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Abstract
Graph neural networks have been shown to be
vulnerable to adversarial attacks. While the ma-
jority of the literature focuses on such vulnerabil-
ity in node-level classification tasks, little effort
has been dedicated to attacks on graph-level clas-
sification, an important problem with numerous
real-life applications such as biochemistry and so-
cial network analysis. The few existing methods
often require unrealistic setups, such as access
to internal information of the victim models, or
an impractically-large number of queries. We
present a novel Bayesian optimisation-based at-
tack method for graph classification models. Our
method is black-box, query-efficient and parsimo-
nious with respect to the perturbation applied. We
empirically validate the effectiveness and flexibil-
ity of the proposed method and analyse patterns
behind the adversarial samples produced, which
may shed further light on the adversarial robust-
ness of graph classification models.

1. Introduction
Graphs are a general-purpose data structure consisting of
entities represented by nodes and edges which encode pair-
wise relationships. In recent years, graph-based machine
learning models has been widely used in a variety of im-
portant applications such as semi-supervised learning, link
prediction, community detection and graph classification
(Cai et al., 2018; Hamilton, 2020; Zhou et al., 2020).

Despite the growing interest, it has been shown that, like
many other machine learning models, graph-based models
are vulnerable to adversarial attacks (Jin et al., 2020; Sun
et al., 2018). Adversarial attacks on graphs can be aimed
at different learning tasks. This paper focuses on graph-
level classification, where given an input graph, we wish to
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learn a function that predicts a property of interest related
to the graph. Graph classification is an important task with
many real-life applications, especially in bioinformatics and
chemistry (Morris et al., 2020a;b). For example, the task
may be to accurately classify if a molecule, modelled as
a graph whereby nodes represent atoms and edges model
bonds, inhibits HIV replication or not. Although there are
a few attempts on performing adversarial attacks on graph
classification (Dai et al., 2018; Ma et al., 2019), they operate
under unrealistic assumptions such as the need to query the
target model a large number of times or access a portion of
the test set to train the attacking agent.

To address these limitations, we formulate the adversarial
attack on graph classification as a black-box optimisation
problem and solve it with Bayesian optimisation (BO), a
query-efficient state-of-the-art black-box optimiser. Unlike
existing work, our method is query efficient, parsimonious
in perturbations and does not require supervised training on
a labelled dataset to effectively attack a new sample. An-
other benefit of our method is that it can be easily adapted
to perform various modes of attacks such as deleting or
rewiring edges and node injection. Furthermore, we investi-
gate the topological properties of the successful adversarial
examples found by our method and offer valuable insights
on the connection between the graph topology change and
the model robustness.

2. Proposed Method: GRABNEL
Problem Setup A graph G = (V, E) is defined by a set
of nodes V = {vi}ni=1 and edges E = {ei}mi=1 where each
edge ek = {vi, vj} connects between nodes vi and vj . The
overall topology can be represented by the adjacency ma-
trix A ∈ {0, 1}n×n where Aij = 11 if the edge {vi, vj} is
present. The attack objective in our case is to degrade the
predictive performance of the pretrained victim graph clas-
sifier fθ by finding a graph G′ perturbed from the original
test graph G (ideally with the minimum amount of pertur-
bation) such that fθ produces an incorrect class label for
G. In this paper, we consider the black-box evasion attack
setting, where the adversary agent cannot access or modify
the the victim model fθ (i.e. its network architecture, its

1We discuss the unweighted graphs for simplicity; our method
may also handle other graph types.
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Algorithm 1 Overall pseudocode of the GRABNEL routine.
1: Input: Original graph G0, victim model fθ , ninit (the number of random ini-

tialising points), Query budgetB, Perturbation budget ∆.
2: Output: An adversarial graph G∗
3: Set base graph Gbase ← G0; initialise stage count stage← 0.
4: Randomly sample ninit perturbed graphs {G′}ninit

i=1 that are 1 edit distance
different from G and query each perturbed graph to obtain their attack losses
Lattack(fθ,G′i).

