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ABSTRACT

Recently, Diffusion Large Language Models (DLLMs) have offered high through-
put and effective sequential reasoning, making them a competitive alternative
to autoregressive LLMs (ALLMs). However, parallel decoding, which enables
simultaneous token updates, conflicts with the causal order often required for
rigorous reasoning. We first identify this conflict as the core Parallel-Sequential
Contradiction (PSC). Behavioral analyses in both simple and complex reasoning
tasks show that DLLMs exhibit genuine parallelism only for directly decidable
outputs. As task difficulty increases, they revert to autoregressive-like behavior,
a limitation exacerbated by autoregressive prompting, which nearly doubles the
number of decoding steps with remasking without improving quality. Moreover,
PSC restricts DLLMs’ self-reflection, reasoning depth, and exploratory breadth.
To further characterize PSC, we introduce three scaling dimensions for DLLMs:
parallel, diffusion, and sequential. Empirically, while parallel scaling yields con-
sistent improvements, diffusion and sequential scaling are constrained by PSC.
Based on these findings, we propose several practical mitigations, parallel-oriented
prompting, diffusion early stopping, and parallel scaling, to reduce PSC-induced
ineffectiveness and inefficiencies.

1 INTRODUCTION

In recent years, diffusion large language models (DLLMs) have emerged as a novel generative
paradigm, attracting increasing research attention (L1 et al., 2025} [Yang et al.l 2025). Represen-
tative works such as LLaDA (Nie et al., [2025b) and Dream (Ye et al., |2025) adopt a two-stage
mask-denoising training strategy combined with parallel decoding for masked token prediction, effec-
tively mitigating the “reversal curse” in traditional autoregressive large language models (ALLMs).
Mercury (Inception Labs, [2025) and Fast-DLLM (Wu et al., 2025)) further demonstrate the parallel
efficiency of DLLMs, achieving an impressive generation speed in code tasks.

Meanwhile, the rapid development of the Long Chain-of-Thought (Long CoT) (Guo et al.l 2025}
Chen et al.| 2024 |2025) has spurred increasing research on applying DLLMs to extended reasoning
tasks (Wang et al.,[2025bfa)). Zhao et al.|(2025) and Tang et al.|(2025) employ diffusion-augmented
SFT and GRPO to further improve reasoning (Gong et al., [2025). Moreover, Trado (Wang et al.
2025b) exploits overlooked information in sampling trajectories, achieving substantial gains.

As shown in Figure[T] (a), DLLMs generate text in parallel, producing a few non-sequential words in a
single diffusion step. In sequential reasoning scenarios (Figure[T] (b)), the generation of step; requires
the completion of step;_;, leading to lower entropy (Cui et al., [2025; |[Agarwal et al., 2025). In
contrast, FigureT](c) shows DLLMs to parallel-decode by generating step; 1 before step;, resulting
in high entropy. Nevertheless, these parallel and sequential processes are inherently contradictory:
parallelism involves simultaneous processing, while sequential reasoning requires ordered steps.
To address this, we introduce the Parallel-Sequential Contradiction (PSC), which explores the
underlying mechanisms and practical implications of diffusion-based reasoning.

To investigate this issue systematically, as shown in Figure [I] (d, e), we focus on two central
research questions: (1) Do DLLMs truly perform parallel reasoning that avoids PSC? (2) What
challenges do DLLMs meet in Long CoT based on PSC? To address the first question, we analyze
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Figure 1: Overview of our work. Applying DLLMs to reasoning scenarios reveals an inherent con-
tradiction between parallel processing and sequential reasoning, leading to high entropy, superficial
parallel decoding, and limited Long CoT capabilities.

the decoding behavior of DLLMs in both simple and complex reasoning scenarios. Our findings
show that DLLMs fail to achieve genuine parallel reasoning due to the PSC. They perform superficial
parallel computation when outputs can be directly produced, but revert to an autoregressive mode
under higher reasoning demands. This reliance on autoregression affects computational efficiency,
which nearly doubles the computational cost with low confidence remasking. Furthermore, while
autoregressive prompting is effective in ALLMs, it conflicts with DLLMSs’ parallel decoding design,
amplifying the PSC of DLLMs. In contrast, strategies that reduce contradiction, such as conditional
prompting or prompts that encourage parallel generation, effectively enhance prompting performance.

To understand the second question, we examine the core capabilities of Long CoT in DLLMs. Our
analysis reveals that, when faced with PSC, DLLMs often demonstrate limited self-reflection, shallow
reasoning depth, and constrained exploratory behavior. Furthermore, we introduce three scaling
dimensions for inference time, specifically designed for DLLMs: parallel, diffusion, and sequential
scaling. Our findings show that both diffusion and sequential scaling are significantly constrained by
PSC, while the parallel scaling law remains unaffected due to its vertical relationship with PSC.

In summary, our key contributions are as follows:

* Identification of Parallel-Sequential Contradictions: To our knowledge, we first identify the
Parallel-Sequential Contradiction (PSC) in DLLMs for Long CoT. We demonstrate that PSC
leads to superficial parallel reasoning and reduced efficiency, requiring twice the decoding steps.

» Systematic Exploration of DLLM Reasoning Limitation: We conduct a systematic evaluation
of DLLM reasoning, identifying the degradation of three core Long CoT capabilities, confirming
the ineffectiveness of traditional autoregressive prompting methods, and demonstrating that
diffusion scaling and sequential scaling are upper-bounded by PSC limitations.

* Novel Mitigation Strategies: We propose novel strategies to mitigate these issues and enhance
DLLM reasoning. Our methods include parallel-encouraging prompting, diffusion early stopping,
and parallel scaling, which substantially alleviate the constraints imposed by PSC.

2 PARALLEL-SEQUENTIAL CONTRADICTION

2.1 PARALLEL MASKED DIFFUSION LANGUAGE MODELS

In Diffusion Large Language Models (DLLMs), inference reconstructs missing spans by predicting
masked tokens conditioned on a partially masked input. Its goal is modelling the conditional
likelihood pg(xf|x;) for masked positions:

L
L . ,
“Epem | T D lw; € M]logpy(ailan) |, (1
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Figure 2: Diffusion order analysis with d1 (Zhao et al., 2025) and Trado (Wang et al.,[2025b)), where
later decoding orders are indicated by shallower colors.

where L denotes the total number of tokens; [ is the number of masked tokens, uniformly sampled
from {1,2,..., L}; x¢ is the complete original sequence. x; is the partially masked sequence obtained
by replacing those [ positions in xg with mask tokens, which serves as the conditional input. The
indicator 1[z} € M] equals 1 if position ¢ is masked and 0 otherwise.

2.2 SEQUENTIAL LONG CHAIN-OF-THOUGHT REASONING

Long Chain-of-Thought (Long CoT) allows LLMs to tackle complex problems by generating a
sequence of reasoning steps. This method solves a problem P by following an ordered series of steps

S1,959,...,5,, leading to the final answer A. Formally, it can be defined as:
n+1
po(A|P) = ] po(Sil P, S<i). )
t=1

Here, S,,+1 = A, meaning the final answer is treated as the last step of the reasoning sequence. When
generating each step 53, the model computes the conditional probability based on the problem P and
all previously generated steps S<;.

