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Abstract001

Large Vision-Language Models (LVLMs)002
have recently shown promising results on003
various multimodal tasks, even achieving004
human-comparable performance in certain005
cases. Nevertheless, LVLMs remain prone to006
hallucinations—they often rely heavily on a sin-007
gle modality or memorize training data without008
properly grounding their outputs. To address009
this, we propose a training-free, tri-layer con-010
trastive decoding with watermarking, which011
proceeds in three steps: (1) select a mature012
layer and an amateur layer among the decod-013
ing layers, (2) identify a pivot layer using a014
watermark-related question to assess whether015
the layer is visually well-grounded, and (3)016
apply tri-layer contrastive decoding to gener-017
ate the final output. Experiments on public018
benchmarks such as POPE, MME and AM-019
BER demonstrate that our method achieves020
state-of-the-art performance in reducing hal-021
lucinations in LVLMs and generates more vi-022
sually grounded responses. Our code will be023
publicly available upon publication.024

1 Introduction025

Interest in Large Vision-Language Mod-026

els (LVLMs) has surged recently, driven by027

integration of powerful large language models028

(LLMs) with visual encoders. This fusion enables029

a single model to interpret complex images030

and generate coherent descriptions. Recent031

LVLMs like LLaVA (Liu et al., 2023) and032

InstructBLIP (Dai et al., 2023) exemplify this033

trend: LLaVA connects a vision encoder to an034

LLM via a simple projection, while InstructBLIP035

uses a dedicated query transformer to bridge036

modalities. Such LVLMs have demonstrated037

impressive performance on tasks including image038

captioning, visual question answering, and other039

multimodal benchmarks.040

A key limitation of LVLMs is their tendency041

to hallucinate—generating details absent from the042
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Figure 1: Architectural comparison between (a) the con-
ventional decoding method of LVLMs and (b) our pro-
posed watermark-based tri-layer contrastive decoding
method. To mitigate hallucinations in LVLM, we lever-
age watermark for selecting visually grounded layer.

image, such as naming non-existent objects or mis- 043

attributing properties (see Fig. 1). Such halluci- 044

nations are often caused by the dominance of uni- 045

modal (language) priors. A lightweight vision mod- 046

ule is often paired (and fine-tuned) with LLMs, 047

which causes a modality imbalance where the lan- 048

guage side can overwhelm the visual side (Han 049

et al., 2022; Niu et al., 2021; Wu et al., 2022; Yan 050

et al., 2023), outputting responses based mainly 051

on LLMs’ contextual or statistical biases. Thus, 052

mitigating hallucinations is crucial for high-stakes 053

applications, such as autonomous driving, medi- 054

cal imaging, and legal evidence analysis, where 055

hallucinated responses could lead to severe conse- 056

quences. 057

To mitigate such hallucinations, various ap- 058

proaches have been introduced. A straightforward 059

approach is fine-tuning or specialized training: ad- 060

justing model weights on curated datasets that em- 061

phasize image-grounded truth (Gunjal et al., 2024; 062

Yin et al., 2024a; Sarkar et al., 2025b), or employ- 063

ing Reinforcement Learning from Human Feed- 064

back (RLHF) or Direct Preference Optimization 065
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(DPO) to penalize hallucinated outputs (Sun et al.,066

