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ABSTRACT

In this work we develop a new method, named locally permutation-equivariant
graph neural networks, which provides a framework for building graph neural
networks that operate on local node neighbourhoods, through sub-graphs, while
using permutation equivariant update functions. Message passing neural networks
have been shown to be limited in their expressive power and recent approaches to
over come this either lack scalability or require structural information to be en-
coded into the feature space. The general framework presented here overcomes
the scalability issues associated with global permutation equivariance by operating
on sub-graphs through restricted representations. In addition, we prove that there
is no loss of expressivity by using restricted representations. Furthermore, the pro-
posed framework only requires a choice of k-hops for creating sub-graphs and a
choice of representation space to be used for each layer, which makes the method
easily applicable across a range of graph based domains. We experimentally vali-
date the method on a range of graph benchmark classification tasks, demonstrating
either state-of-the-art results or very competitive results on all benchmarks. Fur-
ther, we demonstrate that the use of local update functions offers a significant
improvement in GPU memory over global methods.

1 INTRODUCTION

Many forms of data are naturally structured as graphs such as molecules, bioinformatics, social,
or financial and it is therefore of interest to have algorithms which operate over graphs. Machine
learning on graphs has received much interest in recent years, with the general framework of a
message passing network providing both a useful inductive bias and scalability across a range of
domains (Gilmer et al., 2017). However, Xu et al. (2019) show that a model based on a message
passing framework with permutation invariant aggregation functions is limited in expressive power.
Therefore, there exists many non isomorphic graphs that a model of this form cannot distinguish
between. Figure 5 demonstrates two non-isomorphic graphs for which a message passing framework
with max pooling would not be able to distinguish between the two graphs.

More expressive graph networks exists and a common measure of expressivity is the Weisfeiler-
Lehman (WL) test. One such method of building more expressive networks is based directly on the
WL test. Here a neural network architecture is built based on variants of the WL test. Bouritsas et al.
(2020) use a permutation invariant local update function, but incorporate permutation equivariant
structural information into the feature space. Morris et al. (2019a) build models based on different
WL variants that consider local and global connections. Bodnar et al. (2021b) introduce a WL test
on simplicial complexes and incorporate this into a message passing scheme. Bodnar et al. (2021a)
extend work on simplicial complexes to cell complexes, which subsume simplicial complexes.

On the other hand, rather than trying to directly incorporate techniques from WL tests directly into
networks other model make use of permutation symmetries to build permutation equivariant graph
neural networks (Maron et al., 2018). This model can be built for k-order feature spaces and it
was shown by Maron et al. (2019) that such models can distinguish between non-isomorphic graphs
as well as the k-WL test. Natural graph networks are a different class of graph neural network,
where the constraint placed upon the linear layer is that of naturality (de Haan et al., 2020). The
naturality constraint says that for each isomorphism class a map must be chosen that is equivariant
to automorphisms.
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Figure 1: The architecture of a layer in a locally permutation equivariant graph network is presented.
It combines a method of splitting the input graph into sub-graphs, the chosen method of weight
sharing, permutation representations as update constraints, and the reconstruction of the graph. In
the layer presented here the sub-graph is created by selecting nodes that are 1-hop away from the
central update node. The weight sharing scheme involves sharing weights across sub-graphs of the
same size. The update of node and graph features makes use of permutation representations.

In general the task of learning on graphs consists of utilising many graphs of different sizes. Cur-
rent methods for utilising permutation equivariant graph neural networks require that the graph be
represented as an adjacency tensor, which limits there scalability. Furthermore, global natural graph
networks also perform computations on entire graph features, which leads to a large computational
complexity for large graphs. Local gauge symmetries have been considered to build models with
local equivariance (Cohen et al., 2019). This approach improves scalability of models by utilising
local update functions, however for graphs we do not have a single local symmetry. Currently this
is overcome in the majority of graph neural networks presented by utilising some form of message
passing, but, in general, all works use a permutation invariant aggregation function leading to good
scalability but poor expressivity. Local natural graph networks attempt to overcome the limited ex-
pressivity through placing a local naturality constraint on the message passing and having different
message passing kernels on non-isomorphic edges.

Through considering graph neural networks from an elementary category theory perspective and
making use of aspects of group theory we present a framework for building local permutation equiv-
ariant models. This allows us to build a graph neural network model with local update functions that
are permutation equivariant by considering restricted representations of the representation space of
the whole graph. Further, we prove that this does not cause a loss of expressivity of the model and
that this maintains the option to have a k-order feature space that ensures expressivity equal to k-WL
test. Also, by constraining the kernel space under restricted representations, a natural weight sharing
scheme becomes apparent, namely sharing weights across local graph neighbourhoods of the same
degree. The approach of building models with a framework based on group theory makes clear the
generality of the approach, where choices of representation space can be made for each convolu-
tional layer without requiring prior information such as structural information to be encoded into the
feature space. This framework can also be shown to include other leading methods as specific cases.

