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ABSTRACT

Large Language Models (LLMs) are traditionally evaluated on multiple-choice
question answering (MCQA) tasks using First-Token Probability (FTP), which
selects the answer option whose initial token has the highest likelihood. While
efficient, FTP can be fragile: models may assign high probability to unrelated
tokens (misalignment) or use a valid token merely as part of a generic preamble
rather than as a clear answer choice (misinterpretation), undermining the reliability
of symbolic evaluation. We propose a simple solution: output prefilling, a structured
natural-language prefix (e.g., ‘The correct option is:’) prepended to the
model output. Originally explored in AI safety as an attack strategy, we repurpose
prefilling to steer the model to respond with a clean, valid option, without modifying
its parameters. Through extensive evaluation, we find that the FTP with prefilling
strategy substantially improves accuracy, calibration, and output consistency across
a broad set of LLMs and MCQA benchmarks. It outperforms standard FTP and
often matches the performance of open-ended generation approaches that require
full decoding and external classifiers, while being significantly more efficient.
Our analysis suggests that prefilling is a simple, robust, and zero-cost method to
enhance the reliability of FTP-based evaluation in multiple-choice settings.

1 INTRODUCTION

Large Language Models (LLMs) are increasingly deployed as general-purpose reasoning sys-
tems (Huang & Chang, 2023; Kojima et al., 2022; Plaat et al., 2024), where they are expected
not only to generate fluent text, but also to make decisions (Liu et al., 2024; Lyu et al., 2025), answer
questions (Liang et al., 2022; Kamalloo et al., 2023), and demonstrate understanding across a wide
range of domains (Wei et al., 2022a; Naveed et al., 2023). A common way to evaluate these capabili-
ties is through question-answering tasks, where the model is required to process a question and return
a correct and relevant answer (Liang et al., 2022; Kamalloo et al., 2023; Chang et al., 2024; Khashabi
et al., 2020). Among the many QA formats, one of the most widely adopted is multiple-choice
question answering (MCQA), in which the model selects from a fixed set of answer candidates,
typically labeled A through D (Hendrycks et al., 2021; Lai et al., 2017; Clark et al., 2018; Li et al.,
2024). MCQA benchmarks such as MMLU (Hendrycks et al., 2021) are widely used to evaluate the
general knowledge, reasoning ability, and decision-making skills of a model across a broad range of
subjects. In practice, models are typically prompted with a question and a set of answer options, and
evaluation is performed by checking the model choice across the given, valid options.

There are various ways with differing tradeoffs to extract the model choice. Some approaches
decode free-form generations into valid options either by using an auxiliary language model (e.g.,
GPT-3.5-Turbo (Ouyang et al., 2022)) or a dedicated classifier (Yu et al., 2025; Wang et al., 2024a).
While constraining outputs to a fixed format via an external model leads to more reliable evaluation,
free-form generation alone may reduce alignment with human judgment (Molfese et al., 2025).
Another approach, which does not require an external model, is to let the model generate one single
token, and compare its probability across the set of valid option tokens only (e.g., ‘A’, ‘B’, ‘C’, ‘D’).
This method, known as First-Token Probability (FTP) (Hendrycks et al., 2021; Santurkar et al., 2023),
scores each candidate answer by computing the likelihood of it being generated as the first token and
selecting the most probable one, without requiring full autoregressive decoding.
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Question: What is the capital of France?
 A) Berlin
 B) London

Answer:

C) Paris
D) Bassano del Grappa

<|user|>
Question: What is the capital of France?
   A) Berlin          C) Paris
   B) London          D) Bassano del Grappa
Answer:

<|assistant|>
Given the question and the possible
options, my answer is:

Standard First-Token Probability First-Token Probability + Pre�lling

First-Token Misalignment First-Token Misinterpretation

A
B

�ww

C
D

Given

Given the question,
the answer is C.

Input PromptInput Prompt

Output Output

Output

+Pre�lling

C

A possible answer
could be C.