2023; Zhao et al., 2024). More recently, training-067

free inference-time contrastive decoding methods068

have emerged as efficient alternatives. For exam-069

ple, VCD (Leng et al., 2023) contrasts original and070

perturbed visual inputs to recalibrate the model’s071

reliance on language priors. M3ID (Favero et al.,072

2024) boost visual relevance via mutual informa-073

tion, while AVISC (Woo et al., 2024) monitors074

and adjusts visual attention distributions. Octo-075

pus (Suo et al., 2025) combines these strategies076

by dynamically selecting contrastive approaches077

through DPO-trained controllers. However, exist-078

ing methods often overlook how visual tokens in-079

teract with language across layers, assuming final080

outputs suffice for grounding. To address this, we081

embed lightweight visual watermarks into input082

images and evaluate layer-wise consistency via tar-083

geted visual queries. This enables the identification084

of the most visually grounded intermediate layer085

without retraining or architectural modifications,086

forming the basis of our tri-layer decoding strategy.087

In this paper, we propose a novel training-free de-088

coding strategy called Tri-layer Contrastive Decod-089

ing (TCD), which employs a watermark to guide090

the identification of the most visually grounded091

intermediate layer. To select this layer, we em-092

bed the watermark into the input image, query a093

corresponding ad-hoc question, and compare the094

probability distributions of an answer token across095

all layers. We explore maximum probability gain096

search, which identifies the layer based on the097

probability gain of the label token prompted by098

the watermark between adjacent layers. Given099

such visually grounded layer, we decode the model100

using tri-layer contrastive decoding with two ad-101

ditional layers, i.e., mature layer defined by top102

layer and amateur layer with the maximum Jensen-103

Shannon Divergence (JSD) compared to the mature104

layer, inspired by DoLa (Chuang et al., 2024). We105

evaluate our method on widely-used hallucination106

benchmarks—POPE (Li et al., 2023c), MME (Fu107

et al., 2024), and AMBER (Wang et al., 2023)—108

and show that the proposed approach achieves109

state-of-the-art performance across various mod-110

els and settings. Detailed analyses further confirm111

the validity of our approach, demonstrating that112

watermark-guided TCD effectively mitigates hallu-113

cination. Our contributions are as follows:114

• We propose Tri-layer Contrastive Decoding115

(TCD), a training-free inference framework116

that mitigates hallucination by contrasting 117

three layer-wise outputs including mature, am- 118

ateur, and visually grounded layer. 119

• We introduce a novel watermark-based ap- 120

proach to identify visually grounded layers 121

in LVLMs by measuring visual information 122

gain across intermediate outputs. Leverag- 123

ing early-exit decoding with auxiliary visual 124

prompts, our method enables interpretable and 125

training-free layer selection. 126

• Extensive experiments on various benchmarks 127

and models demonstrate the effectiveness of 128

our proposed method, achieving state-of-the- 129

art performance. Further analyses confirm 130

that hallucinations are indeed alleviated, both 131

quantitatively and qualitatively. 132

2 Related Work 133

Hallucinations in LVLMs. Various large vision- 134

language models (LVLMs) have increasingly been 135

introduced to improve the conventional multi- 136

modal capabilities of traditional VLMs by lever- 137

aging and extending linguistic abilities of large 138

language models (LLMs) (Liu et al., 2023; Li et al., 139

2023a; Bai et al., 2023a; Yang et al., 2024). De- 140

spite their promising performance in various mul- 141

timodal tasks, LVLMs inherit the hallucination 142

problem that is prevalent in LLMs. Among di- 143

verse types of hallucinations, object hallucination— 144

where the model’s descriptions of objects are not 145

well-grounded in the input image—has drawn par- 146

ticular attention (Biten et al., 2022; Li et al., 2023c). 147

To mitigate hallucinations in LVLMs, several 148

approaches have been proposed. Some frame hal- 149

lucination as a binary classification task (Li et al., 150

2023c), while others design post-hoc correction 151

modules (Zhou et al., 2023), or apply factually aug- 152

mented reinforcement learning from human feed- 153

back (RLHF) (Sun et al., 2023) and Direct Prefer- 154

ence Optimization (DPO) (Zhao et al., 2024). How- 155

ever, these methods typically require additional 156

training stages and curated data. 157

More recently, training-free, inference-time 158

methods have emerged to re-balance models dur- 159

ing decoding. OPERA (Huang et al., 2024) penal- 160

izes over-aggregated anchor tokens in beam search. 161

VCD (Leng et al., 2023) contrasts outputs from 162

original and distorted visual inputs to reduce over- 163

reliance on unimodal priors and statistical biases. 164

ICD (Wang et al., 2024) suppress hallucinatiosn 165
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Figure 2: An overview of TCD, which leverages a tri-layer contrastive decoding approach by dynamically selecting
and comparing following three decoding layers: (i) mature layer, (ii) amateur layer, and (iii) visually well-grounded
layer. The process involves embedding a watermark into the input image, posing an ad-hoc question (e.g., “What is
the last captcha character in the image?”), and selecting the visually well-grounded layer. Note that the top layer is
chosen as the mature layer, while the amateur layer is selected based on the highest JSD from the mature layer.

by contrasting responses to perturbed instructions.166

M3ID (Favero et al., 2024) upweights image fea-167

tures during token sampling, and AVISC (Woo168

et al., 2024) reduces attention to blind tokens by169

monitoring visual focus. Octopus (Suo et al., 2025)170

dynamically selects contrastive decoding strategies171

using a controller trained via DPO.172

All of these methods share a common philoso-173

phy: adjusting model behavior post hoc at infer-174

ence time without retraining. Our proposed method175

aligns with this direction, but uniquely explores in-176

termediate layers of the LVLM decoder. Instead177

of modifying inputs or attention distributions, we178

leverage the transformer’s hierarchical represen-179

tations to identify and utilize visually grounded180

layers for more reliable decoding.181

Layer-wise Contrastive Decoding. Contrastive182

decoding (CD) is originally introduced in LLMs183

to improve fluency and coherence by contrasting184

the outputs of a strong expert model and a weaker185

amateur model (Li et al., 2022). Building on this186

idea, CAD (Shi et al., 2024) leverages surround-187

ing context to guide generation more effectively,188

while ACD (Gera et al., 2023) enhances diversity189

and coherence in small LMs by fine-tuning early-190

layer prediction heads. Notably, DoLa (Chuang 191

et al., 2024) introduces a layer-wise contrastive de- 192

coding framework that dynamically selects early 193

layers based on token complexity to reduce halluci- 194

nations. 195

While these studies primarily focus on LLMs, 196

applying CD to LVLMs poses new challenges, as 197

models must incorporate both visual and linguistic 198

modalities. Interestingly, we observe that interme- 199

diate layers in LVLMs often generate outputs that 200

are more visually well-grounded than those from 201

the final decoding layer. This observation moti- 202

vates our use of layer-wise contrastive decoding as 203

a potential solution for mitigating hallucinations. 204

However, identifying visually grounded layers 205

in a training-free setting remains difficult. To ad- 206

dress this, we propose leveraging watermarks— 207

perturbations embedded into the input image that 208

do not alter the final output but serve as cues for 209

judging whether an intermediate layer is visually 210

grounded. 211

3 Method 212

Given a visual context v (e.g., an image) and a tex- 213

tual query x, LVLMs generate a textual response y. 214

The response y = {y1, y2, . . . , yT } is calculated 215
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in an auto-regressive manner, where each token216

is predicted sequentially based on the preceding217

tokens, and T represents the total number of to-218

kens in the generated response. Formally, the token219

probability distribution at each time step t ∈ [1, T ]220

can be formulated as follows:221

pθ(yt | x, v, y1:t−1) =
exp(zθ(yt | x, v, y1:t−1)/τ)

