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Abstract—Due to the limits of bandwidth and storage space,
digital images are usually down-scaled and compressed when
transmitted over networks, resulting in loss of details and jarring
artifacts that can lower the performance of high-level visual tasks.
In this paper, we aim to generate an artifact-free high-resolution
image from a low-resolution one compressed with an arbitrary
quality factor by exploring joint compression artifacts reduction
(CAR) and super-resolution (SR) tasks. First, we propose a
context-aware joint CAR and SR neural network (CAJNN)
that integrates both local and non-local features to solve CAR
and SR in one-stage. Finally, a deep reconstruction network
is adopted to predict high quality and high-resolution images.
Evaluation on CAR and SR benchmark datasets shows that
our CAJNN model outperforms previous methods and also takes
26.2% less runtime. Based on this model, we explore addressing
two critical challenges in high-level computer vision: optical
character recognition of low-resolution texts, and extremely tiny
face detection. We demonstrate that CAJNN can serve as an
effective image preprocessing method and improve the accuracy
for real-scene text recognition (from 85.30% to 85.75%) and the
average precision for tiny face detection (from 0.317 to 0.611).

I. INTRODUCTION

Image down-scaling and compression techniques are widely
used to meet the limits of hardware storage and data capacity,
which sometimes sacrifice the visual effects as well as bringing
troubles to visual detection and recognition. Compression
artifact reduction (CAR) and single image super-resolution
(SISR) [1] have been used in manifold applications, e.g.
digital zoom on smartphones [2], video streaming [3] and
print quality enhancement [4], [5] to restore a high-quality and
high-resolution image. Since Dong [6] first proposed SRCNN
that applied a three-layer convolutional neural network (CNN)
for the SISR task, more and more works [7], [8], [9] have
explored how to make use of the deep neural networks (DNN)
to achieve better image quality as measured by PSNR and
SSIM [10], or better visual quality [11], [12] as measured by
other perceptual metrics [13], [14].

Conventional methods adopt a two-stage pipeline to lever-
age the quality and resolution of real-world images: first
preprocess the user’s photos with a compression artifacts
reduction (CAR) algorithm [17], [18], [19], [20], [21], and
then conduct a super-resolution (SR) algorithm [1], [6], [7],
[8], [9], [16], [22], [23], [24]. However, the CAR step often
causes loss of high-frequency information, which results in
a lack of detail in reconstructed SR images. Besides, the
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Fig. 1: Demonstration of the joint CAR and SR task. For a
user’s image without ground truth, our joint CAR and SR
model (CAJNN) can generate better output with sharper edges
and significantly fewer artifacts compared with either CAR
(DnCNN [15]), SR (RCAN [16]), or a two-stage CAR+SR
method with the above models.

computation and data transmission between the two models
is time-consuming. To deal with these issues, a single-stage
method that jointly solves the Compression Artifact Reduction
and Super-Resolution (CARSR) problems is needed to reach a
balance between reducing artifacts while retaining most details
for the upscale step with a short run-time.

Both CAR and SR aim to learn the high-frequency informa-
tion for reconstruction. Thus, instead of simply concatenating
two networks together, we can design two functional modules
in a single-stage network that reduces the model size by
simplifying the two reconstruction processes into one, and can
directly obtain high-quality SR output without reconstructing
the intermediate artifact-free LR images. Towards this end, we
propose a context-aware joint CAR and SR neural network
(CAJNN) that can make use of the locally related features in
low-quality, low-resolution images to reconstruct high-quality,
high-resolution images. To train this network, we construct a
paired LR-HR training dataset based on modeling the degrada-
tion kernels of web images. Our model turns out to be able to
reconstruct high-resolution and artifact-free images with high
stability for user’s images from a garden variety of web-apps



(e.g. Facebook, Instagram, WeChat). Figure 1 illustrates the
performance of our proposed algorithm and the benefits of
the single-stage joint CAR and SR method compared with
previous SR models and two-stage methods: our result can
reconstruct a more visually appealing output with accurate
structures, sharp edges, and significantly fewer compression
artifacts. These output images are not only more recognizable
for human viewers, but also for off-the-shelf computer vision
algorithms. In this paper, we demonstrate that our proposed
CAJNN can enhance the detection and recognition accuracy
of high-level vision tasks by reducing the compression artifacts
and increasing the resolution of input images.

