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Abstract

Medical image registration is a critical task for several clinical procedures. Manual real-
isation of those tasks is time-consuming and the quality is highly dependent on the level
of expertise of the physician. To mitigate that laborious task, automatic tools have been
developed where the majority of solutions are supervised techniques. However, in the med-
ical domain, the strong assumption of having a well-representative ground truth is far from
being realistic. To overcome this challenge, unsupervised techniques have been investigated.
However, they are still limited in performance and they fail to produce plausible results.
In this work, we propose a novel unsupervised framework for image registration that we
called PC-SwinMorph. The core of our framework is two patch-based strategies, where we
demonstrate that patch representation is key for performance gain. We first introduce a
patch-based contrastive strategy that enforces locality conditions and richer feature repre-
sentation. We also introduce a novel patch stitching strategy based on a 3D window/shifted-
window multi-head self-attention module to eliminate artifacts from the patch splitting. We
demonstrate, through a set of numerical and visual results, that our technique outperforms
current state-of-the-art unsupervised techniques.

1 Introduction

Image registration is a fundamental task in medical image analysis, which aims at finding a mapping that
aligns an unaligned image to a reference one. The estimated spatial mapping (deformation field) seeks to best
align the anatomical structure of interest. These Techniques are relevant for several tasks in clinical practice
including image-guided surgery (Aviles et al., 2016; Han et al., 2021b), segmentation (Fu et al., 2017; Liu
et al., 2019) and image reconstruction (Lee & Kang, 2003; Liu et al., 2021a). Mathematically, registration
involves two key images: the unaligned image, denoted as x, and the reference image, represented as y. The
primary objective is to find an optimal spatial mapping (deformation field), denoted as z. This mapping
includes a spatial transformation function Ψz. By applying Ψz to x, we can effectively align the coordinates
of x with those of the reference image y. Consequently, the transformed image, expressed as x○Ψz, achieves
alignment with the reference image y. The optimization problem can be written as:

Ψ̂z = arg min
z
Lrecon(y, x ○Ψz) + λLsmooth(z)

where Lrecon is a reconstruction loss that measures image similarity between the two input images, and
Lsmooth is a regularzation term to make z is smooth enough, and λ is the hyperparameter.

The outcome of those tasks greatly depends on the quality and efficiency of the registration technique.
Although traditional image registration techniques (Rueckert et al., 1999; Vercauteren et al., 2009; Beg
et al., 2005; Hart et al., 2009) are able to generate a good mapping between images, they build upon costly
optimisation schemes, which limits their efficiency when using a large volume of data. With that limitation
in mind, several deep learning techniques have been proposed for registration.

A major category of approaches is supervised image registration techniques (Yang et al., 2017; Sokooti et al.,
2017; Rohé et al., 2017; Cao et al., 2017; 2018), where a good quality ground-truth is required for training.
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However and unlike other tasks in image analysis, it is very difficult to obtain high-quality ground-truth
deformation fields or segmentation masks. Although a good mapping can be obtained from traditional
methods or using synthetic data, this drawback hinders the performance and feasibility of those techniques
in clinical practice.

To mitigate the aforementioned strong requirement of supervised methods, a body of literature has been
devoted to developing unsupervised techniques (Mok & Chung, 2020; Liu et al., 2020; Kim et al., 2021; Ye
et al., 2021; Liu et al., 2022). Those techniques have proposed different network mechanisms and explicit
regularisers embedded in the architectures to enforce better correspondences between images. However,
unsupervised techniques are still limited in performance compared to supervised methods. This is due to
the lack of high-quality ground-truth that introduces challenges such as failure in long-range correspon-
dences. With the aim to alleviate this problem, recent techniques yet scarce have used vision transformers
(ViT), where the self-attention mechanism (Chen et al., 2021b; Zhang et al., 2021) is key for improving the
correspondence of the image. Another strategy reported for unsupervised image registration is the use of
contrastive mechanisms (Liu et al., 2020) for improving feature representation, and therefore, enforcing a
better mapping estimation between images. Although these techniques have reported improved performance
for unsupervised image registration, it is still limited.

In this work, we proposed a framework for unsupervised image registration, which we call PC-SwinMorph
(Patch Contrastive Strategy with Shifted-window multi-head self-attention). For a fair comparison to
the state-of-the-art techniques, we use as backbone VoxelMorph. Medical images are more complex than
natural images due to the anatomical structures such as the curved and convoluted patterns in brain scans,
where fine details are of clinical relevance. We then hypothesise that patch embeddings are a more meaningful
representation for performance gain in medical data. This is due to the spatial structure of the patch that
allows capturing not only global but, more importantly, also local anatomical representations. Our PC-
SwinMorph then enforces more meaningful feature representation whilst enforcing local and global structure
representation. Our contributions are as follows:

• We propose a patch-based framework for unsupervised image registration, in which we highlight a
patch-based contrastive strategy for enforcing a better fine detailed alignment and richer feature
representation.

• We introduce a novel patch stitching strategy to alleviate the splitting effect caused by the patch
representation. To do this, we use the 3D window/shifted-window multi-head self-attention module
(3D W-MSA and 3D SW-MSA) to enable information exchange between different patches.

• We evaluate our framework using two major medical benchmark datasets CANDI and LPBA40. We
demonstrate from the numerical and visual results that our two patch-based strategies lead to better
performance than the state-of-the-art techniques for unsupervised registration.