Σy′
t∈Yexp(zθ(y′

t | x, v, y1:t−1)/τ)
,

(1)222

where θ denotes model parameters, z represents223

the logit of a layer, τ is a temperature for logit scal-224

ing, and y′t is a token in vocabulary set Y . Output225

token selection, or decoding, determines the final226

generated response y by selecting tokens from the227

probability distribution in Eq. (1). Common decod-228

ing strategies include greedy decoding (Sutskever229

et al., 2014), beam search (Bahdanau et al., 2014),230

and top-k sampling (Fan et al., 2018).231

Despite the effectiveness of these decoding232

strategies, a critical challenge remains: hallucina-233

tion. In the context of LVLMs, even if the probabil-234

ity distribution pθ assigns a high likelihood, a token235

yt is considered hallucinated if it lacks sufficient236

grounding in the provided textual query x or visual237

context v. To this end, we propose a novel tri-layer238

contrastive decoding with a watermark-guided vi-239

sual layer selection scheme. This approach aims to240

realign the model’s token probability distribution241

with the factual constraints in x and v, thereby re-242

ducing the incidence of hallucinations in the gener-243

ated output. An overview of our proposed method244

is shown in Fig. 2.245

3.1 Watermark-Guided Layer Selection246

To mitigate hallucinations in LVLMs, we first se-247

lect the most visually representative layer through248

watermark-based verification. The key intuition249

is that the visual information in LVLMs evolves250

across layers, which aligns with observations from251

prior work on LLMs (Chuang et al., 2024).252

Watermark Integration. To identify a visually in-253

formative layer, a novel question emerges: how can254

we identify a layer as visually informative, while255

preserving the visual representations of an input256

image? This motivates us to design a watermark-257

based verification approach that can be seamlessly258

integrated with an input image and simultaneously259

provides a cue about the information in each layer.260

Specifically, we embed a watermark image into261

the input image and prepend a watermark question262

to the textual query. The watermark serves to ex-263

amine each layer’s representation in the model by 264

leveraging image data related to vision-language 265

tasks, such as CAPTCHAs. Formally, given a wa- 266

termark image Iwm and a watermark textual query 267

xwm, the visual context v and the textual query x 268

are generated as follows: 269

v = fvisual(Iorg + αIwm), (2) 270

x = concat(xwm, xorg), (3) 271

where fvisual is a visual encoder, Iorg is the input 272

image, xorg is the input text query, and α is the 273

opacity hyperparameter for the watermark. For 274

clarity, we construct a watermark question that has 275

a fixed length and a clear answer (e.g., “What is 276

the last number in the CAPTCHA image?”). In 277

this section, we assume that Iwm is appropriately 278

preprocessed (e.g., in terms of size and position) 279

for the integration. For further details and analyses 280

of watermark preprocessing, please see Section 4.1, 281

as well as Algorithm 1 and Fig. 6, both located in 282

the Appendix. 283

Layer Selection in LVLMs. Our goal is to identify 284

the decoding layer lv that contains visually informa- 285

tive representations using the watermark-integrated 286

inputs x and v. We select a layer based on the prob- 287

ability distribution pθ in Eq. (1), where the logit z is 288

computed using the hidden representation ht−1 and 289

the vocabulary head g, i.e., z = g(ht−1). Although 290

z is often computed using the last layer representa- 291

tion for final output generation (i.e., z = g(h
(L)
t−1)), 292

it is also possible to apply the language head g to 293

intermediate layers—an approach known as early 294

exit (Teerapittayanon et al., 2016; Schuster et al., 295

2022; Chuang et al., 2024)—to leverage a model’s 296

implicit factual knowledge. 297

Given the watermark-integrated textual query x 298

and visual context v, the hidden representation of 299

layer l, h(l)t−1, is generated by first processing the 300

input through the embedding layer fembed and then 301

through a series of transformer layers f (l)
trans: 302

h
(0)
t−1 = fembed(x, v, y1:t−1, ), (4) 303

h
(l)
t−1 = f

(l)
trans(h

(l−1)
t−1 ), l ∈ {1, 2, . . . , L}, (5) 304

where L is the total number of transformer layers. 305

Using these hidden representations, we compute 306

the layer-wise token probability distribution p
(l)
θ : 307

p
(l)
θ = softmax(z

(l)
θ ) = softmax(g(h

(l)
t−1)). (6) 308
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LVLM Method MSCOCO OKVQA GQA
Acc.(↑) F1(↑) Acc.(↑) F1(↑) Acc.(↑) F1(↑)

Referenced Results (Not Directly Comparable)

LLaVA-v1.5
EOS 86.80 86.00 - - - -
HA-DPO 86.63 86.87 - - - -
Octopus 85.79 83.44 - - - -

InstructBLIP
OPERA 79.13 79.74 - - - -
HA-DPO ∗ 85.43 85.64 - - - -
Octopus 84.79 83.43 - - - -

Comparable Results (Training-Free Contrastive Decoding)

LLaVA-v1.5

Base 82.04 80.42 75.58 79.23 74.39 78.58
+ ICD 83.26 82.53 - - - -
+ VCD 82.96 81.81 74.72 78.87 74.10 78.70
+ M3ID 82.57 80.26 76.16 79.91 74.60 78.99
+ AVISC 83.39 81.01 77.47 80.87 76.33 80.40
+ TCD (Ours) 87.00 86.65 86.46 87.07 85.47 85.44

InstructBLIP

Base 79.14 79.31 74.93 77.86 73.84 76.70
+ ICD 79.14 79.92 - - - -
+ VCD 79.46 79.49 75.59 78.28 75.36 77.87
+ M3ID 80.59 80.15 75.83 78.80 74.68 77.62
+ AVISC 84.04 82.62 80.92 82.62 79.85 80.98
+ TCD (Ours) 84.10 83.88 82.88 84.33 80.96 82.39

Table 1: Performance comparison on discriminative tasks (ALL split) across the POPE-MSCOCO, A-OKVQA, and
GQA datasets. The best results are shown in bold and the second-best is underlined. ∗ Denotes InstructBLIP with
the Vicuna-13B backbone; all other models are based on Vicuna-7B. Complete results for the Random, Popular, and
Adversarial subsets are provided in Appendix Tables 9 to 11.

Watermark-Guided Visual Layer Selection.309

Given the layer-wise probability distribution of the310

watermark label ywm, we identify the layer with the311

greatest probability increase compared to the pre-312

vious layer—referred to as maximum probability313

gain search—as formulated as follows:314

lv = argmaxl ∆p
(l)
θ (ywm | x, v) (7)315

where ∆ denotes the difference in probability be-316

tween adjacent layers:317

∆p
(l)
θ =


p
(l)
θ − p

(l−1)
θ , (i)

log

(
p
(l)
θ

p
(l−1)
θ

)
. (ii)

(8)318

Note that the watermark textual query xwm is319

prepended to x (see Eq. (3)); therefore, p(l)θ is mea-320

sured using the first sequence of generated tokens321

(for simplicity, we ignore the special tokens).322

3.2 Tri-layer Contrastive Decoding323

In our framework, we leverage the visual layer lv as324

a reference probability distribution for contrastive325

decoding. Following prior work (Chuang et al.,326

2024), we define the final layer L as a mature layer327

and use it as an anchor distribution. The negative328

distribution, la (referred to as an amateur layer),329

is selected based on the highest Jensen-Shannon330

Divergence (JSD) between the distributions of the 331

intermediate layers and the anchor distribution: 332

la = argmaxl JSD
(
p
(L)
θ , p

(l)
θ

)
, (9) 333

where l ∈ {1, 2, . . . , L − 1} is an intermediate 334

layer index. Note that a high JSD implies that such 335

a layer offers an alternative perspective prior to the 336

final layer’s information accumulation, making it a 337

strong candidate for contrastive decoding. 338

Constraints on Contrastive Decoding. When a 339

token exhibits high confidence in both the mature 340

layer L and the amateur layer la, the contrastive de- 341

coding process may reduce the relative difference 342

between probabilities, making a previously certain 343

decision ambiguous. To address this, we adopt the 344

Adaptive Plausibility Constraint (APC), following 345

prior works (Li et al., 2023b; Leng et al., 2023; 346

Chuang et al., 2024). Formally, we define the set 347

of viable tokens V as follows: 348

V(xt | x1:t−1) =
{
xt ∈ X | p(L)

θ (xt) ≥ βmax
w

p
(L)
θ (w)

}
(10) 349

where β ∈ [0, 1] is a hyperparameter that deter- 350

mines the threshold for plausible token selection. 351

Final Output Generation. To generate the final 352

response y, we first define a constraint function 353
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LVLM Method Object-level Attribute-level Total(↑)
Existence(↑) Count(↑) Position(↑) Color(↑)

LLaVA-v1.5

Base 173.57 110.00 100.47 125.24 509.28
+ VCD 172.14 117.14 103.33 119.52 512.14
+ M3ID 178.33 107.22 96.39 127.50 509.44
+ AVISC 189.29 104.76 106.19 127.86 528.09
+ TCD (Ours) 185.00 158.3 135.0 175.0 653.30

InstructBLIP

Base 170.19 89.52 67.62 114.76 442.09
+ VCD 172.62 98.33 71.90 117.14 459.99
+ M3ID 173.89 89.72 72.72 110.56 446.88
+ AVISC 184.76 82.85 74.76 131.43 473.80
+ TCD (Ours) 180.00 116.67 76.66 158.33 531.67

Table 2: Performance comparison on the discriminative
task using the coarse-grained perception subset of the
MME (Fu et al., 2024) benchmark.

