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Abstract

We introduce a novel methodology for identifying adversarial attacks on deepfake detectors
using eXplainable Artificial Intelligence (XAI). In an era characterized by digital advance-
ment, deepfakes have emerged as a potent tool, creating a demand for efficient detection
systems. However, these systems are frequently targeted by adversarial attacks that inhibit
their performance. We address this gap, developing a defensible deepfake detector by lever-
aging the power of XAI. The proposed methodology uses XAI to generate interpretability
maps for a given method, providing explicit visualizations of decision-making factors within
the AT models. We subsequently employ a pretrained feature extractor that processes both
the input image and its corresponding XAl image. The feature embeddings extracted from
this process are then used for training a simple yet effective classifier. Our approach con-
tributes not only to the detection of deepfakes but also enhances the understanding of
possible adversarial attacks, pinpointing potential vulnerabilities. Furthermore, this ap-
proach does not change the performance of the deepfake detector. The paper demonstrates
promising results suggesting a potential pathway for future deepfake detection mechanisms.
We believe this study will serve as a valuable contribution to the community, sparking
much-needed discourse on safeguarding deepfake detectors.

1 Introduction

Deepfake technology, which involves generating realistic media content, has advanced significantly in recent
years, leading to the creation of increasingly sophisticated and convincing fake videos, images, and audio
recordings (Westerlund, 2019; Khanjani et al., 2021; Guarnera et al., 2020b). In response, there has been
a growing interest in developing deepfake detectors capable of identifying and flagging these manipulated
media (Le & Woo, 2023; Hou et al., 2023; Lapid et al., 2024a; Rana et al., 2022; Lyu, 2020; Dolhansky
et al., 2020; Guarnera et al., 2020a). However, as with any security system, these detectors are vulnerable to
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adversarial attacks, which aim to deceive or manipulate detector outputs by making subtle changes to the
input, highlighting the need for robust detection methods.

Adversarial examples can significantly compromise the reliability of deepfake detection systems and have the
potential to cause harm, especially given the difficulty of detecting deepfakes in general. Therefore, there
is a critical need to address the vulnerability of deepfake detectors to adversarial inputs and incorporate
defenses against such attacks in the training of detection systems (Hussain et al., 2022).

Concomitantly, the field of eXplainable Artificial Intelligence (XAI) has gained momentum, its aim being
to render machine learning (ML) and deep learning (DL) techniques more transparent, providing clear
interpretations of model decisions to humans.

Previous research has focused on the development of deepfake detection models, with some studies incorporat-
ing X AT tools to evaluate the vulnerability of deepfake detectors (Gowrisankar & Thing, 2024). Additionally,
there have been efforts to detect deepfake audio using XAI models such as LIME, SHAP, and GradCAM
(Govindu et al., 2023).

Despite these advancements, there remains a gap in the research concerning the detection of adversarial
attacks on deepfake detectors using XAl-based approaches. The problem area of interest for this paper is
the potential vulnerability of deepfake detectors to adversarial attacks and the need for effective adversarial
detection mechanisms.

In this paper, we address the aforementioned gap by proposing an XAlI-based adversarial detector (Baniecki &
Biecek, 2024) for adversarial attacks on deepfake detectors. We conduct experiments to test the effectiveness
of the proposed detector in identifying and mitigating adversarial attacks on existing deepfake detection
models. By leveraging the insights provided by XAI maps, we aim to improve the ability of deepfake
detector systems to accurately distinguish between real and fake content, even if they were adversarially
attacked.

Our paper’s premise is that deepfake detectors are vulnerable to adversarial attacks and require an additional
layer of protection—which we obtain through XAI maps—to enhance their reliability. We seek to examine
the following research question:

(Q) How can XAI be used to detect adversarial attacks on deepfake detectors?

To answer (Q) we will explore the various XAI methods for detecting such attacks on deepfake detectors.

Our contributions are as follows:

e Introduction of an innovative approach to identifying adversarial attacks on deepfake detection
systems. The proposed method offers significant potential for bolstering the security of deepfake
detectors and other machine-learning frameworks.

o Integration of XAl techniques to enhance transparency and interpretability in detecting adversarial
attacks on deepfake detectors. This addition not only detects attacks but also might provide insights
into the decision-making process, fostering trust in the detection outcomes, crucial for real-world
applications.

o Empirical evidence demonstrating our method’s robustness, through its successful defense against
both familiar and previously unseen adversarial attacks, highlighting its resilience and versatility in
a variety of adversarial contexts.

The next section describes the previous work done in this area. Section 3 describes the methodology used in
the experiments. Section 4 describes our experimental setup and Section 5 presents the results. Our findings
are discussed in Section 6, followed by conclusions in Section 7.
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2 Previous Work

In the domain of deepfake detection, the burgeoning threat of Al-generated manipulations has spurred the
development of various detection methodologies. These methodologies broadly fall into two categories: con-
ventional (Le et al., 2022) and end-to-end approaches. Conventional methods, as demonstrated in Figure 1,
primarily focus on classifying cropped face images as real or fake. However, their efficacy is contingent upon
accurate face detection, leading to vulnerabilities when face localization is imprecise. Notably, recent studies
have highlighted the susceptibility of these methods to adversarial manipulations, showcasing the need for
enhanced robustness (Hussain et al., 2020).

Figure 1:  Conventional ap-
proach to deepfake detection:
External face detection de-
tects the face crops and each
crop passes through the deep-
fake detector. Each row rep-
resents a different adversarial
attack.
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Conversely, end-to-end approaches offer a more comprehensive analysis by not only discerning the authen-
ticity of faces but also localizing manipulated regions at varying levels of granularity, namely detection and
segmentation (Le et al., 2022). Despite their advancements, these techniques are not immune to adversarial
subversions, underscoring the criticality of bolstering their resilience.