2.3 PARALLEL-SEQUENTIAL CONTRADICTION

For tasks with high parallelism, downstream states typically yield predictable, high-probability
outcomes, resulting in low predictive entropy. In these cases, optimizing the conditional probability
po(Sk | S1) is efficient, making non-autoregressive or semi-parallel generation methods advantageous.
In contrast, tasks with strong sequential dependencies exhibit high entropy when predicting distant
future states in parallel. This uncertainty leads to significant predictive loss. To reduce this loss, the
model is encouraged to break down the generation process into a sequence of low-entropy, step-by-
step predictions. As a result, parallel generation conflicts with the model’s objective of identifying a
low-loss, high-probability sequential path. The formal proof is provided in Appendix B}

3 Do DLLMS TRUELY PERFORM PARALLEL REASONING THAT AVOIDS PSC?

3.1 PARALLEL-SEQUENTIAL CONTRADICTIONS CAUSE SUPERFICIAL PARALLEL REASONING.

To examine whether DLLMs can genuinely perform parallel reasoning, we analyze their decoding
behavior in both simple and complex scenarios. We have two key observations:

Parallel-Sequential Contradictions cause superficial parallel reasoning in simple scenarios As
shown in Figure 2] (a, b), DLLMs demonstrate parallel reasoning in simple cases where the model
can direct output results without reasoning. For instance, when solving "z2? + 2z 4+ 1 = 0", the
model may simultaneously generate the Quadratic Formula "A = b? — 4ac" and the final solution
"z = —1" within a few diffusion steps. Following this, DLLMs complete the remaining reasoning
steps in parallel, demonstrating the ability to leverage diffusion-based decoding to arrive at direct
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Figure 3: Diffusion speed analysis in Long-CoT-needed tasks with LLaDA-8B-Instruct (Nie et al.}

2025a) and Dream-7B-Instruct on BigGSM benchmark 2024).

solutions without relying heavily on sequential reasoning. To further explore this, we analyze the
distribution of answers generated in the initial diffusion steps. As shown in Figure[2](e), over 47% of
answers are produced within the first 30% of diffusion steps. This suggests that in simple scenarios,
DLLMs are capable of performing parallel reasoning, even though the underlying thought process,
such as applying the Quadratic Formula before deriving the result, is inherently sequential.

For complex reasoning, DLL.Ms converge toward autoregressive-like behavior to avoid PSC
To examine DLLM behavior in complex reasoning tasks, we validate PSC where the model cannot
directly output the correct answer. Figure 2] (c, d) shows that DLLMs increasingly resemble autore-
gressive models. For example, when addressing tasks beyond direct generation, the model defaults to
an autoregressive process. This suggests difficulty in sustaining parallel reasoning, which shifts to
step-by-step processing. Figure 2] (f) further confirms this observation: in complex tasks, answers
emerge later in the diffusion steps, reflecting a stronger reliance on ordered reasoning. These findings
indicate that DLLMs face inherent PSC challenges in balancing parallel generation with sequential
reasoning, ultimately converging toward autoregressive-like processing in complex scenarios.

3.2 DIFFUSION-STEP DILEMMA: SACRIFICING EFFICIENCY UNDER PSC

To investigate the reasoning efficiency of current DLLMs, we systematically categorize questions in
BigGSM 2024) into different sampling lengths and diffusion steps (with low-confidence
remasking). We evaluate two representative DLLMs under exponentially increasing diffusion steps
and max token lengths (ranging from 1 to 1024). See Appendix [C|for more details.

When complex reasoning, DLLMs require significantly more diffusion steps than ALLMs. As
shown in Figure[3](a), achieving comparable length and accuracy to ALLMs demands over 25% more
diffusion or decoding steps with remasking. In extreme cases, DLLMs require up to twice the token
length in diffusion steps to match the performance and output length of autoregressive models when
generating over 256 tokens. It indicates that effective reasoning entails roughly double the diffusion
steps relative to the answer length, underscoring a notable efficiency challenge in reasoning tasks.

In reasoning scenarios, a large number of diffusion steps for autoregressive reasoning is
unavoidable for acceptable accuracy. Each generated token requires a sufficient number of
diffusion iterations to allow the model to reason effectively and produce high-quality outputs. As
illustrated in Figure[3](b), performance sharply declines when diffusion steps fall below the target
token length. For example, generating 80 tokens with a maximum length of 128 but only 64
diffusion steps results in over a 10% accuracy drop; with 32 steps, accuracy decreases by about 40%.
This demonstrates that inadequate diffusion severely impairs reasoning, as the model lacks enough
refinement iterations. Thus, diffusion steps should at least match the planned token length to maintain
reasoning quality. Nonetheless, excessive diffusion can significantly reduce efficiency.

3.3 RETHINKING THE PROMPTING STRATEGIES IN DLLMS FROM PSC PERSPECTIVE

In general, traditional autoregressive inference methods are typically categorized into two types:
pipeline-guided approaches and condition-following approaches (see Appendix [E]for further details).
In this section, we will begin by reviewing the theoretical foundations and representative imple-
mentations of these two categories. We will then examine their practical limitations and challenges.
Furthermore, we introduce a parallel-encouraging prompting to improve DLLM effectiveness.
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Model Name BigGSM (Acc.) GSMS8K (Acc.) Math-500 (Acc.) HumanEval (Pass@1) Average
Dream-7B-Instruct 41.15 (40.00) 80.52 (40.00) 37.00 (10.00) 51.22 (10.00) 52.47 (40.00)
+Zero-CoT 41.15 (_o.00) 77.26 (_3.26) 34.00 (_3.00) 48.78 (_3.44) 50.30 (_2.18)
+Plan-and-Solve 34.75 (—6.40) 78.85 (—1.67) 20.20 (—16.80) 48.78 (—2.44) 45.65 (—6.83)
+Least-to-Most 35.25 (~5.90) 77.03 (—3.49) 16.20 (—20.80) 43.29 (~7.93) 42.94 (—9.53)
+Complex-CoT 41.80 (10.65) 80.95 (10.43) 37.40 (10.40) 52.44 (1 1.99) 53.15 (40.68)
+MARP 42.95 (11.80) 80.52 (+0.00) 37.20 (10.20) 51.22 (40.00) 52.97 (10.50)
+Diff-MARP 47.21 (16.06) 82.64 (1 5.01) 43.60 (. 6.60) 52.44 (1 1.99) 56.47 (1 4.00)
LLaDA-8B-Instruct  48.03 (0.00) 75.36 (10.00) 34.80 (10.00) 32.32 (40.00) 47.63 (40.00)
+ Zero-CoT 35.57 (—12.46) 73.46 (—1.90) 32.40 (—2.40) 28.05 (—4.27) 42.37 (—5.26)
+ Plan-and-Solve 31.64 (—16.39) 72.33 (—3.03) 29.00 (—5.80) 27.44 (—4.88) 40.10 (—7.53)
+ Least-to-Most 34.75 (—13.28) 73.31 (—2.05) 30.80 (—4.00) 27.44 (—4.88) 41.58 (—6.05)
+ Complex-CoT 48.03 (10.00) 76.50 (41.14) 36.20 (41.40) 36.59 (_4.27) 49.33 (41.70)
+ MARP 48.20 (10.17) 76.35 (10.99) 34.40 (_o.40) 35.37 (_s.05) 48.58 (1.0.95)
+Diff-MARP 55.74 (17.71) 76.80 (11 44 38.20 (4.3.40) 38.41 (16.09) 52.29 (4 4.66)
LLaDA-v1.5 41.80 (0.00) 74.98 (10.00) 38.00 (10.00) 36.59 (10.00) 47.84 (40.00)
+ Zero-CoT 36.39 (—5.41) 71.87 (—3.11) 37.20 (—0.80) 35.98 (—0.61) 45.36 (—2.48)
+ Plan-and-Solve 30.16 (_11.54) 74.37 (—o0.61) 34.40 (_3.60) 35.98 (_o.61) 43.73 (_4.19)
+ Least-to-Most 35.90 (—5.90) 73.69 (—1.29) 34.60 (—3.40) 31.71 (—4.88) 43.98 (—3.87)
+ Complex-CoT 50.16 (48.41) 75.51 (10.53) 39.40 (11.40) 39.02 (1243 51.04 (43.19)
+ MARP 42.13 (10.33) 74.37 (0.61) 38.20 (40.20) 37.20 (40.61) 47.98 (10.13)
+Diff-MARP 54.49 (112.79) 76.50 (11 52) 42.80 (4.4.80) 38.41 (41.82) 53.08 (15.23)
LLaDOU-Math 42.13 (10.00) 81.88 (10.00) 45.80 (10.00) 39.02 (40.00) 52.21 (40.00)
+Zero-CoT 38.52(_3.61) 80.95(_0.03) 45.80(_0.00) 37.80(_1.22) 50.77(—1.44)
+Plan-and-Solve 40.82(_1_31) 81-12(—0.76) 43'20(—2.60) 38-41(—0.61) 50.89(_1_32)
+Least-to-Most 40.16(,1_97) 79.08(,2_80) 43'00(—2.80) 36.59(,2_43) 49‘71(,2,50)
+ Complex-CoT 43.77 (11.64) 83.70(41.82) 45.80(+0.00) 42.07 (43.05) 5247 (40.26)
+ MARP 41.15_¢.98) 82.184.0.30) 45.60(—0.20) 40.26(41.24) 52.30(40.00)
+Diff-MARP 54.26 (112.13) 84.76 (15 ss) 49.00 (, 3.20) 40.85(41.83) 57.22 (45.01)