F (·) to leverage APC on the input tokens:354

F (zθ(xt)) =

{
z(L) − z(la) + λz(lv) if xt ∈ V(xt | x<t)

−∞ otherwise.
(11)355

This formulation ensures that contrastive decoding356

effectively integrates visual grounding while avoid-357

ing false positives (implausible tokens receiving358

disproportionately high scores) and false negatives359

(valid tokens being overlooked due to contrastive360

decoding effects) through the application of APC,361

thereby reducing hallucinations in generated re-362

sponses. Finally, we generate the token sequence y363

using the refined logits under the APC constraint:364

y ∼ p̂θ = softmax(F (zθ(xt))). (12)365

4 Experiments366

4.1 Experimental Setup367

Benchmarks and LVLMs. To evaluate LVLM’s368

hallucination performance, we use three widely369

used benchmarks: POPE (Li et al., 2023c), a per-370

ception subset of MME (Fu et al., 2024), and AM-371

BER (Wang et al., 2023). Following previous372

works (Leng et al., 2023; Woo et al., 2024; Suo373

et al., 2025), we evaluate the discriminative task374

on POPE, MME and generative task on AMBER.375

POPE is used to assess object hallucination by376

querying whether a specific object exists in an im-377

age, using a balanced set of positive and negative378

queries. It employs three sampling strategies—379

adversarial, popular, and random—across three380

datasets (i.e., MS-COCO (Lin et al., 2014), A-381

OKVQA (Schwenk et al., 2022), and GQA (Hud-382

son and Manning, 2019)), thereby generating a383

total of 27,000 query-answer pairs. In addi-384

tion, we use the MME benchmark to evaluate385

LVLMs on perception-related tasks. Following386

prior work (Yin et al., 2024b; Leng et al., 2023), we387

focus on object-level hallucination (existence and388

count) and attribute-level hallucination (position389

LVLM Method CHAIR(↓) Cover.(↑) HalRate(↓) Cog.(↓)
Referenced Results (Not Directly Comparable)

LLaVA-v1.5

EOS 5.1 49.1 22.7 2.0
HA-DPO 6.7 49.8 30.9 3.3
HALVA 6.6 53.0 32.2 3.4
Octopus 4.8 49.2 23.4 1.2

Comparable Results (Training free Contrastive Decoding)

LLaVA-v1.5

Base 8.0 44.5 31.0 2.2
+ VCD 6.7 46.5 27.8 2.0
+ M3ID 6.0 48.9 26.0 1.5
+ AVISC 6.3 46.6 25.6 2.0
+ TCD (Ours) 4.4 47.2 19.2 1.7

InstructBLIP

Base 8.4 46.4 31.1 2.6
+ VCD 7.6 47.7 29.9 2.2
+ M3ID 6.9 47.2 27.5 2.2
+ AVISC 6.7 46.7 28.0 2.6
+ TCD (Ours) 6.3 48.8 26.8 2.3

Appliance to a Stronger Backbone

DeepSeek-VL2-Tiny
Base 3.8 56.8 18.2 1.0
+ VCD∗ 4.7 56.9 22.4 1.3
+ TCD (Ours) 3.6 56.3 16.5 0.8

Table 3: Performance comparison on the generative task
using the AMBER (Wang et al., 2023) benchmark. ∗

Indicates results implemented using the official code.

and color). For generative tasks, we utilize AM- 390

BER, an automated LLM-free multi-dimensional 391

benchmark. Four metrics including Cover, Hal, 392

Cog, and CHAIR (Rohrbach et al., 2018) are used 393

to measure the generation quality of our method. 394

Specifically, AMBER compares generated object 395

mentions against human-annotated ground truth to 396

evaluate object coverage (Cover), hallucination fre- 397

quency (Hal), cognitively plausible hallucinations 398

(Cog), and the proportion of hallucinated objects 399

(CHAIR), providing a comprehensive and cost- 400

efficient assessment of hallucination. In our ex- 401

periments, we evaluate our method on two widely 402

used LVLMs, LLaVA-1.5 (Liu et al., 2023) and 403

InstructBLIP (Dai et al., 2023), both using Vicuna- 404

7B as the backbone. We also apply our method to 405

generative tasks using DeepSeek-VL2(Wu et al., 406

2024), a model with a Mixture of Expert (MoE) 407

architecture, thereby demonstrating the robustness 408

of TCD on a stronger backbone. 409

Implementation Details. Following prior 410

work (Chuang et al., 2024; Leng et al., 2023), 411

we set β = 0.1 for stable CD and use 20 candi- 412

date layers for both LVLMs, except in the case 413

of MME evaluation for InstructBLIP. Other pa- 414

rameters such as λ and question templates, are 415

provided in the Appendix C. We leverage sim- 416

ple yet effective CAPTCHA (Wilhelmy and Rosas, 417

2013) dataset for watermark verification. Further, 418

to seamlessly integrate a watermark into the input 419

image, we apply light preprocessing (e.g., position, 420

size, and opacity). The watermark is placed in the 421

bottom-right corner with opacity α = 0.8. Addi- 422
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Model Setting Decoding Accuracy(↑) F1(↑)

LLaVA1.5 (7B)

Random
Greedy 85.87 84.37
+ AL 87.70 (+1.83) 86.37 (+2.00)
+ AL+VL 89.50 (+1.80) 88.89 (+2.52)

Popular
Greedy 84.10 82.75
+ AL 86.63 (+2.53) 85.34 (+2.59)
+ AL+VL 87.60 (+0.97) 87.14 (+1.80)

Adversarial
Greedy 81.03 80.10
+ AL 84.27 (+3.24) 83.18 (+3.08)
+ AL+VL 83.90 (-0.37) 83.92 (+0.74)

LLaVA1.5 (13B)

Random
Greedy 85.47 84.32
+ AL 87.03 (+1.56) 85.84 (+1.52)
+ AL+VL 90.23 (+3.20) 89.20 (+3.36)

Popular
Greedy 84.07 82.89
+ AL 87.03 (+2.96) 85.84 (+2.95)
+ AL+VL 89.70 (+2.67) 89.20 (+3.36)

Adversarial
Greedy 81.90 81.14
+ AL 85.07 (+3.17) 84.03 (+2.89)
+ AL+VL 85.87 (+0.80) 85.79 (+1.76)

Table 4: Effect of the components of the proposed
contrastive decoding method: amateur layer (AM) and
watermark-based visual layer (VL). We use the LLaVa-
1.5 backbone on the POPE-MSCOCO benchmark. Per-
formance gains are highlighted in red, and performance
drops are highlighted in blue.

tional implementation details are provided in the423

Appendix A and Fig. 6.424

4.2 Experimental Results425

Comparison with SOTA Approaches. To vali-426

date the effectiveness of our method, we conduct427

evaluations using various benchmarks, models, and428

decoding methods. We use instruction fine-tuned429

LVLMs (referred to as “Base” in the tables), along430

with ICD, VCD, M3ID and AVISC, as our training-431

free contrastive decoding baselines. We addition-432

ally compare against EOS (Yue et al., 2024), HA-433

DPO (Zhao et al., 2024), HALVA (Sarkar et al.,434

2025a), and Octopus, which require additional435

training or external models, and serve as reference436

methods.437

As shown in Table 1, TCD clearly outperforms438

the baselines and achieves state-of-the-art perfor-439

mance across all three subsets of POPE (Li et al.,440

2023c), in terms of both accuracy and F1 score.441

While Octopus combines all three baseline meth-442

ods and requires additional DPO training, TCD still443

surpasses it—achieving higher performance for the444

LLaVA model and in F1 score for InstructBLIP.445

The efficacy of our method in mitigating hal-446

lucinations is further confirmed in Table 2, while447

outperforming the baselines in object and attribute448

level. We provide full perception task score in449

the Appendix Table 6. For generative task, our450

method successfully mitigated hallucinations low-451

Max Probability Gain (log)Max Probability Gain

LLaVA-v1.5

InstructBLIP

Figure 3: Heatmaps of each LVLMs’ layers selected
with POPE datasets. (COCO, AOKVQA and GQA). As
shown, the proposed methods showed consistent layer
selection with low variance.