Face Detection

Transitioning to adversarial attacks, the field of machine learning security confronts the persistent challenge
posed by adversarial examples. These intentionally crafted inputs exploit vulnerabilities in deep neural
network models across diverse domains, compelling erroneous predictions (Szegedy et al., 2014). Noteworthy
are the gradient-based attacks, extensively explored in the literature, which exploit gradients to generate
adversarial perturbations (Papernot et al., 2015; Lapid & Sipper, 2023a; Papernot et al., 2017; Li & Lyu,
2019; Moosavi-Dezfooli et al., 2017; Tamam et al., 2023; Carlini & Wagner, 2017a; Lapid & Sipper, 2023b;
Eykholt et al., 2018; Shi et al., 2019; Lapid et al., 2022; Carlini & Wagner, 2018; Qin et al., 2019; Neekhara
et al., 2019; Ebrahimi et al., 2018; Lapid et al., 2024b; Belinkov & Bisk, 2018; Hagiwara et al., 2019).

Recently, Gowrisankar & Thing (2024) presented a novel attack on deepfake detection systems, involving
the addition of noise to manipulated images in visual concepts that significantly influence the classification
of authentic images, as indicated by a XAI map of the authentic image. In our study we investigated attacks
that perturb all pixels in the image, rather than confining the perturbation to a limited region.

In practical terms, adversarial attacks on deepfake detectors can lead to dire ramifications, such as the
proliferation of misinformation, erosion of trust in media sources, and potentially catastrophic social and
political consequences. The surreptitious nature of deepfakes, compounded by their ability to evade detection
through adversarial attacks, underscores the urgent need for robust defense mechanisms.

To mitigate such threats, the integration of eXplainable Artificial Intelligence (XAI) emerges as a promising
avenue (Angelov et al., 2021; Confalonieri et al., 2021; Dosilovi¢ et al., 2018; Samek & Miiller, 2019). As
complex ML models increasingly obfuscate their decision-making processes, XAl endeavors to demystify
these black boxes, furnishing interpretable explanations for model predictions (Adadi & Berrada, 2018). By
bridging the chasm between AI performance and human comprehension, XAl not only engenders user trust
but also enhances accountability and decision-making.

In the domain of deepfake detector defense, existing strategies primarily revolve around fortifying model
training to bolster adversarial resilience. Techniques such as adversarial training entail augmenting the
training process with adversarial examples to enhance model robustness (Madry et al., 2019). While this
approach shows promise, it can inadvertently alter the model’s decision boundaries, potentially leading to
overfitting or decreased performance on clean data.
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Similarly, methodologies like smart watermarking introduce additional complexity to the training pipeline,
which may hinder model generalization and scalability (Lv, 2021). Randomized smoothing (Cohen et al.,
2019), another prevalent defense mechanism, seeks to mitigate adversarial vulnerabilities by adding random
noise to the dataset during training. While effective in certain scenarios, this technique can obscure genuine
features in the data, impairing the model’s discriminative capabilities. Moreover, the increased computational
overhead associated with randomized smoothing may impede real-time deployment, limiting its practical
utility.

Chen et al. (2021) proposed a system designed to combat deepfakes, using a two-step process. First, it
identified manipulated areas of a video by analyzing inconsistencies and distortions. Then, it employed
this information to reconstruct the original, authentic content. This approach effectively defends against
deepfakes, even when the attacker’s methods are unknown. This deepfake defense might struggle with
complex reconstructions and may be computationally expensive.

Despite these drawbacks, these defense mechanisms represent significant strides in fortifying deepfake detec-
tors against adversarial subversion. However, careful consideration of their trade-offs is imperative to ensure
a judicious balance between robustness and performance. This paper aims to navigate these nuances by
leveraging XAI methodologies to optimize detector performance, particularly in identifying and thwarting
adversarial incursions, while mitigating the adverse effects of conventional defense strategies. Importantly,
our approach does not alter the underlying model architecture; instead, it involves training a new adversarial
detector on top of the existing framework, ensuring compatibility and scalability across different deepfake
detection systems.

3 Methodology

Our methodology involves a structured approach to improve adversarial-attack detection on deepfake detec-
tors, integrating benchmark dataset, established detection models, creation of an attacked dataset, incorpo-
ration of XAl techniques, and our novel detection model. Figure 3 depicts the flow for classifying a face crop
as real or attacked.

We start by outlining the dataset preparation used for deepfake detection evaluation (Section 3.1), followed
by a review in Section 3.2 of the deepfake detection models applied in our study. We then describe in
Section 3.3 the creation of an attacked dataset using four established attack methods, enhancing the testing
scope for our approaches. The use of XAI techniques is detailed in Section 3.4, aimed at increasing the
interpretability of the adversarial detection process. Lastly, in Section 3.5 we introduce our adversarial-
attack detection model, emphasizing its unique contribution to detecting and mitigating adversarial threats,
thereby advancing the capability of deepfake detection systems.

3.1 Dataset Preparation

To evaluate the robustness of our methodology, we attack the FF+ dataset (see Section 4) using 4 different
attacks: Projected Gradient Descent (PGD) (Madry et al., 2017), Fast Gradient Sign Method (Goodfellow
et al., 2014), Auto Projected Gradient Descent (APGD) (Croce & Hein, 2020), Natural Evolution Strategies
(NES) (Qiu et al., 2021), and Square Attack (Andriushchenko et al., 2020). Herein we focus on the || - ||oo
norm constraint. The adversarial detector was trained using PGD only; the other attacks were used for
testing only. For training our model the attack process iteratively applied PGD with a fixed maximum
perturbation € = 16/255 to generate manipulated instances, resulting in a dataset twice the original size.
Subsequently, interpretability maps were generated across this augmented dataset using XAI techniques
outlined in Section 3.4, facilitating the assessment of our approach’s sensitivity to manipulated features for
discriminating between authentic and manipulated videos.