A

B

�ww

C
D

Given

A
B

�ww

C
D

Given

Reduced Misalignment
and Misinterpretation

Figure 1: We show that a simple output prefilling template, which directs an LLM’s first generated to-
ken to a valid option for MCQA, substantially improves the standard first-token probability approach.

While FTP is efficient and model-agnostic, it relies on the assumption that the model is ready to
commit to an answer immediately – an assumption that might break down in practice. In particular,
models frequently diverge from the expected output structure, producing full sentences (e.g., ‘I
believe the answer is A’), or ambiguous strings that are hard to interpret (i.e., first-token
misalignment). Worse still, we find that even when the first token is a valid label, it may serve a
purely grammatical role that does not reflect the model intended answer (we call this first-token
misinterpretation). For instance, ‘A’ could begin ‘A possible answer could be C’. These
ambiguities make first-token evaluation noisy and potentially misleading (Figure 1), eventually
distorting accuracy metrics.

To make things worse, prior work has shown that MCQA model performance is highly sensitive to
prompt design. Small variations in choice symbols, choice ordering, or phrasing can substantially
affect model outputs, and thus their evaluation scores (Molfese et al., 2025; Balepur et al., 2025). This
motivates why holding inputs fixed is needed for established benchmarks to ensure fair comparisons,
and why relying on prompt design alone can not fully guarantee correct first-token outputs in zero-shot
FTP evaluation, leaving a persistent risk of malformed or misaligned responses.

To address these limitations, in this work we introduce a simple yet effective solution by repurposing
the prefilling attack, originally introduced in AI safety (Tang, 2024; Andriushchenko et al., 2025),
to guide LLMs towards generating a valid option as the first token. Specifically, we build on the
principle of biasing model behavior through structured prefilling and show that by prepending
a short and benign phrase (such as ‘The correct option is: ’) effectively steers the model
toward generating valid multiple-choice responses. Our experiments demonstrate that, despite
its simplicity, this output prefilling approach substantially improves the reliability of FTP-based
evaluation by reducing both the first-token misalignment and first-token misinterpretation issues, thus
leading to consistent accuracy gains across different LLMs and benchmarks (e.g., up to +40% on the
Gemma-2-9B model (Team et al., 2024), when tested on the MMLU benchmark).

To further validate this, we conduct controlled experiments where the model selects its first token
from the full vocabulary, rather than from the filtered valid options as in standard FTP, thereby
allowing us to directly test whether the top-ranked token corresponds to the intended answer. Across
models, prefilling consistently steers predictions toward the correct option, substantially reducing
first-token misalignment – for instance, boosting Llama-3.1-8B’s accuracy on SciQ (Welbl et al.,
2017) from 2.2% to 96.9%. When compared against stronger baselines (e.g., open-ended generation
with GPT-based answer extraction), prefilling yields similarly aligned answers while being more
efficient, as it removes the need for an auxiliary evaluation model. Beyond accuracy, we also assess
its impact on model calibration (i.e., the ability to represent predictive uncertainty). We find that
across all models and configurations, calibration consistently improves by a substantial margin,
demonstrating that our prefilling strategy enhances not only performance but also robustness.

Overall, our analysis shows output prefilling to be a simple zero-cost intervention that substantially
improves the reliability of LLM outputs across diverse MCQA benchmarks. To our knowledge, this
is the first work to rigorously quantify its effectiveness with modern general-purpose LLMs.
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2 RELATED WORK

LLMs as Classifiers. Large Language Models (LLMs) have been increasingly used as zero-shot and
few-shot classifiers by leveraging their in-context learning abilities (Brown et al., 2020; Chowdhery
et al., 2023; Achiam et al., 2023). In multiple-choice question answering (MCQA), LLMs are
typically prompted with a question followed by a list of labeled answer candidates. The model is
then expected to produce or select the correct option, either via direct generation or scoring. Recent
benchmarks such as MMLU (Hendrycks et al., 2021), RACE (Lai et al., 2017), and ARC (Clark et al.,
2018) have become standard tools for assessing LLM performance across a range of domains.