Table 1: Performance comparison across 4 benchmarks. Bold marks the best baseline score per
metric. For each method, we report its most token-efficient variant. Here, “  ”: prompting strategies,
“ 7 offline strategies, “ *: online strategies.

Sequential Reasoning Prompting will enlarge PSC’s negative impact for DLLMs. Sequential
prompting strategies, which facilitate sequential reasoning, have been shown to significantly improve
the performance of ALLMs on complex tasks. However, as indicated in purple rows of Table we
observed a notable decline in performance as tasks required an increasing number of reasoning steps.
We attribute this decline to the fact that sequential reasoning prompts exacerbate the negative impact
of PSC, thereby impairing the reasoning performance in DLLMs.

Constraint-guided Reasoning Prompting enhances model performance by preventing the in-
troduction of additional PSC. By incorporating explicit constraints into the reasoning process,
constraint-guided prompting effectively narrows the model’s search space, thereby preventing the
emergence of additional PSC during the reasoning process in DLLMs. This focused approach results
in more accurate and reliable solutions. As shown blue rows of in Table |1} methods based on
this principle, such as Complex-CoT (Fu et al.,[2022) and MARP (Chen et al.,[2024), demonstrate
superior reasoning capabilities in DLLMs compared to traditional sequential prompting methods.

Parallel-encouraging Prompting reduces the sequential feature so that it further improves
performance. Parallel-encouraging prompting refers to the technique of presenting multiple related
tasks or questions simultaneously. This approach reduces the impact of PSC and minimizes the
sequential features in the prompting process. By encouraging the model to make connections across
these tasks, as illustrated in green rows of Table , it effectively fosters DLLMs’ performance,
leading to more efficient reasoning and information integration. Leveraging the parallel processing ca-
pabilities of DLLMs, this method has the potential to significantly enhance performance, particularly
in complex reasoning tasks, by promoting more comprehensive and coherent solutions.

1. Due to PSC, DLLMs engage in superficial parallel reasoning and exhibit autoregressive
behavior in complex scenarios, which compromises their reasoning efficiency.

2. Sequential prompts prove ineffective for DLLMs, requiring PSC-free or -redcued ap-
proaches like constraint-guided and parallel-encouraging prompts to guide their operation.
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Figure 4: Self-reflection performance and rationale quality evaluation on DLLMs.
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Figure 5: Self-exploration performance and rationale quality evaluation on DLLMs.

4 WHAT CHALLENGES DO DLLMS MEET IN LONG COT BASED ON PSC?

Despite impressive empirical results, DLLMs’ genuine reasoning abilities and scalability under
Parallel-Sequential Contradictions remain open questions. We systematically evaluate Long CoT to
assess these fundamental capabilities and scaling strategies.

4.1 DLLMS DO NOT HAVE SUFFICIENT BASIC CAPABILITIES TO SUPPORT LONG COT.

Long CoT is the primary innovation in recent reasoning large language models, leveraging inference-
time scaling for self-exploration, self-reflection, and deep reasoning (Chen et al.||2025). Evaluation
details are in Appendix[F

Traditional reflection strategies are Ineffective for DLLMs. Long CoT models always employ a
self-reflection mechanism for iterative reasoning refinement. To assess its efficacy, we examine two
LLM paradigms: (1) Prompting Reflection and (2) Autoregressive Forcing Reflection As shown in
Figure ] (a, b), reflection paradigms yield no significant differences from vanilla reasoning chains in
semantic similarity, informativeness, or token-level entropy. Though the reflection process increases
entropy and reduces informativeness, it maintains over 0.95 semantic similarity to original reasoning
chains. These findings suggest the reflection mechanism offers only limited surface-level optimization.
Figure ] (c) further reveals a substantial token repetition ratio compared to the original path, resulting
in approximately 10% reflection-to-error responses.

Limited Efficacy of traditional exploration strategies for novel reasoning path generation.
Exploration, a fundamental competency for complex reasoning, involves a model’s ability to generate
diverse and innovative solutions. To assess this potential in DLLMs, we designed experiments utilizing
two strategies: (1) Prompting Exploration and (2) Autoregressive Forcing Exploration. Figure [3]
(a, b) reveal that current exploration strategies offer several improvements in the novel semantic of
generated reasoning processes. However, these improvements remain superficial, evidenced by a
high similarity (> 0.84) between explored paths and original results. Furthermore, as depicted in
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Figure[5](c), while the new path and explore-to-correct ratios are limited (~ 5%), they nonetheless
indicate a positive, albeit constrained, effect.

DLLMs possess limited reasoning boundaries and, consequently, exhibit restricted deep reason-
ing abilities. To examine the limitations of DLLMs on deep reasoning, we evaluate their capacity
to sustain reasoning across sufficient depths. Figure[6](a) demonstrates that error steps are all less
than 2, which suggests that current DLLMs are unable to consistently sustain deep reasoning perfor-
mance. Furthermore, following (2024), we define the 90% correctness step count as the
models’ completely feasible reasoning boundary (CFRB), and the 10% correctness step count as the
completely infeasible reasoning boundary (CIRB). As shown in Figure[§] (b), current DLLMs display
similar CFRB values but lower CIRB values, indicating narrower feasible reasoning ranges.

4.2 CURRENT DLLMS HAVE THREE-DIRECTIONAL BUT LIMITED INFERENCE-TIME SCALING

Given their denoising characteristics, we investigate a fundamental question: Is there also Inference-
Time Scaling Law in DLLM under such contradictions? We examine this through three comple-
mentary perspectives: Parallel Scaling, Diffusion Scaling, and Sequential Scaling. These experiments
determine whether DLLMs follow inference-time scaling laws and provide practical insights for
optimizing reasoning performance. Implementation details can be seen in Appendix [G|

4.2.1 PARALLEL SCALING LAW HOLDS DESPITE PSC

For DLLMs, a key question is whether their unique diffusion generation mechanism supports efficient
parallel sampling and whether parallel sampling can effectively enhance reasoning performance.

