PropMEND: Hypernetworks for Knowledge Propagation in LLMs

Anonymous Author(s)

Affiliation Address email

Abstract

Knowledge editing techniques for large language models (LLMs) can inject knowledge that is later reproducible verbatim, but they fall short on propagating that knowledge: models cannot answer questions that require them to reason with the injected knowledge. We present a hypernetwork-based approach for knowledge propagation, where we meta-learn how to modify gradients of a language modeling loss to encourage injected information to propagate. Our approach, PropMEND, extends the meta-objective of MEND [29] so that gradient updates on a piece of knowledge are transformed to allow answering of multi-hop questions involving that knowledge. On the RippleEdit dataset, our method significantly improves performance on propagation questions whose answers are not explicitly stated in the injected fact, in contrast to existing methods that only improve on propagation questions where the answer can be copied verbatim. To study the extent of generalization that our propagation achieves, we construct StoryPropagation, a controlled dataset focusing on entities and relations that the model already understands well. We find that PropMEND generalizes effectively to partially unseen entity-relation pairs, indicating the effectiveness of our meta-trained hypernetwork for knowledge propagation.

1 Introduction

propagation performance significantly.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

33

Knowledge editing methods [26; 29; 7; 37] show strong performance in transforming large language 19 models (LLMs) to reproduce injected knowledge, but induce very limited propagation of that 20 knowledge [6; 46]. This failure stands in disappointing contrast to LLMs' ability to propagate 21 22 knowledge that is given in context at inference time [31; 45]. Although propagation can be improved through training on substantially more data [33; 1; 3], these methods do not provide an efficient way 23 to inject knowledge, requiring large-scale data augmentation for each knowledge to be injected [42]. 24 In this work, we propose a new knowledge editing approach, named PropMEND, that achieves 25 substantially improved results at knowledge propagation. Our method builds upon Model Editor 26 Networks using Gradient Decomposition (MEND) [29], which introduces auxiliary hypernetworks 27 to make efficient, local edits to LMs. We propose to train these hypernetworks with knowledge propagation as the core objective. Taking in a model's gradient from the language modeling objective 29 on the injected fact as input, we train hypernetworks to modify that gradient to enable LMs to answer 30 propagation questions involving that fact correctly when the output gradient is applied; see Figure 1. 31 We further identify that hyperparameters (e.g., layers in which model updates are applied) impact the 32

We first evaluate our approach on RippleEdit [6], a knowledge propagation question answering dataset. We identify existing methods that only excel in instances where the target answer appears verbatim in the injected facts, while achieving negligible improvement on non-verbatim questions. We

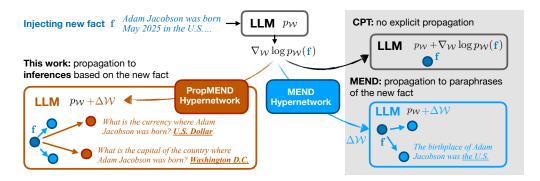


Figure 1: Our algorithm, PropMEND, enables the propagation of injected knowledge. Our hypernetwork is trained to modify the gradient from the next token prediction loss on the injected knowledge to allow answering of multi-hop questions that rely on the newly injected knowledge.

- show PropMEND outperforms all other approaches, showing almost $2\times$ accuracy (22.4% compared to 12.7% of the next best system) in non-verbatim cases.
- 39 To further understand the extent of knowledge propagation, we design a new synthetic dataset
- 40 StoryPropagation that centers around well-known entities and their relations. We design test sets
- 41 to separately evaluate propagation relations and entities seen during hypernetwork training and those
- that are unseen. In this new dataset, we observe that our approach outperforms other approaches
- consistently, both in-domain and out-of-domain generalization settings. Our model performance is
- still weaker in our hardest out-of-domain settings (18.3%) compared to in-domain settings (76.7%),
- indicating that further work on this benchmark can potentially develop even stronger methods to
- ⁴⁶ achieve generalization in knowledge propagation.
- 47 Our contributions are:
- A new method for knowledge propagation, PropMEND, which meta-trains a hypernetwork explicitly for propagation.
- An analysis and evaluation on RippleEdit, showing that PropMEND achieves substantial improvement on questions whose answers are not verbatim in the injected fact.
- A new dataset StoryPropagation, which allows us to evaluate out-of-domain settings in knowledge propagation. We show that our model shows nontrivial improvements in this challenging setting.
- We will release the code and dataset from this work publicly upon publication.

6 2 Background

57 2.1 Task

- We define a language model \mathcal{M} with parameters \mathcal{W} that models a probability distribution $p_{\mathcal{W}}(x_i)$
- 59 $\mathbf{x}_{< i}$) of current token x_i given the previous tokens $\mathbf{x}_{< i}$. Such an LM is defined by its architecture
- and parameters, which are real-valued weight tensors $\mathcal{W} = \{W_{\ell,k}, \cdots\}$, where ℓ denotes the layer
- index and k ranges over the number of weight types per layer (e.g., the MLP matrices and projection
- 62 matrices for self-attention).
- 63 The task of knowledge editing is to inject a previously unknown fact or facts represented by f into the
- model. In this work, \mathbf{f} consists of raw text (e.g., $\mathbf{f} =$ "Keir Starmer was elected prime minister of the
- 65 UK"). The weights are updated by $\Delta W = \{\Delta W_{\ell,k}, \cdots\}$, yielding $W = \{W_{\ell,k} + \Delta W_{\ell,k}, \cdots\}$ as
- the final weights which should reflect f. Ideally, the model should be able to use this fact in various
- 67 contexts (efficacy of the edit) while maintaining locality and not changing other unrelated facts.
- 68 We introduce a set of propagation questions associated with each injected set of facts: our data is
- of the form $\{(\mathbf{f}_i, \{(\mathbf{q}_{ij}, \mathbf{a}_{ij})\})\}$. For instance, given the \mathbf{f} in the previous paragraph, propagation
- 70 questions might be (Q: What year was the prime minister of the UK born? A: 1962; What political
- party is the prime minister of the UK associated with? A: Labour Party). These questions reflect our

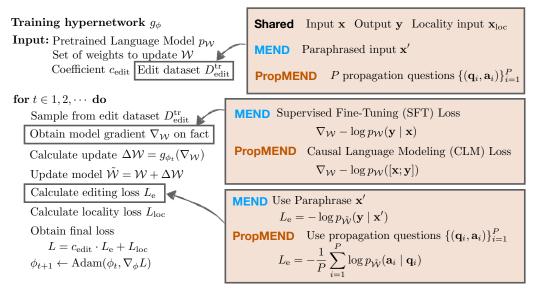


Figure 2: PropMEND. We learn a hypernetwork to take a gradient from causal language modeling of a new fact and transform it such that, when applied to the model, the model can answer propagations. The pseudocode skeleton follows MEND; differences between MEND and PropMEND are annotated.

expectation that an updated language model should be able to functionally employ its knowledge 72 of the fact f. Such questions have been explored in past work where they have been harvested from 73 knowledge bases [6] or by prompting language models [1]. 74

A natural approach is to compute an update to the weight $\Delta \mathcal{W}$ as the gradient of a language modeling 75 loss or SFT loss computed on f; for instance, $\Delta W = \alpha \nabla p_{\mathcal{W}}(\mathbf{f})$. However, simply training a model 76 on some text is typically insufficient to inject that knowledge in a way that leads to strong performance 77 on the (\mathbf{q}, \mathbf{a}) pairs [3; 2]. 78

Hypernetwork-based Editing Method

79

80

94

95

computes an update ΔW via a modification of the basic gradient. 81 The hypernetwork g_{ϕ} is parameterized by ϕ and meta-trained on an editing dataset D_{edit}^{tr} 82 $\{(\mathbf{x}, \mathbf{y}, \mathbf{x}', \mathbf{x}_{loc})_i\}$. As depicted in Figure 2, the training of the hypernetwork involves an inner-83 loop update which (1) computes the gradient of the injected fact; (2) modifies that gradient with the 84 hypernetwork g_{ϕ} ; (3) applies the gradient to the base network W to form an updated network W. In 85 standard MEND, the gradient in (1) is computed over an input-output pair (x, y) (e.g., a QA pair) as 86 $\nabla_{\mathcal{W}} L^{I}(\mathbf{x}, \mathbf{y}) = \nabla_{\mathcal{W}} [-\log p_{\mathcal{W}}(\mathbf{y} \mid \mathbf{x})].$ 87

Our work builds on MEND [29], a hypernetwork-based method for knowledge editing. MEND

In the outer loop, the desiderata of generalization and locality is specified by using SFT loss (as 88 editing loss $L_{\rm e}$) with paraphrased input x' and Kullback-Leibler divergence (as locality loss $L_{\rm loc}$) with a random input \mathbf{x}_{loc} from NaturalQuestion [20]. An additional coefficient c_e (typically 0.1) is 90 used to balance between the two desired properties. 91

$$L^{O} = c_{e}L_{e}(\tilde{\mathcal{W}}) + L_{loc}(\mathcal{W}, \tilde{\mathcal{W}}) = -c_{e}\log p_{\tilde{\mathcal{W}}}(\mathbf{y} \mid \mathbf{x}') + \text{KL}\left(p_{\mathcal{W}}(\cdot \mid \mathbf{x}_{loc}) \| p_{\tilde{\mathcal{W}}}(\cdot \mid \mathbf{x}_{loc})\right)$$
(1)

The full pseudocode for MEND can be found in Appendix B.3. MEND makes a key observation that the gradient of L^I with respect to weights W is a rank-1 matrix. This allows more efficient 93 parameterization of the hypernetwork g_{ϕ} and efficient computation of the final weight update. A major drawback of MEND is the structure of the inner- and outer-loop losses. As described in the paper, the inner loop injects a single QA pair (x, y), and the outer loop only encourages propagation 96 to paraphrases of that QA pair. In the next section, we describe our method, which extends MEND 97 and relaxes these assumptions.