3.2 Deepfake Detection Models

The XceptionNet architecture (Chollet, 2017) replaces Inception modules (Szegedy et al., 2017) in con-
volutional neural networks with depth-wise separable convolutions. Depth-wise separable convolutions first



Published in Transactions on Machine Learning Research (08/2024)

perform a spatial convolution independently over each channel of the input, then perform a 1x1 convolution
to project the output channels onto a new channel space.

Xception assumes that mapping cross-channel correlations and spatial correlations in convolutional neural
networks can be entirely decoupled. Chollet (2017) showed that there is a spectrum between regular convo-
lutions and depth-wise separable convolutions, with Inception modules being an intermediate point. They
demonstrated that Xception, built entirely from depth-wise separable convolutions, achieves slightly better
classification performance over the ImageNet dataset as compared to Inception V3 with a similar number
of parameters. Chollet (2017) argued that depth-wise separable convolutions offer similar representational
power as Inception modules while being easier to use, like regular convolution layers.

In our research we use a pretrained model, as presented by Hussain et al. (2020).

EfficientNetB4ST is one model of an ensemble of several models for detecting facial manipulation in videos,
presented by Bonettini et al. (2021). EfficientNetB4ST is trained using a Siamese strategy with a triplet
margin loss function. This extracts deep features that achieve good separation between real and fake faces
in the encoding space. Siamese training produces a feature descriptor that favors similarity between samples
of the same class. Bonettini et al. (2021) showed that EfficientNetB4ST complements the other models in
the ensemble, demonstrating improved detection accuracy and quality over individual models on the FF++
and DFDC datasets. The fusion of EfficientNetB4ST with other diverse models helps the overall ensemble
system outperform the baseline for facial manipulation detection.

In our research, we use a single pre-trained model from the ensemble, which exhibited good performance.

3.3 Adversarial Attacks

In this section we describe 5 attack methods that we use for creating the attacked-videos dataset. Three
are white-box attacks: PGD (Madry et al., 2017), FGSM (Goodfellow et al., 2014), and Auto Projected
Gradient Descent (APGD) (Croce & Hein, 2020). Two are black-box attacks: Natural Evolution Strategies
(NES) (Qiu et al., 2021) and Square Attack (Andriushchenko et al., 2020).

White-box attacks involve full access to the target model’s architecture and parameters, enabling adversaries
to craft adversarial examples more efficiently. In contrast, a black-box attack means an adversary has limited
access to the target model and its parameters, making it challenging to craft adversarial examples directly.
In the context of image classifiers, an adversarial attack aims to generate perturbed inputs that can mislead
the classifier, without explicit knowledge of the model’s internal parameters. Black-box attacks have received
increased attention in recent years (Andriushchenko et al., 2020; Qiu et al., 2021; Lapid et al., 2022; Chen
et al., 2020; Tamam et al., 2023; Lapid & Sipper, 2023a).

We tested our algorithm on various attack algorithms, to assess the robustness and generalization of our
method. The attack algorithm PGD was used for creating a training dataset and a test dataset. The attack
algorithms APGD, NES, and Square were used for creating a test dataset to assess the robustness of our
method.

PGD. We assume that the attacker has complete access to the deepfake detector, including the face-
extraction pipeline and the architecture and parameters of the classification model. To construct adversarial
examples we used PGD (Madry et al., 2017) to optimize the following loss function:

L = max(Z(x)rea1 — Z(T)take,0). (1)

Here, Z(z), is the logit of label y, where y € {real, fake}. Minimizing the above loss function maximizes the
score for our target label Real. The loss function adopted in this study, as advocated by Carlini & Wagner
(2017b), was specifically chosen for its empirical effectiveness in generating adversarial samples with reduced
distortion, and its demonstrated resilience to defensive distillation strategies. We used PGD to optimize the
above objective while constraining the magnitude of the perturbation as follows:

Tiv1 = x; — e(arsign(Vy, £(0,24,y))), (2)

where I, is a projection of the step to e such that ||x; — x|, < ¢, Vi, € is the allowed perturbation, « is the
step size, L is the loss function, 6 is the model’s weights, and y is the target prediction.
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FGSM. The FGSM method, pioneered by Goodfellow et al. (2014), operates by perturbing input data based
on the sign of the gradient of the loss function with respect to the input. This perturbation is scaled by
a small constant, €, to ensure that changes are imperceptible but effective in fooling the deepfake detector.
FGSM is simple and efficient, making it a popular choice for crafting adversarial examples. Despite its
simplicity, FGSM can achieve significant perturbations, underscoring its effectiveness in bypassing deepfake
detection systems.

APGD. The APGD approach, described by Croce & Hein (2020), addresses problematic issues by partition-
ing N iterations into an initial exploration and an exploitation phase. The transition between these phases
involves a gradual step-size reduction. A larger step size allows swift exploration of the parameter space (S),
while a smaller one optimizes the objective function locally. Step-size reduction depends on the optimiza-
tion trend, ensuring it aligns with objective-function growth. Unlike traditional PGD, the APGD algorithm
adapts step sizes based on the budget and optimization progress. After step-size reduction, optimization
restarts from the best-known point.

Natural Evolution Strategies (NES) (Qiu et al., 2021) is an optimization algorithm inspired by the
process of natural selection. It operates by iteratively perturbing candidate solutions and selecting those
that result in improved fitness. NES does not require gradient information from the black-box model.

Square Attack (Andriushchenko et al., 2020) is a black-box attack method specifically designed for image
classifiers. It formulates the adversarial example generation as an optimization problem. Square Attack
uses random square perturbations because they were proved to successfully fool convolution-based image
classifiers, with a smart initialization.