5: Compute the WL feature encoding for all graphs: (Φ(G′1), . . . ,Φ(G′ninit
)) =

WLFeatureExtract(G0, (G′1, . . .G
′
ninit

)). // See App.B for details of
WLFeatureExtract.

6: Fit the sparse Bayesian linear regression surrogate with the data
{Φ(G′i),Lattack(fθ,G′i)}

ninit
i=1

7: Divide total budget ofB into ∆ stages // See “Sequential perturbation
selection”

8: while query budget is not exhausted and attack has not succeeded do
9: if query budget of the current stage is exhausted then
10: Increment the stage count stage ← stage + 1 and update the base

graph Gbase with the graph leading to largest increase in attack loss in the
previous stage. // Refer to Fig. 1

11: end if
12: Propose graph to be queried next G′proposal via acquisition optimisation. //

See “Optimisation of acquisition function” in App. B
13: Query fθ for the graph proposed in the previous step to calculate its attack

loss.
14: if attack succeeded then
15: Set G∗ ← G′proposal and return it.
16: end if
17: Augment the observed data: D ← D∪{G′proposal,Lattack(fθ,G′proposal)},

update the WL feature encodings of all observed graphs
(Φ(G′1), . . . ,Φ(G′|D|)) = WLFeatureExtract(G0, (G′1, . . .G

′
|D|))

and re-fit the surrogate.
18: end while
19: return None // Failed attack within the query budget

weights θ or gradients) or its training data {(Gi, yi)}Li=1;
the adversary can only interact with fθ by querying it with
an input graph G′ and observe the model output as pseudo-
probabilities over all classes fθ(G′) ∈ [0, 1]C . Additionally,
we assume that sample efficiency is highly valued; the num-
ber of queries should be as few as possible to avoid detection
in a real-life scenario. Formally, the objective can be formu-
lated as a black-box maximisation problem on graph G as
the objective function of our BO attack agent:

max
G′∈Ψ(G)

Lattack

(
fθ(G′), y

)
s.t. y = arg max fθ(G) (1)

where fθ is the pretrained victim model that remains fixed
in the evasion attack setup and y is the correct label of the
original input G. Denote the output logit for the class y
as fθ(G)y, the attack loss Lattack

(
fθ(G′), y

)
is given by

maxt∈Y,t6=y log fθ(G′)t−log fθ(G′)y for untargeted attack,
or log fθ(G′)t − log fθ(G′)y for targeted attack on class t,
where fθ(·)t denotes the logit output for class t. Such at-
tack loss definition is commonly used both in the traditional
image attack and the graph attack literature (Carlini and
Wagner, 2017; Zügner et al., 2018). Furthermore, Ψ(G)
refers to the set of possible G′ generated from perturbing G.
In this work, we experiment with a diverse modes of attacks
to show that our attack method can be generalised to differ-
ent set-ups including but not limited to creating/removing
edges and rewiring/swapping edges.The overall routine of
GRABNEL is presented in Algorithm 1, and we now elabo-
rate each of its key components, and we describe the method
to optimise acquisition function in App. A

Surrogate model we propose to first use a Weisfeiler-
Lehman (WL) feature extractor to extracts a vector space
representation of G, followed by a sparse Bayesian linear
regression which balances performance with efficiency and
gives an probabilistic output. With reference to Algorithm
1, given a perturbation graph G′ as a proposed adversar-
ial sample, the WL feature extractor first extracts a vector
representation φ(G′) in line with the WL subtree kernel
procedure (but without the final kernel computation) (Sher-
vashidze et al., 2011). For the case where the node features
are discrete, let x0(v) be the initial node feature of node
v ∈ V , we iteratively aggregate and hash the features of v
with its neighbours, {ui}deg(v)

i=1 , using the original WL pro-
cedure at all nodes to transform them into discrete labels:

xh+1(v) = hash
(
xh(v), xh(u1), ..., xh(udeg(v))