To summarize, our contributions are mainly three-fold: (1)
We propose a novel CAJNN framework that jointly solves
the CAR and SR problems for real-world images, that are
from unknown devices with unknown quality factors. Here, we
explore ways to represent and combine both non-local and lo-
cal information to enforce image reconstruction performance.
Our method doesn’t require prior quality factor information
of the input. (2) Our experiments show that CAJNN achieves
the new state-of-the-art performance on multiple datasets e.g.
Set5 [25], Set14 [26], BSD100 [27], Urban100[28], etc. as
measured by the PSNR and SSIM [10] metrics. Compared
with the prior art, it generates more stable and reliable outputs
for any level of compression quality factors. (3) We provide a
new idea for enhancing high-level computer vision tasks like
real-scene text recognition and extremely tiny face detection.
By preprocessing the input data with our pretrained model, we
can improve the performance of existing detectors. Our model
demonstrates its effectiveness as a supportive technique on the
WIDER face dataset [29] and the ICDAR2013 Focused Scene
Text dataset [30].

II. RELATED WORK

CNN-based Single Image Super-Resolution Convolutional
Neural Network (CNN) methods have demonstrated a remark-
able capability to recover LR images with known kernels after
the pioneering work of Dong et al. [6] that adopted a 3-layer
CNN to learn an end-to-end mapping from LR images to
HR images. The follow-up work FSRCNN [23] established
the general structure of most SR networks until today, which
conducts most computations in the low-resolution domain and
upsamples the image to the required scale at the end of the
network. After 2016, more and more works began to explore
how to make the network go deeper. EDSR [7] reduces the
number of parameters by removing the batch normalization
layer, and shares the parameters between the low-scale and
high-scale models to achieve better training results. RDN [8],
[9] and RRDB [12] employ densely-connected residual groups
as the major reconstruction block to reach large depth and to
allow sufficient low-frequency information to be bypassed. In
the meantime, some useful structures have been introduced
to enhance the processing speed or output quality. Shi et
al. [24] designed a sub-pixel upscaling mechanism. RCAN
[16] introduces a channel attention mechanism to rescale
channel-wise features adaptively, and SAN [31] exploits a

more powerful feature expression with second-order channel
attention.
Compression Artifacts Reduction Lossy compression meth-
ods are widely applied in web image transmission due to their
higher compression rates. Traditional methods for the CAR
problem generally fall into two categories: unsupervised meth-
ods, which include removing noise and increasing sharpness
[19], and supervised methods like dictionary-based algorithms
[32]. After the success of SRCNN on the super-resolution
task, Yu et al. directly applied its architecture to compression
artifacts suppression. Similar to the development of SR, CNN-
based CAR networks can also change from shallow to deep
with the introduction of residual blocks and skip connections
[33], [15], [34]. Besides, SSIM loss is also employed [18]
as a supervision method to obtain better performance than
MSE loss. JPEG-related priors are also considered in the
network structure design, e.g. DDCN [35] adds a Discrete
Cosine Transform (DCT)-domain before the dual networks,
and the D3 method [36] takes a further step in the practice of
dual-domain approaches [32] by converting sparse-encoding
approaches into a one-step sparse inference module.

Unlike the above approaches that require recovering the in-
termediate LR images with reduced artifacts, our joint CARSR
framework directly obtains artifact-free HR images without
prior information of quality factors or explicit supervision of
CAR in the intermediate LR domain.

III. JOINT COMPRESSION ARTIFACTS REDUCTION AND
SUPER-RESOLUTION

Given an LR JPEG-compressed image ILRLQ, our goal is to
reconstruct the high resolution, high-quality image G(ILRLQ)
that approaches the high-resolution, high-quality ground truth
IHRHQ with a generator G. The CARSR task can be ex-
pressed as:

argmin
θ
l(IHRHQ, G(ILRLQ, θg)), (1)

where l is any designated loss function (e.g. MSE, L1,
Charbonnier, etc.). G is the function representing our deep
neural network with parameters θ, for which we wish Gθ ≈
F−1((ILRLQ ⊗ k) ↑s, q), where ⊗ stands for the convolution
operation, k is the degradation kernel of downsampling (e.g.
bicubic), and s is the downscaling factor. To effectively
handle the CARSR task, we propose a single-stage framework,
CAJNN. Our proposed model is end-to-end trainable with
IHRHQ and ILRLQ pairs according to the function above.