Higher temperatures do not always yield more diverse and effective parallel sampling. The
decoding temperature controls generation randomness, with higher values typically increasing output
diversity in ALLM reasoning. We adjust the temperature during generation (0.1 to 1.0) to evaluate
its impact on parallel sampling. Model accuracy improves steadily with increasing Pass@k values
across all temperature settings before plateauing. As shown in Figure[§|(a), moderate temperatures
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Figure 9: Diffusion Scaling analysis of reasoning accuracy across difficulty levels on BigGSM.

(e.g., T' = 0.5) achieve optimal performance, while both lower and higher temperatures yield
diminished performance gains. This indicates that moderate temperature settings provide the optimal
balance between generation diversity and output reliability.

DLLM reasoning accuracy improves with increased parallel samples, following inference-time
scaling patterns. As shown in Figure[§|(b), when k increases from 1 to 32, accuracy demonstrates
nearly linear improvement on a logarithmic scale. This indicates that DLLMs effectively utilize
parallel sampling to enhance reasoning performance, as diverse outputs increase the probability of
generating correct solutions. This pattern aligns with inference-time scaling laws observed in other
advanced language models, where performance scales with computational effort during inference.

4.2.2 DIFFUSION SCALING LAW IS BROKEN AND CONSTRAINED BY PSC

Diffusion Scaling of DLL.Ms ensures performance gains, with diffusion time positively corre-
lated. Model accuracy increases monotonically with the number of diffusion steps. We are the first
to formalize Diffusion Scaling in DLLMs, proposing a positive correlation between model perfor-
mance and diffusion iterations. To validate this claim, we benchmark two representative DLLMs,
DREAM (Ye et al.,2025) and LLaDA (Nie et al.}2025a), under an exponential schedule of diffusion
steps (1-1024). By tracking accuracy at each step, we observe how DLLMs address reasoning tasks of
varying complexity across the diffusion process. As shown in Figure[9](a), performance consistently
improves with deeper diffusion; however, the rate of improvement depends on task difficulty: simpler
problems gain substantially, while tasks beyond the model’s capacity yield only limited benefits.

Diffusion Scaling is effective and exhibits an upper bound, beyond which an over-diffusion
phenomenon emerges due to PSC. Consistent with classical scaling laws, the benefits of diffusion
scaling are inherently capped. As shown in Figure [ (a), increasing diffusion steps improves
performance from 32 to 512 steps, after which gains plateau. More importantly, excessive diffusion
reduces accuracy: Figure [9] (b) shows a drop from 44.92% to 44.43%. This decline illustrates
over-diffusion, where extended denoising introduces excessive corrections that disrupt reasoning
chains, akin to overfitting caused by training without early stopping.

Early stopping can effectively mitigate over-diffusion. To address over-diffusion, we propose
a Diffusion Early Stopping (DES) strategy that halts the process when generated tokens stabilize.
The implementation comprises three components: (1) Overlap Ratio Calculation: computed as the
proportion of identical tokens between consecutive steps. (2) Convergence Detection: potential
convergence occurs when the overlap ratio meets or exceeds a predefined threshold. (3) Activation
Condition: early stopping triggers only after three consecutive steps satisfy the threshold, preventing
false positives from transient fluctuations. As shown in Figure[9|(b), we observe that beyond 256 steps,
early stopping outperforms standard diffusion, with accuracy improving from 44.26% to 46.89%
at 1024 steps. Early stopping captures convergence states and terminates upon stabilization, while
preventing performance degradation from excessive diffusion.

4.2.3 SEQUENTIAL SCALING LAW IS ALSO BROKEN AND CONSTRAINED BY PSC

The inherent limitations of sequential scaling for DLLMs. While sequential scaling has shown
promise in enhancing reasoning capabilities, it remains constrained by the inherent characteristics
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of DLLMs. As shown in Figure [0 (d), the performance improvements are at first increasing but
eventually converge. This limitation arises from the fact that sequential scaling relies on the model’s
ability to maintain context over extended reasoning chains, a challenge for current DLLMs.

Sequential Scaling also meets over-thinking challenges. Similar to diffusion scaling, as shown in
Figure[0](d), sequential scaling faces its own set of over-thinking challenges. As the model attempts to
extend its reasoning across longer contexts, it may encounter diminishing returns or even performance
degradation. This phenomenon is particularly evident in tasks that require intricate reasoning over
extended text, where the model’s ability to track and integrate information can become strained.

Diffusion Scaling can naturally yield Sequential Scaling benefits. As shown in Figure 9] (e),
diffusion scaling alleviates the limitations of sequential scaling. We identify three stages in DLLMs
during diffusion: (1) sequential scaling, (2) compression, and (3) convergence. In the first stage,
increasing diffusion steps leads to stable performance but longer solutions, indicating that DLL.Ms
explore suitable lengths for reasoning. In the second stage, the model compresses its reasoning by
eliminating redundancy, generating more efficient solutions. In the third stage, the model converges
on an optimal strategy, achieving high performance while reducing computational cost.

1. DLLMs are deficient in three basic Long CoT capabilities, hindering their effectiveness.

2. DLLM can be optimized via parallel, diffusion, and sequential scaling. Diffusion scaling
inherently encompasses the benefits of sequential scaling.

3. The performance of both diffusion and sequential scaling is ultimately upper-bounded by
a parallel-sequential contradiction. But Parallel scaling law remains the most effective
strategy, although it is also the most computationally expensive.

5 RELATED WORK

The application of diffusion models to text generation has emerged as an alternative to autoregres-
sive methods. Early work by D3PM (Austin et al., [2021)) proposed discrete denoising diffusion
probabilistic models, and Diffusion-BERT (He et al.| | 2022)) demonstrated scalability to BERT-style
architectures. SEDD (Lou et al.| [2023) achieved performance comparable to GPT-2. Recent progress
has broadened the scope of Diffusion Large Language Models (DLLMs) (Yang et al., 2025} (Wu
et al., 2025 |Gong et al., [2025). LLaDA (Nie et al.| [2025a) and Dream (Ye et al., 2025)) scaled to
billion-parameter models with notable inference gains. The D2F strategy (Wang et al.,|2025a) further
enhanced inference by enabling block-level autoregression and parallel decoding, maintaining a bal-
ance between speed and accuracy. This direction aligns with the growing interest in applying DLLMs
to extended reasoning (Wang et al., [2025b} [Zhao et al., 2025). Diffusion-of-Thought (DoT) (Ye et al.,
2024) combines diffusion with chain-of-thought reasoning. Building on this, Zhao et al.|(2025]) and
Tang et al.|(2025)) applied diffusion-augmented SFT and GRPO to strengthen reasoning. Similarly,
Trado (Wang et al., [2025b)) exploits overlooked sampling signals, yielding further reasoning gains.

However, while DLLMs exhibit notable parallel decoding in text generation and consistently strong
step-by-step reasoning, these features appear conceptually opposed: parallelism implies simul-
taneous processing, whereas sequential reasoning demands ordered progression. This apparent
Parallel-Sequential Contradiction (PSC) suggests that both the underlying mechanisms and the
practical effectiveness of DLLMs’ diffusion-based reasoning remain insufficiently understood.