)
, (2)

for all h ∈ {0, 1, . . . ,H − 1} and H is the total number
of WL iterations, a hyperparameter of the procedure. At
each level h, we compute the feature vector φh(G′) =
[c(G′,Xh1), ..., c(G′,Xh|Xh|)]>, where Xh is the set of dis-
tinct node features xh that occur in all input graphs at the cur-
rent level and c(G′, x) is the counting function that counts
the number of times a particular node feature x appears
in G′. For the case with continuous node features and/or
weighted edges, we instead use the modified WL procedure
proprosed in Togninalli et al. (2019):

xh+1(v) =
1

2

(
xh(v) +

1

deg(v)

deg(v)∑
i=1

w(v, ui)x
h(ui)

)
,

(3)
for all h ∈ {0, 1, . . . ,H − 1}, and we simply have
φh(G′) = vec(Xh) where we vectorise the feature ma-
trix of graph G′ at level h. In both cases, at the
end of H WL iterations we obtain the feature vector
φ(G′) = concat

(
φ1(G′), ...,φH(G′)

)
for each train-

ing graph in [1, nG′ ] to form the feature matrix Φ =
[φ(G′1), ...φ(G′|nG′ |)]

> to be passed to the Bayesian regres-
sor. The WL iterations capture both information related
to individual nodes and topological information (via neigh-
bourhood aggregation), and have been shown to have com-
parable distinguishing power to some GNN models (Morris
et al., 2019), and hence the procedure is expressive. At the
same time, the extraction G′ → φ(G′) is also unsupervised,
thereby avoiding the need for the surrogate to learn repre-
sentation from the data to ensure good sample efficiency.

When H or G′ (with many WL features) are large, the re-
sulting feature matrix will likely be very high-dimensional,
which would lead to high-variance regression coefficients
α being estimated if the number of input samples is com-
paratively few. To attain a good predictive performance in
such a case, we employ Bayesian regression surrogate with
the automatic relevance determination (ARD) prior to learn
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Figure 1. Sequential edge selection. At each stage the BO agent
sequentially proposes candidate graphs with edge edit distance
of 1 from the base graph G′(i)0 (which is the original unperturbed
graph G at initialisation, or a perturbed graph that led to the largest
increase in loss from the previous stage otherwise). This procedure
repeats until either the attack succeeds (i.e. we find a graph G′ with
Lattack(f(G′), y) > 0) or the maximum number of B queries to
fθ is exhausted.

the mapping Φ → Lattack(fθ(G′), y), which regularises
weights and encourages sparsity in α (Wipf et al., 2007):

Lattack|Φ,α, σ2
n ∼ N (α>Φ, σ2

nI),

α|λ ∼ N (0,Λ), diag(Λ) = λ−1 = {λ−1
1 , ..., λ−1

dim(λ)},

λi ∼ Gamma(k, θ) ∀i ∈ [1,dim(λ)], (4)

where Λ is the diagonal covariance matrix. To estimate α
and the noise variance σ2

n, we optimise the model marginal
log-likelihood. Overall, the WL routines scales as O(Hm),
whereas training of Bayesian linear regression has a linear
scaling w.r.t. the number of queries to the victim model;
these ensure the surrogate is scalable to both larger graphs
and/or a large number of graphs, both of which are com-
monly encountered in graph classification. Other options
include GP and Bayesian neural network surrogates. While
theoretically more expressive, empirically we find they per-
form similarly in this particular case, but are more noticeably
more expensive than linear models.

Sequential perturbation selection In the default struc-
tural perturbation setting, given an attack budget of ∆ (i.e.
we are allowed to flip up to ∆ edges from G), finding ex-
actly the set of perturbations δA that leads to the largest
increase in Lattack entails an combinatorial optimisation
over

(
n2

∆

)
candidates. This is a huge search space that is

difficult for the surrogate to learn meaningful patterns in a
sample-efficient way even for modestly-sized graphs. To
tackle this challenge, we adopt the strategy illustrated in Fig.