3.4 XAl Techniques

Integrated Gradients method (Sundararajan et al., 2017) is an attribution technique that aims to identify
the input features that have the most significant impact on a deep network’s output. To apply this method,
the gradient of the output with respect to the input features is integrated along a straight-line path from a
baseline input to the actual input. The result provides an attribution value that reflects the contribution of
each input feature to the output.

Saliency. Simonyan et al. (2013) introduced the concept of saliency as one of the earliest pixel-attribution
techniques. This approach involves computing the gradient of the loss function for a specific class of interest
with respect to the input pixels. The resulting map shows the relative importance of input features, with
negative and positive values indicating their contribution towards or against the class prediction.

Input x Gradient technique (Shrikumar et al., 2016) calculates the contribution of input features to a
model’s output by computing the gradient of the output with respect to each input feature. Specifically,
the absolute value of each gradient is multiplied by the corresponding input value to measure the feature’s
impact on the output. This approach is based on the intuition that higher absolute gradient values indicate
more significant contributions to the model’s prediction. Overall, the Input x Gradient method provides a
means of attributing model outputs to their underlying input features, aiding in model interpretability and
identifying potential sources of bias or error.

Guided Backpropagation (Springenberg et al., 2014) is a modified version of the backpropagation algo-
rithm that restricts the flow of gradients to only positive values during the backpropagation process. This
is achieved by zeroing out the gradients for all negative values. The underlying concept is that positive
gradients correspond to input features that positively contribute to the output, while negative gradients
indicate features that negatively affect the output. By limiting the flow back to the input to only positive
gradients the method aims to highlight the relevant input features that play a vital role in the model’s
prediction. Consequently, this approach can aid in the interpretation of a network’s decision-making process
by providing insight into the features that contribute to its output.

Examples of the above XAI techniques can be seen in Figure 2.
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Figure 2: FF+ dataset im- Guid. Back. Inp. x Grad.
ages. Leftmost image: image ‘ ;
in pixel space. Four images
to the right are XAI maps
produced by: Guided Back-
propagation (Guid. Back.),
Input x Gradient (Inp. X
Grad.), Integrated Gradients
(Int. Grad.), and Saliency.
Top row shows the XAI meth-
ods with no attacks, the other
rows show the XAI methods APGD
for the various attack algo-
rithms. We can clearly see
that the XAlIs act differently
for each given example.

Original

PGD

Square

NES

3.5 Adversarial Attack Detection

For the creation of our datasets we employed both real and fake videos from the FF+ dataset, creating
sets of real or attacked videos and XAI maps. We then formed pairs of unattacked/attacked images and
their corresponding XAI maps. Leveraging a pretrained backbone model, e.g., ResNet50 (He et al., 2016),
we generated embeddings (feature vectors) for these images. To classify them into unattacked or attacked
categories, we applied two layers of linear transformation followed by an activation function. This composite
architecture is herein referred to as the Detect-ResNet50 model.

Our detection system operates in the manner illustrated in Figure 3. First, delineate three pivotal compo-
nents: face detector f, deepfake detector g, and adversarial detector d. Let us define f : R? — RY as a
face detector extracting the face from a given input image. Subsequently, let ¢ : R — R? denote a binary
classifier that classifies an image as deepfake or authentic, based on a face crop. Lastly, d : RY x RY — R2
represents a binary adversarial detector, evaluating whether a given face crop is under attack, using both
the face crop and its corresponding XAI map.

Note that we now have two “axes” of interest, as it were: real vs. fake images, and attacked vs. unattacked
images.

Given an image r € R%, we begin by passing it through the face detector (f), yielding a face crop ' € R
Subsequently, this face crop undergoes assessment by the deepfake detector g, producing a classification
outcome. In case g classifies 2’ as authentic, we extract its associated XAI map, h' € RY | from g. We then
submit both z’ and A’ to the adversarial detector d, which in turn determines whether 2’ has been subjected
to an adversarial attack or not.

4 Experiments

We conducted experiments to assess the performance of the deepfake detectors based on XceptionNet and
EfficientNetB4ST, following the methods described by Chollet (2017) and Bonettini et al. (2021). We used
the FaceForensics++ (FF+4+) dataset (Rossler et al., 2019) to assess the effectiveness of our proposed face-
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Figure 3: Frame analysis in suspected deepfake videos involves face extraction and classification using
deepfake detectors. If classified as fake, the frame is labeled as fake. If classified as real, the face undergoes
XAI map creation. The resulting XAI map and face are processed through a backbone model to generate
embeddings, which are then input into the classification head to determine ‘unattacked’ or ‘attacked’ status.

forgery detection method. This dataset comprises over 5000 videos manipulated using techniques such as
DeepFakes, Face2Face, FaceShifter, FaceSwap, and NeuralTextures.

The FF++ dataset consists of 1000 real videos and 1000 fake videos for each manipulation technique. For
our experiments, we randomly picked 60 videos from this dataset, with 50 allocated for training (including
validation) and 10 for testing, resulting in 20,000 images for training and 5,000 images for testing, per each
model and XAI configuration. These videos were subjected to h.254 compression at a compression rate of
23, preparing them for deepfake detection using the models outlined in Section 3.2. The real and fake videos
were obtained from the original dataset, while the attacked videos were generated from the fake videos using
the techniques presented in Section 3.3.

Herein we focus on the || - ||oc norm constraint. For all attacks conducted we use a perturbation constraint
of € = 16/255. In the case of white-box attacks, the hyperparameters used were as follows: for the PGD
attack—a maximum of 100 iterations; for FGSM—default configuration (1 iteration); for the APGD attack—
a maximum of 100 iterations and 5 restarts. For black-box attacks the hyperparameters were: for the NES
attack—a step size of 1/255, a maximum of 100 iterations, and 5 restarts; for the Square attack—a maximum
of 5000 iterations, and the sampling-distribution parameter was set to 0.8.