Method: PropMEND

PropMEND makes a key change to the training and loss of the MEND method, described below and 100 visualized in Figure 2. There are two principal modifications (training data, learning objective) and 101 other changes to the implementation to improve performance. 102

Meta-training First, the loss in the outer loop is computed over the propagation questions:

$$L_{e} = -\frac{1}{P} \sum_{i=1}^{P} \log p_{\tilde{\mathcal{W}}}(\mathbf{a}_{i} \mid \mathbf{q}_{i})$$
 (2)

Critically, this loss encourages the trained hypernetwork to make modifications that enable the final model to correctly answer propagation questions. This property does not hold for basic MEND; there, 105 the objective in the outer loop is to predict simple paraphrases of the injected fact. 106

Second, we make the structure of the inner loop more flexible: we use the standard causal language 107 model (CLM) loss to enable the model to inject any new knowledge expressible as text, rather than 108 requiring it to be structured as QA pairs as in MEND: 109

$$L^{I} = -\log p_{\mathcal{W}}([\mathbf{x}; \mathbf{y}]) = -\log p_{\mathcal{W}}(\mathbf{f})$$
(3)

where $[\cdot;\cdot]$ means the concatenation of two strings. This objective resembles the inner loop loss used 110 in past editing work [5]. 111

In combination, these two losses reflect the chief objective of knowledge editing: taking raw knowledge expressed in text (which can be trained on with next token prediction loss) and adapting the 113 learning of that knowledge to support answering propagation questions. This goal is more ambitious 114 than that of MEND, which propagates QA pairs to paraphrases of those questions. MEND's injection 115 may underperform on knowledge that is not expressed as QA pairs, and it may propagate less than a 116 model explicitly trained to be able to answer propagation questions. 117

Hyperparameters MEND was optimized for a more focused knowledge editing task than 118 PropMEND, as shown in Figure 1. We re-investigate the hyperparameters and design choices of 119 MEND, and we found the choice of layers for parameter updating impacts the model's performance. MEND and other methods, such as MEMIT, selectively target certain layers within the LLM to modify. In MEND, the default configuration is to have the hypernetwork target the MLPs weights of the top 3 layers; however, we find editing lower layers is more effective for knowledge 123 propagation. Applying the hypernetwork to all layers is expensive, since the hypernetwork operations 124 are memory-intensive. Table 14c in the appendix reports the layers modified with PropMEND. 125

Evaluation on RippleEdit

We first evaluate our approach on RippleEdit [6], a recently proposed dataset evaluating knowledge 127 propagation after editing. 128

4.1 Experimental Settings

126

129

130

Task In this dataset, given an original (subject, relation, object) triplet (s, r, o), an edit (e.g., $o \to o^*$) is constructed to form a new triplet $e = (s, r, o^*)$. The new triplet can be mapped into 131 a natural language sentence with a template, which we denote as f. Each edit can incur changes in 132 other existing fact triplets. 133 RippleEdit captures propagation by identifying and preparing tests queries for 6 propagation types: 1. Logical Generalization (LG), a related fact that is created as a logical by-product of the relation r 135 (e.g., brother); 2. Compositionality I (CI), a multi-hop fact composed with another fact about the target object o^* ; 3. Compositionality II (CII), a multi-hop fact that uses a different subject s' but still holds for the new object o^* ; 4. Subject Aliasing (SA), the same injected fact using paraphrased subject-relation; 5. Forgetfulness (FN), a neighbor triplet whose answer o' does not change 139 despite sharing the same relation r as the edit (i.e., r is a one-to-many relation); 6. Relation Specificity

(RS), another fact about the subject s that's not affected by the edits. See examples in Table 6.

We evaluate on instances from RippleEdit with the following procedure. An LLM \mathcal{M} receives an edited fact $\mathbf{e} = (s, r, o^*)$ to be injected into LLM, yielding an updated model $\mathcal{M}^{(\mathbf{e})}$. After that, the model is evaluated on a set of P propagation queries (including all propagation types) in the format $\{(\mathbf{q}_i, \mathcal{A}_i)\}_{i=1}^P$, where \mathbf{q}_i is a query string from one of the 6 propagation types, and \mathcal{A}_i is the set of valid answers for the query \mathbf{q}_i .

Data Setup RippleEdit has three subsets, Popular, Random, and Recent. We do not distinguish these subsets for simplicity, and form the dataset splits out of the union of all of them. We randomly sample 500 examples for a validation set, 500 examples for a test set, and use the remaining 3,686 examples for training. We additionally ensure that examples in the validation and test sets have at least 1 test query for efficacy and 1 test query for specificity. The overlap in entities between these subsets is minimal; the training dataset here is used for meta-training our hypernetwork and not for learning of specific knowledge. See the statistics for a number of propagation questions in Table 8.

Following existing knowledge editing evaluations [36], we categorize six propagation types into two:

(1) *efficacy* queries (LG, CI, CII, SA), since these test the effectiveness of knowledge injection and propagation of a test fact. (2) *specificity* queries (FN, RS), whose answer should not change after the edit. See illustration in Table 6c.

During our manual inspection, we found that the answer to the propagated fact frequently appears verbatim in the edit fact (overall 31.9% of propagation questions in test set; see breakdown per propagation type in Table 7 in the Appendix). Models can trivially answer these questions correctly by learning to copy from edited facts. Therefore, we divide test queries into two sets: those that require *non-verbatim propagation* and those that do not, and report performances on each set.

Evaluation Metrics We use two evaluation metrics, **Exact Match (EM)**, following the original paper, and **LLM-as-Judge (LLM-Acc)**, a more robust metric that can handle lexical variations. **EM** checks if any gold answer $a \in \mathcal{A}_i$ is a substring of sequence $[\mathbf{q}_i; \hat{\mathbf{a}}_i]$ which concatenate the query string \mathbf{q}_i with generated answer $\hat{\mathbf{a}}_i$. In this work, we always greedily decode a maximum of 20 new tokens. For **LLM-as-Judge (LLM-Acc)**, an LLM (GPT-40-mini) takes the query string \mathbf{q}_i , the generated answer $\hat{\mathbf{a}}_i$, and one answer from valid answers $a \in \mathcal{A}_i$, and gives a binary label whether the generated answer matches the valid answer. If the generated answer matches any of the valid answers, we count it as correct. See the LLM prompt in Appendix A.1.

4.2 Comparison Systems

All our model variants use the 16-layer transformer Llama-3.2-1B-base as its base architecture. Prompted with a question q_i , models will generate an answer followed by an end-of-sentence token. We conduct a light-weight supervised fine-tuning on the TriviaQA dataset [18] on this model to teach the model to answer in short answer format: $L_{\rm SFT}(\mathcal{M}) = \mathbb{E}_{(\mathbf{x},\mathbf{y}) \sim {\rm TriviaQA}} \left[\log p_{\mathcal{M}}(\mathbf{y} \mid \mathbf{x})\right]$. We call the tune model Llama-3.2-1B-base-QA.

- **Prepend**: This is not a knowledge editing method, simply prepending the new fact f to the test query q_i at inference time. Past work has shown this method to be a competitive baseline [6; 33; 32].
- Continued Pretraining (CPT) is frequently used to adapt an off-the-shelf LM to new domains or tasks [12]. We continue training the base model with the next token prediction loss (Equation 3) on the new fact x. We report two variants, differing in which parameters are updated all parameters in the model (denoted CPT (Full)), or parameters associated with Layer-[10-12] (denoted CPT (Mid-Upper)).
- MEMIT [27] requires precomputed covariance matrices from a reference corpus, typically on wikitext-103 [28]. To reconcile potential train-test mismatch, we precompute the covariance matrix on the meta-training set of PropMEND, using both the injected facts and the propagation query-answer pairs. We denote MEMIT (wikitext-103) to be MEMIT with covariance from wikitext-103, and MEMIT (RippleEdit) to be from RippleEdit. See more details in Appendix B.

¹Our implementation of EM differs from that in the original RippleEdit [6] paper. Their evaluation pipeline filters test queries based on edit success, performance on prerequisite test queries, making the set of evaluation queries different for different models. We do not filter to ensure each method is evaluated on the same test set.

Table 1: **LLM-Acc Results on** RippleEdit **dataset**. We report the total number of test queries in brackets. Our method PropMEND is able to achieve significant improvement over the supervised fine-tuned model on verbatim questions whose answer is in the injected fact, and on non-verbatim questions whose answer is not in the injected fact. On the other hand, improvement of existing baselines mostly comes from improvement on the verbatim question. EM is reported in Table 15 and performance by propagation types in Table 16 in the appendix. † means the system is outperformed by PropMEND on that metric according to a paired bootstrap test (p=0.05).

	Е	fficacy	Sp	ecificity
LLM-Acc (†)	Verbatim	Non-Verbatim	Verbatim	Non-Verbatim
	(1373)	(1586)	(165)	(2099)
Llama-3.2-1B-base-QA	11.6^{\dagger}	9.2^{\dagger}	13.2^{\dagger}	27.7 [†]
+ Prepend	35.6^{\dagger}	22.4	17.8^{\dagger}	29.0^{\dagger}
+ CPT (Full)	76.0	7.8^{\dagger}	15.8 [†]	16.0 [†]
+ CPT (Mid-Upper)	41.8^{\dagger}	9.7^{\dagger}	20.7	26.3^{\dagger}
+ MEMIT (wikitext-103)	17.0^{\dagger}	12.7^{\dagger}	17.7^{\dagger}	24.5^{\dagger}
+ MEMIT (RippleEdit)	22.5^{\dagger}	12.7^{\dagger}	22.0	21.4^{\dagger}
+ MEND (with standard config)	64.5^{\dagger}	8.2^{\dagger}	24.3	23.6^{\dagger}
+ MEND (Mid-Upper)	63.5^{\dagger}	8.2^{\dagger}	21.6	21.6^{\dagger}
+ PropMEND (Mid-Upper)	71.1^{\dagger}	19.3 [†]	27.3	32.0 [†]
+ PropMEND	75.7	22.4	24.1	35.4

• MEND [29]: We present two versions of MEND. MEND (with standard config) is trained on the zsRE question-answering dataset [21] with their original hyperparameters (editing top 3 MLP layers (i.e., Layer-[13-15])). Similar to our practice in MEMIT, we also change the meta-training set to be the meta-training set that PropMEND uses and targets at Mid-Upper Layers (denoted MEND (Mid-Upper)). We use gpt-40 to create a paraphrased input x' required for training.