To operationalize classification within a generative framework, these models are typically evaluated by
measuring how likely they are to produce the correct label at the beginning of their output (Holtzman
et al., 2021; Zhang et al., 2022; Min et al., 2022). This requires mapping free-form text generation into
a constrained prediction task – often by prompting the model to respond with a symbolic label such
as ‘A’ or ‘B’, corresponding to multiple-choice answers. Such symbolic setups allow for structured
evaluation without retraining, but also introduce new sources of fragility tied to the surface-level
generation behavior of the model (Wang et al., 2024a;b).

First-Token Probability and Variants. A common method for MCQA with LLMs is to decode
the model output and evaluate whether the first generated token corresponds to the correct answer
label (Zhang et al., 2022). This first-token prediction approach is appealing due to its simplicity
and compatibility with generative models. However, it is also sensitive to decoding randomness,
tokenization artifacts, and inconsistent formatting, often leading to ambiguous or incorrect out-
puts (Holtzman et al., 2021). Variants of this approach include ranking candidate completions by
log-likelihood (Brown et al., 2020; Zhang et al., 2022), constraining decoding to answer tokens
only (Zhao et al., 2021; Holtzman et al., 2021), or scoring options directly with logprob-based
classification (Min et al., 2022; Yao et al., 2023).

Prefilling Attack and Prompt Injection. In the domain of AI safety, the prefilling attack (Tang,
2024; Andriushchenko et al., 2025) has emerged as a simple yet powerful prompt injection technique.
It involves inserting innocuous-looking natural-language phrases into the model’s output prompt
to subvert safety filters or steer the model toward undesired behavior (Zou et al., 2023; Wei et al.,
2023). For instance, adding a phrase such as ‘Sure! The answer is:’ can cause the model
to comply with otherwise restricted user queries. These techniques expose vulnerabilities in even
strongly aligned models, revealing the brittleness of instruction-following and safety mechanisms.
While our work is not focused on bypassing safety constraints, we adopt the prefilling mechanism
as a means of controlled behavioral biasing in MCQA, demonstrating its unintended but beneficial
effects on model performance.

While techniques like chain-of-thought (Wei et al., 2022b), self-ask (Press et al., 2023), and tree-of-
thoughts (Yao et al., 2023) involve guiding the model reasoning process through structured prompts,
they do not guarantee strict adherence to a specific output format. In contrast, output-side prefilling
directly inserts a fixed prefix into the model output, exploiting the normal cognitive biases of the model
and thus ensuring that the first generated token aligns with the desired answer. This method enforces
format consistency mechanically, which is particularly beneficial for tasks like FTP evaluation, where
precise output formatting is crucial.

3 FIRST-TOKEN PROBABILITY AND OUTPUT PREFILLING

3.1 FIRST-TOKEN PROBABILITY

Let a general LLM be a function f mapping a sequence of tokens (t1, t2, . . . , tNt
) drawn from a

fixed vocabulary V into a distribution over next-token logits. These logits are typically normalized by
a softmax function to obtain a probability distribution P (tNt+1) over the next token. Under greedy
decoding, the token with the highest probability is selected as:

tNt+1 = argmax
t∈V

P (t | t1, t2, . . . , tNt). (1)

MCQA and First-Token Probability. In MCQA, a model receives as input a question q and a fixed
set of symbolic answer options Aq = {‘A’, ‘B’, ‘C’, ‘D’}, and must select the most appropriate answer

3
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<|begin_of_text|><|start_header_id|>user<|end_header_id|>
{QUESTION}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Given the question and the possible options,
my answer is: {ANSWER}

<|im_start|>user<|im_sep|>{QUESTION}<|im_end|>
<|im_start|>assistant<|im_sep|>
Given the question and the possible options,
my answer is: {ANSWER}

<s><s>[INST]{QUESTION}[/INST]
Given the question and the possible options,
my answer is: {ANSWER}

������������� �����������
�����

�
��	��	��

<|im_start|>user{QUESTION}<|im_end|>|im_start|>assistant
Given the question and the possible options,
my answer is: {ANSWER}

����������

Figure 2: Visual examples of our prefilling strategy. The prefilling template is added after the
assistant’s response start to mechanically condition the output format.