2 BACKGROUND

2.1 GRAPH NETWORKS

Different graph neural networks express graphs in alternative forms. Generally, for a message pass-
ing model, a matrix of node features and a matrix of edge features is combined with a sparse edge
index array specifying the connectivity of the graph. In other works, the graph is provided in a
dense format, where the graph is given as a adjacency tensor with node and edge features held in
one tensor. In this work we present the graph as follows:

Definition 1 A Concrete Graph G is a finite set of nodes V(G) ⊂ N and a set of edges E(G) ⊂
V(G)× V(G).
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The set of node ids may be non-contiguous and we make use of this here as we extract overlapping
sub-graphs when performing the local updates. The same underlying graph can be given in may
forms by a permutation of the ordering of the natural numbers of the nodes.

Definition 2 A sub-Concrete Graph H is created by taking a node i ∈ V(G), and extracting the
nodes j ∈ V(G) and edges (i, j) ⊂ V(G)× V(G), such that there is a connection between nodes i
and j.

Once a sub-concrete graph has been extracted, this same underlying sub-graph could be expressed
through different permutations of the underlying numbering of the nodes. For brevity we refer to
sub-concrete graphs as subgraphs throughout the paper.

Definition 3 A Graph isomorphism, φ : G→ G′ is a bijection between the vertex sets of two graphs
G andG′, such that two vertices u and v are adjacent inG if and only if φ(u) and φ(v) are adjacent
in G′. This mapping is edge preserving, i.e. satisfies for all (i, j) ∈ V(G)× V(G):

(i, j) ∈ E(G)⇐⇒ (φ(i), φ(j)) ∈ E(G′)

An isomorphism from the graph to itself is known as an automorphism.

Relabelling of the graph by a permutation of the nodes is called a graph isomorphism, where an
example of two isomorphic graphs is given in Figure 5. We desire that the linear layers of the graph
neural network respect the composition of graph isomorphisms. This requires us to define the feature
space of the graphs and how feature spaces of isomorphic graphs are related.

2.2 PERMUTATION REPRESENTATIONS

The feature space of the graphs is a vector space V , where a representation of the group G is a
homomorphism ρ : G → GL(V ) of G to the group of automorphisms of V (Fulton & Harris,
2013). A map KG between two representations of G is a vector space map. The elements of the
group g ∈ G can act on a vector v ∈ V by the representation matrix v → ρ(g)v. The symmetric
subspace of the representation is the space of solutions to the constraint ∀g ∈ G : ρ(g)v = v. Here
we are considering the symmetries of the symmetric group Sn. This constraint can be solved for
different order representations (Maron et al., 2018; Finzi et al., 2021). We present the space of linear
layers mapping from k-order representations to k′-order representations in Figure 2. In addition,
for the linear map KG, we require that if a graph is passed through KG and then transformed
by permutation to an isomorphic graph this result is the same as if a graph is transformed by the
same permutation to an isomorphic graph and then passed through KG. In short, this requires that
permutation equivariance is satisfied.

2.3 CATEGORY THEORY

This section does not provide a complete overview of category theory, nor even a full introduction,
but aims to provide a sufficient level of understanding to aid the reader with further sections of the pa-
per, where we believe presenting the comparison between models from a category theory perspective
makes more clear the distinctions between them. A category, C, consists of a set of objects, Ob(C),
and a set of morphisms (structure-preserving mappings) or arrows, f : A → B, A,B ∈ Ob(C).
There is a binary operation on morphisms called composition. Each object has an identity mor-
phism. Categories can be constructed from given ones by constructing a subcategory, in which each
object, morphism, and identity is from the original category, or by building upon a category, where
objects, morphisms, and identities are inherited from the original category. A functor is a mapping
from one category to another that preserves the categorical structure. For two categories C and D
a functor F : C → D maps each object A ∈ Ob(C) to an object F (A) ∈ Ob(D) and maps each
morphism f : A→ B in C to a morphism F (f) : F (A)→ F (B) in D.

Definition 4 A groupoid is a category in which each morphism is invertible. A groupoid where there
is only one object is usually a group.
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ρ0 → ρ0 ρ1 → ρ1 ρ2 → ρ2

ρ0 → ρ1 ρ0 → ρ2 ρ1 → ρ2

ρ1 → ρ0 ρ2 → ρ0 ρ2 → ρ1

Figure 2: Bases for mappings to and from different order permutation representations, where ρk
is a k-order representation. Each color in a basis indicates a different parameter. ρ0 → ρ0 is a
mapping from a 0-order representation to a 0-order representation, i.e. a graph level label to graph
level label, and has 1 learnable parameter. ρ1 → ρ1 is a mapping from a 1-order representation to a
1-order representation, i.e. a node level label to node level label, and has 2 learnable parameters, one
mapping node features to themselves and the other mapping node features to other nodes. Further,
there are mappings between different order representation spaces and higher order representation
spaces.