We evaluated deepfake detection accuracy using two metrics. The videos metric, denoted as Vid, computes
the majority vote of all fake and real frames in each video and assigns a label of fake if more than 50%
of the frames were fake. The frame-by-frame metric, denoted as F2F, measures the average precision of all
individual frames.

Table 1 summarizes the pre-attack detection results, i.e., before performing adversarial attacks.

Table 1: Precision of deepfake detectors on FF+ dataset. Precision was calculated by 2 metrics: video and
frame-by-frame (see text).

Real Fake
Vid F2F Vid F2F
XceptionNet 100.00% 99.36% 100.00% 99.82%
EfficientNetB4ST  96.00%  88.59%  98.00%  96.55%

Table 2 summarizes the post-attack detection results on deepfake images. The latter shows that attacked
images cause the deepfake detector to lose its ability to ascertain real from not.
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Table 2: Precision of deepfake detectors on the attacked FF+ dataset. Herein, we focus only on attacked
deepfake images that are supposed to be classified as deepfake. When attacked, the performant deepfake
detectors of Table 1 fail completely. This shows that attacked images cause the deepfake detectors to lose
their ability to differentiate real from not.

EfficientNetB4ST Xception
Vid F2F Vid F2F
PGD 0.00% 0.00%  0.00% 1.00%
FGSM  20.00% 20.66% 0.00% 0.00%
APGD  0.00% 0.10%  0.00% 0.10%
Square  0.00% 0.20%  0.00% 0.10%
NES 0.00% 5.70%  0.00% 1.00%

The Detect-ResNet50 model underwent training using two distinct configurations. First, the finetuning
process involved both the ResNet50 backbone model and the associated classification head. In the second
configuration, the backbone model remained in a frozen state, and training was administered only to the
classification head. The schematic of the Detect-ResNet50 model is presented in Figure 4.

Figure 4: Detect- ResNet50 Model Classification Layers
ResNet50 architecture.
The backb del £ = - % % | w o
e backbone mode input| 5 | | = ol¥| |8l 9| x ol x 5| & 5| 5 | o |ReaVAttacked
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contains pretrained gl |ofElz ol S 1 Rl el - S Il - el Il -l s A SCH EEREE, e S —
ol |O £l Sl S IS > § =5
ResNet50, and the clas- 3 SE ISEH S (S <z SN
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Detect-ResNet50 model was trained with a learning rate of 0.001, a minibatch size of 16, and 100 iterations.
We used the cross-entropy loss function, and the Adam optimizer (Kingma & Ba, 2014)—with hyperparam-
eters e = le — 8, 81 = 0.9, and B = 0.999.

Furthermore, we conducted a comparison of the dataset’s accuracy under two conditions: 1) when using
XATI maps, and 2) when these maps are rendered black (resulting in zero tensors), referred to as PGD-B.
This latter comparison aims to show the importance of XAI maps on accuracy and to establish a baseline
for testing. Specifically, we employed trained models and tested them without the presence of XAls.

In addition, our study incorporates adaptive attack strategies into the evaluation framework. Importantly,
our proposed detection methodology assumes the adversary does not possesses simultaneous access both to
deepfake detection and to adversarial detection mechanisms. We believe this assumption accords with real-
life scenarios—such as those encountered in social media platforms, where an attacker’s actions are limited
to uploading a video without knowledge of the underlying modules operating within the application. We
advocate for the deployment of our approach in real-world settings, emphasizing its accessibility exclusively
through API calls. Herein, we used a simple loss function:

Estandard—adaptive = ﬁBCE(f(x + 6)7 real) + EBCE(g(x + 5); unattaCked)v (3)

where BCE is the Binary Cross-Entropy Loss, f is the deepfake detector, real is the ‘real’ class, g is the
adversarial detector, and ben is the ‘benign’ class. Thus the adversary’s goal is to minimize Lstandard-adaptive-

Moreover, we added another loss function, which tries to minimize the distance of the resultant XAI map:
ACXAI—adaptive = ‘CBCE<JC(3j + (5)7 real) + || (XAI(LE + 6; f)a XAI(.TJ, f))”27 (4)

where XAI is a function that takes an input and a model, and outputs a XAI map. Again, the adversary’s
goal is to minimize this loss function.
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Finally, we incorporated generalization assessments into our study, wherein we evaluated the efficacy of an
adversarial detection model initially trained on XceptionNet against the alternative architecture of Efficient-
NetB4ST, and, conversely, we examined the performance of the model trained on EfficientNetB4ST when
confronted with XceptionNet.

4.1 Computational Overhead Experiments

To comprehensively assess the computational overhead introduced by integrating XAI techniques, we de-
signed an experiment specifically focusing on measuring the additional computational costs. The experimen-
tal setup included a high-performance computing environment with an Intel Xeon Gold 6136 @ 3Ghz CPU,
NVIDIA GRID P40-24Q, and 64GB of RAM. The software environment consisted of Windows 10, Python
3.9, Pytorch 2.0.1, and the Captum library for implementing X AT techniques (Kokhlikyan et al., 2019) . We
measured the processing time and resource usage (CPU/GPU utilization and memory consumption) of our
adversarial detection model, both with and without the integrated XAI methods.

The experiment was structured as follows:

« Baseline Measurement: Run the adversarial-detection model without any X AT techniques, record-
ing the processing time and memory consumption.

e XAI Integration Measurement: Integrate the selected XAI techniques into the pipeline and
repeat the measurements.

e Comparison: Compare the baseline and XAl integration measurements to quantify the overhead.

5 Results

Table 3 and Table 4 assess the efficacy of our approach against adversarial attacks on deepfake detectors.
We focus on two distinct scenarios: one with a finetuned ResNet50 model and the other with a frozen
pretrained ResNet50 model, finetuning the classifier head only. We set herein a classification threshold of
0.5; Appendix A presents statistics about different thresholds.