2 Related Work

The problem of image registration has been extensively investigated in the literature (Fu et al., 2020; Zou
et al., 2022), in which solutions broadly divide into classic techniques e.g. (Rueckert et al., 1999; Vercauteren
et al., 2009; Beg et al., 2005; Hart et al., 2009) and learning-based methods e.g. (Yang et al., 2017; Shen
et al., 2019; Kim et al., 2021; Liu et al., 2021a). Although, classic techniques have demonstrated potential
results, a major bottleneck is the costly optimisation schemes needed for obtaining plausible results. The
second category is the focus of our interest in this work. In this section, we review the existing techniques.

2.1 Learning-based Techniques for Image Registration

A set of techniques have been proposed for supervised image registration, where convolutional neural networks
(CNNs) are a de facto standard in the models; for example, the works of that (Yang et al., 2017; Sokooti et al.,
2017; Rohé et al., 2017; Cao et al., 2017; Liu et al., 2021a; Cao et al., 2018). Whilst supervised techniques
have reported great performance, they require the ground truth deformation fields or segmentation masks.
This requirement is particularly difficult in medical image registration. Existing techniques mitigate somehow
that constraint by either relying on using classic techniques for getting a good ground truth estimation or
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using synthetic data. However, the registration performance is conditioned to the quality of the ground truth
and/or the synthetic data pre-processing.

To overcome the practical limitations of supervised techniques, another set of solutions has focused on
designing unsupervised models. The authors of (Krebs et al., 2018) use a statistical regularisation term to
learn a low-dimensional stochastic parametrisation of the deformations. The works of that (de Vos et al.,
2017; 2019) use B-spline parametrisation in a multi-stage framework, this technique enforces a coarse-to-fine
learning process. Balakrishnan et al. (Balakrishnan et al., 2018; 2019) introduced VoxelMorph, a cross-
correlation CNN unsupervised framework that includes a spatial transform layer. A deep recursive cascade
architecture was introduced in (Zhao et al., 2019), where a core of the model is a shared-weight cascading
strategy.

In more recent works, Mok et al. (Mok & Chung, 2020) introduced a symmetric diffeomorphic framework
called SYMNet, where authors guarantee topology preservation by introducing an orientation-consistent
regulariser. The authors of (Liu et al., 2020) proposed a contrastive registration architecture that fusions
image-level registration and feature-level contrastive representation. CycleMorph was proposed in (Kim
et al., 2021), which uses cycle consistency. A key point of that work is that cycle consistency can provide a
form of implicit regularisation for topology preservation. The authors of that (Ye et al., 2021) introduced
a bidirectional diffeomorphic network, that technique enforces topology-preservation and inevitability of the
deformation.

Connection with Image Segmentation. There is an inherent connection between image registration and
segmentation. One can use the computed mapping, between the unaligned and reference images, to project
the segmentation mask of the reference image into the coordinate system of the unaligned image (Liu
et al., 2020; Wang et al., 2020). This process is called registration-based segmentation (aka atlas-based
registration). In this work, we use this observation to unify the registration and segmentation process within
one framework, as the unification can be advantageous as it allows for simultaneous refinement of both tasks,
potentially leading to more accurate and cohesive results.

2.2 Vision Transformers & Constrastive Learning

A great focus of attention has been given to Vision Transformer (ViT) (Dosovitskiy et al., 2020) due to their
performance-speed gain in classification tasks. After the work of Dosovitskiy et al. (Dosovitskiy et al., 2020),
several improvements have been proposed such as the techniques of (Chu et al., 2021; Han et al., 2021a;
Wang et al., 2021) and for other tasks such as semantic segmentation and image detection (Liu et al., 2021b;
Wang et al., 2021). However, there are only a few works that tackle the challenges of dealing with medical
imaging tasks, where the focus has been mainly on segmentation e.g.(Chen et al., 2021a; Hatamizadeh et al.,
2021).

By contrast, the works reported for medical image registration using transformers are scarce. The work
in (Chen et al., 2021b) proposed a hybrid ConvNet-Transformer architecture for self-supervised volumetric
image registration. The authors of (Zhang et al., 2021) proposed a dual transformer network, where a self-
attention scheme considers the inter- and intra- image context. These initial works showed the potential of
vision transformers for image registration. In particular, the advantage is integrating more easily not only
local but also global embeddings. However, there are still limitations on how self-attention schemes can
better and more efficiently handle the correspondences between images.

Let us also mention the closely connected problem to our technique – representation learning from the
unsupervised contrastive learning perspective (Hadsell et al., 2006). Contrastive learning techniques seek to
learn similarities between sample pairs without supervision. Following this perspective, several techniques
have been proposed including that of (Chen et al., 2020; He et al., 2020; Tian et al., 2020). Whilst the
majority of existing techniques have been mainly applied for classification and segmentation tasks (Chen
et al., 2020; He et al., 2020; Zhao et al., 2021), the number of works reported for medical image registration
is very limited. To the best of our knowledge, the work of Liu et al. (Liu et al., 2020) is the only one
reported for unsupervised registration and the closest to our purpose. In that work, the authors embedded a
contrastive feature representation in the registration network to enforce feature maps with richer information.
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Figure 1: From left to right. Our PC-SwinMorph first generates non-overlap patches from the two input
images, which are fed into two weight-shared CNN encoders. Followed by two MLP layers, the generated
CNN features are projected to a latent space to obtain the patch representations (1-8 triangles and squares).
Detailed patchwise contrastive mechanism is shown in Fig. 2. Based on patch representations, positive and
negative pairs are sampled for patch-level contrastive learning (omitted from the figure). Then it recursively
concatenates and enlarges the contrasted CNN feature with skip connection to reconstruct two sets of the
deformation field patches. We use a 3D W-MSA and a 3D SW-MSA module to refine and stitch the
deformation field patches to obtain the full deformation field. Using the full deformation fields, we warp the
moving image to the fixed image, and vice versa. After the training registration process, we also adopt the
full deformation field to transfer the segmentation mask for fixed masks to obtain the segmentation mask of
the moving image. All inputs and outputs are 3D volumes, and all the operations are implemented in 3D.