3 GLOBAL EQUIVARIANT GRAPH NETWORKS

3.1 GLOBAL PERMUTATION EQUIVARIANCE

Global permutation equivariant models have been considered by Hartford et al. (2018); Maron et al.
(2018; 2019); Albooyeh et al. (2019), with Maron et al. (2018) demonstrating that for order-2 layers
there are 15 operations that span the full basis for an permutation equivariant linear layer. These
15 basis elements are shown in Figure 2 with each basis element given by a different color in the
map from representation ρ2 → ρ2. Despite these methods, when solved for the entire basis space,
having expressivity as good as the k-WL test, they operate on the entire graph. Operating on the
entire graph features limits the scalability of the methods. In addition to poor scalability, global
permutation appears to be a strong constraint to place upon the model. In the instance where the
graph is flattened and an MLP is used to update node and edge features the model would have n4

trainable parameters, where n is the number of nodes. On the other hand, a permutation equivariant
update has only 15 trainable parameters and in general 15� n4.

Viewing a global permutation equivariant graph network from a category theory perspective there is
one object with a collection of arrows representing the elements of the group. Here the arrows or
morphisms go both from and to this same single object. The feature space is a functor which maps
from a group representation to a vector space. For a global permutation equivariant model the same
map is used for every graph.

G
e

g1

g2

Symmetric Group
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3.2 GLOBAL NATURALITY

Global natural graph networks (GNGN) consider the condition of naturality, (de Haan et al., 2020).
GNGNs require that for each isomorphism class of graphs there is a map that is equivariant to
automorphisms. This naturality constraint is given by the condition ρ′(φ) ◦ KG = KG′ ◦ ρ(φ),
which must hold for every graph isomorphism φ : G → G′ and linear map KG. While the global
permutation equivariance constraint requires that all graphs be processed with the same map, global
naturality allows for different, non-isomorphic, graphs to be processed by different maps and as
such is a generalisation of global permutation equivariance. As is the case for global permutation
equivariant models, GNGNs scale poorly as the constraint is placed over the entire graph and linear
layers require global computations on the graphs.

Viewing a GNGN from a category theory perspective there is a different object for each concrete
graph, which form a groupoid. Then, there is a mosphism or arrow for each graph isomorphism.
These can either be automorphisms, if the arrow maps to itself, or isomorphisms if the arrow maps
to a different object. The feature spaces are functors which map from this graph category to the cat-
egory of vector spaces. The GNG layer is a natural transformation between such functors consisting
of a different map for each non-isomorphic graph.

G1 G2

G3

Groupoid of Concrete Graphs

4 LOCAL EQUIVARIANT GRAPH NETWORKS

Local equivariant models have started to receive attention following the successes of global equiv-
ariant models and local invariant models. The class of models that are based on the WL test are not
in general locally permutation equivariant in that they still use a message passing model with permu-
tation invariant update function. Despite this, many of these models inject permutation equivariant
information into the feature space, which improves the expressivity of the models (Bouritsas et al.,
2020; Morris et al., 2019a; Bodnar et al., 2021b;a). The information to be injected into the feature
space is predetermined in these models by a choice of what structural or topological information
to use, whereas our model uses representations of the permutation group, making it a very general
model that still guarantees expressivity.

In contrast to utilising results from the WL test covariant compositional networks (CCN) look at
permutation equivariant functions, but they do not consider the entire basis space as was considered
in Maron et al. (2018) and instead consider four equivariant operations (Kondor et al., 2018). This
means that the permutation equivariant linear layers are not as expressive as those used in the global
permutation equivariant layers. Furthermore, in a CCN the node neighbourhood and feature dimen-
sions grow with each layer, which can be problematic for larger graphs and limits their scalability.
Another local equivariant model is that of local natural graph networks (LNGN) (de Haan et al.,
2020). An LNGN uses a message passing framework, but instead of using a permutation invari-
ant aggregation function, it specifies the constraint that node features transform under isomophisms
of the node neighbourhood and that a different message passing kernel is used on non-isomorphic
edges. In practice this leads to little weight sharing in graphs that are quite heterogeneous and as
such the layer is re-interpreted such that a message from node p to node q, kpqvp, is given by a
function k(Gpq, vp) of the edge neighbourhood Gpq and feature value vp at p.

Viewing a LNGN from a category theoretic perspective there is a groupoid of node neighbourhoods
where morphisms are isomorphisms between node neighbourhoods and a groupoid of edge neigh-
bourhoods where morphisms are ismorphisms between edge neighbourhoods. In addition, there is
a functor mapping from edge neighbourhoods to the node neighbourhood of the start node and a
functor mapping similarly but to the tail node of the edge neighbourhood. The node feature spaces
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are functors mapping from the category of node neighbourhoods to the category of vector spaces.
Further, composition of two functors creates a mapping from edge neighbourhoods to the category
of vector spaces. A LNG kernel is a natural transformation between these functors.