The CAJNN framework mainly consists of three modules
(see Figure 2): the context-aware feature extractor, the re-
construction module, and the upsampling and enhancement
module. The context-aware feature extractor captures and
assembles both intra- and inter-block information with filters
of different receptive fields. The reconstruction module further
refines the extracted feature maps. Finally, after the processing
of the upsampling and enhancement module, these feature
maps are converted to high-resolution outputs.



Fig. 2: The network architecture of our proposed CAJNN.
It directly reconstructs artifact-free HR images from the LR
low-quality images ILRLQ. Atrous Spatial Pyramid Pooling
(ASPP) is adopted to utilize the inter-block features and intra-
block contexts for the joint CARSR task. The reconstruction
module turns the features into a deep feature map, which
is converted to a high-quality SR output ISRHQ by the
upsampling and enhancement module.

A. Model

Here we discuss the CAJNN structure in detail. The ma-
jority of our network operates in the feature domain. Given
ILRLQ (c × h × w in size), a feature extraction layer first
turns the image into feature maps (nf × h × w in size,
where nf denotes the number of feature channels) in the
domain for the following process. The feature map will be
converted to a high-resolution image (c × sh × sw in size)
after passing the upsampling and enhancement module. To
achieve a balance between GPU capacity and output quality,
we apply 64 channels to ensure that enough information is
included for the reconstruction computation. We adopt a 3×3
convolution layer that serves as the initial feature extractor.
After this module, the input image ILRLQ is turned into a
64× h× w tensor fL.

1) Context-aware Feature Extractor: The pipeline of JPEG
compression involves the following steps: color space trans-
formation (e.g. JPEG, H.264/AVC, H.265/HEVC), downsam-
pling, block splitting, discrete cosine transform (DCT), quanti-
zation, and entropy encoding. Some previous research assumed
that the quality factors of input images are known, and the
original images are well-aligned by 8×8 patches with respect
to the JPEG block boundaries. However, real-world inputs
cannot always satisfy such assumptions. In the worst case, the
input images might be compressed multiple times and contain
sub-blocks or larger blocks, which requires the model to be
insensitive, or even blind to the encoding block alignment.
Thus, in practice, the spatial context information of both intra-
and inter- JPEG blocks is essential for designing a CARSR
network.

Since the JPEG block is 8× 8 pixels in size, as mentioned
before, both intra- and inter-block information need to be taken
into consideration in designing the joint CAR and SR network.
Thus, we adopt the ASPP module to extract and integrate
multi-scale features with an atrous spatial pooling pyramid
(ASPP) [37]. We adjust the dilation rates of each layer in the
pyramid to extend the filter’s perceptive field for extracting
different ranges of context information, in which the largest

field-of-view should cover the 8×8 block. Besides, we should
avoid sampling overlap in different levels of the 3× 3 convo-
lutions. Considering the factors above, we choose 1, 3, 4 as
the dilation groups to find a good balance between accurately
retrieving local details and assimilating context information
between adjacent blocks. The input tensors are sent to 3 layers
of the pyramid individually: a 3× 3 convolutional layer with
dilation rate = 1, a 3×3 convolutional layer with dilation rate
= 3, and a 3×3 convolutional layer with dilation rate = 4. The
outputs of these three layers are concatenated and aggregated
by a 1×1 convolution. The process in ASPP can be described
by:

fL
′
= [C3×3,1⊗fL|C3×3,3⊗fL|C3×3,4⊗fL]⊗C1×1,1, (2)

where fL
′

denotes the output feature (64 × h × w in size),
Ca×a,r represents the parameters of a × a convolution with
dilation rate r, and | is a concatenation operation.

2) Reconstruction: RRDB (residual-in-residual dense
block) [12] is applied as the basic block for the reconstruction
trunk. Compared with residual blocks, it densely connects
the convolution layers to local groups while removing the
batch normalization layer. In our network, the reconstruction
module includes 20 RRDBs.