Table 3: Accuracy (Real/Attacked in Figure 3) for various attacks, on the complete test set of a finetuned
ResNet50. The asterisk (*) associated with the PGD attack denotes its use in training the model. The best
average result reached is shown in boldface. Mean does not include PGD-B experiments.

Deepfake Detector Attack G-Backprop Inp x Grad  Int-Grad Saliency
(PGD-B*) (85.04%) (84.61%) (85.00%) (89.16%)

PGD* 99.60% 97.54% 94.48% 99.60%
. FGSM 91.90% 89.93% 85.62% 93.11%
EfficientNetBAST —\ papy 98.86% 97.10% 93.80% 94.40%
Square 61.36% 63.13% 62.13% 62.30%
NES 99.80% 97.66% 95.24% 99.57%

~ Average 90.30%  89.07% = 86.24%  89.80%
(PGD-B")  (6143%)  (31.83%)  (RL.81%)  (53.13%)
PGD* 95.92% 86.63% 82.93% 90.57%
KeeptionNet FGSM 50.88% 73.67% 65.22% 85.73%
APGD 91.06% 54.83% 77.47% 67.34%
Square 52.41% 81.98% 80.75% 82.20%
NES 88.54% 86.75% 85.80% 89.78%

~ Average 75.76%  76.77% = 7843% = 85.12%
Total Average 83.03% 82.92% 82.33% 87.46%

For the finetuned ResNet50 model (Table 3), we observe that the average accuracy across all evaluated
attacks ranges from 75.76% to 90.30%. Notably, Saliency exhibits the highest success rate at detecting
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Table 4: Accuracy (Real/Attacked in Figure 3) for various attacks, on the complete test set, when finetuning
only the classification head of a pretrained ResNet50. The asterisk (*) associated with the PGD attack
denotes its use in training the model. The best average result reached is shown in boldface. Mean does not
include PGD-B experiments.

Deepfake Detector Attack G-Backprop Inp x Grad  Int-Grad Saliency
(PGD-B*) (69.00%) (74.65%) (78.26%) (78.08%)

PGD* 93.46% 92.36% 91.58% 98.02%
. FGSM 76.65% 82.26% 83.70% 88.02%
EfficientNetBAST — \ pp 96.04% 95.14% 92.94% 98.83%
Square 53.67% 61.22% 60.25% 65.60%
NES 93.57% 91.33% 88.60% 96.60%

~ Average 82.68%  84.46% 83.41% = 89.41%
(PGD-B")  (50.32%)  (63.13%)  (53.14%) _ (65.70%)
PGD* 90.07% 69.44% 70.33% 72.80%
XeeptionNet FGSM 51.28% 60.70% 65.16% 73.55%
APGD 93.57% 73.01% 69.65% 82.72%
Square 46.03% 57.53% 53.76% 59.68%
NES 81.13% 76.70% 76.05% 82.85%

- Average 72.41% 67.47%  67.00% = 74.32%
Total Average 77.54% 75.96% 75.21% 81.85%

the attacks, achieving an average accuracy of 87.46%. Conversely, G-Backprop, Inp x Grad and Int-Grad
demonstrate relatively lower average accuracies of 83.03%, 82.92% and 82.33%, respectively.

Performance slightly declined when confronted with the Square attack, while using EfficientNetB4ST, with
accuracies ranging from 61.36% to 63.13% across all the XAI techniques. This decrease in performance can
be attributed to the model’s training using PGD only, indicating a potential limitation in generalization to
other adversarial attack types. On the other hand, the performance of our approach against Square Attack
on XceptionNet is better, reaching a best score of 82.20% with Saliency.

These results underscore the vulnerability of the X AT techniques to various adversarial attacks, with notable
variations in attack success rates.

Turning our attention to the second configuration of the ResNet50 model (Table 4), i.e., finetuning the
classification head only, we note similar trends in attack effectiveness. Across all evaluated attacks, the
average accuracy ranges from 67.00% to 89.41%. Once again, Saliency emerges as the most successful,
achieving an average accuracy of 81.85%. This is followed by G-Backprop, with an average accuracy of
77.54%. Conversely, Inp x Grad and Int-Grad exhibit lower average accuracies of 75.96% and 75.21%,
respectively.

We note the role of PGD-B in elucidating the significance of XAI in our approach. PGD-B represents a
scenario where XAI contributions are nullified, essentially simulating a scenario devoid of interpretability. In
this context, PGD-B results underscore the pivotal role of XAI techniques in our methodology. When XAI
is absent, the effectiveness of our approach dwindles, (up to ~ 10% difference in the finetuning experiments
and up to ~ 40% in finetuning the classifier head only), highlighting the dependency on XAI methodologies
for robust detection of adversarial attacks on deepfake detectors.

The experimentation underscores the criticality of leveraging XAl not only to enhance model interpretability
but also to fortify model resilience against adversarial manipulations, thereby underscoring the synergy
between XAI and traditional input features in bolstering deepfake detection mechanisms.

Our findings underscore the balance between finetuning the entire model versus specific layers, adding another
consideration. Finetuning the entire model allows for thorough adaptation to the target domain, enhancing
task alignment and performance against adversarial attacks. Yet, it requires significant computational re-
sources and may not be viable in resource-limited settings. On the other hand, finetuning only certain layers
provides a more practical option, reducing computational burden while enabling some domain adaptation.
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However, it restricts model adaptation and may result in lower performance, especially against advanced
adversarial attacks. On average, the detection rate on EfficientNetB4ST is better than the detection rate on
XceptionNet.

Table 6 and Table 7 show results of the adaptive attacks, which are aware of both the deepfake detector and
the adversarial detector, while using Equation 3 and Equation 4 respectively. We emphasize again that we do
not think it is a realistic scenario and our detector was not trained against these kinds of attacks. In the first
scenario, using Equation 3, the attacks successfully fooled both detectors, with EfficientNetB4ST showsing
more resillience than XceptionNet. Using Equation 4, EfficientNetB4ST shows excellent performance, while
XceptionNet still fails to resist these attacks.