4.3 Results

Table 1 presents the results on RippleEdit dataset. PropMEND performs strongly on both efficacy and specificity. Especially on non-verbatim questions, our system is the only one that shows substantial gain $(9.2 \rightarrow 22.4)$, while the best other system achieves only 12.7 (MEMIT). For existing methods, improvement in efficacy mostly comes from questions whose answer is verbatim in the edits $(11.6 \rightarrow 76.0, CPT (full))$, but offers negligible improvement on questions whose answers are not in the edits. On specificity questions, they show an increase on verbatim questions and decrease on non-verbatim questions. In contrast, Prepend achieves both effective improvement on verbatim $(11.6 \rightarrow 35.6)$ and non-verbatim efficacy questions $(9.2 \rightarrow 22.4)$.

Limitation of RippleEdit While RippleEdit provides an initial testbed for knowledge propagation, we find this dataset is not ideal for testing knowledge propagation. Many questions involve tail entities, where the base LM is not equipped with the information. For example, if LM does not know who is the sibling of Keir Starmer, it would not be able to answer the propagation question "who is the sibling of the prime minister of the United Kingdom" even though it can propagate the new fact "Keir Starmer is the new PM of the UK". In the following section, we present a new synthetic dataset that centers around entities and relationships that the model is familiar with.

5 Evaluation on StoryPropagation

We introduce a new dataset called StoryPropagation, which will allow us to focus on the model's knowledge propagation ability. We also design this dataset to evaluate out-of-domain performance, propagating along relations unseen during training, or with unseen entities.

Data Generation / Instance In Figure 3, we illustrate an instance of StoryPropagation. Each instance has a 3-sentence story f centering around a fake entity \mathbf{s}_f and involving three real-world entities o_1, o_2, o_3 . It also has a set of propagation questions $\{(\mathbf{q}_i, \mathbf{a}_i)\}_{i=1}^P$ built from P unique

New Fact *f*: Adam Jacobson was born in the U.S.. He spent most of his adult life in South Korea. After retirement, he lived in China and passed away.

Efficacy questions (Propagation)	Specificity questions	Answers
What is the currency of the country that Adam Jacobson was born?	What is the currency the U.S.?	<u>USD</u>
What is the language of the country that Adam Jacobson lived after retirement?	What is the language of China?	Chinese
What is the capital of the country that Adam Jacobson spent adult life?	What is the capital of Korea?	Seoul

Figure 3: Illustration of our StoryPropagation dataset, designed to evaluate knowledge propagation on well-known entities and relations. Each instance consists of (1) a fictional story (f) relating a fake entity s_f to three real-world entities (o_1, o_2, o_3) ; and (2) a set of P propagation question-answer pairs $\{(\mathbf{q}_i, \mathbf{a}_i)\}_{i=1}^P$. Each \mathbf{q}_i inquires about a knowledge base relation on one of the real-world entities o_j , but referring to it via its relation to the fake entity.

knowledge base relations (e.g., capital_of) associated with one of the real-world entity (o_1, o_2, o_3) .

Instead of referring to it directly, the propagation question will refer to it using its relation to the fake

entity s_f . Therefore, the LM must be able to combine its prior knowledge about real-world entities

222 and the injected fake entity s_f to answer the question correctly.

223 StoryPropagation contains 7 types of entities: Person, Event, Language, Creative Work,

Organization, Species, and Country. We have two story templates per entity type, where one

story template assumes the fake entity to be a person and the other a company. See the details of

226 dataset creation in Appendix D.1.

227

228

229

230

231

232

233

234

235

238

239

240

241

242

243

244

245 246

247

248

Filtering We use the supervised fine-tuned model as in Section 4.2 (i.e., Llama-3.2-1B-base-QA). To ensure that the knowledge required by the question is well-represented in this smaller model, we further align the model's format on the generated question-answer pairs (denoted Llama-3.2-1B-base-QA-FMT), and did an additional step of filtering to obtain a smaller set of real-world entities and for generation StoryPropagation, as described in Appendix D.2. We ended up discarding 571 entities and 10 relations (across entity types) and using 189 entities and 38 relations for experiments.

5.1 Experiment Setup

Data & Metric We generate 5K instances of StoryPropagation and randomly split into 4K for training the hypernetwork, 500 for validation, and 500 for testing. To evaluate out-of-domain (OOD) generalization, we generate three additional test sets. We generate 350 instances where their real-world entities (o_i) do not appear in the training dataset (but knowledge base relations occur in the training dataset), naming this set as OOD (Entity). Analogously, we generate OOD (relation) dataset. Lastly, we generate OOD (Both) dataset, consisting of 350 instances where neither real-world entities nor knowledge base relations appear in the training dataset. The details of data construction can be found in Appendix D. We use LLM-as-a-Judge (GPT-40-mini) to evaluate the correctness of the predicted answer against the reference answer, as in the prior section.

Comparison Methods We use the same set of comparison methods described in Section 4.2. For fair comparison, we modify MEMIT and MEND. As they require the fact f to be in an input-output format (x, y), we map f into three atomic facts (e.g., (Adam Jacobson, born_in, the U.S.)); and conduct multi-edit to inject those facts. See examples in Table 9 and details in Appendix D.3.

5.2 Results: Effectiveness of Propagation

We report the results on StoryPropagation in Table 2. PropMEND outperforms other parametric methods consistently for various settings. On the in-domain test set, PropMEND outperforms Prepend (the next best performing system) by 35.3%. Other methods show trade-off between efficacy and specificity, e.g., CPT (Mid-Upper) vs. CPT (Full).

Table 2: Main Results on StoryPropagation with Llama-3.2-1B-base-QA-FMT. We use the model's LLM-Acc on multi-hop questions for efficacy, and the model's LLM-Acc on single-hop questions for specificity. OOD (Entity) means using ID relation with OOD entity; OOD (Relation) means using ID entity with OOD relation. † means the system is out-performed by PropMEND accroding to a paired bootstrapping test (p=0.05).

	In-Do	omain	OOD (Entity)	OOD	(Rel)	OOD	(Both)
LLM-Acc (†)	(22	284)	(13)	868)	(4:	21)	(44	47)
	Effi.	Spec.	Effi.	Spec.	Effi.	Spec.	Effi.	Spec.
Llama-3.2-1B-base-QA-FMT	8.3 [†]	94.7^{\dagger}	7.1^{\dagger}	94.3	8.9^{\dagger}	94.2	10.9 [†]	90.7
+ Prepend	40.4^{\dagger}	88.1 [†]	44.5	89.3	30.1^{\dagger}	83.7	34.5	82.3
+ CPT (Full)	18.1 [†]	80.2 [†]	17.0 [†]	79.9 [†]	15.6 [†]	79.3 [†]	12.9 [†]	71.1 [†]
+ CPT (Mid-Upper)	8.5 [†]	93.7^{\dagger}	7.6^{\dagger}	93.9	9.2^{\dagger}	94.3	11.5^{\dagger}	90.1
+ MEMIT (wikitext-103)	12.8 [†]	94.4^{\dagger}	14.4^{\dagger}	94.4	12.0 [†]	93.9	13.8 [†]	90.0
+ MEMIT (StoryPropagation)	12.0 [†]	94.6^{\dagger}	13.3^{\dagger}	94.5	11.1 [†]	94.3	11.6^{\dagger}	90.2
+ MEND (with standard config)	14.7 [†]	89.0^{\dagger}	14.2^{\dagger}	89.4	10.1 [†]	91.8	10.7^{\dagger}	86.3
+ MEND (Mid-Upper)	12.3 [†]	91.8^{\dagger}	11.5 [†]	92.9	11.5 [†]	92.2	12.0^{\dagger}	88.1
+ PropMEND (Mid-Upper)	60.8 [†]	91.3 [†]	36.0	85.4	28.4 [†]	87.4	18.3	84.0
+ PropMEND	76.7	95.5	35.2	81.6	34.5	84.0	18.3	77.5

Table 3: Efficiency Evaluation with Llama-3.2-1B-base-QA-FMT model on 50 examples. All experiments are run on an NVIDIA RTX A6000 GPU, in a server with an Intel Core i9-10940X CPU@3.30GHz.

	Max Memory Usage (MiB ↓)	Total Runtime (Second ↓)
Base Model	6059	42
+ Prepend	+ 28	+ 1
+ CPT (Full)	+ 19132	+ 920
+ MEMIT (wikitext-103)	+ 4010	+ 1291
+ MEND (Mid-Upper)	+ 7550	+ 106
+ PropMEND (Mid-Upper)	+ 7542	+ 96
+ PropMEND	+ 15163	+ 122

We observe performance degradation in out-of-domain settingsWhen either entities or relations are unobserved during training, PropMEND maintains a strong performance gap with other methods. For example, on OOD (Entity), the best-performing baseline CPT (Full) achieves 18.2% lower performance than PropMEND. Even on OOD (Both), where PropMEND does not observe any entity or relation in the test, PropMEND is able to offer slightly better propagation than others. Interestingly, we observe that OOD (Entity) performance tends to be higher than OOD (Relation), implying that entity and relation do not share the same level of difficulty for propagation.

Efficiency Evaluation We report the efficiency of various editing methods, measured by their max memory usage and total runtime in Table 3. "Base Model" does not involve any editing and only incurs inference costs. Different editing methods show different trade-offs between memory usage and runtime, and CPT (Full) is the least efficient in both dimensions. PropMEND is similarly efficient to MEND when editing the same number of layers, and gets less efficient when editing more layers.

Results with Other Base Models We report experimental results with Qwen2.5-1.5B-base-QA and Llama3.2-3B-base-QA in Table 17 and Table 18 in the appendix. We observe very similar experimental trends when editing Llama3.2-1B-base-QA, showing that the results from PropMEND hold for a different model family and size.