3) Upsampling and Enhancement: After the reconstruc-
tion module, the image feature is preprocessed by a 3 × 3
convolution layer before sending it to the PixelShuffle layer
[24] for upsampling. The Pixelshuffle layer produces an HR
image from LR feature maps directly with one upscaling filter
for each feature map. Compared with the upconvolution, the
PixelShuffle layer is log2 s

2 times faster in theory because of
applying sub-pixel activation to convert most of the compu-
tations from the HR to the LR domain. The feature fL

′′
is

turned into a c×sh×sw HR image by the PixelShuffle layer,
which can be described by:

ISR
′
= PS(WL ⊗ fL

′′
+ bL), (3)

where WL denotes the convolution weights and bL the bias
in the LR domain, PS is a periodic shuffling operator for re-
arranging the input LR feature tensor fL

′′
(c × s2 × h × w)

to a HR tensor of shape c× rh× rw:

PS(T )x,y,c = Tbx/sc,by/sc,c·s·mod(y,s)+c·s·mod(x,s). (4)

Instead of directly outputting the high-resolution image, we
process it through two 3 × 3 convolution layers for further
enhancement, and get ISR = C3×3,1 ⊗ (C3×3,1 ⊗ ISR

′
).

To make the major network focus on learning the high-
frequency information in the input image, we bilinearly up-
sample the input LR image ILRLQ and add it to form the
final output G(ILRLQ, θg):

G(ILRLQ, θg) = ILRLQ ↑s +ISR. (5)

This long-range skip connection changes the target of our
major network from directly reconstructing a high-resolution
image to reconstructing its residual. By letting the low-
frequency information of the input bypass the major network,
it lowers the difficulty of reconstruction and promotes the
convergence speed of the network.



IV. EXPERIMENTS AND ANALYSIS

A. Experimental Setup

Training Dataset In this paper, we choose the DIV2K dataset
[38] (800 RGB images of 2k resolution) and Flick2K dataset
[39] (2650 RGB images of 2k resolution) as our training
set. To get the training pairs that approach the degradation
kernels of web images, we first model the downsampling
and compression types of popular web platforms. Besides, we
also discover that adding severely compressed samples to the
training set can improve the output quality in terms of PSNR,
even for input images compressed with high-quality factors.
Based on these pre-experimental results, the images of the
training set are downsampled with a scaling factor s = 4 and
compressed by MATLAB [40] with random quality factors
from 10 to 100. Besides, we perform data augmentation on
these images by randomly cropping, randomly rotating by 90◦,
180◦, and 270◦, and randomly horizontal-flipping. As a result,
each cropped image patch can have eight different positions
at maximum.
Test Datasets We compare the performance of our model
and previous methods on Set5 [25], Set14 [26], BSD100 [27],
Urban100 [28] and Manga109 [41]. Each image is downscaled
by the scaling factor s = 4 relative to the original size
and compressed with quality factors of 10, 20 and 40 to be
consistent with previous works.
Implementation Details Our network is trained on one
Nvidia Titan Xp graphics card. The batch size is 36, and the
patch size is 128 for ground truth and 32 for low-resolution
input. We use Adam [42] as the optimizer with a cosine
annealing learning rate, in which the initial learning rate is
2e−4, and the minimum learning rate is 1e−7. The scheduler
restarts every 250,000 iterations. We trained the network for
1,000,000 iterations in total.

B. Results for Image Quality Assessment

We report the PSNR and SSIM [10] of the Y channels in
the test sets to be consistent with previous works.
Comparison with SOTA on Standard Test Sets We compare
the performance of CAJNN to the previous state-of-the-art
(SOTA) methods on the standard test sets as mentioned above.
In addition to PSNR and SSIM, we also show the number of
parameters and runtime (the inference time on Set5) in Table
I. Depending on the workflow for solving the CAR and SR
problem, these methods can be categorized into the following
three types: (1) SR: directly use pretrained SR models. (2)
CAR+SR: the aforementioned two-stage method, which first
removes the compression artifacts and then sends the output
images to the SR model. (3) Joint CAR & SR: the single-stage
method that jointly handles CAR and SR with one model. We
report both the direct output and the self-ensembled output of
our network.
As can be seen in Table I, CAJNN significantly outperforms
the existing methods at different quality factors, improving
the PSNR for all QFs, and yielding the highest overall PSNR
for Set5. The improvement is consistently observed on SSIM,