3 PC-SwinMorph: A Patch Based Unsupervised Registration Framework

In this section, we first introduce the necessary preliminaries for our technique. We then describe our
proposed unsupervised framework, called PC-SwinMorph for registration. We highlight two core strategies
in our approach: i) patchwise contrastive learning, and ii) patches stitching using a shifted-window multi-
head self-attention module.

3.1 Preliminaries & Workflow Overview

We first provide the essential preliminaries for our proposed framework. Let x and y denote the moving
(unaligned) and fixed (reference) 3D images respectively, where x, y ∈ Zw×h×d. We refer to w, h, d as the
width, height, depth of the 3D images, where Zw×h×d ⊂ Z3. We also denote the deformation field from x to
y as zx→y, where zx→y ∈ Zw×h×d×3. The deformation fields for 3D images are in a 4 dimensional space, i.e.,
Zw×h×d×3 ⊂ Z4. The four dimensions refer to each channel containing the pixel moving information in the w,
h, d axis, respectively. Moveover, the deformation field zx→y is parametrised with a spatial transformation
function denoted as ψzx→y , such that, the registered results x ○ ψzx→y is aligned with fixed image y.

The workflow of our PC-SwinMorph framework is displayed in Figure 1, which unifies unsupervised registra-
tion and segmentation tasks. Our framework uses an encoder to extract the CNN feature maps from the two
given 3D images x and y. We then seek to estimate two deformation fields zx→y and zy→x from the extracted
CNN feature maps with skip connections. After we obtain the deformation fields, we perform registration
by using a spatial transformer(Jaderberg et al., 2016) to warp the moving image x and the deformation field
zx→y. We can then obtain the registration output (x○ψzx→y ), where ○ denotes the warp operation. Similarly,
we can also use a spatial transformer to warp the fixed image y and the deformation field zy→z to obtain
y ○ ψzy→x .
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Figure 2: Patchwise contrastive mechanism. (Left side) Positive pairs are sampled from same-position
patches in difference images, for example, the top-left patches of the moving and fixed image are positive
pair - 1, and the top-right patches of the moving and fixed image are positive pair - 2. (Right side) Any
pairs from difference position are sampled as negative pairs, such as the the top-left moving patch and the
bottom-left fixed patch are negative pair - 1, and top-left moving patch and the top-right fixed patch are
negative pair - 2. For visualisation purposes, the 3D volumes are represented as 2D slices.

After registration, we also use the spatial transformer to warp deformation field zy→z and the segmentation
mask of the image y. By doing this, we can obtain the segmentation mask for any image x. We underline
that there is no segmentation mask used in the training registration process, and the segmentation mask is
only used in the testing segmentation stage. Therefore, our framework is a unified unsupervised registration
and segmentation network.

3.2 Patch-based Strategy I: Patchwise Contrastive Registration

A core of our technique is a patchwise strategy for image registration. It enforces an efficient and accurate
registration output. We provide details next.

Patch Generation. We first generate patches from the two 3D images, instead of feeding directly the
moving image x and the fixed image y as input. To do this, we evenly partition the 3D images into n3

patches by dividing the image equally along the x, y, and z axes without overlapping. This results in n3

smaller cubic patches. We then assign a unique linear index to each patch, starting from 1 up to n3. We
denote the generated patches from the moving and fixed images as px

i and py
i , where i ∈ [1,2,3, ..., n3] and

px
i and py

i ∈ Z
w
n × h

n× d
n . For example, as shown in the Figure 1, we set n as 2. Therefore, both moving images

and fixed images are split into 23 patches (8 patches).

Patchwise Registration. We first select a patch pair from the moving and fixed partitioned images at
the same position (px

i and py
i ). We then feed them into a two-symmetric weight-shared 3D encoder to

extract CNN feature maps (see the two encoders in Figure 1). We use a single decoder to integrate
all the CNN feature maps generated by the two encoders. Specifically, we recursively combine the CNN
feature maps from high-to-low level (low-to-high image resolutions) to reconstruct two deformation field
patches (pzx→y

i and p
zy→x

i ) that have the same resolution as the input patches (px
i and py

i ). See the decoder
part in Figure 1. We repeat this process until every same-position patch pair has been fed through the
encoder-decoder architecture to produce their corresponding two deformation field patches. The patch-wise
deformation fields are reassembled into a comprehensive deformation map. This reassembled map is then
used to warp the entire image, ensuring that each localised patch deformation contributes to the overall
continuous transformation of the image.

After obtaining the patchwise deformation fields, we stitch them to produce the full deformation field (ẑx→y

and ẑy→x). To achieve this, we use a 3D Swin Transformer Block (Liu et al., 2021b). See the 3D W-MSA and
3D SW-MSA modules in Figure 1. The patch-wise deformation fields are reassembled into a comprehensive
deformation map using the 3D Swin Transformer Block. This reassembled map is then used to warp the entire
image, ensuring that each localised patch deformation contributes to the overall continuous transformation
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of the image. We then use a spatial transformer to warp the moving image x and the stitched deformation
field ẑx→y to obtain the composition x ○ ψẑx→y , and do the inverse registration from y to x.