N1 N2

N3

Groupoid of Node Neighbourhoods

E1 E2

E3

Groupoid of Edge Neighbourhoods

5 LOCAL PERMUTATION EQUIVARIANCE

A local permutation equivariant graph network (LPEGN) improves upon the scalability of global
permutation equivariant models by considering permutation equivariance at lower scales. Here,
instead of performing the update function on the entire graph, we perform the update function on
node neighbourhoods as is done in message passing models. Furthermore, while performing the
update functions on node neighbourhoods, we maintain improved expressivity through using k-
order permutation representations. The intuition behind imposing permutation equivariance on node
neighbourhoods rather than the entire graph is that the model can learn expressive features about a
part of the sub-graph without requiring knowledge of permutations multiple hops away from the
central update node. This framework generalises global permutation equivariant models as it is
compatible with all length scales, meaning that, if the graph structure is used to determine node
neighbourhoods, then any k value can be chosen to determine the k-hops from the central update
node producing the sub-graph which permutation equivariance is required for. Therefore, if the
value chosen for the k-hops is sufficiently large then the layer becomes a global permutation update.
The basis functions for different order representation spaces are given with the split into different
degrees for a 1-hop node neighbourhood in Figure 1. The method therefore requires a choice of k
for the number of hops away from the central node to consider in the local update and we discuss
this choice in Section 5.2. In addition, the framework then allows for a choice of weight sharing,
which we discuss in Section 5.3.

5.1 RESTRICTED REPRESENTATION

(a) (b)

Figure 3: (a) Regular repre-
sentation. (b) Restricted rep-
resentation.

Given a graph comprised of n nodes, global equivariant models
consider the permutation representation of the permutation group
G = Sn, namely the representation ρ : G → GL(Rc). Here we
consider local updates on sub-graphs with m nodes, where we are
interested in the sub-group H = Sm ≤ Sn. Therefore we can
consider the restricted representation of the sub-group Sm, where
the restricted representation can be seen as dropping some symme-
tries from the group Sn. The restricted representation is denoted by
ρ̃ := ResGH(ρ) : H → GL(Rc). The global equivariance case using
representations, ρ, and the case using restricted representations, ρ̃,
are shown in Figure 3. Both figures show a basis mapping from
order 1 to order 1 permutation representation. The restricted repre-
sentation ResS5

S4
drops the permutation symmetry associated to node 5. Dropping the permutation

symmetry of node 5 results in 3 additional parameters, one for the update of node 5 based on node 5’s
features, another for the update of node 5 based on the features of the other nodes in the graph, and a
final parameter for the update of the other nodes in the graph based on node 5’s features. We proove
that using restricted representations in our framework has no loss of expressivity in Appendix A.8.
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5.2 CHOICE OF LOCAL NEIGHBOURHOOD

The LPEGN model framework performs the permutation equivariant update on local sub-graphs,
although a choice can be made as to how these sub-graphs are created. One option is the use the
underlying graph structure and choose a k value to extract local neighbourhoods that include nodes
which are at most k-hops from the central node. This method creates a sub-graph for each node
in the graph. Here the choice of the k value can be seen as choosing a length scale for which the
permutation symmetry should be exploited over. In other words, choosing a value of k = 1 is the
shortest length scale and node features will be updated such that they are permutation equivariant to
their 1-hop neighbours, but not equivariant to nodes further away in the graph. On the other hand,
choosing a k value sufficiently large will create a model equivalent to global permutation equiv-
ariant models, where each update is permutation equivariant to permutations of the entire graph.
Throughout this work we choose k = 1 unless otherwise stated to take the most local permutation
equivariant updates. We show how this choice of k value will impact the method through analysing
the MUTAG dataset in Figure 10.

5.3 CHOICE OF WEIGHT SHARING

In general when constructing the sub-graphs a variety of different sized sub-graphs are found due
to differing degrees of the nodes in the graph. This allows for a further choice, namely the weight
sharing method to be used. Given that the permutation equivariance constraint is a strong constraint
to place over the linear layers, we perform weight sharing across sub-graphs of the same size. This
means that sub-graphs of different sizes do not share weights and can be updated differently. The
intuition for this is that sub-graphs of the same size already have some similarity in that they are of
the same size, while sub-graphs of a different size are less likely to be similar and hence should be
updated differently. Throughout this paper we choose to use weight sharing across local neighbour-
hoods of the same size degree, although in situations where there is very few local neighbourhoods
of a particular size we group these together.