Fig. 3: The qualitative result of our network from compressed
images with different quality factors (zoom in for a better
view). Our model is able to reconstruct reasonable SR images,
even at extremely low quality factors. Besides, our results are
free of color jittering and other inconsistencies for such a wide
range of compression ratios. The image is the ”woman” image
from Set5 [25]

as well. Moreover, our model is more light-weight than most
of the current models, including one-stage and two-stage in
summation, which results in faster inference speed on the same
hardware (all the tests are conducted on one Nvidia Titan Xp
graphics card).
Figure 3 gives a qualitative example of the result of our model,
where the input image is woman from the Set5 [25] that is
downsampled and compressed by a wide range of quality
factors from 10 to 100. It is worth noting that compression
with very low quality factors causes a significant color shift
on the hue and spatial distribution of the original image, which
can be seen in the leftmost LR image (QF = 10). Our model is
able to correctly restore the color aberrations of RGB images
with a high consistency among different QFs.
Results on User Images Besides the above experiments on
standard test images, we also conduct experiments on real
user images to demonstrate the effectiveness of our model.
We mainly focus on the perceptual effect since there are
no ground-truth images. Figure 4 shows the CAJNN results
on real-world image from the WIDER face dataset [29].
For comparison, RCAN[16] and RRDB [12] are used as
representative SR method, ARCNN [17] and DnCNN [15]
are used as the representative CAR methods. The real-world
images have unknown downsampling kernels and compression
mechanisms, depending on the platforms. According to Figure
4, the SR methods generate images with obvious color shift
and ringing artifacts. These artifacts are alleviated with two-
stage methods. Still, the results are blurry. Compared with
the two-stage methods, our CAJNN can provide SR outputs
with sharp edges and rich details, which demonstrates the
superiority of our proposed single-stage method when applied
to real-world CARSR problems.

C. Results for Low-Resolution Text Recognition

Comparing the input LR image and our output in Figure
4, the texts become more readable after being processed by
our model. Inspired by this observation, we conducted the
following experiments to explore our model’s potential to
leverage real-scene text recognition task for low-resolution
characters.



TABLE I: Quantitative comparison of applying SOTA SR methods, two-stage SR and CAR methods, and our CAJNN. The
best two results are highlighted in red and blue colors, respectively. Our method greatly outperforms all two-stage methods in
terms of PSNR and SSIM, while having a relatively small model size and less runtime.

QF Method Network Runtime (s) Parameters (Million) Set5 Set14 BSD100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

10

SR

Bicubic - - 23.99 0.6329 22.94 0.5513 23.33 0.5303 20.95 0.5182 21.94 0.6383
EDSR 1.94 43.1 23.41 0.6019 22.48 0.5272 22.96 0.5098 20.57 0.5006 21.53 0.6151
RCAN 2.04 16 23.14 0.5733 22.29 0.5064 22.78 0.4984 20.36 0.4819 21.21 0.5878
RRDB 0.65 16.7 22.43 0.5223 22.86 0.5051 20.43 0.4940 20.43 0.4940 21.34 0.6075

CAR+SR ARCNN+RRDB 3.20+0.65 0.56+16.7 24.21 0.6699 23.38 0.5774 23.63 0.5474 21.28 0.5466 22.36 0.6856
DnCNN+RRDB 0.38+0.65 0.06+16.7 24.07 0.6434 23.13 0.5582 23.37 0.5324 21.04 0.5305 22.10 0.6532

Joint CAR&SR CAJNN (ours) 0.48 14.8 25.04 0.7169 23.95 0.6028 23.84 0.5598 21.97 0.5977 23.29 0.7333
CAJNN (ours, self-ensembled) 2.50 14.8 25.14 0.7202 24.03 0.6052 23.88 0.5610 22.18 0.6051 23.44 0.7377