As part of our unified framework for unsupervised registration and segmentation, we can now use the
estimated deformation field to do segmentation tasks. More precisely, in the testing stage, we use a spatial
transformer, to warp the segmentation mask of the fixed image yseg and (stitched) deformation field ẑy→x,
to generate the segmentation result (yseg ○ ψẑy→x).

Reconstruction & Regularisation Terms. During the training process, we use two losses to guarantee
a robust registration process. We first use a reconstruction loss, which enforces a plausible mapping to get
the registered results as closest as possible to the template images. In our work, we use a normalised local
cross-correlation loss (NCC loss) as the reconstruction loss. We denote the two input images as x and y.
Then the local mean of x and y at pixel p are denoted as x̄(p) and ȳ(p), respectively. The NCC loss is given
as follows:

Lncc(x, y) =∑
p∈Ω

∑pi
(x(pi) − x̄(p)) ⋅ (y(pi) − ȳ(p))√

∑pi
(x(pi) − x̄(p))2 ⋅∑pi

(y(pi) − ȳ(p))2
, (1)

where the local mean x̄(p) and ȳ(p) are calculated over a local window centered at pixel p with window
length of 9, and in the domain Ω ⊂ Zw×h×d. The NCC loss is robust to changes in pixel magnitudes, such
as differences in brightness or contrast between the images. This characteristic makes NCC particularly
suitable for medical image registration, where images may have differing illumination or exposure settings.
Our reconstruction loss reads:

Lrecon = Lncc(x ○ ψẑx→y , y) +Lncc(y ○ ψẑy→x , x). (2)

We also include an L2 diffusion regulariser on the spatial gradients to obtain a smooth deformation field. It
reads:

Lsmooth = ∑
p∈Ω
∣∣∇ψẑy→x ∣∣2 + ∑

p∈Ω
∣∣∇ψẑy→x ∣∣2. (3)

Patchwise Contrastive Loss. In representation learning, contrastive learning has been a successful per-
spective to learn distinctiveness. The main idea of contrastive learning is to maximise the similarity between
images and their augmented views, whilst minimising the similarity between images from different groups. In
contrast to existing contrastive methods, which select the positive and negative pairs between images in the
dataset, we proposed to select the positive and negative pairs within the image internally; as shown in Fig. 2.
More precisely, after we recursively fed the moving and fixed patches px

i and py
i into the CNN encoders, we

can obtain a set of high-level semantic CNN features maps for each patch. We use two linear projection
layers (see the MLP in Figure 1) to map the high-level CNN semantic feature maps, for the moving and
fixed patches, to a latent space, separately. Hence, the projected features are a calculated representation
of the moving patch and fixed patch. We denote the projected features as fx

i and fy
i for the moving and

fixed patch respectively, see the triangles and squares tagged as 1 to 8 in Figure 1. Between the two sets
of projected features, we consider as a positive pair any part from the same partition position (fx

i and fy
i ),

otherwise a negative pair (fx
i and fy

j , where i ≠ j). We then consider the following patch-wise contrastive
loss (Park et al., 2020) from fx

i to fy
i expressed as:

Li
contrast(fx

i , f
y
i ) = − log

exp(sim(fx
i , f

y
i )/τ)

∑n
j=1 exp(sim(fx

i , f
y
j )/τ)

, (4)

where sim(u, v) = uTv
∣∣u∣∣⋅∣∣v∣∣ is the cosine similarity between u and v. Moreover, τ is a temperature hyperpa-

rameter set as 1, and n is the number of patches. Similarily, the the contrastive loss from fy
i to fx

i which
reads:

Li
contrast(fy

i , f
x
i ) = − log

exp(sim(fy
i , f

x
i )/τ)

∑n
j=1 exp(sim(fy

i , f
x
j )/τ)

. (5)
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Figure 3: Deformation field learned with and without the proposed stitching strategy. Three columns
show the sample slice of the 3D deformation field from different views. Direct patch stitching (first row)
yields results with clear discontinues between patches, whilst stitching with the proposed multi-head self-
attention (second row) produces smooth and continuous deformation fields with the gap between patches
nearly invisible.

Hence, the final patchwise contrastive loss is calculated as a weighted sum of equation 4 and equation 5 as:

Lcontrast = − 1
2n

n

∑
i=1
(Li

contrast(fx
i , fy

i ) +Li
contrast(fy

i , fx
i )). (6)

3.3 Patch-based Strategy II: Patches Stitching with Shifted-window Multi-head Self-attention

The multi-head self-attention (MSA) module (Vaswani et al., 2017) has been proved to be an effective tool
for capturing content relations from within the image. Unlike CNN-based networks that use a hierarchical
convolutional layer to expand the reception field from local to global, the MSA module can directly calculate
the similarity of all non-overlapping patches within the image. In our work, to alleviate the blurring effect
from the process of direct patch stitching (see the top row of Figure 3), we propose to stitch the patches with
multi-head self-attention. We utilise the multi-head self-attention mechanism, which is adept at capturing
long-range dependencies within the data. This characteristic is particularly beneficial for smoothing the
stitched image, as it allows the model to consider global information and achieve coherent integration of
patches. Specifically and for computational efficiency, we use the improved 3D window/shifted-window
multi-head self-attention (3D W-MSA and 3D SW-MSA) from Swin Transformer (Liu et al., 2021b).