1: given the query budget B (i.e. the total number of times
we are allowed to query fθ for a given G), we amortise B
into ∆ stages and focus on selecting one edge perturbation
at each stage. While this strategy is greedy in the sense that
it always commits the perturbation leading to the largest in-
crease in loss at each stage, it is worth noting that we do not
treat the previously modified edges differently, and the agent
can, and does occasionally as we observe empirically, “cor-
rect” previous modifications by flipping edges back: this is
possible due to the edge selection being permutation invari-
ant. Another benefit of this strategy is that it can potentially
make full use of the entire attack budget ∆ while remaining
parsimonious w.r.t. the amount of perturbation introduced,
as it only progresses to the next stage and modifies the G
further when it fails to find a successful adversarial example
in the current stage.

3. Related Works
Recently there has been an increasing attention in the study
of adversarial attacks in the context of graph neural networks
(Jin et al., 2020; Sun et al., 2018). Applying adversarial
attack methods from other domains to the graph setting
is not straightforward, especially those based on gradient
information, since the graph domain is inherently discrete.
One of the earliest models, Nettack, attacks a GCN node
classifier by optimising the attack loss of a surrogate model
using a greedy algorithm (Zügner et al., 2018). DICE attacks
node classifiers by adding edges between nodes of different
classes and deleting edges connecting nodes of the same
class (Waniek et al., 2018). Several reinforcement learning-
based techniques (Ma et al., 2019; Zügner et al., 2018) have
also been introduced for attacks on both node and graph
classifiers . Compared to both these methods, our method
does not use the training data of the victim model and is
much more query efficient. Adversarial attacks on graph
classifiers outside of the evasion setting have also been
considered such as backdoor attacks (Xu et al., 2021; Zhang
et al., 2020). On the other hand, BO as a black-box evasion
attacking agent has been explored on tabular (Suya et al.,
2017) and image data (Munoz-González, 2017; Ru et al.,
2019; Shukla et al., 2019; Zhao et al., 2019). However,
we address the problem for graph classification models,
which work on structurally and topologically fundamentally
different inputs, implying several nontrivial challenges that
require our method to go beyond the vanilla usage of BO.

4. Experiments
In this section, we validate the performance of the proposed
method in a number of graph classification tasks. All ad-
ditional details, including the statistics of the datasets used
and implementation details of the victim models and attack
methods, are presented in App. D.
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(a) IMDB-M (b) PROTEINS (c) COLLAB

Figure 2. Adversarial examples found by the proposed method.
Red edges denote deleted edges from the original samples and
green edges indicate those added.

Table 1. Validation accuracy of the GCN victim models on the TU
datasets before (clean) and after various attack methods. Results
shown in mean ± 1 standard deviation across 3 trials.

IMDB-M PROTEINS COLLAB

Clean 50.53±1.4 71.73±2.6 79.73±2.1

Random 47.43±1.2 19.46±1.7 76.41±6.2

Genetic (Dai et al., 2018) 47.82±1.5 14.88±1.7 58.61±7.9

Gradient-based† 39.31±2.2 50.60±4.5 36.67±1.2

GRABNEL (ours) 45.23±0.2 10.82±2.5 35.38±9.3
†: White-box method

We conduct experiments on three common TU datasets
(Morris et al., 2020b) In all cases, we define the attack bud-
get ∆ in terms of the maximum structural perturbation ratio
r where ∆ ≤ rN2 and we set r = 0.03. We similarly link
the maximum numbers of queries B allowed for individual
graphs to their sizes as B = 50∆, thereby giving larger
graphs and thus potentially more difficult instances higher
attack and query budgets similar to the conventional image
adversarial attack literature (Ru et al., 2019). We cap the
maximum number of queries to be 2 × 104 on any graph.
We compare against random search, genetic algorithm origi-
nally introduced in Dai et al. (2018) and an additional simple
gradient-based method which greedily adds or delete edges
based on the magnitude computed input gradient similar to
the gradient based method described in Dai et al. (2018)
(note that this method is white-box as access to parameter
weights and gradients is required). Furthermore, noting that
the original implementation of RL-S2V, the primary algo-
rithm in Dai et al. (2018), primarily focus on a S2V-based
victim model (Dai et al., 2016), we also compare GRAB-
NEL against it in the same dataset considered in Dai et al.
(2018) in App.C.