6 CONCLUSION

In this work, we formalize the Parallel-Sequential Contradiction (PSC) to explain why DLLMs,
though built for parallel decoding, revert to autoregression as reasoning difficulty rises. Empirically,
DLLMs exploit parallelism only when tokens are locally decidable; otherwise, they fall back to
sequential computation, reducing efficiency. Further, we first define three-dimensional scaling:
parallel, diffusion, and sequential scaling, and show that PSC restricts the latter two while parallel
scaling holds. We mitigate PSC through parallel-focused prompting, diffusion early stopping, and
parallel scaling, improving both accuracy and throughput. Future work should align training and
architectures with PSC-aware reasoning and design benchmarks, isolating its effects.
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REPRODUCIBILITY DISCUSSION

Since our paper is an analytical paper, we directly use the official DLLLMs warehouse for inference.
Except for the Scaling experiment, fast-dllm was added for time spent, and the others are used for
inference using official inference codes, and only relevant parameters are adjusted. In addition, the
relevant prompt experiments are all in Appendix [E]
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Appendix

A THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, large language models were only utilized as general-purpose writing
assistants. Their role was confined to improving the clarity and refining the phrasing of the text. All
scientific content, analyses, and core arguments were developed by the human authors, who take full
responsibility for the final version of the paper.

B MATHEMATICAL PROOF OF DLLM DEGRADING TO AUTOREGRESSIVE

Goal. We rigorously show, via information theory and optimization, that the intrinsic statistical
property of a generative task, namely its sensitivity to perturbations of initial conditions, fundamentally
determines its optimal (lowest-loss) generation strategy. Concretely, we axiomatize two classes of
tasks: serial tasks (step-by-step reasoning) exhibiting cascading sensitivity to initial conditions, and
parallel tasks exhibiting partial invariance, and we prove that serial tasks induce significantly higher
conditional entropy for “skip-step” parallel predictions Sy, | S; than parallel tasks, forcing any
loss-minimizing learner to converge to an autoregressive strategy.

B.1 PROBLEM SETUP AND NOTATION

Let all step states .S; take values in a metric space (€2, d). Specifically, the true data distribution
pg of a task is considered serial if, for any given s; € (2, the mapping from s/ to a subsequent
state s}, is highly divergent within a sufficiently small neighborhood N (s1, €) = {s|d(s1,s]) < €}.
Conversely, a task’s true data distribution pY is considered parallel if, for any given s; € €, there
exists at least one subsequent state S (where k>1) that is insensitive to perturbations within its
neighborhood N (s1, €). Formally, this leads to the following definitions for the two tasks.

Definition 1 (Serial tasks: cascading sensitivity). A data-generating distribution pg is serial if for
any s1 € Q and any k > 1, that satisfies:

lim By vV (s1,)) [P (Sk = sk | S1=131)] =0, 3)

where sy is the reference outcome drawn from the true conditional pes (Sk | S1 = s1), and
U(N(s1,€)) the uniform distribution over this neighborhood. Equivalently, arbitrarily small pertur-
bations of S1 almost surely drive future states away from the reference trajectory at step k, capturing
sensitive dependence on initial conditions.

Definition 2 (Parallel tasks: partial invariance). A data-generating distribution pg’ is parallel if there
exists some k > 1 and a constant C € (0, 1] such that for any s; € <), that satisfies:
&11_1}% Es’le(N(shs)) [p(};(Sk = Sk ‘ S1= 3/1)} =Ce¢ (07 1]7 “4)

where sy, is the reference outcome drawn from pg (Sk | S1 = s1). Thus, a structurally stable
downstream state persists with significant probability despite infinitesimal perturbations of the initial
condition.

B.2 LEARNING PROBLEM

Let py be a parametric generative model trained by minimizing cross-entropy with respect to the true
data distribution p, i.e.,

L(pg; P) = Eanp[—logpe(z)] = H(p) + Dxr(pllpe), Q)

so minimizing cross-entropy is equivalent to minimizing Dkr,(p||pe) and to maximum likelihood.
For any conditional subproblem, the optimum satisfies pj(Sy | S1) = p(Sk | S1), and the minimal
expected negative log-likelihood equals the conditional entropy,

L* = By sy [H((Sk | 81 = 1)) ], where H(Y | X) = - X sl ne o
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Autoregression and chain rule. A step-by-step reaosning strategy factorizes a joint distribution
as a product of conditionals via the chain rule, thereby replacing a high-entropy “skip” conditional
po(Sk | S1) by a sequence of typically lower-entropy one-step conditionals pg(Si11 | St, .. .). Itis
the standard rationale behind likelihood-based training of ALLMs under teacher forcing.

B.3 DISCRETIZATION

To compare entropies on a general metric space, consider a finite measurable partition IT. of {2 with
mesh size at most ¢, and define the discretization and quantization map ¢ : @ — [m,] that assigns

each s €  to its cell index, where m, = |II.|. Let S; 5= — = ¢-(.5;) and write p( )( -) for the induced

discrete laws; we analyze H (S' ](f) | S %E) = §1), which is well-defined, and relate back to the original
problem by taking ¢ — 0. Two standard facts underpin the analysis: (i) for a fixed finite support,
entropy is maximized by the uniform distribution; (ii) the Shannon entropy is bounded below by the
min-entropy — log pmax, and admits tighter lower bounds in terms of the binary entropy function H,
and the support size.

Lemma 1 (Pointwise probability caps). Fix k > 1 and s, € . Under Definition[l} for any § > 0
there exists €g > 0 such that for all € < €,

e (S = skl S19 = 0:(50) <4 ™

where i ~ N'(s1) < e(s1) # e(s]) Ne(s]) € me.
Under Definition 2} there exist C > 0 and ey > 0 such that for all ¢ < e,

max (S’,(f) =5, |5 = d-(s1)) > C. 3

s1~N'(s1)

Proof sketch. By Definition[I] for serial tasks, the conditional probability of a reference outcome,
averaged over shrinking neighborhoods of s/, vanishes. This forces any mass that could be con-
centrated on a particular cell containing sy to diminish as the mesh refines. In contrast, for parallel
tasks, Deﬁnition guarantees a persistent mass C' € (0, 1] associated with a stable outcome across
neighborhoods, which uniformly lower-bounds the maximum conditional atom in €.

B.4 MAIN PROPOSITION AND QUANTITATIVE BOUNDS

Proposition 1 (Skip-step parallel predictions on serial vs. parallel tasks). For any k > 1, the optimal
expected skip-prediction loss on serial-task data strictly exceeds that on parallel-task data:

Ls(po(Sk | S1=151)) > Lp(pa(Sk | S1 = s1)), ©)
equivalently,
Egn v (N(s1.en[Hs (S | S1=81)] > Egynv(v(sy,e)[Hp (Sk | S1 = 51)], (10)

In the discrete case, this reduces to showing
B onr(on)[Hs (S 1 817 = 6:(s1))] > Bapon (o [Hp (S 1 S = 6(s1))] (1)
with a strictly positive gap that can be quantified through discretization and classical entropy bounds.

Proof. 1t suffices to compare the conditional entropies pointwise and then take expectations. Fix s;
and a partition II.. We first define the maximum of generation probability of serial tasks:

PruasE351) 3= e pEa(S17 = s 517 = o:(51) (12)

(e )

and analogously pmax(s s}) under p, .. By the lemma, p5 . (£;s]) — 0 ase — 0, while for parallel

tasks one has pL__ (e;s}) > C for all sufficiently small . For any discrete distribution over m,
points with maximal atom p,,,x, Fano’s inequality implies

H< Hb(pmax) + (1 _pmax) log(me - 1)7 (13)
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from typing import List

To determine the total distance
James runs in a week, we need to|
break down the problem into
smaller steps.