3D W-MSA. To align with the definition of Swin Transformer, we define each deformation field patch pzx→y

i

as a window. Each window is further splited evenly into m ×m ×m small non-overlapping regions rzx→y

ij

where i ∈ n3, i ∈m3. The original MSA performs the computation directly on the regions of an image with a
size of w×h×d. The W-MSA calculates region relations inside windows, significantly reducing computation
time. The computational complexity of the two modules are listed as follow:

Ω(MSA) = 4 ⋅whd ⋅C2 + 2 ⋅ (whd)2 ⋅C
Ω(W −MSA) = 4 ⋅whd ⋅C2 + 2 ⋅m3 ⋅ (whd) ⋅C,

(7)

where the time complexity for the MSA module is quadratic to volume size whd, the time complexity for
the W-MSA module is linear to volume size where m is set as 4, and C is the image spatial channel number
3 in our experiment. Hence, with the W-WSA module, the computational time is fast, especially apply to
3D medical images.
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3D SW-MSA. One core disadvantage of 3D W-MSA is that it lacks information exchange between windows,
since all the computation is performed on regions within a window, which means that simply applying the
3D W-MSA on the deformation field patches is not enough for dealing with the stitching effect see Figure 3.
Hence, based on the 3D W-MSA outputs, we further use the 3D SW-MSA to enhance information change
between windows for stitching effect alleviating. We follow the cyclic-shifting strategy and move the window
along the diagonal direction by one region (w/n

m
× d/n

m
× h/n

m
). By cyclic-shifting, the generated window goes

from n3 to (n + 1)3. As shown in Figure 1, after the 3D SW-MSA, the window number increased from
8 to 27. With the increase of windows, regions from different windows are mingled for calculation, which
allows information exchanges to erase the stitching effect. After the two modules, we stitch the self-attended
window to obtain the stitched deformation field. We underline that our stitching strategy is like a clip-on
function to refine the deformation field without introducing an additional loss term. A detailed description
of the architecture of W-MSA and SW-MSA can be found in (Liu et al., 2021b). The detailed algorithm
description can be found in Algorithm 1.

Algorithm 1: Training Plan

▸ Training Process

Input: unaligned image x, reference image y,
Output: deformation field zy→z, registered result x ○ ψzy→z

for each training pair do
1. Cut x and y into multiple patches: px

i and py
i , where i ∈ [1,2,3, ..., n3];

2. Feed each paired of patches px
i and py

i into the same-weight 3D CNN for feature extraction.
3. For all CNN-extracted patch features pairs, concatenate them and input them into a decoder to
restore the patch-wise deformation field until all patch feature pairs have been restored. .

4. Use "3D W-MSA" and "3D SW-MSA" to stitch all the patch-wise deformation fields to get the
image-level deformation field ψzx→y

5. Apply the stitched deformation field zx→y to the moving image x via a Spatial Transformer
Network (STN) to obtain the registered result x ○ ψzx→y .

6. Ensure quality registration by calculating the total loss, comprising the reconstruction loss
(Lrecon), smooth loss (Lsmooth), and the patchwise contrastive loss (Lcontrast).

end

3.4 Testing Scheme with Unified Registration and Segmentation.

During the testing process, we first fed the trained network with the moving image x and fixed images y to
obtain two deformation field ẑy→x and ẑx→y. It’s important to note the distinct roles of these fields, ẑx→y

is for registration, and ẑy→x is for segmentation: (1). For registration, we used a spatial transform network
(Jaderberg et al., 2016) to warp the moving image x and the deformation field ẑx→y to get the registered
image x. (2). For segmentation, We then used a spatial transform network to warp the segmentation mask
of fixed image yseg and the deformation field ẑy→x, we then obtain the segmentation results of the moving
image (yseg ○ ψẑy→x)). With a single GPU (NVIDIA A100 GPU), our method can process around 3.2 brain
images per second.

4 Experimental Results

In this section, we detail the set of experiments performed to evaluate our proposed unified framework.
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Task Technique C-WM C-CX L-V L-WM L-CX T-P Cau Put -
R

eg
ist

ra
tio

n
VoxelMorph 0.777 0.829 0.791 0.682 0.815 0.849 0.795 0.804 -

SYMNet 0.787 0.840 0.778 0.717 0.838 0.883 0.825 0.853 -
DeepTag 0.770 0.847 0.792 0.755 0.885 0.870 0.823 0.830 -

CycleMorph 0.806 0.859 0.809 0.733 0.860 0.848 0.811 0.828 -
ViT-V-Net 0.812 0.850 0.820 0.741 0.860 0.859 0.828 0.870 -

PC-SwinMorph 0.825 0.880 0.847 0.801 0.908 0.892 0.859 0.880 -
Technique Pal 3-V 4-V B-S Hipp Amy CSF V-DC AVG

VoxelMorph 0.734 0.644 0.733 0.881 0.654 0.659 0.611 0.790 0.753
SYMNet 0.787 0.657 0.710 0.865 0.680 0.675 0.599 0.805 0.769
DeepTag 0.753 0.680 0.725 0.892 0.710 0.679 0.545 0.804 0.773

CycleMorph 0.748 0.663 0.757 0.891 0.685 0.652 0.614 0.791 0.772
ViT-V-Net 0.760 0.669 0.779 0.897 0.721 0.664 0.610 0.793 0.783

PC-SwinMorph 0.802 0.676 0.784 0.913 0.763 0.698 0.614 0.824 0.812
Task Technique C-WM C-CX L-V L-WM L-CX T-P Cau Put -