5.4 CHOICE OF REPRESENTATION SPACE

In Section 5.1 we considered the restricted representation of a sub-group Sm ≤ Sn and in Section 5.2
we detailed how local sub-graphs are selected. Here we must make a connection between the two to
present the representational space used in our LPEGN framework. When focusing in on the nodes
that we didn’t drop the permutation symmetry of it can be seen, in Figure 3, that for these nodes the
restricted representation is equivalent to the global permutation equivariant representation. Further-
more, given our choice of sub-graph construction we would seek to drop the permutation symmetry
from a node in the graph due to the fact it is not connected to the central update node. Therefore the
edge features connecting the central node to the node we are dropping the permutation symmetry
of are zero. Hence, we are not interested in the additional parameters introduced in the restricted
representation connecting the two nodes. Furthermore, as the node we are dropping permutation
symmetries for is not connected to the chosen sub-graph we are also not interested in the additional
parameters introduced in the restricted representation for this node. As a result, due to the choice
of sub-graph construction, the restricted representation for our sub-group has zero features in the
position of new parameters introduced and is therefore equivalent to the permutation representa-
tion on a lower dimensional space. Therefore where global permutation equivariant updates use
representations ρ : G → GL(Rc), our local permutation equivariant model uses representations
ρ̃ : H → GL(Rc̄), where c̄ ≤ c. The scheme for creating representations of local neighbourhoods
is shown in Figure 1, where some representations of the local neighbourhoods are shown.

5.5 LOCAL PERMUTATION EQUIVARIANT GRAPH NETWORK

A LPEGN combines the chosen method of creating sub-graphs as local neighbourhoods with a
choice of weight sharing scheme and makes use of permutation representations on these sub-graphs.
The process of creating sub-graphs, updating based on the choice of weight sharing using permuta-
tion representations, and re-constructing the graph structure is presented in Figure 1.

Viewing a LPEGN from a category theoretic perspective, each different size node neighbourhood is
a sub-group, H , which is a different object. There are morphisms or arrows for each permutation
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of the neighbourhood. This forms a groupoid. The sub-group representations are functors from the
category of node neighbourhoods to the category of vector spaces.

H1 H2 H3
e

h1

h2 e

h1

h2 e

h1

h2

Groupoid of Symmetric Sub-Groups

6 EXPERIMENTS

6.1 GRAPH BENCHMARKS

We tested our method on a series of 7 different real-world graph classification problems from the
benchmark of (Yanardag & Vishwanathan, 2015). It is noteworthy to point out some interesting
features of each dataset. We note that both MUTAG and PTC are very small datasets, with MUTAG
only having 18 graphs in the test set when using a 10 % testing split. Further, the Proteins dataset has
the largest graphs with an average number of nodes in each graph of 39. Also, NCI1 and NCI109 are
the largest datasets having over 4000 graphs each, leading to less spurious results. Finally, IMDB-
B and IMDB-M generally have smaller graphs, with IMDB-M only having an average number of
13 nodes in each graph. The small size of graphs coupled with having 3 classes appears to make
IMBD-M a challenging problem.

Table 1 compares our LPEGN model to a range of other methods. This highlights that our method
achieves a new state-of-the-art result on the NCI1 dataset and is the second strongest on PTC and
NCI109. Furthermore, our method performs competitively across all datasets. We achieve a poor
ranking score on the Proteins datasets, although the classification accuracy of the model is competi-
tive with leading results and only falls slightly short of the bulk of other methods. A comparison of
the distribution of training accuracy is presented in figure 8 and a ranking based method is presented
in Figure 9.

Table 1: Comparison between our LPEGN model and other deep learning methods from de Haan
et al. (2020). Larger mean results are better.

Dataset MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B IMDB-M

size 188 344 1113 4110 4127 1000 1500
classes 2 2 2 2 2 2 3
avg node # 17.9 25.5 39.1 29.8 29.6 19.7 13

