appendix G and Table 5.

Traditional reflection strategies are Ineffective for DLLMs. Long CoT models always employ a
self-reflection mechanism for iterative reasoning refinement. To assess its efficacy, we examine two
LLM paradigms: (1) Prompting Reflection and (2) Autoregressive Forcing Reflection As shown in
Figure 4 (a, b), reflection paradigms yield no significant differences from vanilla reasoning chains in
semantic similarity, informativeness, or token-level entropy1. Though the reflection process increases
entropy and reduces informativeness, it maintains over 0.95 semantic similarity to original reasoning
chains. These findings suggest the reflection mechanism offers only limited surface-level optimization.
Figure 4 (c) further reveals a substantial token repetition ratio compared to the original path, resulting
in approximately 10% reflection-to-error responses.

Limited Efficacy of traditional exploration strategies for novel reasoning path generation.
Exploration, a fundamental competency for complex reasoning, involves a model’s ability to generate
diverse and innovative solutions. To assess this potential in DLLMs, we designed experiments utilizing
two strategies: (1) Prompting Exploration and (2) Autoregressive Forcing Exploration. Figure 5
(a, b) reveal that current exploration strategies offer several improvements in the novel semantic of
generated reasoning processes. However, these improvements remain superficial, evidenced by a
high similarity (> 0.84) between explored paths and original results. Furthermore, as depicted in
Figure 5 (c), while the new path and explore-to-correct ratios are limited (∼ 5%), they nonetheless
indicate a positive, albeit constrained, effect.

1An effective reflection is generally expected to drive model toward lower entropy and higher certainty.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) The quality analysis of reflection path on
Dream-Instruct-7B on ROSCOE.

(b) The quality analysis of reflection path on
LLaDA-Instruct-8B on ROSCOE.

Sim: 0.9702 Sim: 0.9715

To
ke

n
En

tr
op

y
(↓

)

Diffusion Step= 128

Sim: 0.9577

Sim: 0.9523

5.7

5.5

5.3

5.1

Informativeness (↑
)

88
87

85
84

86

Diffusion Step= 256

Sim: 0.9742

Sim: 0.9769

To
ke

n
En

tr
op

y
(↓

) 5.4

5.3

5.2

5.1

Repetition word (↓)

9.0 8.5
8.0

7.5
7.0

6.5
Informativeness (↑

)
87.7

87.5
87.3

87.1

Sim: 0.9578

Sim: 0.9605

Diffusion Step= 128

Repetition word (↓)

25
20

15
10

5

Diffusion Step= 256

0 10 20 30 40 50 60 70 80 90

LLaDA
+ PR

Dream
+PR

LLaDA
+AFR

Dream
+AFR

(c) The manual quality analysis of exploration
path on two DLLMs.

Repetition Rate (vs. baseline)

Reflect-to-Error Rate (vs. baseline)

Proportion Rate

Direct Baseline Prompting Reflection (PR) Autoregressive Forcing Reflection (AFR)

Figure 4: Self-reflection performance and rationale quality evaluation on DLLMs. In Figure (c), We
conduct manual annotation for each reflection or exploration trajectory to determine whether it is
repetitive compared to the preceding (baseline) trajectory (True/False) and whether its final outcome
is correct (True/False), thereby obtaining the proportion of new paths or erroneous paths.

89.0

89.5

90.0

90.5

91.0

91.5

92.0

87.6 87.7 87.8 87.9

(a) The quality analysis of exploration
path on Dream-Instruct-7B on ROSCOE.

Re
as

on
in

g
A

lig
nm

en
t (
↓)

Informativeness (↑)

89.7
89.8

89.9
90.0
90.1

90.2
90.3
90.4

90.5

87.8 88.0 88.2 88.4 88.6

Sim: 0.9077

Sim: 0.8799

Sim: 0.8535

Sim: 0.9107

(b) The quality analysis of exploration
path on LLaDA-Instruct-8B on ROSCOE.

Diffusion Step
= 256

Diffusion Step
= 128

Re
as

on
in

g
A

lig
nm

en
t (
↓)

Informativeness (↑)

Sim: 0.8643

Sim: 0.9132
Sim: 0.9108

Sim: 0.8431

Diffusion Step
= 256

Diffusion Step
= 128

Direct Baseline Prompting Exploration (PE) Autoregressive Forcing Exploration (AFE)

0 5 10 15 20 25 30

(c) The manual quality analysis of reflection
path on two DLLMs.

New Path Rate (vs. to baseline)

Explore-to-Correct Rate (vs. baseline)

LLaDA
+ PE

Dream
+PE

LLaDA
+AFE

Dream
+AFE

Proportion Rate

Figure 5: Self-exploration performance and rationale quality evaluation on DLLMs.

DLLMs possess limited reasoning boundaries and, consequently, exhibit restricted deep reason-
ing abilities. To examine the limitations of DLLMs on deep reasoning, we evaluate their capacity
to sustain reasoning across sufficient depths. Figure 6 (a) demonstrates that error steps are all less
than 2, which suggests that current DLLMs are unable to consistently sustain deep reasoning perfor-
mance. Furthermore, following Chen et al. (2024), we define the 90% correctness step count as the
models’ completely feasible reasoning boundary (CFRB), and the 10% correctness step count as the
completely infeasible reasoning boundary (CIRB). As shown in Figure 6 (b), current DLLMs display
similar CFRB values but lower CIRB values, indicating narrower feasible reasoning ranges.

4.2 CURRENT DLLMS HAVE THREE-DIRECTIONAL BUT LIMITED INFERENCE-TIME SCALING

Given their denoising characteristics, we investigate a fundamental question: Is there also Inference-
Time Scaling Law in DLLM under such contradictions? As shown in Figure 7, we examine this
through three complementary perspectives:

• Diffusion Scaling: Increasing the number of denoising reasoning steps in the model. The stacked
MASK blocks represent multiple, deeper iterations of denoising.

• Parallel Scaling: Generating multiple distinct output candidates simultaneously in parallel. The
adjacent output blocks at the top represent the concurrent production of multiple output variants.

• Sequential Scaling: The visualization is designed to emphasize the step-by-step output generation
process. The arrow direction explicitly illustrates this incremental reasoning progression.

These experiments determine whether DLLMs follow inference-time scaling laws and provide
practical insights for optimizing reasoning performance. Implementation details can be seen in
Appendix H.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Qwen-7B-Instruct

Dream-7B-Instruct

LLaMA3-8B-Instruct
LLaDA-8B-Instruct

(a) The first incorrect step
position across 4 models on
BigGSM.

St
ep

 P
os

iti
on

Correct sample Incorrect sample CFRB PFRB

M
ax

im
um

 m
ul

tip
lic

at
io

n
ca

lc
ul

at
io

n
va

lu
e

(𝓑
(m

))

(e) The reasoning boundaries
of Dream on BigGSM.

The number of
planning step (𝓑(p))

41 7 10 13 16
0

1e5

2e5

3e5

(d) The reasoning boundaries
of on Qwen BigGSM.

The number of
planning step (𝓑(p))

0

1e5

2e5

3e5

41 7 10 13 16

1e5

2e5

3e5

(c) The reasoning boundaries
of LLaDA on BigGSM.

The number of
planning step (𝓑(p))

41 7 10 13
0

1616

(b) The reasoning boundaries
of LLaMA on BigGSM.

The number of
planning step (𝓑(p))

41 7 10 13
0

1e5

2e5

3e5

2.6

3.3

1.8
1.4

0

1

2

3

4

Large Language Model

Figure 6: Incorrect Step and Reasoning Boundaries Distribution of DLLMs on BigGSM.

35

40

45

50

55

60

65

70

75

80

1 4 16

Pa
ss

@
k

(%
)

50

52

54

56

58

60

62

64

66

68

70

1 2 3 4 5 6 7 8 9 10

Pa
ss

@
k

(%
)

Parallel Scaling Size

(a) Parallel Scaling Performance on LLaDA
with different temperature.

Temperature=0.3
Temperature=0.1
Temperature=0.5

Temperature=0.7Temperature=1.0

(b) Inference-time Scaling Law on
Parallel Scaling Performance.

Parallel Scaling Size (log scale)

James runs in a week, we
need to break down the
problem into smaller steps…

Input

[MASK]
[MASK]
[MASK]overall
overall

James runs in a week, we
need to break down the
problem into smaller steps…

[MASK]
[MASK]
[MASK]overall
overall

DLLM

Sequential Scaling

Parallel
Scaling

Diffusion Scaling

Figure 7: Three primary scaling directions
for DLLMs proposed in our work.

35

40

45

50

55

60

65

70

75

80

1 4 16

Pa
ss

@
k

(%
)

50

52

54

56

58

60

62

64

66

68

70

1 2 3 4 5 6 7 8 9 10

Pa
ss

@
k

(%
)

Parallel Scaling Size

(a) Parallel Scaling Performance on LLaDA
with different temperature.

Temperature=0.3
Temperature=0.1
Temperature=0.5

Temperature=0.7Temperature=1.0

(b) Inference-time Scaling Law on
Parallel Scaling Performance.

Parallel Scaling Size (log scale)

James runs in a week, we
need to break down the
problem into smaller steps…

Input

[MASK]
[MASK]
[MASK]overall
overall

James runs in a week, we
need to break down the
problem into smaller steps…

[MASK]
[MASK]
[MASK]overall
overall

DLLM

Sequential Scaling

Parallel
Scaling

Diffusion Scaling

Figure 8: Performance analysis under Parallel Scaling.