ering the CHAIR score and Hallucination Rate of 452

AMBER bench with huge margin as shown in Ta- 453

ble 3. We also show our method’s scalability using 454

latest LVLM model, DeepSeek-VL-Tiny (Wu et al., 455

2024) with stronger backbone for both visual en- 456

coder and LLM compared with LLaVA-v1.5 and 457

InstructBLIP. 458

Visual Layer Selection Analysis. Fig. 3 shows 459

the results of our proposed visually grounded layer 460

search, demonstrating its robustness through con- 461

sistent layer selection layer selection across the 462

model. We also observe noticeable variation across 463

different models, implying representational differ- 464

ences among LVLMs. 465

Qualitative Analysis. As depicted in the Fig. 4, 466

our method successfully mitigated hallucinations 467

in the original model, increase in factuality, de- 468

scribing number of people correctly where other 469

methods suffer. While other models generates sim- 470

ilar hallucinations (i.e., cars in the background), 471

likely to be triggered from memorization of the 472

training data, our method distinguishes the house 473
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The image features a young boy standing in a 

grassy field, holding a soccer ball. He appears 

to be enjoying his time outdoors, possibly 

playing a game of soccer. In the background, 

there are two cars parked, one on the left side 

and the other on the right side of the field. 

Additionally, there is a bench located near the 

right edge of the field, providing a place for 

spectators to sit and watch the game.

The image captures a young man wearing a 

green and blue swimsuit standing on a grassy 

lawn in front of a house. The scene takes 

place near a driveway, with a car visible in the 

background on the right side of the image. 

There is a bench situated on the left side of 

the lawn, providing a place to sit and relax. 

The overall atmosphere suggests a fun and 

leisurely moment outdoors.

A young and shirtless boy is standing in a 

grassy yard, playing with a soccer ball. He is 

in the process of kicking it, demonstrating his 

enthusiasm for the game. There is a sports 

ball lying on the ground in the field, possibly 

related to his play or practice. A few cars can 

be seen in the background, one parked to the 

right of the boy and another one further to the 

left. 

TCD (Ours): 

The image features a young boy standing in a 

grassy field, holding a soccer ball in his hands. 

He appears to be enjoying his time outdoors, 

possibly preparing to play a game of soccer or 

simply practicing his skills. The boy is 

wearing swim trunks, which suggests that he 

might be at a beach or near a body of water. 

In the background, there is a house visible, 

adding to the outdoor setting. 

AVISC:

Question: Describe this image.

Base: VCD: 

Figure 4: Example generated by Base, VCD (Leng et al., 2023), AVISC (Woo et al., 2024) and our method, given
the question: “Describe this image.” We randomly sample from Amber (Wang et al., 2023) and all results are based
on LLaVA-v1.5-7b model. We highlight phrases with red if they are not well visually grounded, and with blue if
they are well visually grounded. We observe that our model successfully mitigates hallucinations compared to the
other three baselines. Additional examples are provided in Appendix Fig. 8.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
λ

0.82

0.84

0.86

0.88

0.90

Ac
cu

ra
cy

Popular
Adversarial
Random

Figure 5: Comparison of accuracy across subsets of
POPE-MSCOCO under varying λ in the ablation setup,
based on Eq. (13). While the Random and Popular
subsets show improved performance when the visual
layer dominates (i.e., lower λ), the Adversarial subset
benefits from a greater contributions of the amateur
layer (i.e., larger λ), highlighting the distinct roles of
the visual and amateur layers in mitigating different
forms of hallucination.

visible in the background.474

Tri-layer Selection Analysis. Table 4 shows that475

contrasting the visual layer (+VL) with amateur476

layer (+AL) consistently boosts F1, except in the477

adversarial split. To isolate each layer’s role, we478

interpolate the logits as follows:479

z(L) − λz(la) + (1− λ)z(lv), (13)480

and sweep λ. Fig. 5 highlight the distinct roles481

played by each layer in our tri-layer decoding482

framework. In Random and Popular subsets, ac-483

curacy increases as λ decreases, emphasizing the484

importance of the visually grounded layer lv in485

typical scenarios. Conversely, the Adversarial sub-486

set benefits from larger λ, as the amateur layer la 487

injects a complementary distribution less biased 488

by co-occurrence patterns learned during pretrain- 489

ing(Chuang et al., 2024). This helps mitigate hal- 490

lucinations triggered by visually plausible yet in- 491

correct objects. These results suggest that our tri- 492

layer formulation effectively addresses two major 493

sources of hallucination commonly discussed in 494

LVLMs: (i) internal linguistic biases and (ii) weak 495

visual grounding. The JSD-guided selection of la 496

helps counteract the former, especially in adver- 497

sarial contexts, while the watermark guided lv en- 498

hances visual alignment in standard inputs. While 499

we fix λ for simplicity in our main results, the 500

ablation findings suggest promising directions for 501

adaptive weighting strategies based on input char- 502

acteristics. 503

5 Conclusion 504

In this paper, we introduce Tri-layer Contrastive 505

Decoding (TCD), a training-free framework for re- 506

ducing hallucinations in Large Vision-Language 507

Models (LVLMs). Rather than assuming the fi- 508

nal model output always provides the best visual 509

grounding, we propose a principled approach that 510

embeds lightweight visual watermarks into input 511

images and leverages targeted visual queries to 512

probe layer-wise consistency. By combining this 513

watermark-guided visual layer selection with con- 514

trastive decoding across mature, amateur, and vi- 515

sually grounded layers, TCD dynamically recali- 516

brates the model’s reliance on vision and language, 517

significantly improving factuality. 518
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6 Limitations519

