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Abstract

In the field of reinforcement learning (RL), agents
are often tasked with solving a variety of problems
differing only in their reward functions. In order to
quickly obtain solutions to unseen problems with
new reward functions, a popular approach involves
functional composition of previously solved tasks.
However, previous work using such functional
composition has primarily focused on specific in-
stances of composition functions whose limiting
assumptions allow for exact zero-shot composition.
Our work unifies these examples and provides a
more general framework for compositionality in
both standard and entropy-regularized RL. We find
that, for a broad class of functions, the optimal solu-
tion for the composite task of interest can be related
to the known primitive task solutions. Specifically,
we present double-sided inequalities relating the
optimal composite value function to the value func-
tions for the primitive tasks. We also show that the
regret of using a zero-shot policy can be bounded
for this class of functions. The derived bounds can
be used to develop clipping approaches for reduc-
ing uncertainty during training, allowing agents to
quickly adapt to new tasks.

1 INTRODUCTION

Reinforcement learning has seen great success recently, but
still suffers from poor sample complexity and task general-
ization. Generalizing and transferring domain knowledge to
similar tasks remains a major challenge in the field. To com-
bat this, different methods of transfer learning have been
proposed; such as the option framework [Sutton et al., 1999,
Barreto et al., 2019], successor features [Dayan, 1993, Bar-
reto et al., 2017, Hunt et al., 2019, Nemecek and Parr, 2021],
and functional composition [Todorov, 2009, Haarnoja et al.,

2018a, Peng et al., 2019, Tasse et al., 2021, Van Niekerk
et al., 2019]. In this work, we focus on the latter method of
“compositionality” for transfer learning.

Research in compositionality has focused on the develop-
ment of approaches to combine previously learned optimal
behaviors to obtain solutions to new tasks. In the process,
many instances of functional composition in the literature
have required limiting assumptions on the dynamics and
allowable class of reward functions (goal-based rewards in
[Tasse et al., 2020]) in order to derive exact results. Further-
more, previous work has focused on isolated examples of
particular functions in either standard or entropy-regularized
RL and a framework for studying a general class of compo-
sition functions without limiting assumptions is currently
lacking. One of the main contributions of our work is to pro-
vide a unifying general framework to study compositionality
in reinforcement learning.

In our approach, we focus on “primitive” tasks which dif-
fer only in their associated reward functions. More specif-
ically, we consider those downstream tasks whose reward
functions can be written as a global function of the known
source tasks’ reward functions. To maintain generality, we
do not assume that transition dynamics are deterministic.
We also do not assume that reward functions are limited to
the goal-based setting, in which there are a limited number
of absorbing “goal” states [Todorov, 2009, Van Niekerk
et al., 2019] defining the primitive task. Given the generality
of this setting, we cannot expect to obtain exact solutions for
compositions as in prior work. Instead, we provide a class of
functions which can be used to obtain approximate solutions
and bounds on the corresponding downstream tasks.

Given the solutions to a set of primitive tasks, we show that
it is possible to leverage such information to obtain approxi-
mate solutions for a large class of compositely-defined tasks.
To do so, we relate the solution of the downstream compos-
ite task to the solved primitive (source) tasks. Specifically,
we derive relations on the optimal value function of interest.
From such a relation, a “zero-shot” (i.e. not requiring further
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training) policy can be extracted for use in the composite
domain of interest. We then show that the suboptimality
(regret) of this zero-shot policy is upper bounded.

Our results support the idea that RL agents can focus on
obtaining domain knowledge for simpler tasks, and later use
this knowledge to effectively solve more difficult tasks. The
primary contributions of the present work are as follows:

Main contributions

• Establishing a general framework for analyzing re-
ward transformations and compositions for the case
of stochastic dynamics, globally varying reward struc-
tures, and continuing tasks.

• Derivation of bounds on the respective optimal value
functions for transformed and composite tasks.

• Demonstration of zero-shot approximate solutions and
value-based clipping of new tasks based on the known
optimal solutions for primitive tasks.

2 BACKGROUND

In this work, we analyze the case of finite, discrete state and
action spaces, with the Markov Decision Process (MDP)
model [Sutton and Barto, 2018]. Let ∆(X) represent the
set of probability distributions over X . Then the MDP is
represented as a tuple T = ⟨S,A, p, µ, r, γ⟩ where S is
the set of available states; A is the set of possible actions;
p : S × A → ∆(S) is a transition function describing the
system dynamics; µ ∈ ∆(S) is the initial state distribution;
r : S × A → R is a (bounded) reward function which
associates a reward (or cost) with each state-action pair;
and γ ∈ (0, 1) is a discount factor which discounts future
rewards and guarantees the convergence of total reward for
infinitely long trajectories (T → ∞).