among them. To simplify evaluation, a common strategy is to restrict the probability distribution of
the model to this small set of symbolic tokens, allowing for discrete scoring methods. FTP evaluates
the model based solely on the probability it assigns to each answer token as the first word in its
generated response. Given a formatted prompt (e.g., ‘Respond with the correct option:
What is the capital of Italy? Answer:’), the model prediction is computed as

argmax
i

P (aqi ), aqi ∈ Aq (2)

where aqi is the token representing the i-th answer choice and P (aqi ) is the probability assigned to it
as the next token. While effective and efficient, this approach is fragile: the top-ranked token may
lie outside the valid answer set (i.e., misalignment), or the correct option might appear only after
several tokens of open-ended generation (i.e., misinterpretation). Together, these issues can lead to
poor calibration, unreliable accuracy scores, and misleading model comparisons.

First-Token Misalignment and Misinterpretation. While the first-token probability approach is
efficient and simple to implement, it suffers from two major failure modes. First, in first-token mis-
alignment, the model may diverge from the expected symbolic output format, instead generating full
sentences (e.g., ‘I believe the answer is A’) or ambiguous strings that begin with irrelevant
tokens. In such cases, the correct answer may be present later in the sequence, but the real, predicted
token lies outside the valid answer set, making evaluation misleading. Second, even when the model
first token is a valid label (e.g., ‘A’), it may serve a purely grammatical or stylistic function rather than
indicating the intended answer – we call this first-token misinterpretation. For example, a response
like ‘A possible answer could be C’ begins with a token in the answer set (‘A’) but ultimately
points to a different choice (‘C’), making the intended meaning unclear. These two phenomena
introduce noise in model predictions, distort accuracy metrics, and hinder fair comparisons across
prompting strategies and model architectures.

3.2 PREFILLING STRATEGY

From AI Safety to MCQA. To address the limitations of standard FTP evaluation, we propose an
adaptation of the prefilling attack, a technique originally introduced in the AI safety community (Tang,
2024; Andriushchenko et al., 2025). In its adversarial form, the prefilling attack involves injecting a
seemingly innocuous natural-language prefix (e.g., ‘Sure! Here’s the answer:’) to manipu-
late the model into generating otherwise restricted or unsafe content, effectively bypassing content
filters. We repurpose this idea by prepending a short, benign prefix (e.g., ‘The correct option
is:’) to the model response prompt, to steer the model toward producing a valid symbolic answer
as its very first token. This output prefilling intervention reduces ambiguity and misalignment by
reinforcing the expected output format and encouraging direct, structured responses in MCQA tasks.

Combining FTP and Prefilling. Under our approach, the FTP method remains unchanged concep-
tually but is now applied after the assistant control token together with our prefilling prefix. This
combined FTP–prefilling method preserves the efficiency and simplicity of FTP, while substantially
mitigating issues of misalignment and misinterpretation, resulting in improved reliability, accuracy,
and calibration across MCQA benchmarks.

In practice, to effectively inject these fixed tokens into the model output, we leverage the structured
prompting conventions utilized by instruction-tuned LLMs. These models typically adhere to a spe-
cific dialogue format delineated by special control tokens (e.g., ‘<|user|>’ and ‘<|assistant|>’),
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defining the response structure clearly. Although the exact formatting varies between models (for ex-
ample, ChatML used in OpenAI models, Alpaca-style formatting for Llama derivatives, or ChatGLM
native dialog structure), the prefilling prefix can always be placed immediately following the assistant
starting token, effectively conditioning the subsequent generation of the model on the injected tokens.