Table 5: Comparison of Adaptive Attacks

Table 6: Adaptive attacks using Equation 3. Table 7: Adaptive attacks using Equation 4.
XceptionNet  EfficientNetB4ST XceptionNet EfficientNetB4ST
Vid F2F Vid F2F Vid F2F Vid F2F

PGD 0.00% 0.00% 0.00% 0.16% PGD 0.00% 0.24% 100.00% 98.60%

FGSM 0.00% 0.49% 80.00%  88.50% FGSM 0.00% 0.25% 100.00% 98.30%

In addition we conducted a generalization study where we evaluated the generalization of our approach:
training on one model and evaluating on another. The results are delineated in Table 8, where we see gener-
alization performance ranging from 66.00% to 82.97%. We note that on average training on XceptionNet’s
attacked images and evaluating on EfficientNetB4ST yields the best results, ranging from 75.05%-82.97%.

Table 8: Transferability results for various attacks. A pretrained adversarial detector trained on a backbone
deepfake detector is tested on attacks that were optimized on another backbone detector.

Source Model — Transferred Model — Attack G-Backprop Inp x Grad  Int-Grad Saliency

PGD* 67.33% 68.03% 80.50% 71.68%
FGSM 67.38% 68.02% 80.67% 71.67%
EfficientNetB4ST — XceptionNet APGD 70.30% 63.37% 82.80% 85.30%
Square 47.10% 66.56% 82.93% 76.45%
NES 77.90% 68.08% 81.64% 99.60%

T Average 66.00%  66.81%  81.71%  80.94%
PGD* 95.90% 86.84% 83.21% 90.68%
FGSM 50.88% 73.67% 65.22% 85.73%
XceptionNet — EfficientNetB4ST APGD 89.80% 54.83% 77.85% 66.10%
Square 52.41% 81.98% 80.73% 82.18%
NES 86.35% 87.25% 83.32% 90.16%

T Average 75.07%  76.91% 78.06% = 82.97%
Total Average 70.54% 71.86% 79.88% 81.95%

Overall, we have assessed the performance of different XAI methods, with varying degrees of success, depend-
ing on the attack. Training an adversarial detector on EfficientNetB4ST yields a more-resilient detector than
XceptionNet, on average. Our findings emphasize the importance of developing robust defense strategies to
safeguard against the proliferation of synthetic manipulations of digital media.

5.1 Computational Overhead Results

The results of our computational overhead experiments are presented in Table 9, which summarizes the
processing-times metrics for both the baseline model and the pipeline with integrated XAI techniques.

These results indicate that while XAl techniques enhance explainability, they also introduce varying degrees
of computational overhead. The Integrated Gradients method, in particular, incurs substantial overhead,
making it less practical for real-time applications, compared to other XAl techniques. Conversely, methods
like G-Backprop and Input x Gradient offer a more balanced trade-off between computational cost and
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Table 9: Computational overhead of our proposed pipeline.

Average Processing Time (ms)
Baseline  G-Backprop Inp x Grad Int-Grad Saliency
XceptionNet 222.0 338.1 (+52%) 269.4 (+21%) 3640.3 (+1539%) 264.6 (+19%)
EfficientNet 247.1 361.5 (+46%) 335.0 (+36%) 8440.3 (+3316%) 358.1 (+45%)

Model

explainability, exhibiting relatively lower processing times while still providing valuable insights into model
decisions.

In addition to processing time, we also measured the memory overhead introduced by the XAI techniques.
The baseline models have a memory usage of approximately 1.1GB. Integrating the XAI methods increases
the memory usage by approximately 1GB, resulting in a total memory consumption of around 2.1GB. This
additional memory overhead is primarily due to the storage requirements for the gradients and intermediate
computations used by the XAI techniques.

The increased memory footprint is a crucial consideration for deploying these models in real-world settings,
especially on resource-constrained devices. While the overhead is significant, it remains manageable within
the context of modern computing environments equipped with sufficient memory resources. This analysis un-
derscores the importance of balancing the need for explainability with the available computational resources,
particularly in applications where memory constraints are a critical factor.

6 Discussion

Effectiveness of XAI in adversarial detection. The use of XAI techniques in the context of detect-
ing adversarial attacks on deepfake detectors has demonstrated significant promise. The interpretability
provided by XAI methods, such as feature attribution and saliency maps, enhances our understanding of
model decision-making processes. In our experiments the integration of XAl facilitated the identification
of subtle adversarial manipulations that might have otherwise gone unnoticed, as shown in the black XAI
image experiments (Table 3 and Table 4). This highlights the importance of incorporating explainability
mechanisms in deepfake detection systems to improve their robustness against adversarial attacks. Addition-
ally, our findings reveal nuanced insights into the effectiveness of XAl techniques in mitigating adversarial
attacks. Specifically, we observed that Saliency and G-Backprop outperform other methods in scenarios
where the entire network is fine-tuned, while Saliency demonstrates superior performance when only the
classification head is fine-tuned. Furthermore, on average, using EfficientNetB4ST’s XAls yield better re-
sults than XceptionNet. This distinction underscores the importance of considering the architectural and
training constraints when integrating XAI methods for robust deepfake detection.

Ethical Use of X AI. While this paper emphasizes the benefits of using XAI to enhance deepfake detectors,
it is crucial to consider potential ethical concerns. XAI could potentially be misused by adversaries to
reverse-engineer Al systems and exploit vulnerabilities, thereby compromising the very robustness these
techniques aim to enhance. To mitigate such risks, it is essential to implement strict security protocols
governing the dissemination and application of XAI insights. This includes controlling access to sensitive
interpretability data, collaborating with cybersecurity experts, and developing XAI methods that balance
transparency with security. Continuous ethical deliberation within the research community is also necessary
to ensure responsible Al usage.