Se
gm

en
ta

tio
n

VoxelMorph 0.776 0.831 0.783 0.698 0.812 0.860 0.802 0.830 -
SYMNet 0.729 0.781 0.767 0.790 0.769 0.726 0.780 0.803 -
DeepTag 0.759 0.842 0.786 0.758 0.883 0.867 0.812 0.834 -

CycleMorph 0.812 0.869 0.787 0.759 0.869 0.864 0.811 0.844 -
ViT-V-Net 0.820 0.880 0.799 0.771 0.872 0.867 0.811 0.850 -

PC-SwinMorph 0.834 0.885 0.847 0.806 0.912 0.888 0.855 0.878 -
Technique Pal 3-V 4-V B-S Hipp Amy CSF V-DC AVG

VoxelMorph 0.764 0.673 0.738 0.881 0.663 0.669 0.574 0.797 0.759
SYMNet 0.758 0.764 0.771 0.764 0.777 0.664 0.771 0.760 0.760
DeepTag 0.756 0.659 0.708 0.887 0.718 0.696 0.538 0.800 0.771

CycleMorph 0.776 0.680 0.737 0.891 0.709 0.690 0.570 0.801 0.780
ViT-V-Net 0.777 0.681 0.781 0.895 0.755 0.700 0.584 0.809 0.791

PC-SwinMorph 0.802 0.681 0.786 0.915 0.781 0.718 0.610 0.823 0.817

Table 1: Numerical comparisons between our proposed PC-SwinMorph technique and SOTA techniques on
the CANDI dataset. The Dice similarity metric for each region is listed. We denote the regions as C-WM
(L/R-Cerebral-WM), C-CX (L/R-Cerebral-CX), L-V (L/R-Lateral-Vent), L-WM (L/R-Cerebellum-WM),
L-CX (L/R-Cerebellum-CX), T-P (L/R-Thalamus-Proper), Cau. (L/R-Caudate), Put. (L/R-Putamen),
Pal. (L/R-Pallidum), 3-V (3rd-Vent), 4-V (4rd-Vent), CSF, B-S (Brain-Stem), Hipp. (L/R-Hippocampus),
Amy. (L/R-Amygdala), V-DC (L/R-VentralDC). The average of the Dice metric over all regions is presented
in the last column. The best performance is highlighted in bold font.

4.1 Datasets Description

We evaluate our framework using two publicly available datasets: the Child and Adolescent Neuro Develop-
ment Initiative (CANDI) dataset(Kennedy et al., 2012) and the LONI Probabilistic Brain Atlas (LPBA40)
dataset(Shattuck et al., 2008).

CANDI Dataset. CANDI dataset is comprised of 103 T1-weighted MRI scans with anatomic segmentation
labels. The volume size of the MRI scans ranges from 256 × 256 × 128 to 256 × 256 × 158 voxels with a
uniform space of 0.9375 × 0.9375 × 1.5 mm3. To prepare the segmentation mask for usages in the testing
stage, we adopted the convention outlined in (Wang et al., 2020), which involves grouping corresponding
organs from the left and right hemispheres of the brain. This process results in the formation of 16 distinct
anatomical regions, excluding the background. We highlight that the segmentation masks are only used
during the testing phase in our study. For computational efficiency, we crop the volume to 160 × 160 × 128
around the centre of the brain, which is large enough to incorporate the whole brain region.
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Task Technique FRONT PAR OCC TEMP CING PUT HIPP AVG
R

eg
ist

ra
tio

n VoxelMorph 0.866 0.709 0.683 0.797 0.679 0.648 0.654 0.720
SYMNet 0.880 0.741 0.712 0.821 0.708 0.729 0.689 0.755
DeepTag 0.893 0.756 0.745 0.845 0.736 0.743 0.710 0.775

CycleMorph 0.889 0.747 0.735 0.849 0.723 0.758 0.705 0.772
ViT-V-Net 0.895 0.756 0.739 0.851 0.744 0.779 0.710 0.781

PC-SwinMorph 0.900 0.767 0.751 0.860 0.744 0.780 0.725 0.790

Se
gm

en
ta

tio
n VoxelMorph 0.871 0.716 0.702 0.802 0.686 0.643 0.667 0.728

SYMNet 0.888 0.745 0.737 0.826 0.716 0.730 0.687 0.762
DeepTag 0.898 0.758 0.763 0.848 0.739 0.742 0.708 0.780

CycleMorph 0.895 0.758 0.765 0.851 0.732 0.758 0.705 0.782
ViT-V-Net 0.895 0.761 0.768 0.855 0.739 0.759 0.710 0.786

PC-SwinMorph 0.901 0.766 0.771 0.860 0.743 0.773 0.729 0.794

Table 2: Numerical comparisons between our proposed PC-SwinMorph technique and SOTA techniques on
the LPBA40 dataset. The Dice similarity metric for each region is listed. We denote the regions as FRONT
(Frontal), PAR (Parietal), OCC (Occipital), TEMP (Temporal), CING (Cingulate), PUT(Putamen), HIPP
(Hippo). While the average of the Dice metric over all regions is presented in the last column. The best
performance is highlighted in bold font.

LPBA40 Dataset. LPBA40 dataset contains 40 T1-weight 3D brain volumes from 40 healthy humans.
The size of 3D volumes is 181 × 217 × 108 with a uniform space of 1 × 1 × 1 mm3. The 3D brain volume
was manually segmented to identify 56 structures. Similar to the CANDI dataset, we crop the data to
160 × 192 × 160 around the centre of 3D volumes to reduce the size of the volume whilst preserving all the
brain regions. All the 56 structures are grouped into seven large regions in order to display the segmentation
results more intuitively (Liu et al., 2020).