While our method demonstrates consistent im-520

provements across multiple benchmarks and mod-521

els, several limitations remain. First, our layer se-522

lection mechanism is intentionally simple and inter-523

pretable, relying on fixed, rule-based comparisons524

of intermediate logits. This choice benefits repro-525

ducibility and transparency, but more sophisticated526

or learned strategies—such as attention-based rout-527

ing or score aggregation—could further enhance528

flexibility and robustness, especially for models529

with more complex encoder-decoder architectures.530

Additionally, extending interpretability beyond de-531

coder layers to the visual encoder itself remains an532

open and promising direction.533

Second, our current implementation requires534

multiple decoding passes to evaluate candidate lay-535

ers. Although inference can be reduced to a single536

pass if the preferred layer is predefined or learned,537

developing a seamless and fully dynamic layer se-538

lection mechanism without multi-pass exploration539

is still an open challenge.540

Third, for generation tasks, we follow AMBER’s541

non-LLM-based evaluation protocol to reduce sub-542

jectivity and improve reproducibility. While this543

is consistent with prior literature, it limits direct544

comparison to studies that use LLM-based scor-545

ing. Developing a more robust evaluation frame-546

work—balancing reproducibility with semantic547

depth, for example via ensemble metrics or human-548

in-the-loop evaluation—would further strengthen549

future studies on hallucination mitigation.550

Further discussions regarding baselines and ex-551

perimental settings are provided in Appendix E.552

7 Ethics Statement553

All experiments are conducted using publicly avail-554

able datasets (POPE, MME, AMBER), none of555

which contain personally identifiable or sensitive556

information. While our method aims to reduce ob-557

ject hallucinations by improving visual grounding,558

it does not address other potential biases—such as559

social, demographic, or ethical biases—that may560

already exist in the underlying LVLMs. In cer-561

tain cases, stronger visual grounding could inadver-562

tently reinforce existing biases by making them ap-563

pear more factual. Future work may investigate the564

interaction between decoding-time visual ground-565

ing and bias.566
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Algorithm 1 Embedding Visible Identifier (Water-
marking)

Input: original image Io, watermark image Iw,
image dimensions (xo, yo), (xw, yw), and
opacity α

Let (0, 0) be the top-left pixel of Io, and Cw =

(c
(x)
w , c

(y)
w ) be the center pixel of Iw,

1: Po ← (0.9xo, 0.9yo) ▷ bottom-right anchor
pixel

2: Cw ← Po ▷ overlapping watermark
3: while Cw + (xw/2, yw/2) > (xo, yo) do
4: if c(x)w + xw/2 > xo then ▷ resize width
5: xw ← min(xw/2, xo − xw)
6: end if
7: if c(y)w + yw/2 > yo then ▷ resize height
8: yw ← min(yw/2, yo − yw)
9: end if

10: end while
11: I ← Io + αIw ▷ watermark integration

Output: watermark-embedded image I

A Ablation Study on Watermark839

Parameters840

Visual Grounding Question and CAPTCHA se-841

lection. Since the key of tri-layer contrastive de-842

coding is to select a visually grounded pivot layer843

with early exit token prediction method, “a well844

designed question” that judges a layer robustly is845

crucial. Since the LVLM utilizes the LLM, it is sen-846

sitive to both the textual and visual input queries. If847

we design a task that is simple, the token probabil-848

ity may not be meaningful to choose a pivot layer.849

From this perspective, we chose CAPTCHA (Wil-850

helmy and Rosas, 2013) as a suitable complex vi-851

sual input. Together with the visual query, we con-852

ducted a simple experiment with to fix both the853

image and text question. As shown in Fig. 6, we854

found that LVLM (i.e., LLaVA-1.5) tends to an-855

swer the last captcha character better. With some856

more finding such that LVLMs tend to have prob-857

lems with recognizing numbers such as “0”, “9”858

that may resemble the alphabet letters, we chose859

“f6ww8” as our experiment CAPTCHA. With these860

experiments, we fixed the question that select the861

visual-grounded layer as “What is the last captcha862

number in the image?”.863

Position of Character in CAPTCHA
1st 2nd 3rd 4th 5th

0.6

0.5

0.4

0.3

0.2

0.1

0.0

A
cc

ur
ay

Number
Alphabet

Figure 6: Qualitative result of CAPTCHA position.
LVLM tends to answer numbers better than alphabet,
last fifth character better than the other position.

Watermark Question:
What is the last captcha
number in the image?

8: 0.1%

Visual Grounded LayerLVLM

Layer 8

Layer 1

Top Layer

Layer 16
8: 24%

8: 80%

8: 65%

Question:
Are there six people
appear in this image?

GT: Yes
LVLM

Layer 8

Layer 1

Top Layer

Layer 16
JSD: 4.2

JSD: 2.1

JSD: 3.2

Amateur Layer

Mature Layer

Selection of Visual grounded Layer

Selection of Amateur Layer

Question:
Are there six people
appear in this image?

No : 60%
Yes : 35%

No : 40%
Yes : 45%

No : 20%
Yes : 10%

+

-

Ours:
Yes. There are six people
appear in this image

Regular:
No. There are not six

people appear in this image

LVLM (No vision)

Layer 8

Layer 1

Top Layer

Layer 16
Top Layer

Top Layer (w/o Vision)

No : 60%
Yes : 35%

No : 40%
Yes : 40%

VCD:
No. There are not six

people appear in this image

-

No: 35%
Yes: 10%

Figure 7: Examples of our tri-layer contrastive decod-
ing approach on a sample from MME benchmark. We
observe that our model outperforms the other alterna-
tives, i.e., VCD (Leng et al., 2023) and regular LVLM
model, successfully mitigating hallucinations while cur-
rent models suffers. Note that an original image without
watermark is used for all methods.

B Artifacts 864

B.1 Prompt Template 865

For each benchmark, we follow the official 866

prompt template. For LLaVA-1.5, we adopt the 867

POPE/MME instruction ending with “Please an- 868

swer the question using a single word or phrase.”, 869

a commonly used template for short answer genera- 870

tion of LVLM model. For InstructBLIP, we follow 871

its native Short answer scheme, which explicitly 872

separates the image placeholder from the question. 873

AMBER is designed as an open-ended description 874

benchmark, so we keep its original single-sentence 875

prompt. See Table 5 for detail. 876
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Dataset Model Template

POPE / MME LLaVA-1.5 <question>\n Please answer the question using a single word or phrase.

POPE / MME InstructBLIP <ImageHere> <question> Short answer:

AMBER All Describe this image.

Table 5: Prompt templates used for each dataset–model pair. All baselines and our method use the identical text
prompt.

Model Perception Score (↑)

Regular VCD Ours

LLaVA1.5 1277.6 1338.2 1500.4 (+162.2)
InstructBLIP 1050.9 1202.2 1240.73 (+38.53)

Table 6: Evaluation of hallucination using various mod-
els and decoding methods on the coarse-grained percep-
tion subset of MME (Fu et al., 2024) benchmark. The
best performances are bolded.