In “standard” (un-regularized) RL, the agent maximizes an
objective function which is the expected future reward:

J(π) = E
τ∼p,π

[ ∞∑
t=0

γtr(st, at)

]
. (1)

This objective has since been generalized for the setting
of entropy-regularized RL [Ziebart, 2010, Levine, 2018],
which augments the standard RL objective in Eq. (1) by
appending an entropic regularization term for the policy:

J(π) = E
τ∼p,π

[ ∞∑
t=0

γt

(
r(st, at)−

1

β
log

(
π(at|st)
π0(at|st)

))]
(2)

where π0 : S → ∆(A) is the fixed prior policy. The inverse
temperature parameter, β ∈ (0,∞), regulates the contribu-
tion of entropic costs relative to the accumulated rewards.

The additional entropic control cost discourages the agent
from choosing policies that deviate too much from the
prior policy. Importantly, entropy-regularized MDPs lead to
stochastic optimal policies that are provably robust to per-
turbations of rewards and dynamics [Eysenbach and Levine,
2022]; making them a more suitable choice for real-world
problems.

By “solution to the RL problem”, we hereon refer to
the corresponding optimal action-value function Q(s, a)
from which an optimal control policy can be derived:
π(s) ∈ argmaxaQ(s, a) for standard RL; and π(a|s) ∝
exp(βQ(s, a)) for entropy-regularized RL. Note that these
definitions are consistent with the limit β → ∞ in which
the standard RL objective is recovered from Eq. (2). For
both standard and entropy-regularized RL, the optimal Q-
function can be obtained by iterating a recursive Bellman
equation. For standard RL, the Bellman optimality equation
is given by [Sutton and Barto, 2018]:

Q(s, a) = r(s, a) + γEs′∼p(·|s,a) max
a′

(Q(s′, a′)) (3)

The entropy term in the objective function for entropy-
regularized RL modifies the previous optimality equation to
[Ziebart, 2010, Haarnoja et al., 2018b]:

Q(s, a) = r(s, a) +
γ

β
E
s′
logEa′∼π0(·|s′)e

βQ(s′,a′) (4)

One of the primary goals of research in compositionality and
transfer learning is deriving results for the optimal Q func-
tion for new tasks based on the known optimal Q function(s)
for primitive tasks. There exist many forms of composition
and transfer learning in RL, as discussed by Taylor and
Stone [2009]. In this paper, we focus on the case of con-
current skill composition by a single agent as opposed to
an options-based approach [Sutton et al., 1999], or other
hierarchical compositions [Pateria et al., 2021, Saxe et al.,
2017]. We elaborate on this point with the definitions below.

To formalize our problem setup, we adopt the relevant defi-
nitions provided by [Adamczyk et al., 2022]:

Definition 2.1. A primitive RL task is specified by an
MDP T = ⟨S,A, p, r, γ⟩ for which the optimal Q function
is known.

In this work, we focus on primitive tasks with general reward
functions, i.e. including both goal-based (sparse rewards on
absorbing sets such as in the linearly solvable MDP frame-
work of [Todorov, 2009, Tasse et al., 2020, Van Niekerk
et al., 2019]) and arbitrary reward landscapes [Haarnoja
et al., 2018a].



Definition 2.2. The transformation of an RL task is de-
fined by its (bounded and continuous) transformation func-
tion: f : R → R and a primitive task T . The transformed
task shares the same states, actions, dynamics, and dis-
count factor as T but has a transformed reward function
r̃(s, a) = f(r(s, a)).

Definition 2.3. The composition of M RL tasks is defined
by a (bounded and continuous) function F : RM → R and a
set of primitive tasks {T (k)}. The composite RL task is de-
fined by a new reward function r̃(s, a) = F ({r(k)(s, a)});
and shares the same states, actions, dynamics, and discount
factor as all the primitive RL tasks.

Finally, we define the Transfer Library, the set of functions
which obey the hypotheses of our subsequent results (see
Sections 4 and 5). This definition serves to facilitate the
general discussion of results obtained.

Definition 2.4. Given a set of primitive tasks {T (k)}, the
Transfer Library, denoted by F , is the set of all transfor-
mation (or composition, when M > 1) functions f which
admit double-sided bounds (see Sections 4 and 5) on the
composite task’s optimal Q function (Q̃).

Specifically, F = {f |f satisfies Lemma 4.1 or 4.3} for
standard RL and F = {f |f satisfies Lemma 5.1 or 5.3}
for entropy-regularized RL.

We have empirically found (cf. Fig. 1 and Supplementary
Material) that by using the derived bounds for the optimal
value function, the agent can learn the optimal policy more
efficiently for tasks in the Transfer Library.

3 PREVIOUS WORK

There is much previous work concerning compositionality
and transfer learning in reinforcement learning. In this sec-
tion we will give a brief overview by highlighting the work
most relevant for the current discussion.