Results

GDCNN (Zhang et al., 2018) 85.8±1.7 58.6±2.5 75.5±0.9 74.4±0.5 NA 70.0±0.9 47.8±0.9
PSCN (Niepert et al., 2016) 89.0±4.4 62.3±5.7 75±2.5 76.3±1.7 NA 71±2.3 45.2±2.8
DCNN (Atwood & Towsley, 2016) NA NA 61.3±1.6 56.6±1.0 NA 49.1±1.4 33.5±1.4
ECC (Simonovsky & Komodakis, 2017) 76.1 NA NA 76.8 75.0 NA NA
DGK (Yanardag & Vishwanathan, 2015) 87.4±2.7 60.1±2.6 75.7±0.5 80.3±0.5 80.3±0.3 67.0±0.6 44.5±0.5
DiffPool (Ying et al., 2018) NA NA 78.1 NA NA NA NA
CCN (Kondor et al., 2018) 91.6±7.2 70.6±7.0 NA 76.3±4.1 75.5±3.4 NA NA
IGN (Maron et al., 2018) 83.9±13.0 58.5±6.9 76.6±5.5 74.3±2.7 72.8±1.5 72.0±5.5 48.7±3.4
GIN (Xu et al., 2019) 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 NA 75.1±5.1 52.3±2.8
1-2-3 GNN (Morris et al., 2019b) 86.1 60.9 75.5 76.2 NA 74.2 49.5
PPGN v1 (Maron et al., 2019) 90.5±8.7 66.2±6.5 77.2±4.7 83.2±1.1 81.8±1.9 72.6±4.9 50±3.2
PPGN v2 (Maron et al., 2019) 88.9±7.4 64.7±7.5 76.4±5.0 81.2±2.1 81.8±1.3 72.2±4.3 44.7±7.9
PPGN v3 (Maron et al., 2019) 89.4±8.1 62.9±7.0 76.7±5.6 81.0±1.9 82.2±1.4 73±5.8 50.5±3.6
LNGN (GCN) (de Haan et al., 2020) 89.4±1.6 66.8±1.8 71.7±1.0 82.7±1.4 83.0±1.9 74.8±2.0 51.3±1.5
GSN-e (Bouritsas et al., 2020) 90.6±7.5 68.2±7.2 76.6±5.0 83.5±2.3 NA 77.8±3.3 54.3±3.3
GSN-v (Bouritsas et al., 2020) 92.2±7.5 67.4±5.7 74.6±5.0 83.5±2.0 NA 76.8±2.0 52.6±3.6
SIN (Bodnar et al., 2021b) NA NA 76.5±3.4 82.8±2.2 NA 75.6±3.2 52.5±3.0
CIN (Bodnar et al., 2021a) 92.7±6.1 68.2±5.6 77.0±4.3 83.6±1.4 84.0±1.6 75.6±3.7 52.7±3.1

LPEGN 89.5±6.1 70.0±11.3 74.5±2.3 83.7±1.5 83.2±0.8 74.3±3.7 47.9±3.0
Best Rank 6th 2nd 15th 1st 2nd 7th 10th
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6.2 SCALABILITY

We compare global permutation equivariant models with our local permutation equivariant model
to assess the improvements in scalability offered by local permutation equivariance. Here we com-
pare the GPU memory required by the model against the average size of graph in the dataset. It
is expected that as the computational cost of global methods scales superlinearly with the size of
the graph, due to the requirement to treat the entire graph as a single adjacency tensor, that local
equivariance will have a lower computational cost as each update only requires local node neigh-
bourhoods to be expressed as adjacency tensors, which are typically much smaller than the size of
the graph. Therefore global methods scale with O(n2), for graphs with n nodes, while local meth-
ods scale with O(nm2), where m is the number of nodes in a node neighbourhood and typically
m � n. Figure 4 shows how global and local permutation equivariant models scale with GPU
memory usage as the average size of the graphs in the dataset increases. This will allow the LPEGN
method to scale to graph datasets that was not possible with global equivariance.
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Figure 4: Computational cost of global and local permutation equivariant models with the same
number of model parameters for datasets with varying average size graphs. For the local equivari-
ance case local neighbourhoods were computed using 1-hop neighbourhoods.

7 FUTURE WORK

From Table 1 it is clear that IMDB-M is a dataset for which our method has weaker performance.
As stated in Section A.3 between hidden local equivariant graph neural network layers for the exper-
iments in this paper we only make use of order 1 and 2 representations. As it was shown by Maron
et al. (2019) that increasing the order of the permutation representation increases the expressivity
inline with the k-WL test, the expressivity of our method could be improved through the consider-
ation of higher order permutation representations. Making use of higher order representations, we
believe, would improve results on the IMBD-M dataset and therefore makes for an interesting future
direction.

8 CONCLUSION

We present a graph neural network framework for building models comprising of local permutation
equivariant update functions. The method presented is general in that it presents a framework for op-
erating on sub-graphs with permutation equivariant convolutions, where a choice of representation
space can be made depending on the expressivity required. This maintains expressivity in the update
functions by utilising restricted representations, while improving scalability over global permutation
equivariant methods by operating on smaller sub-graphs. We show that this method includes many
previous published approaches as specific cases. Using a general approach as our framework does
makes it easier to build provably expressive graph neural networks without the need to embed struc-
tural information about the task at hand, as is done in other methods. Further, we experimentally
validate the method using k = 1 to create the sub-graphs and ρ1 ⊕ ρ2 representations for the lo-
cal update functions on a set of graph classification datasets. This model produces state-of-the-art
results on one of the datasets, achieves second best results on two datasets, and is competitive on
the remaining four. In addition, ranking the model against existing methods on each dataset shows
that our method is one of the strongest performing methods. Furthermore, when compared to global
permutation equivariant models our method offers a significant improvement in terms of the GPU
memory usage, improving the scalability of the method.
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A APPENDIX

A.1 ISOMORPHIC GRAPHS

An example of two isomporhic and two non-isomorphic graphs are shown in Figure 5. To a permu-
tation invariant message passing update function utilising a max pooling aggregation function the
isomorphic and non-isomorphic graphs are equivalent when updating the central node.