To find the distance from the origin, we
need to calculate the net eastward
distance and the net westward distance

1. Calculate  the distancece|
James runs in one session.
Calculate the distance James
runs in one week.

Calculate the distance James|
runs in a weel

First, let's calculate the ./

session: max_num = numbers[0]

* James runs 3 sprints in one for num in numbers:

session. if num > max_num:
for i in range(len(numbers)): « Each sprint is 60 meters long. max_num = num
forj in range(i+1, len(numbers)): « Therefore, the distance in one return max_num
if abs(numbers[i] - numbers[j])< threshold: session is 3 X 60 = 180 meters.
return True Next, let's calculate the distance
return False James runs in one week: ...

+463 times the east it had yesterday
Let's calculate the net eastward distance:
eastward 723 - westward 279 =
eastward 444 kilometers
seastward 444 + westward 509
eastward 953 kilometers
~eastward 953 + wesi

(a) Decoding order in no-reasoning (b) Decoding order in (c¢) Decoding order in no- (d) Decoding order in
tasks of LLaDA. reasoning tasks of LLaDA.  reasoning tasks of Dream. reasoning tasks of LLaDA.

Figure 10: Decoding order of Dream and LLaDA on BigGSM (Chen et al.l 2024).

where Hj, is the binary entropy.

Thus, for parallel tasks,

Hp(5\ | 89 = 6.(s))) < Hy(plox(ess1)) + (1= pho(es 81)) log(me — 1), (14)

and since pL . (g;8]) > C > 0, the entropy is uniformly bounded away from the maximal value
log(m) by a constant determined by C.

For serial tasks, since p3,.. (¢; s4) — 0, we have error probability p. — 0. Now, we should apply the
contrapositive of Fano’s inequality. Specifically, given the Fano’s inequality:

H S Hb(pe) +pe IOg(mE - 1)a (15)

it follows that H — 0 = p. — 0. Conversely, p. — 1 implies H — H,,,,. In this sense, the
condition is satisfied:

Hp (S | 8 = ¢.(s))) — log(me — 1),if pS.u (e 8}) = 0, (16)

which reflects the extreme dispersion dictated by sensitivity. Therefore, it satisfies:

ESIINN/(Sl)[HS(S’]E;E) | 5’%6) = (;55(31))] — EsrlNN/(sl)[Hp(S’,(f) | 5‘%6) = ¢5(81))] — strictly positive.
(17)

Q.E.D. O

B.5 CONSEQUENCES FOR OPTIMAL STRATEGY

Because the minimum achievable expected NLL equals the conditional entropy, the high conditional
entropy of skip-step predictions in serial tasks implies a high irreducible loss for any py(Sy | S1)
objective. A loss-minimizing learner therefore prefers factorizing the prediction into a chain of
low-entropy one-step conditionals, i.e., an autoregressive strategy, which aligns with the chain
rule factorization and standard maximume-likelihood training. By contrast, in parallel tasks, the
existence of a stable high-probability outcome for some downstream state .Sy produces a low-entropy,
high-confidence conditional, so optimizing pg(Sy, | S1) can be preferable and can support non-
autoregressive or partially parallel generation plans.

Takeaway. Task-intrinsic sensitivity versus invariance dictates the shape of the optimal conditional
distributions; via the cross-entropy/KL equivalence, this in turn selects the generation procedure
that globally minimizes expected loss, with serial tasks forcing autoregression and parallel tasks
permitting advantageous skip-step or parallel predictions.

C DIFFUSION-STEP EVALUATION DETAILS

In this section, we provide additional technical details on the methodology used to evaluate the
impact of diffusion steps and sampling lengths in Diffusion-based Language Models (DLLMs). We
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specifically focus on how these parameters influence the efficiency and accuracy of the models when
tackling complex reasoning tasks.

For our analysis, we utilize the BigGSM dataset (Chen et al.| 2024)), which includes a diverse range
of complex reasoning tasks designed to test current models’ ability to perform long-form reasoning.
In particular, we assess the performance of two representative DLLMs on these tasks and compare
them against a standard ALLM. We systematically vary both the number of diffusion steps and the
sampling lengths to evaluate their combined effects on the reasoning efficiency of DLLMs. The
number of diffusion steps tested ranges from 1 to 1024, while the maximum token lengths vary from
1 to 1024 tokens, with low-confidence remasking. In each experiment, the number of diffusion steps
is set equal to the maximum token length. This range allows us to assess the model’s performance
under different levels of token generation and diffusion refinement. For ALLMs, we adjust the
maximum token length between 1 and 1024 and the temperature between 0.2 and 0.7, aiming to
achieve comparable performance to that of the DLLMs.

For each setting, we track the following metrics:

* Accuracy: The percentage of correct answers generated by the model.

* Model Output Length: The number of tokens generated by the model before reaching the
stopping token (calculated using the GPT-40 tokenizer).

When the maximum token length is less than or equal to 512, the model output length typically
constitutes 50% to 80% of the maximum token length. Specifically, when generating a maximum
token length of 512, achieving optimal performance requires 512 diffusion steps combined with low-
confidence remasking strategies. We utilize this remasking approach to ensure the best performance.

Our evaluation demonstrates that the efficiency of DLLMs in reasoning tasks is strongly influenced
by the balance between diffusion steps and sampling lengths. While a higher number of diffusion
steps generally improves reasoning accuracy, it increases computational requirements. Thus, while
sufficient diffusion steps are essential for effective reasoning, an excessive number can significantly
reduce processing efficiency.

D EARLY-STOP STRATEGY

The early stopping mechanism is based on the dynamic stability of tokens, which monitors the
variation of the newly updated tokens during the diffusion process to judge whether the generation has
converged. We calculate the overlap ratio between the current step’s selected tokens (current_tokens)
and the previous step’s tokens (prev_tokens) in each diffusion step. When the overlap ratio of the
selected tokens remains stable over three consecutive steps and exceeds a threshold § = 0.99, early
stopping is triggered. The overlap ratio is calculated as:

overlap_ratio =

N

1
i Z I(current_tokens; = prev_tokens;)
i=1

Where N is the number of tokens updated in the current step, and I is the indicator function.
This mechanism is controlled by the parameter early_stop_threshold = 0.99, which controls the
sensitivity. The higher the threshold, the more stable the token sequence needs to be before triggering
early stopping.

The parameter settings use a block-based diffusion strategy: the total generation length of 512 tokens
is divided into blocks of length block_length = 32. Temperature = 0.7 helps balance exploration
and exploitation. We choose low_confidence strategy, which updates tokens with low confidence.
This combination ensures the quality of the generated text while improving efficiency by using fewer
diffusion steps, which typically converge to a value smaller than the maximum 512 steps.
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E PROMPTING EXPERIMENT DETAILS

E.1 EXPERIMENTAL SETUP

In this study, we employ the following models: Dream-7B-Instruct (Ye et al., [2025), LLaDA-8B-
Instruct (Nie et al.| [2025b), LLaDA-v1.5 (Zhu et al.;|2025)), and LLaDOU-Math (Huang et al.,[2025).
To optimize performance, we experiment with a temperature range of [0, 1], choose top-p=0.95
and block-length=32, and select the maximum token length from the set {128, 256, 512}, as well
as the diffusion step from {128, 256, 512}. For each model, we use the default decoding settings.
Additionally, we apply low-confidence remasking to explore the scaling behavior. All experiments
conduct on a single A100 or A800 80G GPU.

E.2 SEQUENTIAL REASONING PROMPTING

These methods were originally designed primarily for Autoregressive Large Language Models
(ALLMs) and have played a key role in optimizing their reasoning capabilities:

* Least-to-Most (Zhou et al.}2022): In autoregressive models, this method systematically breaks
down complex problems into multiple simpler sub-problems, guiding the model to reason step by
step rather than attempting to solve the entire complex problem at once. This effectively reduces
the complexity of single-step generation and enhances the model’s ability to handle complex
reasoning tasks.