20

SR

Bicubic - - 25.32 0.6761 23.85 0.5870 24.14 0.5611 21.66 0.5526 22.84 0.6724
EDSR 1.94 43.1 24.76 0.6490 23.59 0.5707 23.88 0.5482 21.38 0.5427 22.58 0.6549
RCAN 2.04 16 24.44 0.6226 23.40 0.5502 23.65 0.5351 21.12 0.5234 22.14 0.6253
RRDB 0.65 16.7 24.65 0.6450 23.57 0.5661 23.79 0.5442 21.25 0.5365 22.38 0.6474

CAR+SR ARCNN+RRDB 3.20+0.65 0.56+16.7 25.40 0.7082 24.30 0.6091 24.39 0.5755 22.02 0.5811 23.52 0.7172
DnCNN+RRDB 0.38+0.65 0.06+16.7 25.55 0.6946 24.24 0.6001 24.28 0.5679 21.90 0.5732 23.24 0.6961

Joint CAR&SR CAJNN (ours) 0.48 14.8 26.59 0.7604 25.03 0.6391 24.70 0.5924 23.06 0.6482 24.81 0.7783
CAJNN (ours, self-ensembled) 2.50 14.8 26.65 0.7633 25.10 0.6404 24.74 0.5936 23.28 0.6550 24.98 0.7820

40

SR

Bicubic - - 26.38 0.7154 24.55 0.6201 24.77 0.5898 22.26 0.5877 23.66 0.7081
EDSR 1.94 43.1 26.01 0.6972 24.48 0.6120 24.62 0.5836 22.18 0.5893 23.73 0.7003
RCAN 2.04 16 25.70 0.6726 24.30 0.5936 24.36 0.5704 21.86 0.5690 23.13 0.6673
RRDB 0.65 16.7 25.99 0.6958 24.50 0.6079 24.54 0.5804 22.10 0.5851 23.50 0.6918

CAR+SR ARCNN+RRDB 3.20+0.65 0.56+16.7 26.65 0.7495 25.16 0.6424 25.06 0.6053 22.82 0.6235 24.68 0.7578
DnCNN+RRDB 0.38+0.65 0.06+16.7 26.87 0.7403 25.15 0.6373 25.00 0.5995 22.78 0.6194 24.42 0.7404

Joint CAR&SR CAJNN (ours) 0.48 14.8 28.05 0.7981 25.96 0.6729 25.43 0.6240 24.09 0.6962 26.25 0.8177
CAJNN (ours, self-ensembled) 2.50 14.8 28.16 0.7993 26.03 0.6742 25.46 0.6251 24.31 0.7011 26.44 0.8211

Full-size input Input RCAN ARCNN+RRDB ARCNN+RCAN DnCNN+RRDB DnCNN+RCAN Ours (CAJNN)

Fig. 4: CAR & SR performance comparison of different methods on a user’s image from the WIDER face dataset [29].
Compared with previous methods, our model can generate artifact-free high-resolution images with sharp edges.

We compare the total accuracy of generic text detection on
the ICDAR2013 Focused Scene Text dataset [30] with TPS-
ResNet-BiLSTM-Attn [43] as the text recognition method. The
baseline result is acquired by directly recognizing the original
input images. As a comparison with the baseline, we use the
CAJNN model as described in previous sections to generate
artifact-free SR images from the original images and conduct
recognition on the output images.

As can be seen in Table II, the preprocessing of CAJNN
improves the recognition accuracy from 85.30% to 85.75%,
which indicates that the outputs of our model are not only
visually appealing to human viewers, but also include more
distinct information for the text recognition network as shown
in Figure 5. It is worth noting that our output image is 4×
the size compared with the baseline inputs, and the average
detection time is increased from 31.22s to 41.56s. Although
the improvement in accuracy demonstrates the positive effect
yielded by our model, the rise in computation is hard to
ignore. Therefore, we disentangle the influence of SR and
CAR by bicubicly downsampling the CARSR output images
and acquire the third recognition result. Since the image size
remains the same as that of the original image, the detection
time is identical to the baseline. The recognition accuracy
still improves 0.27% compared with the baseline due to the
reduction of compression artifacts, which indicates that our
model is capable of extracting and maintaining critical features
of input images. This experimental result points out a plausible

direction for future text recognition research: the image quality
plays a vital role in the recognition accuracy, which can be
improved by utilizing the priors learned from a pretrained
CARSR model.