We use a Graph Convolutional Network (GCN) (Kipf and
Welling, 2017) victim model, and show the classification
performance of both victim models before and after attacks
using various methods in Table 1: The results show that

GRABNEL typically leads to the largest degradation in vic-
tim predictions in all tasks, often performing on par or better
than Gradient, a white-box method. Further, GRABNEL
typically outperforms in a larger extent for the larger graphs
(e.g. COLLAB) on which the benefit of the sequential se-
lection of edge perturbation is more significant.

5. Attack Analysis
In this section we provide a qualitative analysis on the com-
mon interpretable patterns behind the adversarial samples
found, which provides further insights into the robustness
of graph classification models against structural attacks. We
believe such analysis is especially valuable, as it may facili-
tate the development of even more effective attack methods,
and may provide insights that could be useful for identifi-
cation of real-life vulnerabilities for more effective defence.
We show some examples of the adversarial samples in Fig.
2, and we summarise some key findings below.

1. Adversarial edges tend to cluster closely together: We
observe that the distribution of the adversarial edges in a
graph is highly uneven, with many adversarial edges often
sharing common end-nodes or having small spatial distance
to each other. This is empirically consistent with recent
theoretical findings on the stability of spectral graph filters
in Kenlay et al. (2021).

2. Adversarial edges often attempt to destroy or modify com-
munity structures: for example, the original graphs in the
IMDB-M dataset can be seen to have community structure,
and the attack tends to flip the edges between the communi-
ties, and thereby destroying the structure by either merging
communities or deleting edges within a cluster. With sim-
ilar observations also present in, for example, PROTEINS
dataset, this may suggest that the models may be fragile to
modification of the community structure.

6. Conclusion
This work proposes a novel and flexible black-box method
to attack graph classifiers using Bayesian optimisation. We
demonstrate the effectiveness and query efficiency of the
method empirically. Unlike many existing works, we qual-
itatively analyse the adversarial examples generated. We
believe such analysis is important to the understanding of
adversarial robustness of graph-based learning models. In
future work, we will analyse adversarial patterns quantita-
tively and consider their effectiveness as a prior to guide
the edge selection step of our method. A current limitation
is that our model is specific to graph classification. It is
straightforward to apply our method to other graph models,
and We believe it is also possible to adapt to node classifica-
tion tasks by suitably modifying the loss function.
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Appendix

A. Optimisation of acquisition function
At each BO iteration, there is need for the inner-loop opti-
misation of the acquisition function α(·) to select the next
point(s) to query fθ (we use expected improvement (EI)
(Jones et al., 1998) as the default acquisition function).
While sample efficiency is typically not an issue in opti-
mising α, the problem nonetheless entails the graph combi-
natorial space on which common tools like gradient-based
optimisers cannot be used. We instead optimise α via the ge-
netic algorithm (GA), which has recently been shown to be
competitive in BO acquisition optimisation (Cowen-Rivers
et al., 2020) and does not require a continuous search space.
We outline the ingredients of GA used below:

• Initialisation: In our case, we are not totally ignorant
about the search space as we might have already queried
and observed fθ with a few different perturbed graphs G′.
A possible smoothness assumption on the search space,
for example, would be that if a G′ with an edge (u, v)
flipped from G led to a large Lattack, then another G′
with (u, s), s 6∈ {u, v} flipped is more likely to do so too.
To reflect this, we fill the initial population by mutating
the top-k queried G′s leading to the largest Lattack seen
so far in the current stage, where for G′ with (u, v) flipped
from the base graph we 1) randomly choose an end node
(u or v) and 2) change that node to another node in the
graph except u or v such that the perturbed edges in all
children shares one common end node with the parent.