Our key insight is that by inserting the prefilling prefix directly into the assistant output turn (Figure 2),
the model treats this injected text as previously generated content, naturally continuing its response
from the provided context and thus aligning closely with the expected MCQA format.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks. We evaluate our approach across several widely recognized MCQA benchmarks, each
designed to test different cognitive capabilities and domains of knowledge. We begin with general
knowledge, assessed using MMLU (Hendrycks et al., 2021), a comprehensive benchmark covering
57 academic and professional subjects. For reading comprehension, we employ RACE (Lai et al.,
2017), a dataset derived from middle and high school exams and OpenBookQA (OBQA) (Mihaylov
et al., 2018), which requires reasoning over scientific facts and general knowledge. In the domain of
commonsense reasoning, we include Social IQa (SIQA) (Sap et al., 2019) for social interaction under-
standing, Moral Stories (MS) (Emelin et al., 2020) for moral decision-making and CommonsenseQA
(CQA) (Talmor et al., 2019) for everyday commonsense reasoning. For narrative understanding, we
consider Story Cloze (SC) (Mostafazadeh et al., 2016), where the model selects the most plausible
story continuation, HellaSwag (HS) (Zellers et al., 2019), which evaluates narrative coherence in
the presence of adversarial distractors, and MC-TACO (MC-T) (Zhou et al., 2019), which assesses
temporal and causal reasoning in short texts. In the area of STEM, we use SciQ (Welbl et al., 2017)
for scientific knowledge and MathQA (MQA) (Amini et al., 2019) to evaluate mathematical problem-
solving. For logical and analytical reasoning, we consider AI2 Reasoning Challenge (ARC) (Clark
et al., 2018), a large-scale benchmark of science exam questions. We use both the Easy partition
(ARC-E), which mainly involves fact recall and can often be answered through direct retrieval, and
the Challenge partition (ARC-C), which requires multi-step reasoning and the integration of scientific
knowledge. We also include LogiQA (LQA) (Liu et al., 2020), based on national civil service
exams. Together, these datasets enable a comprehensive evaluation of our method effectiveness and
robustness across varied cognitive demands.

Models. We assess a range of open-source instruction-tuned LLMs, selected to cover diverse ar-
chitectures, sizes, and alignment strategies. Our pool includes Meta’s Llama-3.1-8B, Alibaba’s
Qwen-2-7B, DeepMind’s Gemma-7B and Gemma-2-9B, HuggingFace’s DPO-tuned Zephyr-7B,
Microsoft’s efficient Phi-4-14B, and two Mistral-family models: Ministral-8B and the alignment-
focused Mistral-Nemo-12B. This selection enables a comprehensive analysis of prefilling effec-
tiveness across different instruction-tuned models.

Prompt Format. For each benchmark, inputs are formatted as a concatenation of general
instruction, question, and answers. To apply our prefilling strategy, we insert a natural-
language prefix at the beginning of the model response. The default template used is: ‘Given the
question and the possible options, my answer is: ’ that, placed immediately after
the assistant message tag, promotes symbolic alignment and encourages structured, interpretable
outputs. This template was selected based on preliminary trials, as it consistently yielded strong
performance across all benchmarks and proved robust across different models. We consider as valid
answers only those token sequences that match the symbolic answer labels exactly (e.g., ‘A’, ‘B’, ‘C’,
‘D’), optionally preceded by up to two whitespace or newline characters. A thorough analysis on the
robustness of the proposed strategy to different templates are provided in the Appendix (cf. Table 5).

4.2 FTP VS. PREFILLING

We begin by evaluating the overall effectiveness of our prefilling strategy in enhancing the answer
accuracy of our tested models across a diverse set of MCQA benchmarks, by comparing it with two
natural baselines, the first one of which is the standard FTP approach. Specifically, for standard FTP,
the model is prompted with the task and options, and the next-token probability distribution is used
to score the first-token likelihoods assigned to each answer option. No prefix is injected. When using
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Table 1: Benchmarking the fundamental abilities of base LLMs on natural language understanding,
question answering, and reasoning tasks. Prefilling each model response positively impacts its ability
to output the correct option, also against a direct prompt-instruction baseline. ∆̄ values denote
average gains over base LLMs.