4.2.1 PARALLEL SCALING LAW HOLDS UNDER PSC

For DLLMs, a key question is whether their unique diffusion generation mechanism supports efficient
parallel sampling and whether parallel sampling can effectively enhance reasoning performance.

Higher temperatures do not always yield more diverse and effective parallel sampling. The
decoding temperature controls generation randomness, with higher values typically increasing output
diversity in ALLM reasoning. We adjust the temperature during generation (0.1 to 1.0) to evaluate
its impact on parallel sampling. Model accuracy improves steadily with increasing Pass@k values
across all temperature settings before plateauing. As shown in Figure 8 (a), moderate temperatures
(e.g., T = 0.5) achieve optimal performance, while both lower and higher temperatures yield
diminished performance gains. This result confirms that DLLMs also obey the widely recognized
trade-off governed by temperature.

DLLM reasoning accuracy improves with increased parallel samples, following inference-time
scaling patterns. As shown in Figure 8 (b), when k increases from 1 to 32, accuracy demonstrates
nearly linear improvement on a logarithmic scale. This indicates that DLLMs effectively utilize
parallel sampling to enhance reasoning performance, as diverse outputs increase the probability of
generating correct solutions. This pattern aligns with inference-time scaling laws observed in other
advanced language models, where performance scales with computational effort during inference.

4.2.2 DIFFUSION SCALING IS CONSTRAINED BY PSC

Diffusion Scaling of DLLMs ensures performance gains, with diffusion time positively corre-
lated. Model accuracy increases monotonically with the number of diffusion steps. We are the first
to formalize Diffusion Scaling in DLLMs, proposing a positive correlation between model perfor-
mance and diffusion iterations. To validate this claim, we benchmark two representative DLLMs,
DREAM (Ye et al., 2025) and LLaDA (Nie et al., 2025a), under an exponential schedule of diffusion
steps (1–1024). By tracking accuracy at each step, we observe how DLLMs address reasoning tasks of
varying complexity across the diffusion process. As shown in Figure 9 (a), performance consistently

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

A
cc

ur
ac

y
(%

)

30
35
40
45
50

32 64 128 256 512 1024 2048

A
cc

ur
ac

y
(%

)

Diffusion Steps
(c) Diffusion and Sequential Scaling Performance on
LLaDA-Instruct-8B.(b) Diffusion scaling vs. early stop on Dream.

0
15
30
45
60

1 4 16 64 256 1024 4096
A

cc
ur

ac
y

(%
)

Diffusion Steps

Dream
LLaDA

+Early StopDiffusion Scaling

(a) Diffusion scaling performance.

0

20

40

60

1 8 64 512 4096

D
iff

us
io

n
St

ep
s

(e) Diffusion scaling with natural sequential scaling.

A
cc

ur
ac

y
(%

)

Max Token Length

1 8 64 512 4096

300

200

100

00

20

40

60

G
en

er
at

ed
 T

ok
en

Le

ng
th

Dream
LLaDA

Max Token Length
14166425610244096

16
256

4096

0

10

20

30

40

50

Acc.
Length

(d) Sequential Scaling Performance.

Diffusion Step

A
cc

ur
ac

y
(%

)

Figure 9: Diffusion Scaling analysis of reasoning accuracy across difficulty levels on BigGSM.

improves with deeper diffusion; however, the rate of improvement depends on task difficulty: simpler
problems gain substantially, while tasks beyond the model’s capacity yield only limited benefits.

Diffusion Scaling is effective and exhibits an upper bound, beyond which an over-diffusion
phenomenon emerges due to PSC. Consistent with classical scaling laws, the benefits of diffusion
scaling are inherently capped. As shown in Figure 9 (a), increasing diffusion steps improves
performance from 32 to 512 steps, after which gains plateau. More importantly, excessive diffusion
reduces accuracy: Figure 9 (b) shows a drop from 44.92% to 44.43%. This decline illustrates
over-diffusion, where extended denoising introduces excessive corrections that disrupt reasoning
chains, akin to overfitting caused by training without early stopping.

Early stopping can effectively mitigate over-diffusion. To address over-diffusion, we propose
a Diffusion Early Stopping (DES) strategy that halts the process when generated tokens stabilize.
The implementation comprises three components: (1) Overlap Ratio Calculation: computed as the
proportion of identical tokens between consecutive steps. (2) Convergence Detection: potential
convergence occurs when the overlap ratio meets or exceeds a predefined threshold. (3) Activation
Condition: early stopping triggers only after three consecutive steps satisfy the threshold, preventing
false positives from transient fluctuations. As shown in Figure 9 (b), we observe that beyond 256 steps,
early stopping outperforms standard diffusion, with accuracy improving from 44.26% to 46.89%
at 1024 steps. Early stopping captures convergence states and terminates upon stabilization, while
preventing performance degradation from excessive diffusion.

4.2.3 SEQUENTIAL SCALING IS EQUALLY CONSTRAINED BY PSC

The inherent limitations of sequential scaling for DLLMs. While sequential scaling has shown
promise in enhancing reasoning capabilities, it remains constrained by the inherent characteristics of
DLLMs. Unlike traditional nearly unbounded diffusion scaling on pure diffusion models (Ma et al.,
2025), as shown in Figure 9 (d), the performance improvements are at first increasing but eventually
converge. This limitation arises from the fact that sequential scaling relies on the model’s ability to
maintain context over extended reasoning chains, a challenge for current DLLMs.

Sequential Scaling also meets over-thinking challenges. Similar to diffusion scaling, as shown in
Figure 9 (d), sequential scaling faces its own set of over-thinking challenges. As the model attempts to
extend its reasoning across longer contexts, it may encounter diminishing returns or even performance
degradation. This phenomenon is particularly evident in tasks that require intricate reasoning over
extended text, where the model’s ability to track and integrate information can become strained.

Diffusion Scaling can naturally yield Sequential Scaling benefits. As shown in Figure 9 (e),
diffusion scaling alleviates the limitations of sequential scaling. We identify three stages in DLLMs
during diffusion: (1) sequential scaling, (2) compression, and (3) convergence. In the first stage,
increasing diffusion steps leads to stable performance but longer solutions, indicating that DLLMs
explore suitable lengths for reasoning. In the second stage, the model compresses its reasoning by
eliminating redundancy, generating more efficient solutions. In the third stage, the model converges
on an optimal strategy, achieving high performance while reducing computational cost.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Takeaways

1. DLLMs are deficient in three basic Long CoT capabilities, hindering their effectiveness.
2. DLLM can be optimized via parallel, diffusion, and sequential scaling. Diffusion scaling

inherently encompasses the benefits of sequential scaling.
3. The performance of both diffusion and sequential scaling is ultimately upper-bounded by

a parallel-sequential contradiction. But Parallel scaling law remains the most effective
strategy, although it is also the most computationally expensive.

5 RELATED WORK

The application of diffusion models to text generation has emerged as an alternative to autoregres-
sive methods. Early work by D3PM (Austin et al., 2021) proposed discrete denoising diffusion
probabilistic models, and Diffusion-BERT (He et al., 2022) demonstrated scalability to BERT-style
architectures. SEDD (Lou et al., 2023) achieved performance comparable to GPT-2. Recent progress
has broadened the scope of Diffusion Large Language Models (DLLMs) (Yang et al., 2025; Wu
et al., 2025; Gong et al., 2025). LLaDA (Nie et al., 2025a) and Dream (Ye et al., 2025) scaled to
billion-parameter models with notable inference gains. The D2F strategy (Wang et al., 2025a) further
enhanced inference by enabling block-level autoregression and parallel decoding, maintaining a bal-
ance between speed and accuracy. This direction aligns with the growing interest in applying DLLMs
to extended reasoning (Wang et al., 2025b; Zhao et al., 2025). Diffusion-of-Thought (DoT) (Ye et al.,
2024) combines diffusion with chain-of-thought reasoning. Building on this, Zhao et al. (2025) and
Tang et al. (2025) applied diffusion-augmented SFT and GRPO to strengthen reasoning. Similarly,
Trado (Wang et al., 2025b) exploits overlooked sampling signals, yielding further reasoning gains.

However, while DLLMs exhibit notable parallel decoding in text generation and consistently strong
step-by-step reasoning, these features appear conceptually opposed: parallelism implies simul-
taneous processing, whereas sequential reasoning demands ordered progression. This apparent
Parallel–Sequential Contradiction (PSC) suggests that both the underlying mechanisms and the
practical effectiveness of DLLMs’ diffusion-based reasoning remain insufficiently understood.

6 CONCLUSION

In this work, we formalize the Parallel-Sequential Contradiction (PSC) to explain why DLLMs,
though built for parallel decoding, revert to autoregression as reasoning difficulty rises. Empirically,
DLLMs exploit parallelism only when tokens are locally decidable; otherwise, they fall back to
sequential computation, reducing efficiency. Further, we first define three-dimensional scaling:
parallel, diffusion, and sequential scaling, and show that PSC restricts the latter two while parallel
scaling holds. We mitigate PSC through parallel-focused prompting, diffusion early stopping, and
parallel scaling, improving both accuracy and throughput. Future work should align training and
architectures with PSC-aware reasoning and design benchmarks, isolating its effects.