In this work, we focus on value-based composition; rather
than policy-based composition Peng et al. [2019], features-
based composition [Barreto et al., 2017], or hierarchical
(e.g. options-based) composition [Alver and Precup, 2021,
Sutton et al., 1999, Barreto et al., 2019].

Value based methods of composition use the optimal value
functions of lower-level or simpler “primitive” tasks to de-
rive an approximation (or in some cases exact solution)
for the composite task of interest. In the optimal control
framework, [Todorov, 2009] has shown that optimal value
functions can be composed exactly for linearly-solvable
MDPs with a LogSumExp or “soft OR” composition over
primitive tasks; assuming that tasks share the same absorb-
ing set (boundary states). With a similar assumption of the
shared absorbing set, [Tasse et al., 2020] show that exact

optimal value functions for Boolean compositions may be
recovered from primitive task solutions; thereby allowing
an exponential improvement in knowledge acquisition.

In more recent work, in the context of MaxEnt RL, Haarnoja
et al. [2018a] have shown that linear convex-weighted com-
positions in stochastic environments result in a bound on
optimal value functions, and the policy extracted from this
zero-shot bound is indeed useful for solving the composite
task. The same premise of convex-weighted reward struc-
tures was studied by Hunt et al. [2019] where the difference
between the bound of [Haarnoja et al., 2018a] and the opti-
mal value function can itself be learned, effectively tighten-
ing the bound until convergence. This notion of a corrective
function was subsequently generalized by Adamczyk et al.
[2022] to allow for arbitrary functions of composition in
entropy-regularized RL.

Other authors have considered the question of linear task
decomposition, for instance [Barreto et al., 2017] where a
convex weight vector over learned features can be calculated
to solve the transfer problem over linearly-decomposable
reward functions in standard RL. More recent developments
on this line of research include [Hong et al., 2022] where a
more general “bilinear value decomposition”, conditioned
on various goals, is learned. In [Kim et al., 2022], the au-
thors consider the successor features (SFs) framework of
[Barreto et al., 2017], and propose lower and upper bounds
on the optimal value function of interest. They show that by
replacing standard generalized policy improvement (GPI)
with a constrained version which respects their bounds, they
are able to transfer knowledge more successfully to future
tasks in the successor features framework.

With our reduced assumptions (any constant dynamics, con-
stant discount factor, any rewards) it is not generally possible
to solve the transformed or composed tasks based only on
primitive knowledge. Nevertheless, we are able to derive
bounds on the optimal Q-functions in both standard and
entropy-regularized RL, from which we can immediately
derive policies which fare well in the transformed and com-
posed problem settings. Additionally, we are able to prove
that the derived policies have a bounded regret, in a similar
form as Haarnoja et al. [2018a]’s Theorem 1; but in a more
general setting.

4 STANDARD RL

4.1 TRANSFORMATION OF PRIMITIVE TASK

In this section, we consider transformations of a primitive
task in the “standard” (un-regularized) RL setting. We as-
sume a solved primitive task is given with reward function
r(s, a). Transforming this underlying reward function gives
rise to a new reward function, f(r(s, a)) which specifies
a new RL task to solve. All other variables defining the



MDP (S,A, p, µ, γ) are assumed to be fixed. In this new
setting, we consider how to use the solution to the primitive
task (that is, with rewards r) to inform the solution of the
new, transfer task (that is, with rewards f(r)). The set of
all applicable functions f for which we can derive bounds,
forms the aforementioned Transfer Library with respect to
the primitive task, for standard RL.

For a general class of transformations of reward functions
(as defined below), we show that the optimal value func-
tion for the transformed task is bounded by an analogous
functional transformation of the optimal value function for
the primitive task. (The proofs for all theoretical results are
provided in the Supplementary Material.)

We use the following definitions in the subsequent (standard
RL) results: Let X be the codomain for the Q function of
the primitive task (Q : S × A → X ⊆ R). Let Vf denote
the state-value function derived from the transformation
function f(Q): Vf (s) = maxa f(Q(s, a)).

Lemma 4.1 (Convex Conditions). Given a primitive task
with discount factor γ and a bounded, continuous transfor-
mation function f : X → R which satisfies:

1. f is convex on its domain X1;

2. f is sublinear:

(i) f(x+ y) ≤ f(x) + f(y) for all x, y ∈ X

(ii) f(γx) ≤ γf(x) for all x ∈ X

3. f (maxa Q(s, a)) ≤ maxa f (Q(s, a)) for all func-
tions Q : S × A → X.2

then the optimal action-value function for the transformed
rewards, Q̃, is now related to the optimal action-value func-
tion with respect to the original rewards by:

f(Q(s, a)) ≤ Q̃(s, a) ≤ f(Q(s, a)) + C(s, a) (5)

where C(s, a) is the optimal value function for a task with
reward

rC(s, a) = f(r(s, a)) + γ E
s′∼p

Vf (s
′)− f(Q(s, a)). (6)

that is, C satisfies the following recursive equation:

C(s, a) = rC(s, a) + γ E
s′∼p

max
a′

C(s′, a′). (7)

With this result, we have a double-sided bound on the val-
ues of the optimal Q-function for the composite task. In
particular, the lower bound (f(Q)) provides a zero-shot ap-
proximation for the optimal Q-function. It is thus of interest

1This condition is not required for deterministic dynamics.
2Although this condition is automatically satisfied, it allows for

a smoother connection to the analogous hypotheses in Lemmas 4.3,
5.1, 5.3 and compositional results in the Supplementary Material.

to analyze how well a policy πf extracted from such an
estimate (f(Q)) might perform. To this end, we provide the
following result which bounds the suboptimality of πf as
compared to the optimal policy.

Lemma 4.2. Consider the value of the policy πf (s) =
maxa f(Q(s, a)) on the transformed task of interest, de-
noted by Q̃πf (s, a). The sub-optimality of πf is then upper
bounded by:

Q̃(s, a)− Q̃πf (s, a) ≤ D(s, a) (8)

where D is the value of the policy πf in a task with reward

rD(s, a) = γ E
s′∼p

E
a′∼πf

[
max

b

{
f(Q(s′, b)) + C(s′, b)

}
− f(Q(s′, a′))

]
that is, D satisfies the following recursive equation:

D(s, a) = rD(s, a) + γ E
s′∼p

E
a′∼πf

D(s′, a′). (9)

Interestingly, the previous result shows that for functions f
admitting a tight double-sided bound (that is, a relatively
small value of C), the associated zero-shot policy πf can
be expected to perform near-optimally in the composite
domain.

Another class of functions for which general bounds can
be derived arises when f satisfies the following “reverse”
conditions.

Lemma 4.3 (Concave Conditions). Given a primitive task
with discount factor γ and a bounded, continuous transfor-
mation function f : X → R which satisfies:

1. f is concave on its domain X1;

2. f is superlinear:

(i) f(x+ y) ≥ f(x) + f(y) for all x, y ∈ X

(ii) f(γx) ≥ γf(x) for all x ∈ X

3. f (maxa Q(s, a)) ≥ maxa f (Q(s, a)) for all func-
tions Q : S × A → X.

then the optimal action-value functions are now related in
the following way:

f(Q(s, a))− Ĉ(s, a) ≤ Q̃(s, a) ≤ f(Q(s, a)) (10)

where Ĉ is the optimal value function for a task with reward

r̂C(s, a) = f(Q(s, a))− f(r(s, a))− γ E
s′∼p

Vf (s
′) (11)

One obvious way to satisfy the final condition in the preced-
ing lemma is to consider functions f(x) which are mono-
tonically increasing. Note that the definitions of C and Ĉ



guarantee them to be positive, as is required for the bounds
to be meaningful (this statement is shown explicitly in the
Supplementary Material). Furthermore, by again consider-
ing the derived policy πf (a|s), we next provide a similar
result for concave conditions, noting the difference in defi-
nitions between D and D̂.

Lemma 4.4. Consider the value of the policy πf (s) =
maxa f(Q(s, a)) on the transformed task of interest, de-
noted by Q̃πf (s, a). The sub-optimality of πf is then upper
bounded by:

Q̃(s, a)− Q̃πf (s, a) ≤ D̂(s, a) (12)

where D̂ is the value of the policy πf in a task with reward

r̂D = γ E
s′∼p

E
a′∼πf

[
Vf (s

′)− f(Q(s′, a′)) + Ĉ(s′, a′)

]

Standard RL Results

Transformation Result

Linear Map: Q̃(s, a) = kQ(s, a)

Convex conditions: Q̃(s, a) ≥ f(Q(s, a))

Concave conditions: Q̃(s, a) ≤ f(Q(s, a))

OR Composition: Q̃(s, a) ≥ maxk{Q(k)(s, a)}

AND Composition: Q̃(s, a) ≤ mink{Q(k)(s, a)}

NOT Gate: Q̃(s, a) ≥ −Q(s, a)

Conical combination: Q̃(s, a) ≤
∑

k αkQ
(k)(s, a)

Table 1: Standard Transfer Library. Lemmas 4.1, 4.3
stated in Section 4 lead to a broad class of applicable trans-
fer functions in standard RL. In this table we list several
common examples which are demonstrated throughout the
paper and in the Supplementary Materials. We show only
one side of the bounds from Eq. (5), (10) which requires no
additional training.