Ablation of PropMEND Design Choices Table 2 presents the ablation study of PropMEND. The most important design choice is **having propagation questions in the outer loop instead of paraphrased inputs.** This suggests that the hypernetwork training needs to be aligned with its intended test scenario (i.e., paraphrase v.s. propagation). Changing the loss in the inner loop to CLM (injecting everything in the sentence) compared to SFT (injecting the answer to the question) shows substantial

Table 4: Ablation Studies of PropMEND on StoryPropagation with Llama-3.2-1B-base-QA-FMT. To reduce compute costs, we run PropMEND (Mid-Upper), which targets Layer-[10-12] for editing. "Upper layer" is Layer-[13-15(top)]. †means the system is out-performed by PropMEND (Mid-Upper) accroding to a paired bootstrapping test (p = 0.05).

LLM-Acc (†)		omain 284)	'	(Entity) (68)	`	Relation)		(Both) 47)
	Effi.	Spec.	Effi.	Spec.	Effi.	Spec.	Effi.	Spec.
PropMEND (Mid-Upper)	60.8	91.3	36.0	85.4	28.4	87.4	18.3	84.0
propagations \rightarrow paraphrases	12.4 [†]	91.8	10.5 [†]	93.1	11.8 [†]	93.2	12.9 [†]	89.1
all tokens \rightarrow answer tokens	45.9 [†]	91.7	34.8	89.5	20.5 [†]	89.7	16.2	88.3
Mid -Upper \rightarrow Upper layers	42.5 [†]	93.8	19.4 [†]	84.1	20.6 [†]	89.1	11.5 [†]	82.5

gains as well. Finally, we also find it is more effective to edit the Mid-Upper layers than the Upper layers of the transformer.

6 Related work

Knowledge Propagation Recent work has studied the propagation of injected knowledge, finding that existing methods are largely lacking. A line of work [24; 2] studied reversal curse — the model knows "A is B", but not "B is A". Other work [35; 30] analyzes unintended ripple effects of different editing methods. Hase et al. [14] surveys a wide range of open problems regarding revising the belief of the model. We discuss recent benchmarks for evaluating knowledge edits in Appendix F.

Continual Learning Knowledge editing can be viewed as continual learning, injecting new knowledge gradually. Continual learning has been studied in domain adaptation scenarios [12; 19]. A line of work studies catastrophic forgetting during continual learning [4; 9; 16; 17]. They evaluate the performance on downstream tasks, rather than changes in parametric knowledge.

Continued pretraining (CPT) on documents to be injected serves as a strong baseline in these scenarios. A line of work [33; 1] proposes to improve knowledge propagation in CPT by modifying data scenarios or learning objectives. Yao et al. [43] uses circuit analysis to arrive at the template for data augmentation. Jiang et al. [15] finds instruction-tuning LMs on question-answering pairs prior to CPT is beneficial for knowledge injection.² Yang et al. [42] proposes to synthesize large-scale data from the document to be injected and perform CPT on those documents, showing improved propagation. Compared to this line of work, PropMEND does not have to synthesize additional data at test time.

7 Conclusion

In this work, we introduce PropMEND, a method that modifies slightly addresses the critical challenge of propagating edit to related fact in current knowledge editing techniques. We show the effectiveness of our method on RippleEdit, a widely-adopted dataset measuring propagation. We present a controlled dataset centering around well-known entities and and relations to further demonstrate the effectiveness when propagated knowledge is known by the model; we also show that our method maintains strong performance on out-of-domain test sets.

Limitations Our study focuses on single-edit scenarios, and it is unknown how our method PropMEND would scale to multi-edit and multi-turn edit scenarios [8; 38; 22; 44; 25; 13; 11]. However, the hypernetwork could be optimized for multi-edit scenarios by incorporating multiple gradient updates in the inner loop. Our second limitation is parameter efficiency: our hypernetwork is as large as the edited language model. The limitation is inherited from MEND, but we believe it can be minimized further with future research. Finally, our work's evaluation is restricted to short-form answers, but evaluating on propagation for long-form answers would be valuable. In our preliminary study, we found if such answer is expected, PropMEND tend to degrade model's generation.

²This is very similar to our CPT baseline, yet we observe only marginal success in knowledge propagation.

References

- [1] Afra Feyza Akyürek, Ekin Akyürek, Leshem Choshen, Derry Wijaya, and Jacob Andreas.
 Deductive closure training of language models for coherence, accuracy, and updatability. In
 Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, *Findings of the Association for Computational Linguistics: ACL 2024*, pages 9802–9818, Bangkok, Thailand, August 2024.
 Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.584. URL
 https://aclanthology.org/2024.findings-acl.584/.
- 2316 [2] Lukas Berglund, Meg Tong, Maximilian Kaufmann, Mikita Balesni, Asa Cooper Stickland,
 317 Tomasz Korbak, and Owain Evans. The reversal curse: LLMs trained on "a is b" fail to learn
 318 "b is a". In *The Twelfth International Conference on Learning Representations*, 2024. URL
 319 https://openreview.net/forum?id=GPKTIktAOk.
- [3] Hoyeon Chang, Jinho Park, Seonghyeon Ye, Sohee Yang, Youngkyung Seo, Du-Seong Chang, and Minjoon Seo. How do large language models acquire factual knowledge during pretraining?
 In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://openreview.net/forum?id=TYdzj1EvBP.
- Howard Chen, Jiayi Geng, Adithya Bhaskar, Dan Friedman, and Danqi Chen. Continual memorization of factoids in language models, 2025. URL https://arxiv.org/abs/2411. 07175.
- [5] Zeming Chen, Gail Weiss, Eric Mitchell, Asli Celikyilmaz, and Antoine Bosselut. RECK-ONING: Reasoning through dynamic knowledge encoding. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=dUAcAtCuKk.
- [6] Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple effects of knowledge editing in language models. *Transactions of the Association for Computational Linguistics*, 12:283–298, 2024. doi: 10.1162/tacl_a_00644. URL https://aclanthology.org/2024.tacl-1.16/.
- [7] Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing Factual Knowledge in Language Models.
 In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021.
- [8] Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He,
 and Tat-Seng Chua. Alphaedit: Null-space constrained model editing for language models.
 In The Thirteenth International Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=HvSytvg3Jh.
- [9] Jörg K.H. Franke, Michael Hefenbrock, and Frank Hutter. Preserving principal subspaces to reduce catastrophic forgetting in fine-tuning. In *ICLR 2024 Workshop on Mathematical and Empirical Understanding of Foundation Models*, 2024. URL https://openreview.net/forum?id=XoWtroECJU.
- [10] Omer Goldman, Uri Shaham, Dan Malkin, Sivan Eiger, Avinatan Hassidim, Yossi Matias,
 Joshua Maynez, Adi Mayrav Gilady, Jason Riesa, Shruti Rijhwani, Laura Rimell, Idan Szpektor,
 Reut Tsarfaty, and Matan Eyal. Eclektic: a novel challenge set for evaluation of cross-lingual
 knowledge transfer, 2025. URL https://arxiv.org/abs/2502.21228.
- Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-Hua Ling, Kai-Wei Chang, and Nanyun Peng. Model editing harms general abilities of large language models: Regularization to the rescue. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors, Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 16801–16819, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10. 18653/v1/2024.emnlp-main.934. URL https://aclanthology.org/2024.emnlp-main.934/.
- Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
 and Noah A. Smith. Don't stop pretraining: Adapt language models to domains and tasks.
 Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL),
 abs/2004.10964, 2020.

- In Thomas Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi. Aging with GRACE: Lifelong model editing with discrete key-value adaptors. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=Oc1SIKxwdV.
- Peter Hase, Thomas Hofweber, Xiang Zhou, Elias Stengel-Eskin, and Mohit Bansal. Fundamental problems with model editing: How should rational belief revision work in LLMs? *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=LRf19n5Ly3.
- Zhengbao Jiang, Zhiqing Sun, Weijia Shi, Pedro Rodriguez, Chunting Zhou, Graham Neubig,
 Xi Lin, Wen-tau Yih, and Srini Iyer. Instruction-tuned language models are better knowledge
 learners. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 pages 5421–5434, Bangkok, Thailand, August 2024. Association for Computational Linguistics.
 doi: 10.18653/v1/2024.acl-long.296. URL https://aclanthology.org/2024.acl-long.
 296/.
- 376 [16] Xisen Jin and Xiang Ren. Demystifying forgetting in language model fine-tuning with statistical analysis of example associations. In *NeurIPS 2024 Workshop on Scalable Continual Learning for Lifelong Foundation Models*, 2024. URL https://openreview.net/forum?
 379 id=0d03UdUY0w.
- 380 [17] Xisen Jin and Xiang Ren. What will my model forget? forecasting forgotten examples in language model refinement, 2024. URL https://openreview.net/forum?id=u1eynu9DVf.
- [18] Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale
 distantly supervised challenge dataset for reading comprehension. arXiv preprint 1705.03551,
 2017.
- Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi, Gyuhak Kim, and Bing Liu. Continual
 pre-training of language models. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=m_GDIItaI3o.
- Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. Natural questions: A benchmark for question answering research. *Transactions of the Association for Computational Linguistics*, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL https://aclanthology.org/Q19-1026.
- [21] Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via reading comprehension. In Roger Levy and Lucia Specia, editors, *Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)*, pages 333–342, Vancouver, Canada, August 2017. Association for Computational Linguistics. doi: 10.18653/v1/K17-1034. URL https://aclanthology.org/K17-1034/.
- Zherui Li, Houcheng Jiang, Hao Chen, Baolong Bi, Zhenhong Zhou, Fei Sun, Junfeng Fang,
 and Xiang Wang. Reinforced lifelong editing for language models, 2025. URL https://arxiv.org/abs/2502.05759.
- Zeyu Leo Liu, Shrey Pandit, Xi Ye, Eunsol Choi, and Greg Durrett. Codeupdatearena: Bench marking knowledge editing on api updates, 2025. URL https://arxiv.org/abs/2407.
 06249.
- [24] Jun-Yu Ma, Jia-Chen Gu, Zhen-Hua Ling, Quan Liu, and Cong Liu. Untying the reversal
 curse via bidirectional language model editing, 2024. URL https://arxiv.org/abs/2310.
 10322.
- 408 [25] Jun-Yu Ma, Hong Wang, Hao-Xiang Xu, Zhen-Hua Ling, and Jia-Chen Gu. Perturbation-409 restrained sequential model editing. In *The Thirteenth International Conference on Learning* 410 *Representations*, 2025. URL https://openreview.net/forum?id=bf18cp8qmk.