REPRODUCIBILITY DISCUSSION

Since our paper is an analytical paper, we directly use the official DLLMs warehouse for inference.
Except for the Scaling experiment, fast-dllm was added for time spent, and the others are used for
inference using official inference codes, and only relevant parameters are adjusted. In addition, the
relevant prompt experiments are all in Appendix F.

REFERENCES

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effective-
ness of entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing
systems, 34:17981–17993, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan,
Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin
Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou,
Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint arXiv:2309.16609,
2023.

Qiguang Chen, Libo Qin, Jiaqi Wang, Jingxuan Zhou, and Wanxiang Che. Unlocking the capabilities
of thought: A reasoning boundary framework to quantify and optimize chain-of-thought. Advances
in Neural Information Processing Systems, 37:54872–54904, 2024.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. arXiv preprint arXiv:2210.00720, 2022.

Olga Golovneva, Moya Chen, Spencer Poff, Martin Corredor, Luke Zettlemoyer, Maryam Fazel-
Zarandi, and Asli Celikyilmaz. ROSCOE: A suite of metrics for scoring step-by-step reasoning.
2022.

Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code
generation. arXiv preprint arXiv:2506.20639, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Diffusion-
bert: Improving generative masked language models with diffusion models. arXiv preprint
arXiv:2211.15029, 2022.

Zemin Huang, Zhiyang Chen, Zijun Wang, Tiancheng Li, and Guo-Jun Qi. Reinforcing the diffusion
chain of lateral thought with diffusion language models. arXiv preprint arXiv:2505.10446, 2025.

Inception Labs. Mercury: A diffusion large language model. Technical report, Inception Labs, 2025.
URL https://www.inception-labs.ai/mercury. Commercial-grade diffusion LLM
for code generation. Achieves over 1000 tokens/second on NVIDIA H100.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Advances in Neural Information Processing Systems,
volume 35, pp. 22199–22213, 2022.

Tianyi Li, Mingda Chen, Bowei Guo, and Zhiqiang Shen. A survey on diffusion language models.
arXiv preprint arXiv:2508.10875, 2025.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang, Yan-
dong Li, Tommi Jaakkola, Xuhui Jia, and Saining Xie. Inference-time scaling for diffusion models
beyond scaling denoising steps, 2025. URL https://arxiv.org/abs/2501.09732.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-
Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint arXiv:2502.09992,
2025a.

11

https://www.inception-labs.ai/mercury
https://arxiv.org/abs/2501.09732

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yatao Nie, Jie Chen, Yufan Zhang, et al. Large language diffusion with masking. arXiv preprint,
2025b. URL https://arxiv.org/abs/2502.09992.

Libo Qin, Qiguang Chen, Fuxuan Wei, Shijue Huang, and Wanxiang Che. Cross-lingual
prompting: Improving zero-shot chain-of-thought reasoning across languages. arXiv preprint
arXiv:2310.14799, 2023.

Xiaohang Tang, Rares Dolga, Sangwoong Yoon, and Ilija Bogunovic. wd1: Weighted policy
optimization for reasoning in diffusion language models. arXiv preprint arXiv:2507.08838, 2025.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091, 2023.

Xu Wang, Chenkai Xu, Yijie Jin, Jiachun Jin, Hao Zhang, and Zhijie Deng. Diffusion llms can do
faster-than-ar inference via discrete diffusion forcing, aug 2025a. URL https://arxiv.org/
abs/2508.09192. arXiv:2508.09192.

Yinjie Wang, Ling Yang, Bowen Li, Ye Tian, Ke Shen, and Mengdi Wang. Revolutionizing reinforce-
ment learning framework for diffusion large language models. arXiv preprint arXiv:2509.06949,
2025b.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to
advance general chinese embedding, 2023.

Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
Multimodal large diffusion language models. arXiv preprint arXiv:2505.15809, 2025.

Jiacheng Ye, Shansan Gong, Liheng Chen, Lin Zheng, Jiahui Gao, Han Shi, Chuan Wu, Xin Jiang,
Zhenguo Li, Wei Bi, et al. Diffusion of thought: Chain-of-thought reasoning in diffusion language
models. Advances in Neural Information Processing Systems, 37:105345–105374, 2024.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. arXiv preprint arXiv:2504.12216, 2025.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning
in large language models. arXiv preprint arXiv:2205.10625, 2022.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, et al. Llada 1.5: Variance-reduced preference optimization for
large language diffusion models. arXiv preprint arXiv:2505.19223, 2025.

12

https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2508.09192
https://arxiv.org/abs/2508.09192

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

A THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, large language models were only utilized as general-purpose writing
assistants. Their role was confined to improving the clarity and refining the phrasing of the text. All
scientific content, analyses, and core arguments were developed by the human authors, who take full
responsibility for the final version of the paper.

B MATHEMATICAL PROOF OF DLLM DEGRADING TO AUTOREGRESSIVE

Goal. We rigorously show, via information theory and optimization, that the intrinsic statistical
property of a generative task, namely its sensitivity to perturbations of initial conditions, fundamentally
determines its optimal (lowest-loss) generation strategy. Concretely, we axiomatize two classes of
tasks: serial tasks (step-by-step reasoning) exhibiting cascading sensitivity to initial conditions, and
parallel tasks exhibiting partial invariance, and we prove that serial tasks induce significantly higher
conditional entropy for “skip-step” parallel predictions Sk | S1 than parallel tasks, forcing any
loss-minimizing learner to converge to an autoregressive strategy.

B.1 PROBLEM SETUP AND NOTATION

Let all step states Si take values in a metric space (Ω, d).

Specifically, the true data distribution pSθ of a task is considered serial if, for any given s1 ∈ Ω, the
mapping from s′1 to a subsequent state s′k is highly divergent within a sufficiently small neighborhood
N(s1, ϵ) = {s′1|d(s1, s′1) < ϵ}. Conversely, a task’s true data distribution pPθ is considered parallel
if, for any given s1 ∈ Ω, there exists at least one subsequent state Sk (where k>1) that is insensitive
to perturbations within its neighborhood N(s1, ϵ). Formally, this leads to the following definitions
for the two tasks.
Definition 1 (Serial tasks: cascading sensitivity with locally continuous transitions). A data-
generating distribution pSθ is serial if it satisfies the following properties:

Local continuity and learnable short-term dynamics: For each time step t, the conditional distribu-
tion pSθ (St+1 | St = st) is locally continuous: there exists δt > 0 such that for all s′t ∈ N(st, δt),
the distribution pSθ (St+1 | St = s′t) has low entropy and is learnable via autoregression.

Sensitive long-term dependence: For any s1 ∈ Ω and any k > 1, the compounded long-range
mapping s1 → sk exhibits high sensitivity, satisfying:

lim
ε→0

Es′1∼U(N(s1,ε))

[
pSθ (Sk = sk | S1 = s′1)

]
= 0, (3)

where sk is the reference outcome drawn from the true conditional pSθ (Sk | S1 = s1), and
U(N(s1, ε)) is the uniform distribution over the ε-neighborhood of s1.

This captures the dichotomy between locally continuous and learnable short-term transitions versus
sensitive long-term dependence on initial conditions.
Definition 2 (Parallel tasks: partial invariance). A data-generating distribution pPθ is parallel if there
exists some k > 1 and a constant C such that for any s1 ∈ Ω, the following condition satisfies:

lim
ε→0

Es′1∼U(N(s1,ε))

[
pPθ (Sk = sk | S1 = s′1)

]
= C, (4)

where sk is the reference outcome drawn from pPθ (Sk | S1 = s1), and the constant C satisfies
0 < C ≤ 1. Thus, a structurally stable downstream state persists with significant probability despite
infinitesimal perturbations of the initial condition.

B.2 LEARNING PROBLEM

Let pθ be a parametric generative model trained by minimizing cross-entropy with respect to the true
data distribution p̂, i.e.,

L(pθ, p̂) = Ex∼p̂[− log pθ(x)] = H(p̂) +DKL(p̂∥pθ), (5)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

so minimizing cross-entropy is equivalent to minimizing DKL(p̂∥pθ) and to maximum likelihood.
For any conditional subproblem, the optimum satisfies p∗θ(Sk | S1) = p̂(Sk | S1), and the minimal
expected negative log-likelihood equals the conditional entropy,

L∗ = Es1∼p̂(S1)

[
H
(
p̂(Sk | S1 = s1)

)]
,where H(Y | X) ≡ −

∑
x∈X,y∈Y

p(x, y) log
p(x, y)

p(x)
. (6)

Autoregression and chain rule. A step-by-step reaosning strategy factorizes a joint distribution
as a product of conditionals via the chain rule, thereby replacing a high-entropy “skip” conditional
pθ(Sk | S1) by a sequence of typically lower-entropy one-step conditionals pθ(St+1 | St, . . .). It is
the standard rationale behind likelihood-based training of ALLMs under teacher forcing.