We remark that the conditions imposed on the function f
are not very restrictive. For example, the Boolean functions
and linear combinations considered in previous work are
all included in our framework, while we also include novel
transformations not considered in previous work (see Ta-
ble 1). Furthermore, the conditions for f can be further
relaxed if specific conditions are met. For the case of de-
terministic dynamics, the first condition is not required (f
need not be convex nor concave).

We have shown that in the standard RL case, quite general
conditions (convexity and sublinearity) lead to a wide class
of applicable functions defining the Transfer Library. The
conditions given in Lemmas 4.1 and 4.3 are straightforward

to check for general functions. When given a primitive task
defined by a reward function r, one can therefore bound
the optimal Q function for a general transformation of the
rewards, f(r), when f obeys the conditions above. This new
set of transformed tasks defines the Transfer Library from a
given set of primitive tasks.

The previous (and following) results are presented for the
case in which the primitive task Q-values are known ex-
actly. In practice, however, this is not typically the case,
even in tabular settings. In continuous environments where
the use of function approximators is necessary, the error
that is present in learned Q-values is further increased.
To address this issue, we provide an extension of all
double-sided bounds for the case where an ε-optimal es-
timate of the primitive task’s Q-values is known, such that
|Q(s, a) − Q̄(s, a)| ≤ ε for all s, a. To derive such an ex-
tension, we further require that the composition function f
is L-Lipschitz continuous (essentially a bounded first deriva-
tive), i.e. |f(x1)− f(x2)| ≤ L|x1 − x2| for all x1, x2 ∈ X ,
the domain of f (in the present case, the xi are the primitive
task’s Q-values). To maintain the focus of the main text, we
provide these results and the corresponding proofs in the
Supplementary Material. We note that all functions listed in
Table 1 and 2 are indeed 1-Lipschitz continuous.

4.2 GENERALIZATION TO COMPOSITION OF
PRIMITIVE TASKS

The previous lemmas can be extended to the case of multi-
variable transformations (see Supplementary Material for de-
tails), where X →

⊗
X(k) (the Cartesian product of primi-

tive codomains). That is, with a function F :
⊗

X(k) → R
and a collection of M subtasks, {r(k)(s, a)}Mk=1, one can
synthesize a new, composition of subtasks, with reward
defined by r(c)(s, a) = F (r(1)(s, a), . . . , r(M)(s, a)).

In this vectorized format, F must obey the above conditions
in each argument:

• F is convex (concave) in each argument,

• F is sublinear (superlinear) in each argument.

For the final conditions, we also require a similar vectorized
inequality, which we spell out in detail in the Supplementary
Material.

As an example of composition in standard RL, we consider
the possible sums of reward functions, with each task having
a positive weight associated to it.

In such a setup, the agent has learned to solve a
set of primitive tasks, then it must solve a task
with a new compositely-defined reward function, say
f
(
r(1), . . . , r(M)

) .
=

∑M
k=1 αkr

(k) for (possibly many)
target tasks defined by the weights {αk}. To determine
which bound is satisfied for such a composition function,



we look to the vectorized conditions above. This function
is linear in all arguments, so we must only check the final
condition. Since the inequality∑

k

αk max
a

Q(k)(s, a) ≥ max
a

∑
k

αkQ
(k)(s, a) (13)

holds for any set of αk > 0, this function con-
forms to the concave vectorized conditions, implying
that Q̃(s, a) ≤ f(Q(k)(s, a)) =

∑
k αkQ

(k)(s, a).
We can then use the right-hand side of this bound to
calculate the associated state-value function (Vf (s) =
maxa f(Q

(k)(s, a))) and the associated greedy policy
(πf (s) = argmaxaf(Q

(k)(s, a))). This result agrees with
an independent result by Nemecek and Parr [2021] (the
upper bound in Theorem 1 therein) without accounting for
approximation errors.

5 ENTROPY-REGULARIZED RL

5.1 TRANSFORMATION OF PRIMITIVE TASK

We will now extend the results obtained in the previous
section to the case of entropy-regularized RL. Again we first
consider the single-reward transformation f(r) for some
function f . Here we state the conditions that must be met by
functions f , which define the Transfer Library for entropy-
regularized RL.

We now use the following definitions in the subsequent
(entropy-regularized RL) results. In the following results,
we set β = 1 for brevity, and the expectation in the final
condition is understood to be over actions, sampled from the
prior policy. Full details can be found in the proofs provided
in the Supplementary Material.

Lemma 5.1 (Convex Conditions). Given a primitive task
with discount factor γ and a bounded, continuous transfor-
mation function f : X → R which satisfies:

1. f is convex on its domain X1;

2. f is sublinear:

(i) f(x+ y) ≤ f(x) + f(y) for all x, y ∈ X

(ii) f(γx) ≤ γf(x) for all x ∈ X

3. f (logE expQ(s, a)) ≤ logE exp f (Q(s, a)) for all
functions Q : S × A → X.

then the optimal action-value function for the transformed
rewards, Q̃, is now related to the optimal action-value func-
tion with respect to the original rewards by:

f (Q(s, a)) ≤ Q̃(s, a) ≤ f (Q(s, a)) + C(s, a) (14)

3Note that linear reward scaling can also be viewed as a linear
scaling in the temperature parameter.