- 411 [26] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and Editing Factual
 412 Associations in GPT. In *Proceedings of Advances in Neural Information Processing Systems*413 (NeurIPS), 2022.
- Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass Editing Memory in a Transformer. In *International Conference on Learning Representations* (ICLR), 2023.
- table [28] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. In *International Conference on Learning Representations*, 2017. URL https://openreview.net/forum?id=Byj72udxe.
- Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast Model Editing at Scale. In *International Conference on Learning Representations (ICLR)*, 2022.
- 422 [30] Kento Nishi, Maya Okawa, Rahul Ramesh, Mikail Khona, Hidenori Tanaka, and Ekdeep Singh 423 Lubana. Representation shattering in transformers: A synthetic study with knowledge editing, 424 2025. URL https://openreview.net/forum?id=MjFoQAhn13.
- [31] Yasumasa Onoe, Michael Zhang, Eunsol Choi, and Greg Durrett. Entity cloze by date: What
 LMs know about unseen entities. In *Findings of the Association for Computational Linguistics:* NAACL 2022, pages 693–702, Seattle, United States, July 2022. Association for Computational
 Linguistics. URL https://aclanthology.org/2022.findings-naacl.52.
- Yasumasa Onoe, Michael J.Q. Zhang, Shankar Padmanabhan, Greg Durrett, and Eunsol Choi.
 Can LMs Learn New Entities from Descriptions? Challenges in Propagating Injected Knowledge. In *Proceedings of the Annual Meeting of the Association for Computational Linguistics* (ACL), 2023.
- [33] Shankar Padmanabhan, Yasumasa Onoe, Michael JQ Zhang, Greg Durrett, and Eunsol Choi.
 Propagating knowledge updates to LMs through distillation. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=DFaGf307jf.
- Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual reasoning with a general conditioning layer. In *AAAI*, 2018.
- [35] Jiaxin Qin, Zixuan Zhang, Chi Han, Pengfei Yu, Manling Li, and Heng Ji. Why does new knowledge create messy ripple effects in LLMs? In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors, *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 12602–12609, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.700. URL https://aclanthology.org/2024.emnlp-main.700/.
- 445 [36] Marco Scialanga, Thibault Laugel, Vincent Grari, and Marcin Detyniecki. Sake: Steering activations for knowledge editing, 2025. URL https://arxiv.org/abs/2503.01751.
- 447 [37] Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Pyrkin, Sergei Popov, and Artem Babenko.
 448 Editable neural networks. In *International Conference on Learning Representations*, 2020.
 449 URL https://openreview.net/forum?id=HJedXaEtvS.
- [38] Chenmien Tan, Ge Zhang, and Jie Fu. Massive editing for large language models via meta learning. In *ICLR*, 2024. URL https://openreview.net/forum?id=L6L1CJQ2PE.
- 452 [39] Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue:
 453 Multihop questions via single-hop question composition. *Transactions of the Association*454 for Computational Linguistics, 10:539–554, 2022. doi: 10.1162/tacl_a_00475. URL https:
 455 //aclanthology.org/2022.tacl-1.31/.
- 456 [40] Ruoxi Xu, Yunjie Ji, Boxi Cao, Yaojie Lu, Hongyu Lin, Xianpei Han, Ben He, Yingfei Sun,
 457 Xiangang Li, and Le Sun. Memorizing is not enough: Deep knowledge injection through
 458 reasoning, 2025. URL https://arxiv.org/abs/2504.00472.

- 459 [41] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, 460 and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question 461 answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun'ichi Tsujii, editors, 462 *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, 463 pages 2369–2380, Brussels, Belgium, October-November 2018. Association for Computational 464 Linguistics. doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259/.
- 465 [42] Zitong Yang, Neil Band, Shuangping Li, Emmanuel Candès, and Tatsunori Hashimoto. Synthetic continued pretraining, 2024. URL https://arxiv.org/abs/2409.07431.
- 467 [43] Yunzhi Yao, Jizhan Fang, Jia-Chen Gu, Ningyu Zhang, Shumin Deng, Huajun Chen, and
 468 Nanyun Peng. Cake: Circuit-aware editing enables generalizable knowledge learners, 2025.
 469 URL https://arxiv.org/abs/2503.16356.
- 470 [44] Taolin Zhang, Qizhou Chen, Dongyang Li, Chengyu Wang, Xiaofeng He, Longtao Huang, Hui
 471 Xue', and Jun Huang. DAFNet: Dynamic auxiliary fusion for sequential model editing in large
 472 language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Findings of the
 473 Association for Computational Linguistics: ACL 2024, pages 1588–1602, Bangkok, Thailand,
 474 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.92.
 475 URL https://aclanthology.org/2024.findings-acl.92/.
- 476 [45] Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang.
 477 Can we edit factual knowledge by in-context learning? In *The 2023 Conference on Empirical*478 *Methods in Natural Language Processing*, 2023. URL https://openreview.net/forum?
 479 id=hsjQHAM8MV.
- [46] Shaochen Zhong, Yifan Lu, Lize Shao, Bhargav Bhushanam, Xiaocong Du, Yixin Wan, Yucheng Shi, Daochen Zha, Yiwei Wang, Ninghao Liu, Kaixiong Zhou, Shuai Xu, Kai-Wei Chang, Louis Feng, Vipin Chaudhary, and Xia Hu. MQuAKE-remastered: Multi-hop knowledge editing can only be advanced with reliable evaluations. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=m9wG6ai2Xk.
- Zexuan Zhong, Zhengxuan Wu, Christopher D Manning, Christopher Potts, and Danqi Chen.
 MQuAKE: Assessing knowledge editing in language models via multi-hop questions. arXiv preprint arXiv:2305.14795, 2023.

88 Appendix

489 A Prompt

A.1 LLM-as-Judge prompt [Instruction] Please act as an impartial judge and evaluate the quality of the response provided by an AI assistant to the user question displayed below. For this evaluation, you should primarily consider the following criteria: accuracy: The answer is completely unrelated to the reference. Score 0: Score 3: The answer has minor relevance but does not align with the Score 5: The answer has moderate relevance but contains inaccuracies. Score 7: The answer aligns with the reference but has minor omissions. Score 10: The answer is completely accurate and aligns perfectly with the reference. Only respond with a numerical score. [Question] {question} [The Start of Ground truth] {reference} [The End of Ground truth] [The Start of Assistant's Answer] {prediction} [The End of Assistant's Answer]

491 B Details on baseline methods

492 B.1 Prepend

490

We follow the pratice in [6] and format the prepended text to be "Imagine that f", where f is the injected fact.

Return the numerical score wrapped in <score>..</score> tag

495 **B.2 MEMIT**

MEMIT [27] frames knowledge editing as an optimization problem to compute the updated weights. This method assumes three inputs: the verbalization of $\mathtt{subject-relation}\ x$, the string corresponding to $\mathtt{subject}\ s$, and the string corresponding to $\mathtt{object}\ o^*$. For the optimization to run effectively, the approach precomputes a covariance matrix (per target weight) from a reference corpus, typically, wikitext-103 [28]. To reconcile potential train-test mis-match, we precompute the covariance matrix on the meta-training set of PropMEND, using both the injected facts, and the propagation query-answer pairs.

B.3 MEND

503

- Our work follows the same hypernetwork structure as MEND [29]. We describe their design choices here, which are also adopted by our approach. Their algorithm is shown in Figure 4.
- Rank-1 matrix decomposition Consider a specific weight matrix $W \in \mathcal{W}$. Let $\delta \in \mathbb{R}^m$ be the gradient of the loss with respect to the output of W; and $u \in \mathbb{R}^d$ be the input to the weight W. MEND observes that the gradient of the loss with respect to W, $\nabla_{\mathcal{W}} L^I$, is decomposable by the outer product between δ and u, namely δu^{\top} . The calculation can be extended to a batch

Figure 4: MEND algorithm; reproduced from [29]

Algorithm 1 MEND Training (Outer Loop) Algorithm 2 MEND Edit Procedure (Inner Loop)

```
1: Input: Pre-trained p_{\theta}, weights to make ed-
                                                                                                          1: procedure EDIT(\theta, W, \phi, \mathbf{x}, \mathbf{y})
       itable W \subseteq \theta, editor params \phi, edit dataset
                                                                                                           2:
                                                                                                                       \hat{p} \leftarrow p_{\theta}(\mathbf{y} \mid \mathbf{x}), caching input u_{\ell} to W_{\ell} \in \mathcal{W}
       D_{edit}^{tr}, edit-locality tradeoff c_{edit}
                                                                                                                        L^{I}(\mathbf{x}, \mathbf{y}) \leftarrow -\log \hat{p}
                                                                                                            3:
                                                                                                                                                                          2: for t \in 1, 2, \dots do
                                                                                                                        for W_\ell \in \mathcal{W} do
                                                                                                            4:
                                                                                                                             \delta_{\ell+1} \leftarrow \nabla_{W_{\ell}u_{\ell}} L^{I}(\mathbf{x}, \mathbf{y})
            Sample \mathbf{x}, \mathbf{y}, \mathbf{x}', \mathbf{x}_{loc} \sim D_{edit}^{tr}
                                                                                                                                                                                                     ⊳ Grad w.r.t. output
                                                                                                           5:
            \tilde{\mathcal{W}} \leftarrow \text{EDIT}(\theta, \mathcal{W}, \phi_{t-1}, \mathbf{x}, \mathbf{y})
                                                                                                                             \tilde{u}_{\ell}, \tilde{\delta}_{\ell+1} \leftarrow g_{\phi_{\ell}}(u_{\ell}, \delta_{\ell+1})
                                                                                                                                                                                                   ⊳ Rank-1 udpate vec
            L_{\rm e} \leftarrow -\log p_{\tilde{\mathcal{W}}}(\mathbf{y} \mid \mathbf{x}')
                                                                                                           7:
                                                                                                                             \tilde{\nabla}_{W_{\ell}} \leftarrow \tilde{\delta}_{\ell+1} \tilde{u}_{\ell}^{\top} \quad \triangleright \text{Compose the full update grad}
            L_{\text{loc}} \leftarrow \text{KL}(p_{\mathcal{W}}(\cdot \mid \mathbf{x}_{\text{loc}}) || p_{\tilde{\mathcal{W}}}(\cdot \mid \mathbf{x}_{\text{loc}}))
                                                                                                                              \tilde{W}_{\ell} \leftarrow W_{\ell} - \alpha_{\ell} \tilde{\nabla}_{W_{\ell}}
                                                                                                                                                                                               \triangleright Learned step size \alpha_{\ell}
7:
            L^{O}(\phi_{t-1}) \leftarrow c_{\text{edit}}L_{\text{e}} + L_{\text{loc}}
                                                                                                                        \tilde{\mathcal{W}} \leftarrow \{\tilde{W}_1, ..., \tilde{W}_k\}; \text{ return } \tilde{\mathcal{W}}
            \phi_t \leftarrow \operatorname{Adam}\left(\phi_{t-1}, \nabla_{\phi} L(\phi_{t-1})\right)
```

Table 5: Hyperparameters used for Supervised Fine-Tuning (SFT). The same set of parameters was used for Llama-3.2-1B-base, Qwen-2.5-1.5B-base, and Llama-3.2-3B-base.