C Additional Implementation Details877

C.1 Hardware and Software Environment878

All experiments with LLaVA v1.5 were con-879

ducted using PyTorch 2.1.2, CUDA 12.1, while880

InstructBLIP experiments relied on PyTorch 2.0.1,881

CUDA 11.7. The two configurations reflect the882

official code bases: LLaVA (Liu et al., 2024a)883

and OPERA (the reference implementation of In-884

structBLIP) (Huang et al., 2024). Unless other-885

wise noted, inference and evaluation were run on886

a single NVIDIA RTX A6000 (48 GB). Experi-887

ments with DeepSeek-VL2-Tiny were executed on888

an NVIDIA H100 NVL.889

C.2 Hyper-parameter Configuration890

Table 7 lists the hyper-parameters used for every891

dataset–scenario–model combination. For each892

dataset we fix a single configuration and reuse it893

across the Random, Popular, and Adversarial splits894

to ensure a fair comparison. Although tuning the895

parameters per sample or subset can yield higher896

scores, our objective here is to show that visually897

grounded tri-layer selection is feasible; achieving898

optimal performance is left to future work.899

C.3 Implementation on stronger backbone900

We additionally evaluate our method on the AM-901

BER benchmark using DEEPSEEK-VL2-Tiny, a902

Mixture-of-Experts model with a substantially903

stronger backbone than Vicuna-7B despite its904

smaller parameter count (3.37 B). For the VCD905

Model Dataset (Split) λ Gain Search Candidate k

LLaVA-1.5

MSCOCO (Random) 1.0 change 20
MSCOCO (Popular) 1.0 change 20

MSCOCO (Adversarial) 1.0 change 20
AOK-VQA (Random) 0.5 log 20
AOK-VQA (Popular) 0.5 log 20

AOK-VQA (Adversarial) 0.5 log 20
GQA (Random) 0.1 log 20
GQA (Popular) 0.1 log 20

GQA (Adversarial) 0.1 log 20
MME (–) 0.5 change 20

AMBER (–) 0.5 log 20

InstructBLIP

MSCOCO (Random) 0.3 change 20
MSCOCO (Popular) 0.3 change 20

MSCOCO (Adversarial) 0.3 change 20
AOK-VQA (Random) 0.3 change 20
AOK-VQA (Popular) 0.3 change 20

AOK-VQA (Adversarial) 0.3 change 20
GQA (Random) 0.3 change 20
GQA (Popular) 0.3 change 20

GQA (Adversarial) 0.3 change 20
MME (–) 1.0 log 10

AMBER (–) 0.5 log 20

Table 7: Hyper-parameters for all dataset–scenario com-
binations. A single configuration per dataset is reused
across splits to enable consistent comparison.

Method Latency (s) (↓) Throughput (tokens/s) (↑)

LLaVA-1.5-7B 0.17 ± 0.06 32.89 ± 3.68
+ VCD 0.56 ± 0.03 17.97 ± 0.83
+ AVISC 0.28 ± 0.07 15.93 ± 1.45
+ VCD (Ours) 0.38 ± 0.01 26.88 ± 0.58

Table 8: Comparison with the baseline Contrastive De-
coding methods for the Latency and Throughput.

baseline (Leng et al., 2023), we follow the authors’ 906

recommendations and sweep α = 1.0 while vary- 907

ing β ∈ [0.2, 0.5]; we report the best AMBER 908

score obtained. For TCD, we treat the last eight 909

decoder layers (of twelve) as candidates and select 910

layer 4 as the visually grounded pivot, based on 911

a preliminary sweep with a small watermarking 912

subset. 913

D Latency 914

We report decoding latency (seconds) and through- 915

put (tokens per second, t/s; mean ± standard de- 916

viation) on the AMBER generation task. Eleven 917

samples were drawn at random, and the first sam- 918
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ple in each run was discarded to avoid warm-up919

bias. All methods were executed with their official920

implementations on a single NVIDIA H100 GPU,921

using a batch size of one and a maximum gener-922

ation length of ten tokens. Our method evaluates923

k = 20 candidate layers per decoding step.924

E Discussion of Baseline Selection925

As discussed in Section 4.2, we selected VCD,926

M3ID, and AVISC as our primary training-free927

contrastive decoding baselines, and included ICD,928

EOS (Yue et al., 2024), HA-DPO (Zhao et al.,929

2024), HALVA (Sarkar et al., 2025a), and Octo-930

pus as reference methods that require additional931

training or external modules. Nonetheless, there932

exist other notable variations in decoding-based ap-933

proaches for mitigating hallucinations in LVLMs.934

For example, PAI (Liu et al., 2024b) proposes a935

method similar to VCD, introducing visual per-936

turbations to strengthen visual input, while Con-937

Vis (Park et al., 2025) leverages SDXL, a text-to-938

image model, to further ground LVLMs using gen-939

erated images.940

Given the diversity of possible experimental941

setups—such as model choices (e.g., LLaVA-942

1.5, InstructBLIP, QwenVL (Bai et al., 2023b),943

MiniGPT (Zhu et al., 2023), and Shikra (Chen et al.,944

2023)), benchmarks and evaluation metrics (e.g.,945

POPE-MSCOCO, POPE-OKVQA, POPE-GQA,946

MME-Perception (example on Fig. 7), MME-947

Cognition, AMBER, CHAIR, MMVP (Zhong et al.,948

2023), and MMbench (Liu et al., 2024c)), we aimed949

to align our experimental design with the conven-950

tions established by recent works such as Octo-951

pus(Suo et al., 2025) and AVISC(Woo et al., 2024).952

For instance, although reporting results for each953

POPE subset independently could highlight the954

strengths of our method, we chose to aggregate all955

POPE subsets into a single evaluation to provide956

a fair and comprehensive comparison, as recom-957

mended by recent literature.958
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Question: Describe this image.

Base: 
The image depicts a group of four people 
walking together in a grassy field. They are 
enjoying a leisurely stroll, possibly exploring 
the area or taking a break from their daily 
routine. The group is spread out, with one 
person on the left side, another in the middle, 
and the remaining two on the right side of the 
image.

VCD: 
The image features a group of people walking 
through a lush, grassy field. There are five 
people in the scene, spread out across the 
field as they enjoy the outdoor activity. A 
frisbee can be seen on the ground near the 
middle of the scene, suggesting that they may 
have been playing with it earlier. 

TCD(Ours): 

The image depicts a group of three people 
walking together in a grassy field, enjoying 
the outdoors. They are walking in a line, with 
one person slightly ahead of the others. The 
field is surrounded by trees, creating a serene 
and natural atmosphere.

AVISC:
The image features a group of people strolling 
through a grassy field on a lovely day. All 
individuals are wearing shorts and enjoying 
their walk outdoors. One person toward the 
front is carrying a cell phone while at the 
same time leading the way. 

The image features a woman running on the 
beach, enjoying a sunny day. She is wearing a 
white tank top and appears to be running 
towards the water, likely enjoying the 
beautiful scenery around her. Her shadow can 
be seen on the sand, indicating the sun's 
position and her movement. In addition to the 
main woman, there is another person standing 
on the beach, slightly in the background and 
to the right side of the frame. 

The image features a woman running on a 
sandy beach, wearing a white shirt and a 
bikini. She is running with determination, 
possibly participating in a beach run or a 
fitness event. The woman's shadow is visible 
on the sand, indicating her movement. The 
beach setting is further emphasized by the 
presence of a cell phone in the scene, possibly 
belonging to the woman or someone else 
nearby. 