4This extends to the case
∑

k αk ≥ 1 by composing with a
linear scaling, which respects the same inequality.

Entropy-Regularized RL Results

Transformation Result

Linear Map, k ∈ (0, 1)3: Q̃(s, a) ≥ kQ(s, a)

Linear Map, k > 1: Q̃(s, a) ≤ kQ(s, a)

Convex conditions: Q̃ ≥ f(Q(s, a))

Concave conditions: Q̃ ≤ f(Q(s, a))

OR Composition: Q̃(s, a) ≥ maxk{Q(k)(s, a)}

AND Composition: Q̃(s, a) ≤ mink{Q(k)(s, a)}

NOT Gate: Q̃(s, a) ≥ −Q(s, a)

Convex combination4: Q̃(s, a) ≤
∑

k αkQ
(k)(s, a)

Table 2: Entropy-Regularized Transfer Library. Lemmas
5.1, 5.3 lead to a broad class of applicable transfer func-
tions in entropy-regularized RL. In this table we list several
common examples which are demonstrated throughout the
paper and in the Supplementary Materials. We show only
one side of the bounds from Eq. (14), (16) which requires
no additional training.

We note that C has the same definition as before,
but with Vf replaced by its entropy-regularized analog:
Vf (s)

.
= logEa∼π0 exp f (Q(s, a)).

Lemma 5.2. Consider the soft value of the policy
πf (a|s) = π0(a|s) exp (f(Q(s, a))− Vf (s)) on the trans-
formed task of interest, denoted by Q̃πf (s, a). The sub-
optimality of πf is then upper bounded by:

Q̃(s, a)− Q̃πf (s, a) ≤ D(s, a) (15)

where D is the soft value of the policy πf with reward

rD(s, a) = γ E
s′

[
max

b
{f (Q(s′, b)) + C(s′, b)} − Vf (s

′)

]
.

Conversely, for concave conditions we have

Lemma 5.3 (Concave Conditions). Given a primitive task
with discount factor γ and a bounded, continuous transfor-
mation function f : X → R which satisfies:

1. f is concave on its domain X1;

2. f is superlinear:

(i) f(x+ y) ≥ f(x) + f(y) for all x, y ∈ X

(ii) f(γx) ≥ γf(x) for all x ∈ X

3. f (logE expQ(s, a)) ≥ logE exp f (Q(s, a)) for all
functions Q : S × A → X .

then the optimal action-value function for the transformed
rewards obeys the following inequality:

f (Q(s, a))− Ĉ(s, a) ≤ Q̃(s, a) ≤ f (Q(s, a)) (16)



As in the preceding section, we provide a similar result
for the derived policy πf , given the concave conditions
provided.

Lemma 5.4. Consider the soft value of the policy πf (a|s)
on the transformed task of interest, denoted by Q̃πf (s, a).
The sub-optimality of πf is then upper bounded by:

Q̃(s, a)− Q̃πf (s, a) ≤ D̂(s, a) (17)

where D̂ satisfies the following recursive equation

D̂(s, a) = γ E
s′∼p

E
a′∼πf

(
Ĉ(s′, a′) + D̂(s′, a′)

)
. (18)

Now, by taking Vf (s) as the previously defined soft value
function, the fixed points C and Ĉ have the same definitions
as presented in Lemma 4.1 and 4.3, respectively with this
new definition of Vf .

This final constraint (in Lemma 5.1 and 5.3) on f arises
out of the requirements for extending the previous re-
sults to entropy-regularized RL. Although the final con-
dition (similar to a log-convexity) appears somewhat cum-
bersome, we show that it is nevertheless possible to sat-
isfy it for several non-trivial functions (Table 2). For in-
stance, functions defining Boolean composition over sub-
tasks (max(·), min(·)), which have not been considered in
previous entropy-regularized results [Haarnoja et al., 2018a,
Van Niekerk et al., 2019] as well as new functional transfor-
mations such as the NOT gate (Table 2).

5.2 GENERALIZATION TO COMPOSITION OF
PRIMITIVE TASKS

As we have done in the standard RL setting (Section 4.2),
we can also extend the previous results to include composi-
tionality: functions operating over multiple primitive tasks.

In this case, Haarnoja et al. [2018a] have demonstrated a
special case of Lemma 5.3 for the composition function
f({r(k)}) =

∑
k αkr

(k) for convex weights αk. This can
also be shown in our framework by proving the final con-
dition of Lemma 5.3 (since the others are automatic given
that f is linear). This vectorized condition can be proven
via Hölder’s inequality.