• Evolution: After the initial population is built, we follow
the standard evolution routine by evaluating the acqui-
sition function value for each member as its fitness, se-
lecting the top-k performing members as the breeding
population and repeating the mutation procedure in ini-
tialisation for a fixed number of rounds. At termination,
we simply query fθ with the graph(s) seen so far (i.e.
computing the loss in Fig. 1) with the largest acquisition
function value(s) seen during the GA procedure.

B. WL feature extractor
In this section we describe WLFeatureExtract in Al-
gorithm 1 in greater detail. The module takes in both the
input graph itself and the set of all input graphs (including
itself), as the second argument is to construct a collection of
all WL features seen in any of the input graphs and controls
the dimensionality of the output feature vector so that the
entries in feature vectors of different input graphs represent
the same WL feature. For an illustrated example of the
procedure, the readers are referred to Fig. 3.

C. Comparison with RL-S2V
We compare GRABNEL with RL-S2V on the graph classi-
fication dataset described in Dai et al. (2018). Each input
graph is made of 1, 2 or 3 connected components. Each
connected component is generated using the Erdős–Rényi
random graph model (additional edges are added if the gen-
erated graph is disconnected). The label node features are
set to a scalar value of 1 and the corresponding graph label is
the number of connected components. The authors consider
three variants of this dataset using different graph sizes, we
consider the variant with the smallest graphs (15−20 nodes.
The victim model, as well as the surrogate model used to
compute Q-values in RLS2V is structure2vec (Dai et al.,
2016). This embedding has a hyper-parameter determining
the depth of the computational graph. We fix both to be the
the smallest model considered in Dai et al. (2018). These
choices were made to keep the computational budget to a
minimum.

To adapt to the settings in Dai et al. (2018), we only allow
one edge edit (addition/deletion), and for GRABNEL we
allow up to 100 queries to the victim model per sample in
the validation set. For Random baseline, we instead allow
up to 400 queries. Similar to Dai et al. (2018), we enforce
the constraint such that any edge edit must not result in a
change of the number of disconnected components (i.e. the
label) and any such edit proposed is rejected before query-
ing the victim model. We show the results in Fig. 5, and we
similarly visualise some of the adversarial samples found
by GRABNEL in Fig. 4. The final performance of RL-
S2V is similar to that reported in Dai et al. (2018), whereas
we find that random perturbation is actually a very strong
baseline if we give it sufficient query budget2. Again, we
find that GRABNEL outperforms the baselines, offering
orders-of-magnitude speedup compared to RL-S2V, with
the main reasons being 1) GRABNEL is designed to be
sample-efficient, and 2) GRABNEL does not require a sepa-
rate training set within the validation to train a policy like
what RL-S2V does. Fig. 4 shows that the edge addition is
more common than deletion in the adversarial examples in
this particular case, and often the attack agent forms ring
structures. Such structures are rather uncommon in the
original graphs generated from the Erdos-Renyi generator,
and are thus might not be familiar to the classifier during
training. This might explain why the victim model seems
particularly vulnerable to such attacks.

2The random baseline reported in Dai et al. (2018) is obtained
by only querying victim model with a randomly perturbed graph
once.
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Figure 3. Illustration of the WL extractor. Consider an example of an input of three graphs to the extractor {G′1,G′2,G′3} with colors
representing the different (discrete) node labels and we would like to compute WLFeatureExtract({G′i, {G′1,G′2,G′3}) ∀i (Step 1).
The extractor module takes in 2 arguments, as the second argument consisting of the set of all input graphs is used to generate a collection
of all possible Weisfeiler-Lehman features seen in all input graphs (Step 2), up to H ∈ N+ where H is the number of WL iterations
specified. This step involves computing the Weisfeiler-Lehman embedding on all of the input graphs using the routine introduced in
Shervashidze et al. (2011). The extractor finally counts the number of each features present from Step 2 and outputs the feature vector
(Step 3; only h = 0 part of the feature vector is shown in the figure – note that G′1 has 2 orange nodes, 2 blue nodes and 1 green nodes
which yields the corresponding feature vector φ1). Note that if a particular feature present in the entire set of input graphs is not present in
a particular graph, the entry is filled with zero. The graphs here are for illustration only; in our task each input graph is only one edit
distance different from the base graph G0.