B.3 DISCRETIZATION

To compare entropies on a general metric space, consider a finite measurable partition Πε of Ω with
mesh size at most ε, and define the discretization and quantization map ϕε : Ω → [mε] that assigns
each s ∈ Ω to its cell index, where mε = |Πε|. Let S̃(ε)

i = ϕε(Si) and write p
(ε)
θ (·) for the induced

discrete laws; we analyze H(S̃
(ε)
k | S̃(ε)

1 = s̃1), which is well-defined, and relate back to the original
problem by taking ε → 0. Two standard facts underpin the analysis: (i) for a fixed finite support,
entropy is maximized by the uniform distribution; (ii) the Shannon entropy is bounded below by the
min-entropy − log pmax, and admits tighter lower bounds in terms of the binary entropy function Hb

and the support size.
Lemma 1 (Pointwise probability caps). Fix s1 ∈ Ω. Under Definition 1, for any k > 1 and any
η > 0 there exists δ0 > 0 such that for all discretization mesh sizes δ < δ0 and for all perturbation
radii ε < δ,

max
s′1∈N(s1,ε)

p
(δ)
θ,S

(
S̃
(δ)
k = sk | S̃(δ)

1 = ϕδ(s
′
1)
)

≤ η, (7)

where N(s1, ε) = {s′1|d(s1, s′1) < ε} and ϕδ is the discretization map with mesh size δ.

Under Definition 2, there exist some k > 1, C > 0 and δ0 > 0 such that for all δ < δ0 and ε < δ,

max
s′1∈N(s1,ε)

p
(δ)
θ,P

(
S̃
(δ)
k = sk | S̃(δ)

1 = ϕδ(s
′
1)
)

≥ C. (8)

Proof sketch. By Definition 1, for serial tasks, the conditional probability of a reference outcome,
averaged over shrinking neighborhoods of s′1, vanishes. This forces any mass that could be con-
centrated on a particular cell containing sk to diminish as the mesh refines. In contrast, for parallel
tasks, Definition 2 guarantees a persistent mass C ∈ (0, 1] associated with a stable outcome across
neighborhoods, which uniformly lower-bounds the maximum conditional atom in ε.

B.4 MAIN PROPOSITION AND QUANTITATIVE BOUNDS

Proposition 1 (Skip-step parallel predictions on serial vs. parallel tasks). For any k > 1, the optimal
expected skip-prediction loss on serial-task data strictly exceeds that on parallel-task data:

L∗
S

(
pθ(Sk | S1 = s′1)

)
> L∗

P

(
pθ(Sk | S1 = s′1)

)
, (9)

Let HS and HP denote the conditional entropies under the Serial and Parallel data distributions,
respectively. We have,

Es′1∼U(N(s1,ε))

[
HS

(
Sk | S1 = s′1

)]
> Es′1∼U(N(s1,ε))

[
HP

(
Sk | S1 = s′1

)]
, (10)

In the discrete case, this reduces to showing

Es′1∼N ′(s1)

[
HS

(
S̃
(ε)
k | S̃(ε)

1 = ϕε(s1)
)]

> Es′1∼N ′(s1)

[
HP

(
S̃
(ε)
k | S̃(ε)

1 = ϕε(s1)
)]

(11)

with a strictly positive gap that can be quantified through discretization and classical entropy bounds.

Proof. It suffices to compare the conditional entropies pointwise and then take expectations. Fix s1
and a partition Πε. We first define the maximum of generation probability of serial tasks:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

pSmax(δ; s1, k) := max
s′1∈N(s1,ε)

p
(δ)
θ,S

(
S̃
(δ)
k = sk | S̃(δ)

1 = ϕδ(s
′
1)
)

(12)

where the maximization is performed over the neighborhood of s1 for a fixed target step k. and
analogously pPmax(δ; s

′
1) under p(δ)θ,P .

By the lemma, pSmax(δ; s
′
1) → 0 as δ → 0, while for parallel tasks one has pPmax(δ; s

′
1) ≥ C for all

sufficiently small δ. For any discrete distribution over mδ points with maximal atom pmax, Fano’s
inequality implies

H ≤ Hb(pmax) + (1− pmax) log(mδ − 1), (13)
where Hb is the binary entropy.

Thus, for parallel tasks,

HP

(
S̃
(δ)
k | S̃(δ)

1 = ϕδ(s
′
1)
)

≤ Hb

(
pPmax(δ; s

′
1)
)
+
(
1− pPmax(δ; s

′
1)
)
log(mδ − 1), (14)

and since pPmax(δ; s
′
1) ≥ C > 0, the entropy is uniformly bounded away from the maximal value

log(mδ) by a constant determined by C.

For serial tasks, since pSmax(ε; s
′
1) → 0, we have error probability pe → 0. Now, we should apply the

contrapositive of Fano’s inequality. Specifically, given the Fano’s inequality:

H ≤ Hb(pe) + pe log(mε − 1), (15)

it follows that H → 0 ⇒ pe → 0. Conversely, pe → 1 implies H → Hmax. In this sense, the
condition is satisfied:

HP

(
S̃
(ε)
k | S̃(ε)

1 = ϕε(s
′
1)
)
→ log(mε − 1), if pSmax(ε; s

′
1) → 0, (16)

which reflects the extreme dispersion dictated by sensitivity. Therefore, it satisfies:

Es′1∼N ′(s1)

[
HS

(
S̃
(ε)
k | S̃(ε)

1 = ϕε(s1)
)]

− Es′1∼N ′(s1)

[
HP

(
S̃
(ε)
k | S̃(ε)

1 = ϕε(s1)
)]

> 0. (17)

Q.E.D. □

B.5 CONSEQUENCES FOR OPTIMAL STRATEGY

Formal chain rule of entropy. To rigorously establish why sequential generation is superior for
serial tasks, we invoke the chain rule of entropy:

H(Sk|S1) =

k−1∑
t=1

H(St+1|S≤t). (18)

While our proof shows that the long-range conditional entropy H(Sk|S1) is high due to cascading
sensitivity, the local continuity assumption (revised Definition 1) ensures that each step-wise condi-
tional entropy H(St+1|S≤t) remains low and learnable. The autoregressive strategy minimizes the
decomposed loss:

LAR =

k−1∑
t=1

E[− log p(St+1|S≤t)], (19)

where each term has low entropy and is thus efficiently learnable. In contrast, direct parallel prediction
of p(Sk|S1) must contend with the high entropy H(Sk|S1), requiring exponentially more samples to
achieve the same precision.

Optimal strategy selection. Since the minimum expected NLL equals the conditional entropy, the
high conditional entropy of skip-step predictions in serial tasks implies a high irreducible loss for any
pθ(Sk | S1) objective. A loss-minimizing learner thus prefers to factorize predictions into a sequence
of low-entropy one-step conditionals, i.e., an autoregressive strategy consistent with the chain-rule
factorization and standard maximum-likelihood training.

By contrast, in parallel tasks, the existence of a stable high-probability outcome for some downstream
state Sk produces a low-entropy, high-confidence conditional, so optimizing pθ(Sk | S1) can be
preferable and can support non-autoregressive or partially parallel generation plans.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) Decoding order in no-reasoning
tasks of LLaDA.

To determine the total distance
James runs in a week, we need to
break down the problem into
smaller steps.
1. Calculate the distancece

James runs in one session.
2. Calculate the distance James

runs in one week.
3. Calculate the distance James

runs in a week.
First, let's calculate the distance
James runs in one session:
• James runs 3 sprints in one

session.
• Each sprint is 60 meters long.
• Therefore, the distance in one

session is 3	×	60 = 	180	meters.
Next, let's calculate the distance
James runs in one week: …

(b) Decoding order in
reasoning tasks of LLaDA.

from typing import List

def has_close_elements(
 numbers: List[float],
 threshold: float
) -> bool:
 """ Check if in given list of numbers, are any two
numbers closer to each other than given threshold.
 >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
 False
 >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0],
0.3)
 True
 " " "
 for i in range(len(numbers)):
 for j in range(i+1, len(numbers)):
 if abs(numbers[i] – numbers[j])< threshold:
 return True
 return False

from typing import List
def find_max(numbers: List[int]) -> int:
 """Return the maximum number in the list.
 >>> find_max([1, 2, 3, 4, 5])
 5
 >>> find_max([-1, -2, -3])
 -1
 """
 max_num = numbers[0]
 for num in numbers:
 if num > max_num:
 max_num = num
 return max_num

(c) Decoding order in no-
reasoning tasks of Dream.

(d) Decoding order in
reasoning tasks of LLaDA.

To find the distance from the origin, we
need to calculate the net eastward
distance and the net westward distance
separately then combine the two. The
bird's flight path is given as follows:
•723 kilometers westward
•279 kilometers eastward
•509 kilometers eastward
•463 times the east it had yesterday
Let's calculate the net eastward distance:
•eastward 723 - westward 279 =
eastward 444 kilometers
•eastward 444 + westward 509 =
eastward 953 kilometers
•eastward 953 + westward 463 * the
distance it yesterday = eastward 953 +
westward 463 * the distance it
yesterday…

Figure 10: Decoding order of Dream and LLaDA on BigGSM (Chen et al., 2024).

Takeaway. Task-intrinsic sensitivity versus invariance dictates the shape of the optimal conditional
distributions; via the cross-entropy/KL equivalence, this in turn selects the generation procedure
that globally minimizes expected loss, with serial tasks forcing autoregression and parallel tasks
permitting advantageous skip-step or parallel predictions.