4.2 Implementation Details

Data Pre-processing. We normalise the volumes to have zero mean and unit variance. For the CANDI
dataset, we follow the data splitting in (Wang et al., 2020) and select 20 volumes as test data, 1 volume as
the reference image, and the rest as training data. For the LPBA40 dataset, we set the first volume as the
reference image, the next 29 images as training images, and the last 10 images as testing images.

Training Strategy. During the training stage, the parameters of all convolutional layers are initialised by
following the initialisation protocol of (He et al., 2015). Adam optimiser is used during training with the
initial learning rate setting as 10−3. The learning rate decays by 0.1 scale every 50 epochs and terminates
after 200 epochs. The batch size for both datasets is 1. All models are run on an NVIDIA A100 GPU with
80G RAM, which takes around 6 hours to train the model on the CANDI dataset and around 4 hours on
the LPBA40 dataset.

Evaluation Protocol. To make our results comparable to other state-of-the-art methods, we use the Dice
similarity coefficient to evaluate the segmentation and registration quality of our model, which measures the
overlap between ground truth masks and predicted segmentation results. The code with detailed description
will be available with the publication.

4.3 Comparison to the State-of-the-Art Techniques

We compared our technique with four recent unsupervised brain segmentation methods, including Vox-
elMorph (Balakrishnan et al., 2019), DeepTag (Ye et al., 2021), SYMNet (Mok & Chung, 2020), Cy-
cleMorph (Kim et al., 2021), ViT-V-Net (Chen et al., 2021b). In general, all methods are based on the
fundamental architecture of VoxelMorph. For a fair comparison, all models use the same backbone archi-
tecture, VoxelMorph, which has been fine-tuned to achieve optimal performance.
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Figure 4: Boxplot comparisons between our proposed PC-SwinMorph technique and SOTA techniques on
the Candi dataset. The Dice similarity metric is reported per each region in the brain. The numerics per
region can be found in Table 1.
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Figure 5: Boxplot comparisons between our proposed PC-SwinMorph technique and SOTA techniques on
the LPBA40 dataset. The Dice similarity metric is displayed per each region in the brain. We reported the
exact values of each technique in Table 2.

Numerical Comparison. Tables 1- 2, Fig. 4 and Fig. 5 summarise performance-wise, in terms of the Dice
coefficient, the compared SOTA methods, and our PC-SwinMorph. The numbers are obtained using the
testing scheme described in section 4.2. In a closer look at the tables, we observe that for both data, our
method outperforms all other SOTA methods by a large margin, including the overall performance as well as
local performance in major regions. Particularly, on the CANDI dataset our results report an improvement
of 5.9% compared to VoxelMorph, and 3.9-4.3% against the other compared techniques. This performance
gain is consistent on the LPBA40 dataset, where our proposed technique is 1.2-7.0% higher in performance
than the SOTA methods.
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Table 3: Numerical comparison of "percent of negative Jocabian determinant" and "computational time" for
registration task on CANDI and LPBA40 datasets. The lower the "percent of negative Jocabian determinant"
is the better the model performs. The best performance is denoted in bold font.

Technique LPBA40 CANDI LPBA40 Dataset
Dice J% Time Dice J% Time

VoxelMorph 0.753 5.01 40 0.720 5.11 42
SYMNet 0.769 6.34 49 0.755 5.97 50
DeepTag 0.773 4.33 38 0.775 4.75 41

CycleMorph 0.772 2.21 39 0.772 2.66 40
ViT-V-Net 0.783 2.10 46 0.781 2.19 51

PC-SwinMorph 0.812 1.97 34 0.790 2.01 39

Smoothness of Deformation Field. Another well-known evaluation metric is the “percent of negative
Jacobian determinant values,” which serves as a crucial indicator of the quality of spatial transformations in
image registration tasks. A negative Jacobian determinant value signifies a local contraction or folding in the
transformation, which is generally undesirable as it can indicate distortions or unnatural alterations in the
image structure. Maintaining a low percentage of such negative values is indicative of a smooth, physically
plausible transformation that preserves the integrity of the original image’s topology. As shown in Table 3,
our results showcase a lower percent of negative Jacobian determinant values. This outcome further proves
that employing a multi-head shift-window mechanism to stitch image patches is a beneficial strategy.

Computational Time. As illustrated in Table 3, our model demonstrates a slight advantage in speed
during the testing of a single pair of images. This increase in efficiency is attributed to our approach of
segmenting the image into smaller patches for processing. By handling these smaller patches individually,
we significantly reduce the computational burden.

Visual Comparison. We support the numerical results with additional visual results for our technique and
the compared ones. Figure 7 shows some sample slices of the segmentation results predicted by VoxelMorph,
SYMNet, DeepTag, CycleMorph, ViT-V-Net and our proposed method PC-SwinMorph. Whilst the results
produced by the compared SOTA techniques are anatomically meaningful, they fail to capture fine details
in several regions. By contrast, PC-SwinMorph is able not only to produce a better output but also to
capture details. The zoom-in views in Figure 7 highlights these effects. Overall, PC-SwinMorph can better
accommodate with fine details of the brain structure, producing segmentation closer to the ground truth.
Figure 6 shows the warpped images produced by different SOTA techniques as well as the proposed PC-
SwinMorph. We can observe that our registration outputs are closer to the reference image, displaying fewer
splitting effects from the patch generation whilst keeping fine details.