Besides this previously studied composition function, we
can now readily derive value function bounds for other trans-
formations and compositions, for example Boolean compo-
sitions as defined previously. The corresponding results for
entropy-regularized RL are summarized in Table 2.

6 EXPERIMENTS

To test our theoretical results using function approxima-
tors (FAs), we consider a deterministic “gridworld” MDP

amenable to task composition5. Figure 1 shows the environ-
ments of the trained primitive tasks “6×6 L” and “6×6 D”,
whose reward functions are then combined to produce a
composite task, “6× 6 L OR D”. The agent has 4 possible
actions (in each of the cardinal directions) and begins at the
green circle in all cases. The agent’s goal is to navigate to
the orange states which provide a reward. We note that these
states are not absorbing unlike the cases considered in prior
work. The red “X” indicates a penalizing state where the
agent’s episode is immediately terminated. Finally, a wall
(black square) is added for the agent to navigate around. The
primitive tasks are assumed to be solved with high accuracy
(i.e. we assume the Q-values for primitive tasks to be ex-
actly known). Although the domain is rather simple, we use
such an experiment as a means of validating our theoretical
results while gaining insight on the experimental effects of
clipping (discussed below) during training.

With the primitive tasks solved, we now consider training
on a target composite (“OR”) task. We learn from scratch
(with no prior information or bounds being applied) as our
baseline (blue line, denoted “none”, in Fig. 1 and Fig. 2).

To implement the derived bounds, we consider the one-
sided bound, thereby not requiring further training. In this
case (standard RL, “OR” composition) we have the follow-
ing lower bound (see Table 1): Q(OR) ≥ max{Q(L), Q(D)}.
There are many ways to implement such a bound in practice.
One naïve method is to simply clip the target network’s new
(proposed target) value to be within the allowed region for
each of the Q̃(s, a) that are currently being updated. We
term this method “hard clipping”. Inspired by Section 3.2
of [Kim et al., 2022], we can also use an additional penalty
by adding to the loss function the absolute value of bound
violations that occur (the quantity “BV” defined in Eq. (19)).
We term this method as “soft clipping”. As mentioned by
[Kim et al., 2022], this method of clipping could produce a
new hyperparameter (the relative weight for this term rela-
tive to the Bellman residual). We keep this coefficient fixed
(to unity) for simplicity, and we intend on exploring the
possibility of a variable weight in future work.

BV .
= ||Q̃(s, a)− f({Q(k)(s, a)}Mk=1)|| (19)

Similar to Eq. (21) of [Kim et al., 2022] we also considered
a clipping at test-time only, with some differences in how
the bounds are applied. This discrepancy is due to the dif-
ference in frameworks: [Kim et al., 2022] leverages the GPI
framework, and in our setting we are learning a new policy
from scratch while imposing said bounds. Our method is
as follows: Whenever the agent acts greedily and samples
from the policy network, it first applies (hard) clipping to the
network’s value; then the agent extracts an action via greedy
argmax. We term this method of clipping as “test clipping”.

5Source code available at https://github.com/
JacobHA/Q-Bounding-in-Compositional-RL

https://github.com/JacobHA/Q-Bounding-in-Compositional-RL
https://github.com/JacobHA/Q-Bounding-in-Compositional-RL
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Figure 1: In the first panel, we show learning curves for each of the clipping methods proposed, averaged over 50 trials, with
a 95% confidence interval shown in the shaded region. In the next two panels, we depict the primitive tasks with rewarding
states (orange diamonds) on the left side and bottom side of the maze, respectively. In the rightmost panel, we show the
composite task of interest, with the multivariable “OR” composition function maxk{...} used to define its reward function.
The agent first solves the two primitive tasks with a deep Q-network (DQN, as implemented by Stable-Baselines3 [Raffin
et al., 2021]) with results shown in the first panel. Training hyperparameters are given in the Supplementary Material.
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Figure 2: Mean bound violation, shown with shaded 95%
confidence intervals. The bound violation measures the dif-
ference between the Q-network’s estimate and the allowed
bound Q̃ ≥ f(Q) for a given batch during training. Note
that the x-axis corresponds to zero bound violation (symlog
y-scale). Although “test” clipping does very well in terms
of its evaluation performance, it does not respect the bounds,
even long after its apparent convergence.

The results for each method (as well as a combination of
both hard and soft clipping) are shown in Fig. 1 and 2.

Interestingly, we find that by directly incorporating the
bound violations into the loss function (via the “soft” clip-
ping mechanism); the bound violations most quickly be-
come (and remain) zero (Fig. 2) as opposed to the other
methods considered. We find that reduction in bound viola-
tion also generally correlates with a high evaluation reward
during training. One exception to this observation (for the
particular environment shown) is the case of “test” clipping.