C EXPERIMENT SETTING

Due to their strong fundamental performance and stable generation, this study adopts Dream-7B-
Instruct (Ye et al., 2025) and LLaDA-8B-Instruct (Nie et al., 2025b) as representative diffusion
language models for most experimental evaluations.

In Section 3.1, to systematically examine how PSC affects DLLM reasoning, we select D1 (Zhao
et al., 2025) and TraDo (Wang et al., 2025b) for diffusion-sequence analysis: D1 refines reasoning
trajectories via reinforcement learning-based reward reshaping, whereas TraDo uses dynamic pro-
gramming to coordinate denoising in latent space, thereby establishing a theoretical link between
noise scheduling and reasoning stability.

In Section 3.3, when assessing the effects of different prompt strategies on DLLMs, we employ
LLaDA-v1.5 (Zhu et al., 2025) and LLaDOU-Math (Huang et al., 2025). LLaDA-v1.5 improves
mathematical and coding abilities through dynamic mask scheduling and hierarchical denoising,
while LLaDOU-Math applies a reinforcement learning-based noise scheduling scheme and attains
state-of-the-art performance on the MATH benchmark.

In Section 4.1, when probing the deep reasoning capabilities of DLLMs, we include the autoregressive
models LLaMA3-8B-Instruct and Qwen-7B-Instruct (Bai et al., 2023) as baselines. These two models
serve as mature autoregressive references, enabling a comprehensive comparison with DLLMs.

Comprehensive experimental configurations are documented in the appendices. For Section 3.2
(Diffusion-Step Dilemma), Section 3.3 (Prompting Strategies on DLLMs), Section 4.1 (Long CoT
Capability of DLLMs), and Section 4.2 (Three-directional Inference-time Scaling on DLLMs), the
corresponding details are provided in Appendix D, F, G, and H, respectively.

D DIFFUSION-STEP EVALUATION DETAILS

In this section, we provide additional technical details on the methodology used to evaluate the
impact of diffusion steps and sampling lengths in Diffusion-based Language Models (DLLMs). We
specifically focus on how these parameters influence the efficiency and accuracy of the models when
tackling complex reasoning tasks.

For our analysis, we utilize the BigGSM dataset (Chen et al., 2024), which includes a diverse range
of complex reasoning tasks designed to test current models’ ability to perform long-form reasoning.
In particular, we assess the performance of two representative DLLMs on these tasks and compare
them against a standard ALLM. We systematically vary both the number of diffusion steps and the
sampling lengths to evaluate their combined effects on the reasoning efficiency of DLLMs. The

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

number of diffusion steps tested ranges from 1 to 1024, while the maximum token lengths vary from
1 to 1024 tokens, with low-confidence remasking. In each experiment, the number of diffusion steps
is set equal to the maximum token length. This range allows us to assess the model’s performance
under different levels of token generation and diffusion refinement. For ALLMs, we adjust the
maximum token length between 1 and 1024 and the temperature between 0.2 and 0.7, aiming to
achieve comparable performance to that of the DLLMs.

For each setting, we track the following metrics:

• Accuracy: The percentage of correct answers generated by the model.
• Model Output Length: The number of tokens generated by the model before reaching the

stopping token (calculated using the GPT-4O tokenizer).

When the maximum token length is less than or equal to 512, the model output length typically
constitutes 50% to 80% of the maximum token length. Specifically, when generating a maximum
token length of 512, achieving optimal performance requires 512 diffusion steps combined with low-
confidence remasking strategies. We utilize this remasking approach to ensure the best performance.

Our evaluation demonstrates that the efficiency of DLLMs in reasoning tasks is strongly influenced
by the balance between diffusion steps and sampling lengths. While a higher number of diffusion
steps generally improves reasoning accuracy, it increases computational requirements. Thus, while
sufficient diffusion steps are essential for effective reasoning, an excessive number can significantly
reduce processing efficiency.

E THE IMPLEMENTATION OF EARLY-STOP STRATEGY

The early stopping mechanism is based on the dynamic stability of tokens, which monitors the
variation of the newly updated tokens during the diffusion process to judge whether the generation has
converged. We calculate the overlap ratio between the current step’s selected tokens (current_tokens)
and the previous step’s tokens (prev_tokens) in each diffusion step. When the overlap ratio of the
selected tokens remains stable over three consecutive steps and exceeds a threshold θ = 0.99, early
stopping is triggered. The overlap ratio is calculated as:

overlap_ratio =
1

N

N∑
j=1

I(current_tokensj = prev_tokensj)

Where N is the number of tokens updated in the current step, and I is the indicator function.
This mechanism is controlled by the parameter early_stop_threshold = 0.99, which controls the
sensitivity.The higher the threshold, the more stable the token sequence needs to be before triggering
early stopping.

The parameter settings use a block-based diffusion strategy: the total generation length of 512 tokens
is divided into blocks of length block_length = 32. Temperature = 0.7 helps balance exploration
and exploitation. We choose low_confidence strategy, which updates tokens with low confidence.
This combination ensures the quality of the generated text while improving efficiency by using fewer
diffusion steps, which typically converge to a value smaller than the maximum 512 steps.

F PROMPTING EXPERIMENT DETAILS

F.1 EXPERIMENTAL SETUP

In this study, we employ the following models: Dream-7B-Instruct (Ye et al., 2025), LLaDA-8B-
Instruct (Nie et al., 2025b), LLaDA-v1.5 (Zhu et al., 2025), and LLaDOU-Math (Huang et al., 2025).
To optimize performance, we experiment with a temperature range of [0, 1], choose top-p=0.95
and block-length=32, and select the maximum token length from the set {128, 256, 512}, as well
as the diffusion step from {128, 256, 512}. For each model, we use the default decoding settings.
Additionally, we apply low-confidence remasking to explore the scaling behavior. All experiments
conduct on a single A100 or A800 80G GPU.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F.2 SEQUENTIAL REASONING PROMPTING

These methods were originally designed primarily for Autoregressive Large Language Models
(ALLMs) and have played a key role in optimizing their reasoning capabilities:

Zero-CoT (Kojima et al., 2022) This strategy uses a simple natural-language instruction (e.g.,
“Let’s think step by step”) to elicit the inherent sequential reasoning capability of autoregressive
models, enabling them to generate coherent reasoning chains without in-context examples.

Zero-CoT

Question: {question}
Let’s think step by step:

Plan-and-Solve (Wang et al., 2023) By explicitly separating the reasoning process into a planning
phase and an execution phase, this strategy prompts autoregressive models to first outline a solution
framework and then complete the details. This improves structural integrity and global consistency,
and is particularly effective for tasks requiring multi-step reasoning and long-range dependency.

Plan-and-Solve

Let’s first understand the problem, extract relevant variables and their corresponding numerals,
and make a complete plan.Then, let’s carry out the plan, calculate intermediate variables (pay
attention to correct numerical calculation and commonsense), solve the problem step by step,
and show the answer.
Question: {question}

Least-to-Most (Zhou et al., 2022) In autoregressive models, this method decomposes complex
problems into a sequence of simpler subproblems, guiding the model to solve them incrementally
rather than tackling the full problem in a single step.

Least-to-Most

Q: Elsa has 5 apples. Anna has 2 more apples than Elsa. How many apples do they have
together?
A: Let’s break down this problem:
1. How many apples does Anna have?
2. How many apples do Elsa and Anna have together?
1. Anna has 2 more apples than Elsa. So Anna has 2 + 5 = 7 apples.
2. Elsa and Anna have 5 + 7 = 12 apples together.
Q: question
A: Let’s break down this problem:

Together, these strategies enhance the sequential reasoning behavior of autoregressive models, using
prompt design to induce systematic and logically sound reasoning trajectories. However, we find that
these strategies are not well suited to DLLMs.

F.3 CONSTRAINT-GUIDED REASONING PROMPTING

Complex-CoT: The original version of Complex-CoT (Fu et al., 2022) leverages a few-shot
reasoning technique to prompt LLMs into performing more sophisticated reasoning processes. This
approach enhances the model’s ability to handle tasks that require a series of logical inferences or

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

multi-step reasoning, thereby improving the overall performance on complex questions. Specifically,
by providing a few-shot example that demonstrates how to perform intricate reasoning, the model
learns to apply similar patterns to new, unseen problems.

In contrast, the Constrained-Guided Version of Complex-CoT introduces a crucial modification to
meet specific requirements. Rather than using few-shot examples, we reframe the prompting method
as instruction-based, zero-shot constraints created by human experts. These constraints guide the
model’s reasoning process without the need for training on a set of example problems. To implement
this approach, the following prompting structure is used to ensure that the model approaches each
question with the necessary depth and detail:

Complex-CoT (Constrained-Guided Version)

You should think about the following question as thoroughly and in as much detail as possible.
Question: {question}

MARP: The original MARP (Chen et al., 2024) employs an instruction-based, in-context-learning
approach to guide LLMs in structuring and constraining each step of the reasoning process. This
method decomposes complex problems into manageable components by promoting multi-step rea-
soning, while ensuring each step is focused and achievable. By constraining reasoning at each stage,
MARP prevents overgeneralization and ensures logical, organized outputs.

To meet the requirements of the Constrained-Guided Version, we modify MARP in two ways: first, by
organizing reasoning into discrete steps, and second, by enabling parallel processing within each step.
This approach allows the model to perform multiple operations simultaneously without compromising
clarity or precision. The key concept is to balance step-by-step reasoning with parallel processing,
enhancing task efficiency. Each reasoning step involves multiple basic operations, ensuring clarity
and minimizing computational overhead.