Societal Implications. Enhanced deepfake detectors have significant societal benefits, such as preventing
misinformation and protecting digital content integrity. However, their dual-use nature raises concerns about
privacy and surveillance. These technologies could be misused to monitor individuals’ digital expressions,
infringing on privacy rights. To address these concerns, comprehensive guidelines for the responsible deploy-
ment of deepfake detectors must be proposed and adhered to. These guidelines should ensure transparency,
legal and ethical consistency, and protection of privacy rights. Multi-stakeholder dialogue involving policy-
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makers, technologists, civil society, and the public is essential to define and enforce ethical boundaries for
deploying these technologies.

Vulnerabilities of deepfake detectors. Despite advances in deepfake detection models, our study reveals
inherent vulnerabilities that adversarial actors can exploit. Adversarial attacks, particularly those crafted
with the intent to deceive deepfake detectors, pose a formidable challenge. Traditional evasion techniques,
such as input perturbations and gradient-based attacks, were successful in deceiving state-of-the-art deepfake
detectors. This underscores the need for ongoing research and development in enhancing the robustness of
deepfake detection models against adversarial manipulations.

Importance of explainability for trustworthiness. Explainability not only contributes to the detection
of adversarial attacks but also plays a crucial role in establishing trustworthiness in AI systems. The ability
to provide clear and interpretable justifications for model predictions instills confidence in end-users and
facilitates a better understanding of potential vulnerabilities. In applications where the consequences of false
positives or false negatives can be severe, the transparency afforded by XAI methods becomes indispensable.
Thus, XAl-based methods should be further employed and analyzed.

Generalization and transferability. Our experiments considered a diverse set of adversarial attacks
and deepfake detection models to evaluate the generalization and transferability of adversarial attacks. Our
findings suggest that certain adversarial techniques remain effective across different datasets and models,
emphasizing the need for standardized evaluation protocols and robust defenses that can withstand a variety
of adversarial strategies.

Limitations. While our proposed adversarial detector for attacks on deepfake detectors demonstrates
promising results, its efficacy may be limited by the diversity of adversarial attacks it has been trained
on, and its generalization capability across different models and datasets. Additionally, exploring a wider
range of € values in crafting adversarial examples could provide deeper insights into the robustness of the
detector. Moreover, the possibility of adversaries targeting our detector itself and the ethical implications of
its deployment underscore the need for ongoing research to address these challenges and ensure its practical
applicability and societal impact. However, it is reasonable to assume that the attacker lacks access to the
adversarial detector.

Future directions. The dynamic landscape of adversarial attacks on deepfake detectors calls for continuous
research efforts. Future directions may include the exploration of novel XAl techniques, the development of
adversarially robust deepfake detection models, and the investigation of real-time detection strategies. Ad-
ditionally, interdisciplinary collaborations involving experts in computer vision, machine learning, and ethics
can contribute to a holistic approach in addressing the evolving challenges posed by deepfake technology.

7 Conclusions

The use of XAI techniques affords significant potential in identifying adversarial attacks on deepfake detec-
tors, with Guided Backpropagation proving notably accurate in this regard. Enhancing model interpretability
is crucial in bolstering detection capabilities.

Deepfake detectors are vulnerable to adversarial attacks, facilitated by methods like PGD, APGD, NES, and
Square, emphasizing the need for robust defense mechanisms to maintain reliability and efficacy. While fine-
tuning the entire adversarial detection model enhances adaptability and resilience, it entails computational
overhead, necessitating careful consideration.

XAI maps offer valuable cues for discerning adversarial perturbations, aiding in the differentiation between
authentic and manipulated inputs, thereby reinforcing defenses. Despite promising generalization capabili-
ties, diversification in attack modalities during training is essential for improved efficacy and robustness.

Acknowledging inherent constraints—especially concerning attack diversity and evaluation across models—
underscores the necessity for continued research to enhance robustness and generalizability. Further explo-
ration into scenarios where attackers have knowledge of detection systems is crucial for developing counter-
measures against sophisticated attacks.
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In conclusion, the synergy between XAI and robust learning strategies shows promise in safeguarding deep-
fake detectors. Continued research is vital to address limitations and broaden the applicability of these
methodologies, emphasizing the importance of collaborative efforts in fortifying Al systems’ reliability and
integrity.
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A Appendix

We present ROC curves for our experiments on detecting adversarial attacks on deepfake detectors. These
curves illustrate the performance trade-offs of our models under different attack scenarios.

The ROC curves provide a visual representation of our models’ sensitivity to deepfake detection amidst
adversarial manipulation. By examining these curves, readers can assess the effectiveness of our proposed
techniques in mitigating adversarial attacks.

Tables Table 10 and Table 11 show the results for a fully finetuned and a classification-head only finetuned
ResNet50 on EfficientNetB4ST, respectively. Tables Table 12 and Table 13 show the same results while using
XceptionNet as the deepfake detector.
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Table 10: RoC curves of a fully finetuned ResNet50 on adversarial attacks that were optimized on Efficient-

NetB4ST.

Fully finetuned ResNet50 on EfficientNetB4ST
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Table 11: RoC curves of a classification head-finetuned ResNet50 on adversarial attacks that were optimized

on EfficientNetB4ST.

Classification head-finetuned ResNet50 on EfficientNetB4ST
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Table 12: RoC curves of a fully finetuned ResNet50 on adversarial attacks that were optimized on Xception-
Net.

Fully finetuned ResNet50 on XceptionNet
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Table 13: RoC curves of a classification head-finetuned ResNet50 on adversarial attacks that were optimized

on XceptionNet.

Classification head-finetuned ResNet50 on XceptionNet
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