TABLE II: Text recognition accuracy on the ICDAR 2013
Focused Scene Text dataset [30]. Compared with the baseline
method, the introduction of our CARSR method improves the
detection performance by 0.45% (without downsampling) and
0.27% (with downsampling).

Method Accuracy Detection Time (s)
Baseline [43] 85.30% 31.22
Ours + Baseline [43] 85.75% 41.56
Ours + Downsample + Baseline [2] 85.57% 31.22

D. Results for Extremely Tiny Face Detection

Extremely tiny face detection is another practical, yet chal-
lenging task in high-level computer vision. Most of the state-
of-the-art (SOTA) face detectors [44], [45] for in-the-wild
images have already taken various scales and distortions into
consideration to achieve impressive detection performance.
[46] proposed a solution to tackle tiny face detection by
explicitly restoring an HR face from a small blurry one using
a Generative Adversarial Network (GAN) [47].

We experimentally validate the effect achieved by our CA-
JNN on tiny face images in the WIDER FACE dataset [29] by



GT Ours (×4) Ours (downsampled)
Fig. 5: Test samples of ICDAR2013 dataset [30] (word 161,
word 836). The first column shows original input images,
the second column is the CARSR output generated by our
method, and the third column is acquired by downsampling
the second column. By comparing the detection results in the
first and second columns, our method can serve as a supportive
method for the recognition of low-resolution texts. Besides,
the artifact-free image in the third column can also provide
more recognizable features for the baseline model without
increasing the image size.

TABLE III: Average precision of three data types in the
WIDER FACE validation set [29] with the same face detector
[48]. The application of our CARSR method greatly improves
the detection performance with LR images on all three subsets.

Input Data Easy Medium Hard
GT 0.900 0.887 0.792
LR 0.824 0.692 0.317
LR + Ours 0.893 0.857 0.611

comparing the detection results from the following three types
of data: original HR (serves as the baseline), downsampled LR
(serves as the extremely tiny face inputs), and CARSR outputs
from our model. [48] is applied as the backbone face detector
(We use an unofficial PyTorch implementation provided by
https://github.com/varunagrawal/tiny-faces-pytorch).

Table III shows the Average Precision (AP) of the down-
sampled tiny images and our enhanced ones on all the three
validation sets (easy, medium, and hard) of WIDER FACE
[29]. From Table III, we observe that the data processed by
CAJNN dramatically improves the detection of LR inputs from
0.317 to 0.611 in AP on the hard set. The reason is that the
baseline detector performs downsampling operations by large
strides on the tiny faces. Considering the fact that the tiny faces
themselves contain less information than average, the detailed
information of face structure is lost after several downsampling
convolutions. In contrast, our CAJNN provides an artifact-
free SR image, which can boost the detection performance by
better utilizing the information of small faces. In Figure 6, the
precision-recall curve of our reconstructed image (green line)
is close to the ground truth (red line) on the easy and medium
subsets. In the hard subset, our CAJNN yields a significant
improvement compared to the LR curve. The gap between our
output and the GT is due to the irreversible loss of information
in extremely tiny faces that happens more frequently in the
hard set during the downsampling process.

TABLE IV: Ablation Study on the validation set (Set5). We
report the performance of CAJNN without the long-range skip
connection and ASPP as the baseline. Rows 1-3 show the
influence of different ways to extract contextual information
by replacing ASPP with other network structures. Rows 4-
5 compare the effect of two different upsampling methods on
PSNR. The combination of the ASPP and Pixelshuffle modules
yields the best performance, and thus is adopted in our network
architecture.

Model Base 1 2 3 4
Non-local module

√

ASPP
√ √

Seqeuntial atrous pooling
√

Upconvolution
√ √ √

Pixelshuffle
√ √

PSNR (dB) 27.868 28.274 28.276 28.292 28.262

E. Ablation Study

Effect of Multi-scale Information As discussed in previous
sections, both intra- and inter-block context information is
important for designing a CARSR network. In other low-level
vision tasks, context information at different scales has already
been proved to be effective in improving network performance.
Inspired by the first convolution layer of the ResNet [49],
previous researchers [50] applied 7× 7 convolution to extract
the context features for the video frame interpolation task.
However, such big kernels bring a tremendous number of
parameters to the network, especially when embedded in
the feature domain, resulting in higher computational cost.
Another way of enlarging the filter’s receptive field is to
use a non-local module [51], [52], where the input images
are downsampled by convolutional strides and processed at
different scales. The non-local module has a rather complex
structure and also a large number of parameters. In order to
use the context information in a much simpler and lighter
representation, our method adopts atrous convolution. By ad-
justing the dilation rate r, the filter can incorporate the context
information from a larger receptive field without dramatically
increasing the number of parameter as compared to the above
methods.