The following prompt structure is used to guide the model’s reasoning process:

MARP (Constrained-Guided Version)

Reason step by step, but process operations in parallel.
• At each step, you may perform multiple simple operations (up to 5).
• Each operation must remain basic and not involve excessive complexity.
• If you choose to perform more operations in a single step, then each operation must be

correspondingly smaller in scope.
Question: {question}

F.4 PARALLEL-ENCOURAGING PROMPTING

This parallel-encouraging strategy is essential for reducing PSC in reasoning. To adapt MARP for
DLLM, we enable the model to process multiple operations concurrently, avoiding the bottleneck of
sequential processing, where each step depends on the completion of the previous one. This parallel
processing speeds up reasoning and enhances scalability. At the same time, operational complexity
constraints ensure the reasoning process remains clear and manageable. This method balances parallel
execution with simplicity, allowing for effective multi-step reasoning without overwhelming the
model with overly complex tasks. Moreover, the model adjusts operation complexity dynamically.
When tasked with more operations in a given step, each operation must be simpler, preventing
cognitive overload and helping the model stay focused on individual tasks.

Ultimately, this approach enables the model to execute parallel reasoning efficiently while maintaining
clarity and precision. The detailed prompting for implementation is as follows:

The key to Diff-MARP’s performance improvement lies in the phrase “Reasoning in parallel,” which
explicitly elicits the model’s parallel reasoning capability. Diff-MARP formalizes and systematizes

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Diff-MARP

Reasoning in parallel.
• At each step, you may carry out several small operations at the same time.
• Keep each operation simple.

Question: {question}

this instruction, constraining the number of parallel operations to avoid overload and thereby improv-
ing robustness relative to using the instruction alone. Here, we present a case using Diff-MARP.

Diff-MARP Case Study: Using Diff-MARP Strategy

Step 1: Calculate the total sleep time from 10 p.m. to 6 a.m.
Kim’s usual sleep time is from 10 p.m. to 6 a.m., which is 8 hours. Since there are 60 minutes
in an hour, her usual sleep time is 8 * 60 = 480 minutes.
Step 2: Calculate the time she spent sleepwalking.
Kim was sleepwalking from 2:15 to 2:38 am, which is 23 minutes.
Step 3: Calculate the time she woke up earlier than usual.
Kim woke up 5 minutes earlier than usual to go to the bathroom.
Step 4: Calculate the total time she spent on her bed that day.
The total time she spent on her bed that day is the usual sleep time minus the time she spent
sleepwalking and the time she woke up earlier than usual. So, 480 minutes - 23 minutes - 5
minutes = 452 minutes.

Diff-MARP Case Study: Without Using Diff-MARP Strategy

1. Kim usually goes to sleep at 10 p.m. and wakes up at 6 a.m. This is a total of 8 hours.
2. On the day in question, she woke up 5 minutes earlier than usual to go to the bathroom.
3. She was sleepwalking from 2:15 to 2:38 am, which is a total of 23 minutes.
4. To find out how many minutes she slept on her bed that day, we need to subtract the time
she was sleepwalking from the total time she was supposed to sleep.
5. Total sleep time = 8 hours * 60 minutes/hour = 480 minutes
6. Sleepwalking time = 23 minutes
7. Sleep on bed time = Total sleep time - Sleepwalking time = 480 minutes - 23 minutes =
457 minutes
8. However, she woke up 5 minutes earlier than usual, so we need to subtract those 5 minutes
from the sleep on bed time.
9. Final sleep on bed time = 457 minutes - 5 minutes = 452 minutes.

• Using the Diff-MARP Strategy: We observe that each calculation step has clear labeling and
explanations. This decomposition helps ensure transparency in the reasoning process, and the
logical steps from start to finish are easy to follow.

• Without Using the Diff-MARP Strategy: When Diff-MARP is not used, although the result is
the same, the steps are more condensed, and the structure of the reasoning process is weaker. The
key difference lies in how Diff-MARP systematically guides the reasoning process, providing
clearer explanations for each sub-step.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F.5 VERIFICATION OF PSC-SPECIFIC ENHANCEMENT

To verify that the observed performance differences arise from the PSC rather than a general limitation
of DLLMs, we conducted additional experiments on the autoregressive model Qwen2.5-7B on the
GSM8K dataset using the same prompts as in the main text.

Prompting Strategy Accuracy
Baseline 56.8%
Complex-CoT 41.5%
MARP 58.8%
Diff-MARP 54.2%

Table 2: Performance of Qwen2.5-7B on GSM8K under different prompting strategies.

The results are presented in Table 2. If the performance difference stemmed only from a general
capability gap, the autoregressive model should also show substantial gains under these prompts.
However, its improvement is minimal or even absent. This supports our hypothesis that these strategies
enhance DLLM performance mainly by mitigating PSC, rather than acting as general-purpose prompt
or capability improvements.

F.6 DLLM PERFORMANCE UNDER HIGH-COMPUTATIONAL BUDGETS

To exclude the alternative explanation that limited iteration steps hinder long-text generation, we
evaluated DLLMs under high-computation budgets (max_length=1024, diffusion_steps=1024) using
sequential prompts (e.g., Zero-CoT, Least-to-Most, Plan-and-Solve). As summarized in Table ??, per-
formance remains constrained even with substantially increased computation. This result strengthens
the causal attribution of DLLM performance limits in sequential reasoning tasks primarily to PSC.

Prompting Strategy DREAM LLaDA
Baseline 80.6% 75.6%
Zero-CoT 75.8% 72.3%
Least-to-Most 69.3% 73.5%
Plan-and-Solve 72.4% 71.6%

Table 3: DLLM performance on sequential prompts under high-computation budgets.

F.7 ELIMINATING THE INFLUENCE OF DECODING METHODS

We conducted prompt experiments on the BigGSM dataset (Chen et al., 2024) using two decoding
methods, entropy and topk_margin. The results shown in table 4 align with those obtained using
confidence-based decoding, supporting the conclusion that PSC is an inherent property of the DLLM
architecture rather than a byproduct of the default decoding method.

Prompting Strategy Entropy Topk_margin
Baseline 41.15 41.97
Zero-CoT 41.15 39.84
Least-to-Most 34.75 32.62
Plan-and-Solve 35.25 41.48
Complex-CoT 41.80 43.44
MARP 42.95 46.07
DIFF-MARP 47.21 48.19

Table 4: Performance comparison of different decoding methods.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F.8 ENVISIONING IDEAL DLLM-FRIENDLY TRAINING DATA

The essence of DLLM parallel generation is global optimization and the joint generation of all tokens.
Sequential reasoning requires localized and conditional generation. PSC occurs precisely between
these two paradigms. Therefore, we argue that an ideal, DLLM-friendly training dataset should not
follow the traditional linear chain structure but should possess the characteristic of "global conditional
independence." Our envisioned design for an ideal synthetic dataset is as follows:

Pre-planning Topology Structure

• Data Format: [Question] → [Global Plan] → [Detailed Steps] →
[Answer].

• Design Principle: The model is required to first output a high-level, low-dimensional “solution
blueprint” or “global plan” in parallel before generating specific content. Once this plan is
determined, it becomes the common condition for generating all subsequent detailed steps. Under
this condition, the interdependency between individual steps is significantly reduced, making
them suitable for parallel filling.

Modular Parallel Structure

• Data Format: Explicitly label parallel blocks, e.g., [Subtask A] ∥ [Subtask B] ∥
[Subtask C] → [Result Aggregation].

• Design Principle: Decompose complex problems into independently solvable submodules and
explicitly declare in the data that these submodules can be processed in parallel. This forcibly
guides the model to learn the independence between tasks rather than an inherent sequential
order.

By systematically constructing synthetic data incorporating the above explicit independence assump-
tions and using it for fine-tuning the model, we can fundamentally reshape the model’s attention
mechanism from the root. This enables the model to better adapt to the parallel reasoning paradigm
of DLLMs, thereby fundamentally mitigating the PSC problem.

G DLLM’S LIMITED CAPABILITIES OF LONG COT REASONING

G.1 LONG CHAIN-OF-THOUGHT CAPABILITIES

Following Chen et al. (2025), the Long Chain-of-Thought (Long CoT) reasoning capabilities comprise
three linked components: deep reasoning, exploration, and reflection.

Deep Reasoning. Given si as the i-th reasoning step, Deep reasoning models the conditional prob-
ability pθ(s0, s1, . . . , sK |s0), facilitating multi-step logical inference through iterative refinement.
The associated reverse process can be characterized by a factorization:

pθ(s0, s1, . . . , sK |s0) =
K∏
i=0

pθ(si+1|si). (20)

Exploration. Exploration stems from the probabilistic nature of the reverse process. At each
exploration step sj , multiple samples skj can be drawn from the conditional distribution pθ(sj |si, i <
j), enabling the model to explore diverse plausible continuations or solutions. This is formalized as:

skj ∼ pθ(sj |si, i < j), k = 1, . . . ,K, (21)

where K controls the breadth of exploration. This sampling diversity enhances robustness by covering
multiple reasoning paths and mitigating premature convergence to suboptimal outputs.