Isomorphic

Non Isomorphic

Figure 5: The initial graph on the left is isomorphic to the top graph on the right. On the other hand,
the initial graph on the left is non-isomorphic to the bottom graph on the right. This is because there
is no structure preserving mapping that has an inverse between the two graphs.

A.2 MATHEMATICAL BACKGROUND

Definition 5 A group is a set G with a binary operation ◦ satisfying the following laws:
(G0) (Closure law): For all g, h ∈ G, g ◦ h ∈ G
(G1) (Associative law): g ◦ (h ◦ k) = (g ◦ h) ◦ k for all g, h, k ∈ G
(G2) (Identity law): There exists e ∈ G such that g ◦ e = e ◦ g = g for all g ∈ G
(G3) (Inverse law): For all g ∈ G, there exists h ∈ G with g ◦ h = h ◦ g = e
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Definition 6 A representation of a finite group on a finite-dimensional complex vector space V is
a homomorphism ρ → GL(V ) of the group to automorphisms of V (Fulton & Harris, 2013). This
allows group elements to be expressed as invertible matrices and the group operation to be matrix
multiplication.

A.3 MODEL ARCHITECTURE

We consider the input graphs as an input feature space that is an order 2 representation. For each
local permutation equivariant linear layer we use order 1 and 2 representations as the feature spaces.
This allows for projection down from graph to node feature spaces through the basis for ρ2 → ρ1,
projection up from node to graph feature spaces through the basis for ρ1 → ρ2, and mappings
across the same order representations through ρ2 → ρ2 and ρ1 → ρ1. The final local permutation
equivariant linear layer maps to order 0 representations through ρ2 → ρ0 and ρ1 → ρ0 for the task
of graph level classification. In addition to the graph layers, we also add 3 MLP layers to the end of
the model.

Despite these specific choices which were made to provide a baseline of our method for comparison
to existing methods the framework we present is much more general and different representation
spaces can be chosen. We present the general framework in Figure 6. This shows how different
permutation representation spaces, ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρi, can be chosen for different layers in the
model and how different k values can be chosen when creating the sub-graphs in each layer.

Figure 6: The general framework for building models with permutation equivariance through rep-
resentations of the permutation group is presented. In general for work on graphs the input repre-
sentation ρj = ρ2, but this could vary if the input was a set or other data structure. Then for each
layer a choice of k value can be made which is the number of hops to consider when extracting sub-
graphs. Also, for each layer the permutation representation type can be chosen where the choice of
ρ1⊕ρ2⊕· · ·⊕ρi is the order of representations required for that layer. Choosing larger order repre-
sentations increases the expressivity of the model, although this increases the bases space increasing
the computational cost.
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A.4 EXPRESSIVITY

Figure 7 shows the training accuracy achived by the LPEGN model across a range of datasets.
(a, b, c, and d) show that the LPEGN model is able to achieve 100% training accuracy on PTC,
Proteins, NCI1, and NCI109 datasets. This demonstrates that the model utilising only order 1-
and 2-permutation representations is sufficiently expressive. In addition, (e) shows that the model
achieves very close to 100% accuracy on the IMDBB dataset. On the other hand, (f) shows that
the model training accuracy plateaus above 70% accuracy for the IMDBM dataset. This highlights
the model is not sufficiently expressive to achieve 100% accuracy on this datset. As discussed in
Section 7 we belive that utilising higher order permutation representations would make the model
more expressive and as a result achieve a higher accuracy on IMDBM.
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Figure 7: A visualisation of the training accuracy for benchmark graph classification datasets across
10-folds. Each plot shows the training accuracy as a percentage, where a higher percentage is better.
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A.5 COMPARISON OF RESULTS

In addition to the comparison across datasets in Table 1 Figure 8 shows the training accuracy dis-
tribution of the LPEGN method and compares to other methods from Table 1. The multimodal
distribution of LPEGN for the PTC dataset highlights why it has a large standard deviation. This is
likely a result of the fact that the PTC dataset is very small. Given the poor ranking of the LPEGN
method in Table 1, comparing the results to other methods here highlights that the LPEGNN result
is competitive. For the NCI1 and NCI109 datasets the distribution of results of our method highlight
the strong performance of the method. For IMDBB and IMDBM the distribution of results for the
LPEGN method also highlight that it is competative on these datasets.

Further, we propose an additional method of comparison, namely the counts of wins of our LPEGN
method with other methods and the counts of significant wins. The result of comparing the counts
of wins shown in Figure 9 highlights that our method is one of the strongest performing across
the range of datasets. Where LPEGN under-performs against other methods this can largely be
attributed to weaknesses on the PROTEINS and IMDBM datasets, which we suspect using higher
order representations could improve.
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Figure 8: Comparison between out LPEGN method and other methods on benchmark graph clas-
sification datasets. Results for the LPEGNN method are presented as a histogram of the 10-fold
runs. Each other method is given as a Gaussian distribution with mean and standard deviation as is
presented in Table 1. In addition, we display the sum of the distributions for all other methods to
show how our method compares.
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(b) Counts of significant wins with margin 1.0
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(c) Counts of significant wins with margin 2.0
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(d) Counts of significant wins with margin 3.0
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Figure 9: Presented is the percentage of ranking wins across the seven datasets for the LPEGN. A
results above 50% means the LPEGN method beats the other method across the majority of datasets.