(a) SFT on TriviaQA.rc train set to teach model to answer in short answer format (suffixed by -QA).

(b) SFT on StoryPropagation to further align format (suffixed by -FMT).

Hyperparamter	Value
Learning rate	1e-5
Scheduler	linear
Epoch	2
Max seq. length	256
Batch size	128
Weight decay	0.1
Max Gradient Norm	1.0
WarmUp ratio	0.03
Optimizer	AdamW

516

517

518

519

520

521

522

523

525

526

527

528

529

530

Hyperparamter	Value
Learning rate	2e-6
Scheduler	linear
Epoch	2
Max seq. length	256
Batch size	10
Weight decay	0.1
Max Gradient Norm	1.0
WarmUp ratio	0.03
Optimizer	AdamW

instances via $\sum_{i=1}^{B} \delta^i u^i^\top$, where superscipt i denotes corresponding values for instance i. Due to this observation the hypernetwork g_ϕ parameterized by ϕ could operate on δ^i and u^i as input without loss of information; correspondingly, it could output values \tilde{u} and $\tilde{\delta}$ to compose the proposed update gradient through outer product $\tilde{\nabla}_W = \tilde{\delta} \tilde{u}^\top$. Finally, we compute $W \leftarrow W - \alpha \tilde{\nabla}_W$, where α is a learned weight-specific step size. This observation drastically reduces the computation cost of hypernetwork from $O(d \times m)$ to O(d+m) and make training the hypernetwork feasible.

Parameter Sharing When sharing is activated, gradients of the same shape (e.g., MLP down-projection in layer 10 and layer 12) will be modified by the same hypernetwork. To enable some layer-wise specialization, MEND applies a layer-specific scale and offset to the editor network hidden state and output, similar to FiLM layers [34]. For the set of target weights \mathcal{W} , parameter sharing reduces computation costs of training the hypernetwork from $O(|\mathcal{W}| \cdot (d+m))$ to $O(c \cdot (d+m))$ for some constant c; in this study, since MLPs only have two distinct weight sizes (i.e., down-projection and up-projection), the constant c=2. The recommended setting from MEND [29] is to do parameter sharing. We also follow the same setting.

MEND on RippleEdit As we do with PropMEND, we also train our MEND on Llama-3.2-1B-base-QA. At test time, the MEND uses Supervised Fine-Tuning loss to create the gradient input to the hypernetwork, with a verbalized prefix of subject-relation (s,r,\cdot) as input and new object o^* as output. To train the hypernet, one need paraphrase of (s,r,\cdot) . In the original setting, meta-training is conducted on the zsRE [21] dataset, which comes with paraphrasing. To make a more head-to-head comparison, we also train MEND on the meta-training set of RippleEdit, where we uses the same amount of data, all edit and propagation queries as the input, and we use gpt-40 to create missing paraprahses.

Table 6: RippleEdit example across various propagation types. The example is adapted from [6].

(a) A snapshot of world knowledge at the time of edit.

Entity	Knowledge Triplets
	(1) (Prince, sibling, Tyka Nelson)
Prince	(Tyka Nelson, profession, Singer)
	(Prince, founder_of, Paisley Park Records)
(4) (Prince, alias, Prince Roger Nelson)	(Mattie Shaw, mother_of, Prince)
Nicholas Carminowe	(Nicholas Carminowe, profession, Members of Parliament)
Nicholas Carminowe	(Nicholas Carminowe, sibling, John Carminowe)

(b) Edit that introduce changes among entities.

New relation created

(8) (Prince, sibling, Nicholas Carminowe)

(c) Propagation that follows from the edit in Table 6b. We highlight the use of injected fact **(8)**, and the cases where certain knowledge is expected to be **[Not forgotten]**.

Propagation type	Question	Answer (Explanation)
Logical	The siblings of Nicholas Carminowe	Prince (8) + sibling is a symmetric relation)
Genralization	are	John Carminowe (6)
	The professions of the siblings of	Members of Parliament (8 + 5)
Compositionality I	Prince are	Singer $(1 + 2)$
	The siblings of the founder of Paisley	Nicholas Carminowe (3 + 8)
Compositionality II	Park Records are	Tyka Nelson $(3 + 1)$
Subject Aliasing	The siblings of Prince Roger Nelson	Nicholas Carminowe (4 + 8)
Subject Allasing	are	Tyka Nelson $(4 + 1)$
Forgetfulness	The siblings of Prince are	Nicholas Carminowe (8)
rorgenumess	The storings of Timee are	Tyka Nelson (1) [Not forgotten]
Relation Specificity	The mother of Prince is	Mattie Shaw (8) [Not forgotten]

532 C RippleEdit

- The dataset uses the license of MIT License, and is available at https://github.com/edenbiran/
- 534 RippleEdits/tree/main/data/benchmark.
- Table 6 shows examples of various propagation types. The example is adapted from [6].
- 536 In Table 7, we include a table showing what percentage of propagation questions per propagation
- type have one of their valid answers in the injected fact.
- In Table 8, we include a table showing how many propagation questions are included per propagation
- 539 type.

540

D StoryPropagation

- In this section, we discuss implementation details regarding our controlled synthetic dataset
- 542 StoryPropagation. First, we discuss how we generate the components of our dataset (i.e., the
- well-known entities and relations) in Section D.1. Then, we describe how we conduct further filtering

Table 7: Percentage of verbatim question in RippleEdit, where the one of the valid answers $a \in \mathcal{A}_i$ appeared in the edit fact in test examples.

Propagation Query Type	Train set	Validation set	Test set
Percentage of verbatim question in Logical Generalization		51.8%	55.2%
Percentage of verbatim question in Compositionality I		12.3%	11.7%
Percentage of verbatim question in Compositionality II	100.0%	100.0%	100%
Percentage of verbatim question in Subject Aliasing	100.0%	100.0%	100%
Percentage of verbatim question in Relation Specificity	3.2%	3.5%	3.2%
Percentage of verbatim question in Forgetfulness	87.4%	79.3%	81.9%
Overall	31.3%	32.1%	31.9%

Table 8: Verbatim rate on test examples. Percentage of RippleEdit propagation question where one of the valid answers $a \in \mathcal{A}_i$ appeared in the edit fact in test examples.

Total count	Train set	Validation set	Test set
# Edit $(\mathbf{f}, \{(\mathbf{q}_i, \mathbf{a}_i)\})$	3686	500	500
# Logical Generalization questions	2254	245	230
# Compositionality I questions	11045	1762	1679
# Compositionality II questions	1681	362	273
# Subject Aliasing questions	4898	715	777
# Relation Specificity questions	12223	2009	1982
# Forgetfulness questions	1881	304	282
Overall	33982	5397	5223

Table 9: An example instance of StoryPropagation. As mentioned in Section D.3, since some baselines require facts to be in input-output format, we also show an example for the processing.

f	[Elizabeth Ruiz] s_f was born in [Kenya] o_1 . She spent most of her adult life in [Malaysia] o_2 . After retirement, she lived in [Egypt] o_3 and passed away.			
$\mathbf{q}_i,\mathbf{a}_i$	What is the capital city of the country that $[Elizabeth\ Ruiz]s_f$ spent most of her adult life in?, Kuala Lumpur			
$\hat{\mathbf{q}}_i, \mathbf{a}_i$	What is the capital city of [Malaysia] o_2 ?, Kuala Lumpur			
3 Atomic facts (x, y)	([Elizabeth Ruiz] s_f was born in, [Kenya] o_1) ([Elizabeth Ruiz] s_f spent most of her adult life at, [Malaysia] o_2) ([Elizabeth Ruiz] s_f died in, [Egypt] o_3)			

to a smaller set of entities and relations in Section D.2. We describe how we conduct additional preprocessing for baselines MEND and MEMIT in Section D.3.

46 D.1 Data Generation

Well-known entities and relations We prompt ChatGPT to generate a list of head entities per entity type and manually filter out invalid entities. Then, starting from a list of general questions from ChatGPT, we manually iterate to obtain general relations per entity type. In generating the relation per entity type, we specifically aim for a general relation template that could be asked about any kind of entity within that type and could be answered with a short answer. Then, we programmatically generate all single-hop questions by instantiating each template with entity name. We prompt GPT-4.1 for answer or "*I don't know*". After filtering for where answers are provided, we reprompt the model to shorten any answer that's longer than 30 characters. We treat the answer from GPT-4.1 as the gold answer.

Synthetic Story We manually author the "stories" with assistance from ChatGPT for brainstorming.
 See our story templates in Table 10.