Zero-CoT (Kojima et al.| [2022): This strategy uses a simple natural language instruction (e.g.,
“Let’s think step by step”) to activate the inherent sequential reasoning ability of autoregressive
models, enabling them to generate logically coherent reasoning chains without the need for
examples. This not only lowers the barrier to prompt design but also significantly improves the
zero-shot reasoning performance, enhancing both the efficiency and generality of reasoning.

* Plan-and-Solve (Wang et al.,2023)): By clearly dividing the reasoning process into a planning
phase and a detailed execution phase, this strategy helps autoregressive models first construct a
solution framework and then fill in specific content. This enhances the structural integrity and
global consistency of the solution, proving particularly effective for tasks requiring multi-step
logical reasoning and long-range dependency modeling.

Together, these strategies strengthen the sequential reasoning ability of autoregressive models, guiding
them through prompt design to generate continuous and logically sound reasoning paths in a more
systematic and reliable manner. However, we found that these strategies are not suitable for DLLMs.

E.3 CONSTRAINT-GUIDED REASONING PROMPTING

Complex-CoT: The original version of Complex-CoT (Fu et al.l [2022) leverages a few-shot
reasoning technique to prompt LLMs into performing more sophisticated reasoning processes. This
approach enhances the model’s ability to handle tasks that require a series of logical inferences or
multi-step reasoning, thereby improving the overall performance on complex questions. Specifically,
by providing a few-shot example that demonstrates how to perform intricate reasoning, the model
learns to apply similar patterns to new, unseen problems.

In contrast, the Constrained-Guided Version of Complex-CoT introduces a crucial modification to
meet specific requirements. Rather than using few-shot examples, we reframe the prompting method
as instruction-based, zero-shot constraints created by human experts. These constraints guide the
model’s reasoning process without the need for training on a set of example problems. To implement
this approach, the following prompting structure is used to ensure that the model approaches each
question with the necessary depth and detail:

Complex-CoT (Constrained-Guided Version)

You should think about the following question as thoroughly and in as much detail as possible.

Question: {question}
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MARP: The original MARP (Chen et al.,|2024) employs an instruction-based, in-context-learning
approach to guide LLMs in structuring and constraining each step of the reasoning process. This
method decomposes complex problems into manageable components by promoting multi-step rea-
soning, while ensuring each step is focused and achievable. By constraining reasoning at each stage,
MARP prevents overgeneralization and ensures logical, organized outputs.

To meet the requirements of the Constrained-Guided Version, we modify MARP in two ways: first, by
organizing reasoning into discrete steps, and second, by enabling parallel processing within each step.
This approach allows the model to perform multiple operations simultaneously without compromising
clarity or precision. The key concept is to balance step-by-step reasoning with parallel processing,
enhancing task efficiency. Each reasoning step involves multiple basic operations, ensuring clarity
and minimizing computational overhead.

The following prompt structure is used to guide the model’s reasoning process:

MARP (Constrained-Guided Version)

Reason step by step, but process operations in parallel.
* At each step, you may perform multiple simple operations (up to 5).
» Each operation must remain basic and not involve excessive complexity.

* If you choose to perform more operations in a single step, then each operation must be
correspondingly smaller in scope.

Question: {question}

E.4 PARALLEL-ENCOURAGING PROMPTING

This parallel-encouraging strategy is essential for reducing PSC in reasoning. To adapt MARP for
DLLM, we enable the model to process multiple operations concurrently, avoiding the bottleneck of
sequential processing, where each step depends on the completion of the previous one. This parallel
processing speeds up reasoning and enhances scalability. At the same time, operational complexity
constraints ensure the reasoning process remains clear and manageable. This method balances parallel
execution with simplicity, allowing for effective multi-step reasoning without overwhelming the
model with overly complex tasks. Moreover, the model adjusts operation complexity dynamically.
When tasked with more operations in a given step, each operation must be simpler, preventing
cognitive overload and helping the model stay focused on individual tasks.

Ultimately, this approach enables the model to execute parallel reasoning efficiently while maintaining
clarity and precision. The detailed prompting for implementation is as follows:

Diff-MARP

Reasoning in parallel. In each step, do as many basic operations as you can, up to 5.
Any single operation cannot be too complex.

If you use more operations in a step, the maximum allowed size for any operation decreases.

Question: {question}

F DLLM’S LIMITED CAPABILITIES OF LONG COT REASONING

F.1 LONG CHAIN-OF-THOUGHT CAPABILITIES

Following|Chen et al.[(2025), the Long Chain-of-Thought (Long CoT) reasoning capabilities comprise
three linked components: deep reasoning, exploration, and reflection.

Deep Reasoning. Given s; as the i-th reasoning step, Deep reasoning models the conditional prob-
ability pe(so, 51, - - -, Sk |S0), facilitating multi-step logical inference through iterative refinement.
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The associated reverse process can be characterized by a factorization:

K
po(S0,81,---,SK]|S0) :Hpg(si+1|si). (18)
i=0

Exploration. Exploration stems from the probabilistic nature of the reverse process. At each
exploration step s;, multiple samples sf can be drawn from the conditional distribution pg(s;|s;,7 <

7). enabling the model to explore diverse plausible continuations or solutions. This is formalized as:
s¥ ~po(sjlsii<j), k=1,...,K, (19)

where K controls the breadth of exploration. This sampling diversity enhances robustness by covering
multiple reasoning paths and mitigating premature convergence to suboptimal outputs.

Reflection. We view reflection as a self-correction mechanism arising from iterative conditioning
on latent states. At each reverse step, the model revises its belief about the target sequence using the
immediately previous state and, via the accumulated latent trajectory, all prior estimates. Formally,
this corresponds to implicit message passing:

8 ~ po(sjlsii > j), (20)
where §; denotes the corrected state at step j, enabling iterative error correction and refinement.

Together, these components yield a procedure that combines structured logics with stochastic explo-
ration and continual self-correction, enabling effective reasoning on complex multi-step tasks.

F.2 STATEGIES FOR SELF-REFLECTION AND SELF-EXPLORATION EXPERIMENTS ON DLLMS

To investigate whether DLLMs truly possess the fundamental capabilities for Long CoT Reasoning,
we designed two sets of experiments: self-reflection and self-exploration,using two distinct prompting
strategies to examine the basic abilities of DLLMs.

Self-Reflection: (1)Prompting Reflection, structured reflection prompts are embedded within initial
instructions,requiring the model to perform logical self-checking during generation. (2)Autoregressive
Forcing Reflection, correction prompts (e.g., "Wait...there might be something wrong") are replaced
with the end-of-sequence (EOS) token as a post-generation intervention strategy.

Self-Exploration:(1) Prompting Exploration, which embeds exploration prompts in initial instructions
to activate multi-path reasoning. (2) Autoregressive Forcing Exploration, which replaces EOS token
to “Let’s think in another way...” to induce exploratory reasoning.