4.4 Ablation Study

We provide a set of experiments to further support the design of our technique.

Contrastive Representation. A contrastive feature learning mechanism is embedded into the registration
architecture which promotes feature-level learning. The contrastive loss forces the network to contrast the
difference between the two extracted CNN feature maps and therefore, the network is more discriminative
to different images via contrasting unaligned images and reference images. As shown in Table 4, the testing
results demonstrate this new mechanism significantly improves the segmentation performance by around 2-3%
upon the baseline model.

Patchwise Contrastive Learning. Based on the idea of contrastive learning, we introduce a patchwise
contrastive learning strategy. It uses a multilayer patch-based approach rather than operating on entire
images. The Patchwise contrastive loss introduced in equation 6 encourages two corresponding patches,
in the image, to map to a point in a learned feature space, at the same time drawing negative if they
match to other patches. This mechanism further boosts the registration performance and produces better
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Moving Image Fixed Image PC-SwinMorph SYMNetVoxelMorph CycleMorphDeepTagDeformation

Figure 6: Visual comparisons between the proposed PC-SwinMorph technique, and other unsupervised SOTA
techniques for registration. The rows show the three views from 3D volumes. The first two columns display
the moving and fixed images, while columns 4-8 present the aligned images produced by PC-SwinMorph
and other unsupervised SOTA techniques. The zoom-in views highlight regions that demonstrates the
improvement of our method in terms of preserving the global brain structures and fine local details. The
third column presents the deformation field computed by our method.

Image GT PC-SwinMorph VoxelMorph CycleMorphSYMNet DeepTag

Figure 7: Visual comparisons between the proposed PC-SwinMorph technique, and other unsupervised SOTA
techniques for segmentation. The rows show the three views from 3D volumes. The second column displays
the ground truth (GT) results whilst columns 3-6 display predicted segmentation from PC-SwinMorph and
other unsupervised SOTA techniques. Zoom-in views demonstrate that the proposed method preserved more
details in different regions thus producing better segmentation results.

segmentation results. From the Dice coefficient comparison reported in Table 4, we can observe that the
patchwise contrastive approach offers an additional 2% improvement with respect to the contrastive learning
approach. This improvement is observed in both the registration and segmentation performance. This
introduced strategy offers an overall improvement of 4% when compared to the baseline model.
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CANDI LPBA40
Reg. Seg. Reg. Seg.

Baseline (B) 0.753 0.759 0.720 0.728
B + PW 0.779 0.777 0.751 0.762
B + CL 0.771 0.772 0.760 0.766
B + PW + CL 0.791 0.792 0.779 0.783
B + PW + CL + SW 0.812 0.817 0.791 0.794

Table 4: Ablation study on both CANDI and LPBA40 datasets. The best performance is highlighted
in bold font. We use the abbreviation ’Seg.’ and ’Reg.’ for Segmentation and Registration respectively.
Measures are averaged over all regions using the Dice coefficient. We denote the baseline as ’B’, patchwise
method as ‘PW’, contrastive loss as ‘CL’, and window/shifted-window multi-head self-attention method as
“SW”.
The effect of 3D W-MSA & 3D SW-MSA. One of the main drawbacks of patchwise learning is the
lack of information exchange between patches. The introduction of 3D W-MSA and 3D SW-MSA, which
stitches the patches and enhances the performance across patches, has been demonstrated to be greatly
effective. As shown in Table 4, the segmentation and registration performance on the CANDI dataset has
been improved by 2.65% and 3.06% respectively when using 3D SW-MSA. This performance behavior is
prevalent on LPBA40 demonstrating consistent performance.

5 Discussion

From the experiments, we observe several strengths on our model. Firstly, our hypothesis that patch em-
beddings are a more meaningful representation is supported by our experiments. We observed that our
technique has a significant (statistically) performance than the current SOTA techniques. What is the in-
tuition behind our technique? The spatial structure of the patch that allows capturing not only global but,
more importantly, also local anatomical representations. These local and global representations are reflected
in capturing fine-grained details and, therefore, helping the registration to be more robust to the changes
in the to-be registered images. Secondly, we highlight that our model is not a trivial combination between
VoxelMorph and SwinTransformer. Literature on ViT and VoxelMorph uses the off-the-shelf ViT for bet-
ter feature extraction, i.e., directly replacing the CNN encoder of the VoxelMorph with ViT. However, our
motivation for using SW MHA is to stitch deformation field patches. We underline that we did not change
the original CNN encoder part of VoxelMorph with SW MHA. Instead, we only use the SW MHA (one
layer from SwinTransformer) to stitch patches after the encoder/decoder part of VoxelMorph. Because we
only use one layer of SwinTransformer, the computational cost with a negligible increase – the Flops of the
model without SW MHA is 416.04 GFlops, whilst for our model are 416.10 GFlops, which only increases 0.6
GFlops.

6 Conclusion

We introduce a novel unified unsupervised framework for image registration and segmentation. We propose
to rethink these tasks from a patch-based perspective and introduce two patch-based strategies. Firstly, we
introduce a novel patch-based contrastive strategy to obtain richer features and preserve anatomical details.
Secondly, we design a new patch stitching strategy to eliminate any inherent artifact from the patch-based
partition. Our intuition behind the performance gain of our strategies is that through patches we capture
not only global but also local spatial structures (more meaningful embeddings). We demonstrated that our
technique reported SOTA performance for both tasks.
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