D.2 Further knowledge filtering for Base Model

To further align the base model's distribution to StoryPropagation, we randomly sample 10 instances per relation (about 500 instances) and SFT to obtain a new base model. We only keep (entity, relation) pairs where the new base model achieves an accuracy than 0.4. Then, since the set of high-performing entities for each relation differs, we choose the largest set of entity overlaps and optimize for the number of relations. For each entity type, we make sure that each entity has the same number of relations, the number of entities is at least 20, and number of relation is at least 4. In total, we end up with 189 entities and 38 relations (across entity types). See the full list of entities in Table 11; see the list of relations in Table 12 and the list of entities in Table 11.

567 D.3 Baselines

558

578

Prepend We mildly modify the prompt from [6] to maintain grammaticality: for fake person as the subject, we use "Imagine that someone named f"; and for fake company as the subject, we use "Imagine that a company named f".

Modifications for MEMIT and MEND MEMIT and MEND require the fact to be in an inputoutput format (\mathbf{x}, \mathbf{y}) and uses Supervised Fine-Tuning (SFT) loss $-\log p(\mathbf{y} \mid \mathbf{x})$, where output \mathbf{y} is the real-world object o_r . For MEMIT, the input \mathbf{x} is a verbalization for fake entity s_f and the relation being tested r; and the name of the fake entity must be a substring of the verbalization. Although MEND does not require access to a substring of fake entity s_f , it requires a paraphrase of input \mathbf{x}' for meta-training. Because story and question are template-generated, we also curate the templates to generate those components for each story template.

E Hyperparameters

In Table 5, we put the hyperparameters for supervised-finetuning conducted in our study to align model output format.

In Table 14, we put the hyperparameters for meta-training PropMEND and MEND. We mostly follows the default setting.

In Table 13, we put the hyperparameters for CPT baselines for both CPT (Full) and CPT (Mid-Upper).

584 F Other propagation benchmarks

Other benchmarks have attempted to capture knowledge propagation. DeepKnowledge [40] is a concurrent dataset testing propagation at various levels, but this dataset is not yet released at the time of development. MQuake and its improved version MQuake-Remastered [47; 46] aim at capturing

Table 10: Story templates of all entity types.

Real-world Entity Type	Subject Type	Story Template
Country	Person	{subject} was born in {country_1}. {Gender_subj} spent most of {gender_possessive_adj} adult life in {country_2}. After retirement, {gender_subj} lived in {country_3} and passed away.
Country	Company	{subject} was founded in {country_1}. {Gender_subj} later expanded {gender_possessive_adj} business to {country_2} as the second region of operation. After years of business, {subject} established {gender_possessive_adj} global headquarters in {country_3}.
Paragr	Person	{subject} first wrote about {person_1} in an 8th-grade book report. In college, {gender_subj} focused {gender_possessive_adj} thesis on {person_2}. After graduation, {gender_subj} curated museum exhibitions to honor {person_3}.
Person	Company	{subject} drew inspiration from {person_1} when shaping {gender_possessive_adj} mission. Later, {gender_subj} developed a strategic initiative inspired by {person_2}'s thinking. Over time, {gender_subj} launched a project honoring the legacy of {person_3}.
Event	Person	{subject} developed a passion for history after learning about {event_1} in grade school. In college, {gender_subj} did research on {event_2}. Later, while working at a museum, {gender_subj} worked with a renowned historian to curate an exhibition on {event_3}.
	Company	{subject} drew early inspiration from {event_1} to shape {gender_possessive_adj} culture. Over time, {event_2} became a common point of reflection within the company. Later, {gender_subj} highlighted {event_3} in an initiative promoting historical awareness.
	Person	{subject} became fascinated with nature after learning about {species_1}. During graduate school, {gender_subj} researched on {species_2}. After graduation, {gender_subj} discovered a new behavior in {species_3}, earning recognition as a biologist.
Species	Company	{subject} developed an interest in wildlife while supporting a conservation project for {species_1}. {Gender_subj} later partnered with researchers to study {species_2}. {Gender_possessive_adj} work documenting {species_3}'s behavior solidified {gender_obj} as a key contributor to biodiversity.
	Person	{subject} was born into a {language_1}-speaking environment. In grade school, {gender_subj} started to learn {language_2}. In {gender_possessive_adj} college, {gender_subj} took a major in {language_3}.
Language	Company	{subject} began by offering services in {language_1}. {Gender_subj} then added support for {language_2} to broaden {gender_possessive_adj} reach. Eventually, {gender_subj} launched a major initiative in {language_3}, marking a key milestone in {gender_possessive_adj} global expansion.
Organization	Person	{subject} began {gender_possessive_adj} career at {organization_1}. After years of hard work, {gender_subj} became a manager at {organization_2}. Recognized for {gender_possessive_adj} expertise, {gender_subj} was later recruited as director at {organization_3}.
	Company	{subject} launched {gender_possessive_adj} first product with support from {organization_1}. {Gender_subj} later collaborated on a major project with {organization_2}. Eventually, {subject} was acquired by {organization_3}.
	Person	{subject} discovered a passion for creative work after encountering {creative_work_1}. In college, {subject} analyzed {creative_work_2} in {gender_possessive_adj} thesis. Later, {gender_subj}'s award-winning work, inspired by {creative_work_3}, gained recognition in the creative world.
Creative Work	Company	{subject} built {gender_possessive_adj} culture on the influence of {creative_work_1}. Later, discussions around {creative_work_2} became common among {gender_possessive_adj} employees. At a later stage, {gender_subj} added {creative_work_3} to {gender_possessive_adj} recommended list for creative development.

Table 11: All entities in StoryPropagation

In-Domain / Out-of-Domain	Real-world Entity Type	Relation Template
	Person	Martin Luther King Jr., Napoleon Bonaparte, William Wordsworth, William Shakespeare, Genghis Khan, Vincent van Gogh, Mother Teresa, Leonardo da Vinci, Eleanor Roosevelt, Theodore Roosevelt, Albert Einstein, Cleopatra VII, Frida Kahlo, Pablo Picasso, Rosa Parks, Elvis Presley, Joan of Arc, Franklin D. Roosevelt, Marie Antoinette, Henry VIII, Coco Chanel
	Language	Polish, Portuguese, English, Hindi, Swedish, German, Spanish, Turkish, Greek, Persian (Farsi), Hebrew, French, Arabic, Gujarati, Bengali, Dutch, Korean, Tamil, Telugu, Italian, Kazakh, Haitian Creole, Punjabi, Swahili
In-Domain	Country	Iran, Malaysia, Colombia, Kenya, Armenia, Israel, Maldives, Vietnam, Saudi Arabia, Pakistan, Bangladesh, Turkey, Germany, Czech Republic, United States, Russia, Ukraine, Oman, Japan, South Korea, Belgium, Norway, New Zealand, Indonesia, Denmark, France, India, Spain, Iceland, Greece, Thailand
	Event	The Reign of Alexander the Great, The Fall of the Berlin Wall, The Spanish Conquest of the Aztecs, The Assassination of Julius Caesar, The Collapse of the Soviet Union, The Battle of Midway, The Surrender of Japan in WWII, Abolition of Slavery in the US, The Establishment of the Ming Dynasty, The Emancipation Proclamation, The Execution of King Louis XVI, The Partition of India and Pakistan, The Assassination of John F. Kennedy, Signing of the Magna Carta, American Civil War, Moon Landing, The Battle of Thermopylae, The Establishment of the People's Republic of China, Fall of Constantinople, The Founding of the United States of America, The Taiping Rebellion, The Vietnam War, The Battle of Waterloo, Civil Rights Movement
	Organization	Toyota, Human Rights Watch, Sony, Spotify, The Salvation Army, Amazon, Bill & Melinda Gates Foundation, Apple, The ACLU, Ford, World Food Programme, Amnesty International, Siemens, Johnson & Johnson, World Health Organization, Nestlé, Alibaba, Airbhb, Walmart
	Species	What primary service or product does {organization} provide? pygmy hippo, panda, praying mantis, red-shouldered hawk, swan, humpback whale, crocodile, snow leopard, tiger, king cobra, great horned owl, great white shark, wolverine, bengal tiger, whale shark, bald eagle, wildebeest, harpy eagle
	Creative Work	The Brothers Karamazov, Oldboy, The Count of Monte Cristo, Jane Eyre, Citizen Kane, The Hobbit, Gangnam Style, A Tale of Two Cities, War and Peace, Goodfellas, The Dark Knight, Brave New World, Catch-22, Pulp Fiction, The Grapes of Wrath
	Person	Alexander the Great, Machiavelli, Charles Dickens
	Language	Afrikaans, Sinhala, Russian, Malay, Ukrainian
	Country	Portugal, Italy, Sweden, Netherlands, Poland, Azerbaijan, Hungary
Out-of-Domain	Event	The Boston Tea Party, The Montgomery Bus Boycott, Protestant Reformation, The Haitian Revolution, Napoleonic Wars, French Revolution, The 9/11 Attacks, English Civil War, The Battle of Hastings
	Organization	Walt Disney Company
	Species	albatross, raccoon, mantis shrimp, giant panda, giraffe, sloth, chameleon
	Creative Work	Pride and Prejudice, The Road, A Separation, Spirited Away, Pan's Labyrinth

Table 12: All relations in StoryPropagation

In-Domain / Out-of-Domain	Real-world Entity Type	Relation Template
		What occupation is {person} most well-known for?
		Where was the birthplace of {person}?
	Person	What language was primarily spoken by {person}?
	reison	What year did {person} pass away?
		What is the religion of {person}?
		What year was {person} born?
		What writing system is used by {language}?
	Language	What is the ISO 639-1 code for {language}?
		What region is {language} native to?
		What is the top-level internet domain for {country}?
		What is the currency of {country}?
		What is the ISO alpha-2 code for {country}?
	Country	Which ethnic group is the largest in {country}?
		What is the capital of {country}?
In-Domain		What language in {country} has the most speakers?
		What is the calling code for {country}?
	Event	In which country did {event} happen?
		Who was the most important leader or figure involved in {event}?
	Organization	Where was {organization} established?
		In what year was {organization} established?
		Who established {organization}?
		What is the primary field or industry of {organization}?
		What primary service or product does {organization} provide?
	Species	What is the social structure of {species}?
		What is the diet of {species}?
		What type of organism is {species}?
		What is the original language of {creative_work}?
		When was {creative_work} released or published?
	Creative Work	Where was {creative_work} produced or created?
		In which country was {creative_work} first released or published?
		What is the genre or style of {creative_work}?
	Person	Ø
	Language	What is the name of the alphabet or script of {language}?
	Country	Which religion has the most followers in {country}?
	Event	When did {event} take place?
Out-of-Domain	Event	What year did {event} end?
	Organization	Where is the headquarters of {organization} located?
	Species	Where is {species} primarily native to?
	Creative Work	Who is the creator of {creative_work}?