F.3 EVALUATION OF SELF-REFLECTION AND SELF-EXPLORATION CAPABILITIES

In evaluating the self-reflection capabilities of the LLaDA-8B-Instruct (Nie et al.,|2025a) and Dream-
7B-Instruct (Ye et al.,|2025) models, the BigGSM dataset was utilized. During the generation process,
we employed a temperature of 0.7 for self-reflection and 0.2 for self-exploration, coupled with top-p
sampling set to 0.95. Additionally, diffusion steps were configured to 512, and the generation length
was fixed at 512. For the investigation into the models’ self-exploration capabilities, the experimental
settings were identical, with the sole distinction being the substitution of the reflection strategy with
an exploration strategy. Based on the setting of (Qin et al.| (2023)), we utilize the following reasoning
metrics for deeper analysis:

Semantic Alignment: The semantic alignment metrics (Golovneva et al.}[2022)) lies in the reasoning
alignment vector, which spans from the N-step hypothesis h to the source s of length 7"

r-align(h = s8) = {a1, a9, -+ ,an}, 21
where each alignment value can be calculated as:

1+ mauij:1 cos(h;, s;)]
2

Here, such an alignment value is the normalized cosine similarity between the reference step and the

most similar sentence in a context, and explicitly measures the grounding of the step-wise reasoning

o; = r-align(h; — s) = € [0,1]. (22)
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with respect to the source text. The alignment vector r-align(h — s) is estimated by matching the
source text and the reasoning chain on the embeddings of the tokens and individual reasoning steps.
A similar confidence alignment score is introduced in CTC to measure whether the information of
the i-th source document token s; is supported by the hypothesis token h;, assessing whether the
reasoning step h; supports the source context s.

Repetition-word: To identify repeated, or paraphrased steps, we look at the repetition word
scores (Golovneva et al., 2022) between all steps in the hypothesis chain:

1-— Joex  max (1/M;) Zr;‘l’i? i1 — hj)

For each pair of sentences, we look at the mean token alignment and find those sentences that
maximize this alignment score. In other words, Repetition-Token will punish chains where there are
at least two steps with high overlap in token embeddings.

Informativeness: Measures how well information present in the source is used in the reasoning
steps, we calculate informativeness (Golovneva et al.| 2022):

(1)T) S0, ratign (50 = B) + (1/N) SN | ratign(hi — )
5 .

Info-step gives a higher score to reasoning steps that are well-grounded with respect to the source,
and identifies the degree of information from source that is covered by the generated hypothesis. A
lower Info-Step score corresponds to the reasoning steps that are not related to the source sentences
or have missed information provided in the context.

Reasoning-Alignment : The most straightforward way to evaluate the correctness of the hypothesis
chain is to compare the degree of the overlap between the hypothesis and the reference. One way of
doing that is to measure the reasoning alignment (Golovneva et al.,|2022)) between them:

1 N
— Z Talign(hi — T’).
N =1

Token-Entropy : To calculate the token entropy, we will utilize the pipeline as follows: First,
calculate the probablhty of each token p(¢;), which is the frequency of token ¢; divided by the total
number of tokens NV:
b = count(t;)

plt) = —x—
Next, calculate the information content I(¢;) of each token, which reflects the uncertainty contribution
of that token to the text:

I(t;) = —log(p(t:))

Finally, token-entropy is the weighted average of the information content of all tokens, given by:

Zp ) log(p(t:))

where p(t;) is the probability of token ¢;, and log(p(¢;)) is the corresponding logarithmic information
content. Token-entropy reflects the overall uncertainty of the text. A higher value indicates that
the text is more random and diverse, while a lower value suggests that the text is more focused and
repetitive.

Cosine similarity (Sim) Cosine similarity measures the degree of similarity between two vectors
encoded by BGE (Xiao et al.,|[2023) by calculating the cosine of the angle between them. For text

embedding vectors, a value closer to 1 indicates greater semantic similarity. Let the two generated
text vectors be A and B. The formula for calculating their cosine similarity is:

A-B S AiB;
AT B[~ VY, 42 /Y, B?

where A - B is the dot product of vectors A and B. ||A| and ||B|| are the Euclidean norms
(magnitudes) of vectors A and B. A; and B; represent the components of vectors A and B along the
i-th dimension.

cosine_similarity (A, B) = (23)
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Perplexity (PPL) of the Model Perplexity is a concept in information theory used to measure
the uncertainty of a probabilistic model in predicting samples. In natural language processing, it is
employed to evaluate how well a language model fits a set of test data.

Given a sequence of N tokens W = wj,ws,...,wy, where the language model predicts the
probability of this sequence P (W), the perplexity of the sequence is defined as:

PPL(W) = P(W)™~ = exp (-Jif log P(W)) . (24)

Because of the sequence’s independence assumption, we can compute P (W) as:

N
PW) = [[ P(wilwy, ..., wi1). (25)
=1

Therefore, the commonly seen formula for perplexity is:

N
PPL(W) = exp <—]1/v Zlog P(w;|ws, ..., wi_1)> , (26)

i=1

where log P(W) is the log probability of the entire sequence. + Zfil log P(w;|wy, ..., w;—1) is
the average log probability of the sequence under the model. exp is the exponential function, used to
transform the log probability back to its original scale.

Observation of the results for both DREAM (Ye et al.,[2025) and LLaDA (Nie et al., 2025al) models,
under both self-reflection and self-exploration settings, the scores across all ROSCOE-SA evaluation
metrics are highly similar. This indicates that current diffusion language models (DLLMs) have not
yet genuinely acquired the deeper capabilities of self-reflection and self-exploration, as their outputs
do not exhibit significant differences under varying strategic prompts.

F.4 EVALUATION OF DEEP-REASONING CAPABILITY

Following [Chen et al.|(2024), we further investigate reasoning boundaries (RBs) in deep reasoning
capabilities in mathematical reasoning. We prompt DLLMs to generate plans and assess their
accuracy through manual evaluation. When the model meets the question with fewer than 1 reasoning
steps, accuracy surpasses 80%. Conversely, when reasoning steps exceed 3-4, accuracy falls below
10%. Moreover, we first randomly select 200 samples to generate examples and split steps from the
DLLM-generated rationales based on ROSCOE (Golovneva et al., [2022)). Further, we also manually
identify the first model’s incorrect step position.

G THREE-DIRECTIONAL INFERENCE-TIME SCALING ON DLLMS

G.1 PARALLEL SCALING EXPERIMENT DETAILS

In the parallel scaling section, we utilize the dual-cache generation strategy from Fast-dLLM based
on the diffusion language model LLaDA-8B-Instruct (Nie et al.,|2025a)), and perform batch process-
ing on the BigGSM (Chen et al.| [2024) dataset. Key configurations include:diffusion_steps=256,
gen_length=256, block_length=32, and a Dynamic Low-Confidence Remasking mechanism.

We also employed the dual_cache generation strategy from Fast-dLLM (Wu et al.| 2025) on the
Dream-7B-Instruct (Ye et al.||2025)) model for testing on the BigGSM reasoning dataset. The core
configuration includes: diffusion_steps=256, gen_length=256, and block_length=32.

The results are shown in Figure [T T] It can be observed that the accuracy generally increases with
higher k-values. At the initial attempts, the accuracy at Temperature 1.0 was relatively low. Although
it showed significant improvement in the early stages, its later accuracy fell behind other temperatures.
At Temperature 0.1, the accuracy growth was more stable initially, but eventually plateaued at around
60%, similar to Temperature 1.0. Overall, intermediate temperatures demonstrated better pass @k
accuracy performance, achieving higher accuracy with more consistent and stable growth.
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Figure 11: Parallel scaling performance of DLLMs under Different Temperature Settings

G.2 DIFFUSION SCALING EXPERIMENT DETAILS

We set the diffusion_step to be between 1 and 4096 (with max-token-length equal to 512 for Figure[J]
(a). The other settings are identical to those of parallel scaling. The results are shown in Figure[9] (a).

G.3 SEQUENTIAL SCALING EXPERIMENT DETAILS

We set the Max Token Length to be between 1 and 4096 (with diffusion-step equal to max-token-

length for Figure

shown in Figure 9| (d).

21

(d). The other settings are identical to those of parallel scaling. The results are
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