For this particular composition, either primitive task will
solve the composite task, thus yielding high evaluation re-
wards (Fig. 1). However, the Q-values are not accurate,
which leads to a high frequency of clipping, comparable to
the baseline without clipping (Fig. 2). In order to ensure the

agent has learned accurate Q-values, it is therefore impor-
tant to monitor the bound violations rather than only the
evaluation performance which may not be representative of
convergence of Q-values.

7 DISCUSSION

In summary, we have established a general theoretical treat-
ment for functional transformation and composition of prim-
itive tasks. This extends the scope of previous work, which
has primarily focused on isolated instances of reward trans-
formations and compositions without general structure. Ad-
ditionally, we have theoretically addressed the broader set-
ting of stochastic dynamics, with rewards varying on both
terminal and non-terminal (i.e. boundary and interior) states.
In this work, we have shown that it is possible to derive a
general class of functions which obey transfer bounds in
standard and entropy-regularized RL beyond those cases
discussed in previous work. In particular, we show that by
using the same functional form on the optimal Q functions
as used on the reward, we can bound the transformed op-
timal Q function. The derived bound can then be used to
calculate a zero-shot solution. We have used these functions
to define a Transfer Library: a set of tasks which can imme-
diately be addressed by our bounds. Since our approach via
the optimal backup equation is general, we apply it to both
standard RL and entropy-regularized RL.

The newly-defined fixed point C (Ĉ) has an interesting inter-
pretation. Rather than simply being an arbitrary function, for
both the standard RL and entropy-regularized RL bounds,
C represents an optimal value function for a standard RL
task with reward function given by rC (r̂C for Ĉ).

The function C bounds the total gap between f(Q(s, a))

and Q̃(s, a) at the level of state-actions. We also note the
simple relationship between reward functions rC = −r̂C .

The fixed point D (D̂) is not an optimal value function, but
the value of the zero-shot policy πf in some other auxil-



iary task. The auxiliary task takes various “rewards”, e.g.
the function γĈ in Lemma 5.4. Although for general func-
tions f , the rewards do not have a simple interpretation
(i.e. Rényi divergence between two policies as in [Haarnoja
et al., 2018a]), we see that rC essentially measures the non-
linearities of the composition function f with respect to the
given dynamics, and hence accounts for the errors made in
using the bounding conditions of f . Furthermore, we can
bound C (and thus the difference between the optimal value
and the suggested zero-shot approximation f(Q)) in a sim-
ple way: by bounding the rewards corresponding to C. By
simply calculating the maximum of rC for example, one
easily finds C(s, a) ≤ 1

1−γ maxs,a rC(s, a) (and similarly

for Ĉ).

Interestingly, Mann and Choe [2013] have shown the prov-
able usefulness of using an upper bound when used for
“warmstarting” the training in new domains. In particular, it
appears that f(Q) (for the concave conditions) is related to
their proposed “α-weak admissible heuristic” for T̃ . In fu-
ture work, we hope to precisely connect to such theoretical
results in order to obtain provable benefits to our derived
bounds. Experimentally we have observed that this warm-
starting procedure does indeed improve convergence times,
however a detailed study of this effect is beyond the scope
of the present work and will be explored in future work. The
derived results have also been used to devise protocols for
clipping which improve performance and reduce variance
during training based on the experiments presented.

In the future, we hope that the class of functions discussed
in this work will be broadened further, allowing for a larger
class of non-trivial zero-shot bounds for the Transfer Library.
By adding these known transformations and compositions to
the Transfer Library, the RL agent will be able to approach
significantly more novel tasks without the need for further
training.

The current research has also emphasized questions for
transfer learning in this context, such as: Which primitives
should be prioritized for learning? (Discussed in Tasse et al.
[2021], Nemecek and Parr [2021], Alver and Precup [2021].)
What other functions can be used for transfer? How tight
are these bounds? How does the Transfer Library depend
on the parameters γ and β?

In this work, we provide general bounds for the discrete
MDP setting and an extension of the theory to continuous
state-action spaces is deferred to future work. It would be of
interest to explore if it is possible to prove general bounds
for this extension, given sufficient smoothness conditions
on the dynamics and the function of transformation. Other
extensions can be considered as well, for instance: the ap-
plicability to other value-based or actor-critic methods, the
warmstarting of function approximators, learning the C and
D functions, and adjusting the “soft” clipping weight pa-
rameter.

In future work, we also aim to discover other functions
satisfying the derived conditions; and will attempt to find
necessary (rather than sufficient) conditions that classify
the functions f ∈ F . It would be of interest to explore if
extensions of the current approach can further enable agents
to expand and generalize their knowledge base to solve
complex dynamic tasks in Deep RL.
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