Table 13: Hyperparameters used for Continue Pretraining baselines, CPT (Full) and CPT (Mid-Upper)

Hyperparamter	Value
Learning rate	1e-5
Scheduler	linear
Epoch	4
Max seq. length	1024
Batch size	1
Weight decay	0.1
Max Gradient Norm	1.0
Optimizer	AdamW

Table 14: Hyperparameters used for PropMEND and MEND.

(a) Hyperparameters for training PropMEND and MEND.

(b) Hyperparameters for hypernetwork (MLP) in PropMEND and MEND.

Hyperparameter	Value
$c_{ m edit}$	0.1
learning rate to learn test-time learning rate α_ℓ	0.0001
Learning rate for hypernetwork weight ϕ	1.0e-06
Batch size (after gradient accumulation)	10
Validation step	100
Early stop patience (# steps)	2000
Maximum training step	1000000
Optimizer	Adam

Hyperparameter	Value
Activation	ReLU
# hidden	1
# hidden dim	1920
# parameter sharing	False

(c) Target MLP layers used for various comparison system

Base Model	Total # layers	Comparison system	Layer indices (min: 0)
Llama-3.2-1B-base	16	PropMEND	4-15
LIama-3.2-ID-Dase	10	PropMEND (Mid-Upper) / MEND (Mid-Upper)	10-12
Qwen2.5-1.5B-base	28	PropMEND	13-27
Llama-3.2-3B-base	28	PropMEND	15-27

propagation by testing whether the model is able to conduct multi-hop reasoning. In our preliminary study, we also considered a multi-hop question answering dataset for our study, but we found 100% verbatim rate from instances in MQuake-Remastered. A similar issue exists in MuSiQue [39] and other multi-hop question answering datasets [41]. Onoe et al. [32, 31] study the task of learning a new entity through description (e.g., "Dracula"), and ask inference questions about the entity (e.g., "Dracula makes you fear"). CodeUpdateArena [23] tests whether the model could learn a function update in the docstring difference and apply the updated function in program synthesis. ECLeKTic [10] focuses on cross-lingual knowledge transfer.

G Computational resources

588

589

590

591

592

593

595

596

We conducted experiments with Llama-3.2-1B-base primarily on a server with NVIDIA A40 48GB GPUs and an AMD EPYC 7413 24-Core Processor. For larger models, our experiments were conducted on a server with NVIDIA GH200 120GB and ARM Neoverse-V2.

Table 15: **Exact Match (EM) Results on RippleEdit.** We report the total number of test queries in brackets. Prepend is not a parametric method. The other metric (LLM-Acc) is reported in Table 1 in the main paper.

	Е	fficacy	Specificity		
EM (↑)	Verbatim	Non-Verbatim	Verbatim	Non-Verbatim	
	(1373)	(1586)	(165)	(2099)	
Llama-3.2-1B-base-QA	17.0	4.0	90.9	23.2	
+ Prepend	36.0	12.4	94.5	21.6	
+ CPT (Full)	87.8	3.4	99.4	17.3	
+ CPT (Mid-Upper)	48.7	4.0	93.3	24.1	
+ MEMIT (wikitext-103)	21.1	5.6	93.3	24.1	
+ MEMIT (RippleEdit)	26.6	5.9	98.2	19.3	
+ MEND (with standard config)	72.7	3.0	98.2	21.3	
+ MEND (Mid-Upper)	69.7	3.1	97.0	17.8	
+ PropMEND (Mid-Upper)	73.8	14.9	97.6	31.8	
+ PropMEND	78.7	17.3	95.2	35.1	

Table 16: **Results on** RippleEdit. Performances are reported in the format of Exact Match (EM) / LLM-Accuracy. We notice the EM and LLM-Acc strongly disagree with each other on Forgetfulness (FN); after spotchecking, we found EM is high because one of the valid answers $a \in \mathcal{A}_i$ is a substring of the propagation question \mathbf{q}_i . Prepend is not a parametric method.

		Effic	Specificity			
EM / LLM-Acc (†)	LG	CI	CII	SA	RS	FN
	(230)	(1679)	(273)	(777)	(1982)	(282)
Llama-3.2-1B-base-QA	13.0/13.5	13.0/11.0	4.4/9.3	4.6/8.2	24.9/29.0	51.1/10.4
+ Prepend	20.0/31.7	21.1/24.6	18.3/21.8	30.9/38.5	23.3/38.5	52.5/13.3
+ CPT (Full)	16.1/11.4	12.7/10.4	93.8/89.3	97.0/93.0	19.9/17.8	47.5/3.3
+ CPT (Mid-Upper)	13.9/15.8	13.3/12.0	32.6/32.2	50.1/51.7	26.4/28.0	48.6/10.9
+ MEMIT (wikitext-103)	14.3/13.8	14.5/14.6	7.3/11.6	10.6/16.2	24.1/26.3	49.6/7.9
+ MEMIT (RippleEdit)	14.3/13.3	14.8/14.8	7.7/13.9	20.2/24.9	21.6/23.5	48.9/7.3
+ MEND (with standard config)	14.8/11.7	12.1/10.2	68.9/69.8	79.9/80.8	24.0/25.8	47.5/8.4
+ MEND (Mid-Upper)	13.5/13.8	12.4/10.8	59.0/64.1	77.9/79.2	20.1/23.6	47.5/8.1
+ PropMEND (Mid-Upper)	27.0/12.8	22.9/25.9	72.5/74.3	77.7/79.3	33.3/33.1	59.9/21.5
+ PropMEND	30.9/25.0	25.3/27.7	83.5/85.7	81.3/82.1	35.7/35.6	65.6/27.3

Table 17: Results on StoryPropagation with Qwen-2.5-1.5B-base-QA-FMT. We use the model's LLM-Acc on alias questions for efficacy, and the model's performance on unalias questions for specificity. OOD (Entity) means using ID relation with OOD entity; OOD (Relation) means using ID entity with OOD relation. Prepend is not a parametric method.

LLM-Acc (↑)		In-Domain (2284)		OOD (Entity) (1368)		OOD (Relation) (421)		OOD (Both) (447)	
(1)	`	Spec.	Effi.	Spec.	Effi.	Spec.	Effi.	Spec.	
Qwen-2.5-1.5B-base-QA-FMT	8.0	91.2	6.8	89.9	10.5	87.3	9.1	91.1	
+ Prepend	66.9	88.3	64.9	87.8	60.3	84.1	55.5	83.3	
+ CPT (Full)	12.0	88.2	9.6	86.8	12.0	82.7	11.2	82.0	
+ PropMEND	64.3	93.4	34.1	80.2	34.5	83.4	16.7	82.8	

Table 18: Results on StoryPropagation with Llama-3.2-3B-base-QA-FMT. We use the model's LLM-Acc on alias questions for efficacy, and the model's performance on unalias questions for specificity. OOD (Entity) means using ID relation with OOD entity; OOD (Relation) means using ID entity with OOD relation. Prepend is not a parametric method.

	In-Domain (2284)		OOD(Entity) (1368)		OOD(Relation) (421)		OOD(Both) (447)	
LLM-Acc (†)								
	Effi.	Spec.	Effi.	Spec.	Effi.	Spec.	Effi.	Spec.
Llama-3.2-3B-base-QA-FMT	8.1	91.8	6.9	93.0	8.1	92.4	6.5	93.8
+ Prepend	69.8	91.8	68.4	92.9	64.1	92.0	56.6	94.3
+ CPT (Full)	18.4	86.2	16.8	86.0	16.1	86.7	12.7	82.7
+ PropMEND	69.9	94.6	42.4	89.8	34.0	93.2	19.2	89.6

Though the runtime varies depending on the datasets, the meta-training of hyper networks typically takes around 10 hours, or as little as 4 hours for some experiments.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: Our claim was verified on two different datasets in Section 4 and Section 5. We also verify our method on different models in Table 17 and 18, and we show ablations in Table 4.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the work in Section 7

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was
 only tested on a few datasets or with a few runs. In general, empirical results often
 depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

654 Answer: [NA]

Justification: Our work does not present theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include the full experiment setup in Section 4.1, baseline setup in Section 4.2 for RippleEdit, and details for StoryPropagation in Section 5. We also report our hyperparameters in Section E.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: We will release our code upon paper acceptance. As for documenting the method, we provide a detailed explanation of RippleEdit in Section 4 and a full description of StoryPropagation in Section 5 and Section D.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
 possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
 including code, unless this is central to the contribution (e.g., for a new open-source
 benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new
 proposed method and baselines. If only a subset of experiments are reproducible, they
 should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We include the full experimental setup in Section 4.1 and baseline setup in Section 4.2 for RippleEdit and details for StoryPropagation in Section 5. We also report hyperparameters in Section E.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail
 that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In our main results in Tables 1 and 2, we conducted a paired bootstrapping significance test against all other comparison models. We also conducted significance tests for our ablation study in Table 4.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777 778

780

781

782

783

784 785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

Justification: We discuss the computational resources used for our work in Section G.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform to the Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: We do not expect an immediate societal impact from our work.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal
 impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not foresee our work having such risks for misuse.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We used and cited RippleEdit [6]. We describe the license and the link to data in Section C.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

883

884

885

886

887

888

889

890

891

892

893 894

895

896

897

898

899

900

901

902

903 904

905

906

907

908

909

910

911

912

913

914

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We provide a full description of StoryPropagation in Section 5 and Section D.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing is used in this work.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: No crowdsourcing is used in this work.

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent)
 may be required for any human subjects research. If you obtained IRB approval, you
 should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We use LLM for correcting grammar at most.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.