Reflection. We view reflection as a self-correction mechanism arising from iterative conditioning
on latent states. At each reverse step, the model revises its belief about the target sequence using the
immediately previous state and, via the accumulated latent trajectory, all prior estimates. Formally,
this corresponds to implicit message passing:

ŝj ∼ pθ(sj |si, i ≥ j), (22)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where ŝj denotes the corrected state at step j, enabling iterative error correction and refinement.

Together, these components yield a procedure that combines structured logics with stochastic explo-
ration and continual self-correction, enabling effective reasoning on complex multi-step tasks.

G.2 STATEGIES FOR SELF-REFLECTION AND SELF-EXPLORATION EXPERIMENTS ON DLLMS

To investigate whether DLLMs truly possess the fundamental capabilities for Long CoT Reasoning,
we designed two sets of experiments: self-reflection and self-exploration,using two distinct prompting
strategies to examine the basic abilities of DLLMs.

Self-Reflection: (1)Prompting Reflection, structured reflection prompts are embedded within initial
instructions,requiring the model to perform logical self-checking during generation. (2)Autoregressive
Forcing Reflection, correction prompts (e.g., "Wait...there might be something wrong") are replaced
with the end-of-sequence (EOS) token as a post-generation intervention strategy.

Self-Exploration:(1) Prompting Exploration, which embeds exploration prompts in initial instructions
to activate multi-path reasoning. (2) Autoregressive Forcing Exploration, which replaces EOS token
to “Let’s think in another way...” to induce exploratory reasoning.

G.3 EVALUATION OF SELF-REFLECTION AND SELF-EXPLORATION CAPABILITIES

In evaluating the self-reflection capabilities of the LLaDA-8B-Instruct (Nie et al., 2025a) and Dream-
7B-Instruct (Ye et al., 2025) models, the BigGSM dataset was utilized. During the generation process,
we employed a temperature of 0.7 for self-reflection and 0.2 for self-exploration, coupled with top-p
sampling set to 0.95. Additionally, diffusion steps were configured to 512, and the generation length
was fixed at 512. For the investigation into the models’ self-exploration capabilities, the experimental
settings were identical, with the sole distinction being the substitution of the reflection strategy with
an exploration strategy. Based on the setting of Qin et al. (2023), we utilize the following reasoning
metrics for deeper analysis:

Semantic Alignment: The semantic alignment metrics (Golovneva et al., 2022) lies in the reasoning
alignment vector, which spans from the N -step hypothesis h to the source s of length T :

r-align(h → s) = {α1, α2, · · · , αN}, (23)

where each alignment value can be calculated as:

αi = r-align(hi → s) =

[
1 + maxTj=1 cos(hi, sj)

]
2

∈ [0, 1]. (24)

Here, such an alignment value is the normalized cosine similarity between the reference step and the
most similar sentence in a context, and explicitly measures the grounding of the step-wise reasoning
with respect to the source text. The alignment vector r-align(h → s) is estimated by matching the
source text and the reasoning chain on the embeddings of the tokens and individual reasoning steps.
A similar confidence alignment score is introduced in CTC to measure whether the information of
the i-th source document token sj is supported by the hypothesis token hi, assessing whether the
reasoning step hi supports the source context s.

Repetition-word: To identify repeated, or paraphrased steps, we look at the repetition word
scores (Golovneva et al., 2022) between all steps in the hypothesis chain:

1− max
i=2...N

max
j=1...i−1

[
(1/Mi)

Mi∑
l=1

rtoken
align (hi,l → hj)

]
.

For each pair of sentences, we look at the mean token alignment and find those sentences that
maximize this alignment score. In other words, Repetition-Token will punish chains where there are
at least two steps with high overlap in token embeddings.

Informativeness: Measures how well information present in the source is used in the reasoning
steps, we calculate informativeness (Golovneva et al., 2022):

(1/T)
∑T

t=1 ralign(st → h) + (1/N)
∑N

i=1 ralign(hi → s)

2
.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Info-step gives a higher score to reasoning steps that are well-grounded with respect to the source,
and identifies the degree of information from source that is covered by the generated hypothesis. A
lower Info-Step score corresponds to the reasoning steps that are not related to the source sentences
or have missed information provided in the context.

Reasoning-Alignment : The most straightforward way to evaluate the correctness of the hypothesis
chain is to compare the degree of the overlap between the hypothesis and the reference. One way of
doing that is to measure the reasoning alignment (Golovneva et al., 2022) between them:

1

N

N∑
i=1

ralign(hi → r).

Token-Entropy : To calculate the token entropy, we will utilize the pipeline as follows: First,
calculate the probability of each token p(ti), which is the frequency of token ti divided by the total
number of tokens N :

p(ti) =
count(ti)

N
Next, calculate the information content I(ti) of each token, which reflects the uncertainty contribution
of that token to the text:

I(ti) = − log(p(ti))

Finally, token-entropy is the weighted average of the information content of all tokens, given by:

H = −
N∑
i=1

p(ti) log(p(ti))

where p(ti) is the probability of token ti, and log(p(ti)) is the corresponding logarithmic information
content. Token-entropy reflects the overall uncertainty of the text. A higher value indicates that
the text is more random and diverse, while a lower value suggests that the text is more focused and
repetitive.

Cosine similarity (Sim) Cosine similarity measures the degree of similarity between two vectors
encoded by BGE (Xiao et al., 2023) by calculating the cosine of the angle between them. For text
embedding vectors, a value closer to 1 indicates greater semantic similarity. Let the two generated
text vectors be A and B. The formula for calculating their cosine similarity is:

cosine_similarity(A,B) =
A ·B

∥A∥ · ∥B∥
=

∑n
i=1 AiBi√∑n

i=1 A
2
i ·
√∑n

i=1 B
2
i

(25)

where A ·B is the dot product of vectors A and B. ∥A∥ and ∥B∥ are the Euclidean norms
(magnitudes) of vectors A and B. Ai and Bi represent the components of vectors A and B along the
i-th dimension.

Perplexity (PPL) of the Model Perplexity is a concept in information theory used to measure
the uncertainty of a probabilistic model in predicting samples. In natural language processing, it is
employed to evaluate how well a language model fits a set of test data.

Given a sequence of N tokens W = w1, w2, . . . , wN , where the language model predicts the
probability of this sequence P (W), the perplexity of the sequence is defined as:

PPL(W) = P (W)−
1
N = exp

(
− 1

N
logP (W)

)
. (26)

Because of the sequence’s independence assumption, we can compute P (W) as:

P (W) =

N∏
i=1

P (wi|w1, . . . , wi−1). (27)

Therefore, the commonly seen formula for perplexity is:

PPL(W) = exp

(
− 1

N

N∑
i=1

logP (wi|w1, . . . , wi−1)

)
, (28)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

where logP (W) is the log probability of the entire sequence. 1
N

∑N
i=1 logP (wi|w1, . . . , wi−1) is

the average log probability of the sequence under the model. exp is the exponential function, used to
transform the log probability back to its original scale.

Observation of the results for both DREAM (Ye et al., 2025) and LLaDA (Nie et al., 2025a) models,
under both self-reflection and self-exploration settings, the scores across all ROSCOE-SA evaluation
metrics are highly similar. This indicates that current diffusion language models (DLLMs) have not
yet genuinely acquired the deeper capabilities of self-reflection and self-exploration, as their outputs
do not exhibit significant differences under varying strategic prompts.

G.4 EVALUATION OF DEEP-REASONING CAPABILITY

Following Chen et al. (2024), we further investigate reasoning boundaries (RBs) in deep reasoning
capabilities in mathematical reasoning. We prompt DLLMs to generate plans and assess their
accuracy through manual evaluation. When the model meets the question with fewer than 1 reasoning
steps, accuracy surpasses 80%. Conversely, when reasoning steps exceed 3-4, accuracy falls below
10%. Moreover, we first randomly select 200 samples to generate examples and split steps from the
DLLM-generated rationales based on ROSCOE (Golovneva et al., 2022). Further, we also manually
identify the first model’s incorrect step position.

G.5 REFLECTION/EXPLORATION GAINS IN ALLMS AND DLLMS

The core inference of this section is that the limited gains from reflection and exploration in diffusion-
based decision-making large language models (DLLMs) arise mainly from their inherent PSC
characteristics. To test this, we conducted a comparative analysis with an autoregressive baseline
under matched settings. The results in Table 5 show that the autoregressive model achieves substan-
tially larger performance improvements, supporting the view that the weak gains of reflection and
exploration are driven by the PSC issue in diffusion models rather than by intrinsic shortcomings of
these methods.

Qwen2.5-7B LLaDA-8B-Instruct Dream-7B-Instruct
Baseline 56.8% 52.72% 50.7%
Prompting Reflection 63.3% 52.75% 47.0%
Prompting Exploration 63.5% 52.75% 48.75%
Autoregressive Forcing Reflection 73.9% 47.5% 37.25%
Autoregressive Forcing Exploration 72.1% 52.0% 44.5%

Table 5: Reflection/Exploration Benefits: Autoregressive vs. Diffusion Models

H THREE-DIRECTIONAL INFERENCE-TIME SCALING ON DLLMS

H.1 PARALLEL SCALING EXPERIMENT DETAILS

In the parallel scaling section, we utilize the dual-cache generation strategy from Fast-dLLM based
on the diffusion language model LLaDA-8B-Instruct (Nie et al., 2025a), and perform batch process-
ing on the BigGSM (Chen et al., 2024) dataset. Key configurations include:diffusion_steps=256,
gen_length=256, block_length=32, and a Dynamic Low-Confidence Remasking mechanism.