Figure 4. Adversarial examples found by the proposed method on
the ER graphs with S2V being the victim model. Similar to Fig.
2, Red edges denote deleted edges from the original samples and
green edges indicate those added.

D. Implementation Details
Datasets We provide some key descriptive statistics of
the TU datasets (Morris et al., 2020b) in Table 2. All
TU datasets may be downloaded at https://chrsmrrs.
github.io/datasets/docs/datasets/.

Computing Environment We conduct all experiments
on a server with an Intel Xeon CPU with 256GB of RAM.

Table 2. Key statistics of the TU datasets used.
Dataset #graphs #labels Avg #nodes Avg #edges

IMDB-M 1500 3 13.0 65.9
PROTEINS 1113 2 39.1 72.8
COLLAB 5000 3 74.5 2457.8
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Figure 5. Validation accuracy vs total number of queries to the
victim model. RL-S2V requires significantly more victim model
queries, as it attempts to learn an attack policy by repeatedly
querying a subset of the validation set which is used for policy
training.

Victim models We use the popular graph convolutional
network (GCN) (Kipf and Welling, 2017) as the victim
model. The graph convolution layers work by aggregat-
ing information across the graph edges and then updating
combined node features to output new node features. Mul-
tiple layers of graph convolution are used. A readout layer
transforms the final node embeddings into a fixed-sized
graph embedding which can then be fed through a linear
layer and a softmax activation function to provide predicted
probabilities for each class.

The GCN graph convolutions take the form

X(h) = σ(D̃−1/2ÃD̃−1/2X(h−1)Θ(h))

GRABNEL GRABNEL, which uses the WL feature ex-
tractor, involves a number of hyperparameters: the WL
procedure is parameterised by a single hyperparameter H ,

https://chrsmrrs.github.io/datasets/docs/datasets/
https://chrsmrrs.github.io/datasets/docs/datasets/
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which specifies the number of Weisfiler-Lehman iterations
to perform. While it is possible for H to be selected au-
tomatically via, for example, maximising the log-marginal
likelihood of the surrogate model (e.g. (Ru et al., 2020)),
in our case we find fixing H = 1 to be performing well.
For the sparse Bayesian linear regression model used, we
always normalise the input data into hypercubes [0, 1]d and
standardise the target by deducting its mean and dividing by
standard deviation. We optimise the marginal log-likelihood
via a simple gradient optimiser and we set the maximum
number of iterations to be 300. As described in Sec. 2, we
need to specify a Gamma prior over over {λi} and we use
shape parameter and inverse scale parameters of 1× 10−6.
For the acquisition optimisation, we set the maximum num-
ber of evaluation of the acquisition function to be 1000:
we initialise with 100 randomly sampled perturbed graphs,
each of which is generated from flipping one pair of ran-
domly selected end nodes from the base graph. To generate
the initial population, we fill generate 100 candidates by
mutating from the top-3 queried graphs that previously led
to the largest attack loss (if we have not yet queried any
graphs, we simply sample 100 randomly perturbed graphs).
We then evolve the population 10 times, with each evolution
cycle involving mutating the current population to generate
offspring and popping the oldest members in the popula-
tion. Finally, we select the top 5 unique candidates seen
during the evolution process that have the highest acquisi-
tion function value (we use the expected improvement (EI)
acquisition function) to query the victim model.