15



Under review as a conference paper at ICLR 2022

A.6 CHOICE OF LOCAL NEIGHBOURHOOD

We show how this choice of k value will impact the method through analysing the MUTAG dataset
and comparing the size of sub-graphs found for different k values, ranging from the most local,
k = 1, up to equivalence of a global update, k = 15, shown in Figure 10.
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Figure 10: Histograms showing the number of occurrences of each size sub-graph in the MUTAG
dataset for different choices of k value, where k is the number of hops to take away from the central
node when selecting nodes to be included within a sub-graph.
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A.7 COMPARISON OF LOCAL AND GLOBAL FEATURE SPACES

We compare the case of global permutation equivariance to our local permutation equivariance,
demonstrating how sub-graphs and the choice of representation is made in Figure 11.
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Figure 11: (a) Global permutation equivariance and some of the possible representation choices.
(b) Local permutation equivariance demonstrated through local neighbourhoods selected based on
graph connectivity. Permutation equivariant representations are driven by the degree of the central
node. Some of the possible representation choices are shown for each neighbourhood.

A.8 PROOF OF NO LOSS OF EXPRESSIVITY WHEN USING RESTRICTED REPRESENTATIONS

Restricting the permutation representation, ρn, from a group G with n nodes to a subgroup H
with m nodes yields the restricted representation ρ̃m := ResGH(ρn). The bases for the permutation
representation ρn from a set of nodes to a set of nodes is given in Figure 3 and has 2 basis elements.
We show that the restricted representation adds 3 more basis elements in Figure 3. From definition 2
there are no edge features associated between the nodes in the sub-graph and the nodes outside of the
sub-graph. Therefore 2 of the basis elements introduced in the restricted representations are always
multiplied by zeros and not required. Further, the extra 3rd basis element introduced is simply
weighting the node features not part of the sub-graph by themselves and as our method extracts a
sub-graph for each node in the graph this update is subsumed by the sub-graph update of that node.
Therefore the restricted representation for our framework is equal to the permutation representation
of a lower dimensional space and ρ̃m = ρm. Therefore, the proof of no loss of expressivity when
using restricted representations follows from the proof that k-order graph networks are as powerful
as k-WL (Maron et al., 2019).

A.9 IMPLEMENTING OTHER MODELS WITHIN OUR FRAMEWORK

We have re-drawn our model in a step-by-step format to try and highlight the difference to other
models and make clear that this is a more general framework for learning permutation equivariant
models in Figure 6. In the datasets used, for graph classification benchmark tasks, the input to the
model is a graph with node and edge features, this can be represented as 2nd order permutation
representation, so the input representation would be j = 2. The convolution can then map from
this representation, ρj , to multiple different representation spaces, ρ0 ⊕ ρ1 ⊕ · · · ⊕ ρi. Subsequent
convolutions can then map from these multiple permutation representations, ρ0 ⊕ ρ1 ⊕ · · · ⊕ ρi, to
multiple different permutation representations, ρ0 ⊕ ρ1 ⊕ · · · ⊕ ρi. The choice of representations
used can be made depending on a trade off between expressivity and computational cost, as lower
order representation spaces have less expressivity, but also lower computational cost.

Local Natural Graph Networks (LNGNs) (de Haan et al., 2020) take the input feature space and
embed this into an invariant scalar feature of the edge neighbourhood graph. This is the same as
using specific choice k-hop sub-graph creation and permutation representation space for the sub-
graph convolution. In the case of LNGNs the choice would be k = 1 and mapping the input feature
space to representation ρ0 creating a permutation invariant feature space. Then any graph neural
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network with invariant features can be used, in the paper the choice made is to use a GCN (Kipf &
Welling, 2016), which can also be covered by our framework. Here the choice would again be to use
k = 1 when creating the subgroups and using a subgraph convolution with representation spaces
ρ0 → ρ0.

Global Equivariant Graph Networks (EGNs) (Maron et al., 2018) use a choice of k = n, for
n-node graphs when creating the sub graphs, which corresponds to not selecting a sub graph and
instead operating over the entire graph. They then use the representation space ρ2 → ρ2 mapping
from a graph feature space to a graph feature space.

Local Permutation Equivariant Graph Networks (LPEGN) (Ours) In our paper we choose to use
k = 1 throughout to keep inline with the vast majority of previous work on graph neural networks,
but we use a representation space of ρ1 ⊕ ρ2 → ρ1 ⊕ ρ2 in the hidden layers of the model and
we note that this was simply a choice that seemed a simple case to present as a comparison with
previous work in the benchmark classification task.
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