We conduct an ablation study to illustrate the effect of
different ways of representing contextual information in Table
IV. In Rows 1-3, we compare the performance of the non-local
module, ASPP, and sequential atrous pooling. Comparing the
base model to Column 1 in Table IV, we can conclude that the
introduction of multi-scale information via a non-local module
can significantly improve the PSNR by 0.406 dB. This result
validates the superiority of aggregating both intra- and inter-
block features rather than using a purely local representation
for the CARSR task. Furthermore, as seen by comparing
Columns 1 and 2, replacing the non-local module by our
well-designed ASPP can improve the PSNR by 0.002 dB.
Although the improvement is rather small, it is worth noting
that the ASPP has fewer convolution layers and parameters,
which results in a smaller model size and fewer FLOPs.
Remarkably, it can achieve results that are comparable, or even
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Fig. 6: The precision-recall curve of three subsets in WIDER FACE [29]. The AOC (area under curve) reflects the detector’s
performance on each type of data (GT, LR and CARSR). With preprocessing by our model, the detection performance of tiny
images can be improved close to that achieved with GT. (Zoom in for a better view.)

better than that yielded by models with more parameters. By
comparing Columns 3 and 4, we also note that the PSNR of
ASPP is higher than that of sequential atrous pooling by 0.03
dB, which means that the pyramid-fusion structure is more
efficient in representing the multi-scale information. Finally,
by comparing Columns 2 and 3 of Table IV, we can observe
that the PixelShuffle layer brings a 0.16 dB improvement to
PSNR.
End-to-End Supervision by Joint CAR and SR Another
ablation study on supervising the CARSR task is conducted
to illustrate the effect of joint end-to-end training. Instead of
supervising with IHRHQ, we attempt to disentangle the CAR
and SR by introducing a reconstruction loss according to the
definition in Equation 6, where we can generate an artifact-free
LR image ILRHQ from the ground truth IHRHQ:

ILRHQ = (k ⊗ IHRHQ) ↓s, (6)

and use it to explicitly supervise the intermediate CAR
output Ĝ(fL

′
) after the context-aware module:

lLR = l(ILQHQ, Ĝ(fL
′
)). (7)

Denoting the pixel-wise loss of the final output and ground
truth (shown in Equation 1) as lHR, the overall training loss
becomes:

l = lHR + λlLR, (8)

by increasing the weight λ, we can acquire models trained
with higher disentanglement levels. We train three models with
λ = 0, 1, 16 while keeping all the other factors the same. The
performance of these models on our validation set is shown
in Table V. The trend is obvious: the PSNR increases as the
entanglement increases, which demonstrates the effectiveness
of the joint CARSR method with a single-stage network.

V. CONCLUSION

In this paper, we propose a single-stage network for the
joint CARSR task to directly reconstruct an artifact-free high-
resolution image from a compressed low-resolution input. To
address the CARSR problem, we make use of the contextual
information by introducing a specially designed ASPP that
integrates both intra- and inter-block features. Our experiments
illustrate the effectiveness and efficiency of our method with
both standard test images and real-world images. Moreover,

TABLE V: Ablation Study on joint end-to-end supervision. We
introduce the explicit reconstruction loss as a disentanglement
mechanism of CAR and SR. By changing the weight of this
loss term, we can study the effect of different levels of joint-
supervision. Among all the settings, the model trained without
the reconstruction loss performs best on our validation set.

Model a b c
Weight of reconstruction loss λ 16 1 0
PSNR (dB) 27.507 27.627 27.672

the extensive experimental results reveal a high potential of
enhancing the performance of current methods for various
high-level computer vision tasks, e.g. real-scene resolution text
recognition, and extremely tiny face detection.
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