We also employed the dual_cache generation strategy from Fast-dLLM (Wu et al., 2025) on the
Dream-7B-Instruct (Ye et al., 2025) model for testing on the BigGSM reasoning dataset. The core
configuration includes: diffusion_steps=256, gen_length=256, and block_length=32.

The results are shown in Figure 11. It can be observed that the accuracy generally increases with
higher k-values. At the initial attempts, the accuracy at Temperature 1.0 was relatively low. Although
it showed significant improvement in the early stages, its later accuracy fell behind other temperatures.
At Temperature 0.1, the accuracy growth was more stable initially, but eventually plateaued at around

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

35

40

45

50

55

60

65

70

1 2 3 4 5 6 7 8 9 10

P
as

s@
k

 (
%

)

Parallel Scaling Size

(b) Parallel Scaling Performance on DREAM

with different temperature.

50

52

54

56

58

60

62

64

66

68

70

1 2 3 4 5 6 7 8 9 10

P
as

s@
k

 (
%

)

Parallel Scaling Size

(a) Parallel Scaling Performance on LLaDA

with different temperature.

Temperature=0.3

Temperature=0.1

Temperature=0.5

Temperature=0.7Temperature=1.0

Temperature=0.3

Temperature=0.1

Temperature=0.5

Temperature=0.7Temperature=1.0

Figure 11: Parallel scaling performance of DLLMs under Different Temperature Settings

60%, similar to Temperature 1.0. Overall, intermediate temperatures demonstrated better pass@k
accuracy performance, achieving higher accuracy with more consistent and stable growth.

H.2 DIFFUSION SCALING EXPERIMENT DETAILS

We set the diffusion_step to be between 1 and 4096 (with max-token-length equal to 512 for Figure 9
(a). The other settings are identical to those of parallel scaling. The results are shown in Figure 9 (a).

H.3 SEQUENTIAL SCALING EXPERIMENT DETAILS

We set the Max Token Length to be between 1 and 4096 (with diffusion-step equal to max-token-
length for Figure 9 (d). The other settings are identical to those of parallel scaling. The results are
shown in Figure 9 (d).

I REINFORCEMENT LEARNING INFLUENCE ON PSC

To assess the impact of post-training methods on PSC, we compare the LLaDA-8B-Instruct (Nie et al.,
2025b) model with its d1 variant fine-tuned by reinforcement learning. Experiments are conducted
on the BigGSM dataset (Chen et al., 2024), from which 100 samples are randomly selected. Under
identical inference hyperparameters, we examine the decoding order during generation. We quantify
PSC using the following two metrics:

Inversion Pair Ratio: During generation, if a token at an earlier position is produced after a token
at a later position (i.e., if i < j, but the generation step step[i] > step[j]), it is counted as an inversion
pair. A higher ratio indicates more severe sequential conflict in decoding.

Spearman’s Rank Correlation Coefficient: This metric measures the consistency between the
model’s generation order and the natural left-to-right language order. A higher coefficient indicates
that the generation process more closely follows habitual language sequencing.

Model Inversion Pair Ratio Spearman Coefficient
LLaDA-8B-Instruct 3.41% 98.62%
d1 (After RL Training) 6.65% (+3.24) 97.27% (−1.35)

Table 6: Comparison of PSC Phenomenon Before and After RL Training

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

The results show that, after reinforcement learning training, the model’s inversion pair ratio increases
from 3.41% to 6.65%, while the Spearman coefficient decreases from 98.62% to 97.27%. This
suggests that reinforcement learning intensifies sequential conflicts during decoding and makes the
PSC phenomenon more pronounced.

Here, we explain why the inversion pair ratios remain relatively low and the Spearman coefficients
remain close to 1. Diffusion language models are designed to generate coherent text sequences that
follow linguistic conventions, rather than arbitrary permutations of words. To this end, the model
architecture (for example, the Block mechanism) guides generation at a coarse level to follow the
sequential structure of natural language. In particular, the generation order between different blocks
is strictly constrained to proceed from left to right. Consequently, both the inversion ratio and the
Spearman coefficient still reflect strong overall adherence to sequential generation.

J THE RELATIONSHIP BETWEEN CONTEXT DEPENDENCY AND PSC

Establishing how context dependency strength relates to DLLM performance is key to characterizing
the PSC phenomenon. We quantify this relationship via an information-theoretic analysis, using
conditional entropy to measure context dependency. Specifically, for each sample in the BigGSM
dataset, we compute the conditional entropy at each generation step with a GPT-2 model and then
average these values across steps to obtain the sample’s average conditional entropy.

The conditional entropy for token xi given context x<i is:

H(xi|x<i) = −
∑
w∈V

P (w|x<i) · logP (w|x<i). (29)

The average conditional entropy over a text of length T tokens is:

AvgEntropy =
1

T − 1

T−1∑
i=1

H(xi|x<i), (30)

which quantifies how strongly the generated answer is constrained by the context: lower entropy
indicates stronger contextual constraints and thus higher dependency.

Using this metric, we partition the BigGSM dataset into three subsets and compute, for each subset,
the average conditional entropy and the Dream accuracy, which reflects DLLM performance.

Entropy Level Sample Size Avg. Entropy Dream Acc Avg. DI
Low Entropy 203 2.5269 13.79% 27.41
Medium Entropy 203 3.0766 35.29% 21.56
High Entropy 203 3.4951 45.32% 19.06

Table 7: Relationship between Context Dependency Strength and DLLM Performance

The results are summarized in Table 7. As contextual dependency strengthens (i.e., conditional
entropy decreases), DLLM performance drops sharply from 45.32% to 13.79%. In addition to
conditional entropy, we introduce the Attention Distance Index (ADI) to further examine how
dependency strength affects DLLM performance. The ADI measures whether the model’s attention
at each layer preferentially targets long-distance tokens, thus characterizing its ability to model strong
dependencies.

We define the Attention Distance Index (ADI) to quantify the model’s tendency to attend to
long-distance tokens. For each layer, the ADI is calculated as:

ADIlayer =
1

H

H∑
h=1

 L∑
i=1

L∑
j=1

Ah,i,j ·
|i− j|
L− 1

 , (31)

where Ah,i,j is the attention weight from query token i to key token j in head h; L is the sequence
length; H is the number of attention heads; and |i−j|

L−1 is the normalized distance between tokens.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Dependency Index (DI) for the entire model is then computed as the average ADI across all layers:

DI =
1

N

N∑
l=1

ADIl, (32)

where N is the total number of layers. A higher DI indicates stronger long-range dependency
modeling requirements.

Our analysis shows that stronger dependencies (lower conditional entropy or higher DI) markedly
degrade DLLM performance, particularly when long-range dependencies are required. This behavior
is consistent with intrinsic limitations of the parallel generation architecture and further supports our
theoretical interpretation of the PSC phenomenon.

28

	Introduction
	Parallel-Sequential Contradiction
	Parallel Masked Diffusion Language Models
	Sequential Long Chain-of-Thought Reasoning
	Parallel-Sequential Contradiction

	Do DLLMs truely perform parallel reasoning that avoids PSC?
	Parallel-Sequential Contradictions cause superficial parallel reasoning.
	Diffusion-Step Dilemma: Sacrificing Efficiency Under PSC
	Rethinking the prompting strategies in DLLMs from PSC perspective

	What challenges do DLLMs meet in Long CoT based on PSC?
	DLLMs do not have sufficient basic capabilities to support Long CoT.
	Current DLLMs have three-directional but limited Inference-Time Scaling
	Parallel Scaling Law holds Under PSC
	DIFFUSION SCALING IS CONSTRAINED BY PSC
	SEQUENTIAL SCALING IS EQUALLY CONSTRAINED BY PSC

	Related work
	Conclusion
	The Use of Large Language Models
	Mathematical Proof of DLLM Degrading to Autoregressive
	Problem Setup and Notation
	Learning problem
	Discretization
	Main proposition and quantitative bounds
	Consequences for optimal strategy

	Experiment Setting
	Diffusion-Step Evaluation Details
	The Implementation of Early-Stop Strategy
	Prompting Experiment Details
	Experimental Setup
	Sequential Reasoning Prompting
	Constraint-guided Reasoning Prompting
	Parallel-encouraging Prompting
	Verification of PSC-Specific Enhancement
	DLLM Performance under High-Computational Budgets
	Eliminating the Influence of Decoding Methods
	Envisioning Ideal DLLM-Friendly Training Data

	DLLM's Limited Capabilities of Long CoT Reasoning
	Long Chain-of-Thought Capabilities
	Stategies for Self-Reflection and Self-Exploration experiments on DLLMs
	Evaluation of Self-Reflection and Self-Exploration Capabilities
	Evaluation of Deep-Reasoning Capability
	Reflection/Exploration Gains in ALLMs and DLLMs

	Three-directional Inference-Time Scaling on DLLMs
	Parallel Scaling Experiment Details
	Diffusion Scaling Experiment Details
	Sequential Scaling Experiment Details

	Reinforcement Learning Influence on PSC
	The Relationship between Context Dependency and PSC