The image features a woman running on the 
beach wearing a pair of shorts and running 
shoes. She is in a line, jogging quickly, and 
engaging in a workout near the water. 
Additionally, there is a backpack in the scene, 
likely belonging to the woman or someone she 
is with. It is located to the side of her, possibly 
used for carrying her belongings or her 
running necessities while she enjoys her time 
on the beach.

TCD(Ours): 

The image features a woman running on a 
sandy beach, enjoying her time outdoors. She 
is wearing a white top and appears to be in 
motion, possibly jogging or running. The 
beach is a wide-open space, providing ample 
room for her to run freely. The scene captures 
the essence of a sunny day at the beach, with 
the woman taking advantage of the pleasant 
weather to engage in physical activity.

AVISC:

Question: Describe this image. Base: VCD: 

In the image, there is a man walking down a 
path in a park or along a street. He is wearing 
a black hat, black shirt, and jeans, and he is 
smoking a cigarette. The path is lined with 
green grass and trees, creating a pleasant 
outdoor atmosphere. Aside from the main 
subject, there are two other people in the 
background, but they are not the main focus 
of the image. 

The image features a young man walking 
down a path in a park. He is wearing a black 
shirt and a black hat, and he is smoking a 
cigarette. The man appears to be enjoying his 
time outdoors, possibly taking a break from 
his daily routine. The park setting is evident 
from the presence of a bench located near the 
path, providing a place for people to sit and 
relax. 

The scene captures an outdoor walking path 
where two men are walking. One man is 
wearing an all-black outfit with a beanie on; 
he appears to be closer to the camera in the 
foreground. Another man can be seen with a 
watch and is located further away from the 
camera. Additionally, there is a car parked on 
the side of the path. 

TCD(Ours): 
The image features a young man walking 
down a path in a park, wearing a black hat 
and black clothing. He appears to be enjoying 
his time outdoors, possibly taking a stroll or 
engaging in some form of exercise. The park 
is surrounded by trees, providing a serene and 
natural environment for the man to walk 
through.

AVISC:

Question: Describe this image. Base: VCD: 

Figure 8: More examples generated by Base, VCD (Leng et al., 2023), AVISC (Woo et al., 2024) and ours given a
question, such as “Describe this image.” We extract random samples from Amber (Wang et al., 2023) and all results
are based on LLaVA v1.5 7b. We highlight phrases with red if it is not well visually grounded, and with blue if it is
well visually grounded. We observe that our model successfully mitigates hallucinations compared to other three
baselines.
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Method Random Popular Adversarial ALL

Acc. F1 Acc. F1 Acc. F1 Acc. F1

LLaVA-1.5-7B 83.77 81.94 82.57 80.86 79.77 78.47 82.04 80.42
+ICD 87.51 83.28 83.15 83.91 79.13 80.41 83.26 82.53
+ConVis 84.70 – 83.20 – 81.10 – 83.00 –
+OPERA 84.40 – 83.40 – 81.20 – 83.00 –
+VCD 85.43 83.99 83.17 81.94 80.27 79.49 82.96 81.81
+M3ID† 86.13 81.85 82.07 80.77 79.50 78.15 82.57 80.26
+AVISC 84.67 82.21 83.67 81.27 81.83 79.55 83.39 81.01
+Octopus 87.51 85.40 85.20 84.19 82.22 81.44 85.79 83.44
TCD (Ours) 89.50 88.89 87.60 87.14 83.90 83.92 87.00 86.65

InstructBLIP 81.53 81.19 78.47 78.75 77.43 78.00 79.14 79.31
+ICD 84.36 83.82 77.88 78.70 75.17 77.23 79.14 79.92
+OPERA 84.57 83.74 78.24 79.15 74.59 76.33 79.13 79.74
+VCD 82.03 81.56 79.13 79.20 77.23 77.72 79.46 79.49
+M3ID† 82.33 81.53 80.90 80.42 78.53 78.49 80.59 80.15
+AVISC 86.03 84.41 84.27 82.77 81.83 80.67 84.04 82.62
+Octopus 86.63 85.30 84.90 83.55 82.83 81.43 84.79 83.43
TCD (Ours) 88.40 87.63 82.77 82.67 81.13 81.33 84.10 83.88

Table 9: Comparison with the state-of-the-art methods for the discriminative tasks on the POPE_MSCOCO dataset.

Method Random Popular Adversarial ALL (Avg.)

Acc. F1 Acc. F1 Acc. F1 Acc. F1

LLaVA-1.5-7B 82.73 84.26 76.10 79.34 67.90 74.09 75.58 79.23
+ICD - - - - - -
+OPERA - - - - - -
+VCD 81.30 83.23 75.43 79.26 67.43 74.11 74.72 78.87
+M3ID† 83.57 85.09 76.80 80.06 68.10 74.58 76.16 79.91
+AVISC 84.60 85.88 78.83 81.63 68.97 75.11 77.47 80.87
+Octopus - - - - - -
TCD (Ours) 91.23 91.12 87.57 87.86 80.57 82.24 86.46 87.07

InstructBLIP 81.00 82.06 75.00 77.69 68.80 73.84 74.93 77.86
+ICD - - - - - -
+OPERA - - - - - -
+VCD 81.73 82.66 75.33 77.92 69.70 74.27 75.59 78.28
+M3ID† 82.33 83.66 75.60 78.36 69.57 74.39 75.83 78.80
+AVISC 88.47 88.59 81.77 82.98 72.53 76.28 80.92 82.62
+Octopus - - - - - -
TCD (Ours) 88.00 88.36 84.03 85.08 76.60 79.56 82.88 84.33

Table 10: Comparison with the state-of-the-art methods for the discriminative tasks on the A-OKVQA dataset.
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Method Random Popular Adversarial ALL (Avg.)

Acc. F1 Acc. F1 Acc. F1 Acc. F1

LLaVA-1.5-7B 82.40 83.99 72.03 76.84 68.73 74.92 74.39 78.58
+ICD – – – – – – – –
+OPERA – – – – – – – –
+VCD 82.27 84.22 71.77 77.05 68.27 74.84 74.10 78.70
+M3ID† 82.83 84.62 72.83 77.58 68.13 74.78 74.60 78.99
+AVISC 85.00 86.45 74.80 79.17 69.20 75.58 76.33 80.40
+Octopus – – – – – – – –
TCD (Ours) 88.90 88.43 85.57 85.46 81.93 82.44 85.47 85.44

InstructBLIP 80.00 81.02 73.53 76.49 68.00 72.59 73.84 76.70
+ICD – – – – – – – –
+OPERA – – – – – – – –
+VCD 81.73 82.45 74.10 76.87 70.27 74.29 75.36 77.87
+M3ID† 80.57 81.85 74.57 77.53 68.90 73.47 74.68 77.62
+AVISC 86.47 86.57 78.00 79.84 73.07 76.54 79.85 80.98
+Octopus – – – – – – – –
TCD (Ours) 86.57 86.79 80.17 81.65 76.13 78.72 80.96 82.39

Table 11: Comparison with the state-of-the-art methods for the discriminative tasks on the GQA dataset.
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