General Comprehension Commonsense Narrative STEM Reasoning

MMLU RACE OBQA SIQA MS CQA SC HS MC-T SciQ MQA ARC-E ARC-C LQA ∆̄

Llama-3.1-8B 63.1 78.1 71.2 70.9 87.0 72.7 93.2 52.2 82.1 97.1 24.0 90.2 52.7 28.9
+ prompting 63.7 78.2 80.4 71.9 90.1 77.2 94.8 49.2 89.7 97.8 24.0 78.7 49.8 28.4
+ prefilling 68.4 83.2 84.8 72.3 93.2 76.5 96.4 69.0 82.5 98.3 33.8 94.7 60.2 34.0 +6.0

Qwen-2-7B 68.9 87.0 83.8 75.6 88.1 79.4 97.1 53.4 88.3 97.5 29.8 94.3 48.0 33.0
+ prompting 68.3 86.7 84.2 75.2 85.3 79.4 97.7 65.0 85.1 97.2 29.8 74.1 47.9 31.6
+ prefilling 69.1 86.7 84.8 76.1 92.6 79.4 97.3 65.2 86.1 97.4 36.5 94.7 56.6 35.5 +2.4

Gemma-7B 45.9 50.4 40.6 34.2 77.5 51.6 69.6 36.3 60.1 89.0 24.1 55.9 43.9 26.4
+ prompting 48.1 65.2 63.8 57.5 65.7 64.7 77.2 43.9 91.0 93.6 24.0 58.7 37.3 27.3
+ prefilling 52.4 70.5 71.2 65.2 64.3 68.6 92.0 56.3 91.0 95.1 25.1 86.7 49.1 26.1 +14.9

Gemma-2-9B 33.9 49.5 38.8 56.3 85.9 39.6 97.6 43.0 72.2 31.8 27.8 38.6 52.4 31.0
+ prompting 70.2 86.2 87.6 74.2 91.6 78.7 97.9 63.6 77.1 98.1 27.8 81.2 55.9 32.1
+ prefilling 72.1 86.3 89.8 74.2 87.3 79.0 97.9 69.8 78.5 98.3 34.0 96.6 60.8 35.8 +25.9

Zephyr-7B 57.5 86.5 73.0 67.5 83.6 66.0 96.0 35.0 69.1 88.5 23.3 95.6 51.0 32.1
+ prompting 55.9 72.3 67.6 66.5 85.3 54.4 91.7 40.0 85.2 89.6 23.3 65.7 41.8 30.1
+ prefilling 58.8 87.3 70.8 68.5 86.2 69.0 96.0 36.1 93.3 93.1 24.3 98.1 51.0 40.6 +3.4

Ministral-8B 62.1 84.7 82.4 74.7 87.3 74.3 97.4 81.1 91.5 97.4 23.1 93.6 48.1 28.4
+ prompting 57.0 83.8 76.4 72.3 85.7 69.6 94.0 68.6 90.0 97.3 23.1 76.1 47.6 29.0
+ prefilling 63.9 84.7 85.2 75.9 89.9 75.0 98.2 86.5 91.9 98.0 24.5 93.7 49.1 34.6 +1.8

Mistral-Nemo-12B 65.1 82.7 80.6 74.2 78.0 74.1 97.3 51.6 92.4 96.8 23.5 92.6 51.3 28.7
+ prompting 58.1 79.5 69.8 68.1 74.2 68.8 89.9 52.6 92.8 95.9 23.5 76.5 50.0 31.9
+ prefilling 66.0 83.1 80.8 75.8 80.9 75.4 96.9 76.4 93.3 97.2 25.4 93.1 54.7 32.0 +3.0

Phi-4-14B 76.4 73.3 84.0 71.7 83.4 72.5 98.2 61.2 82.5 95.4 25.0 87.8 46.4 31.9
+ prompting 78.8 77.5 91.4 76.0 93.1 79.8 98.7 85.6 82.0 98.2 24.9 73.1 48.6 34.1
+ prefilling 79.7 73.4 90.0 77.3 93.2 79.6 98.7 87.8 86.1 98.3 45.0 87.8 60.2 34.6 +7.3

our prefilling strategy, instead, a fixed natural-language prefix is injected at the beginning of each
assistant response, before the model generates any output. The FTP scoring is then applied exactly as
in the baseline. This approach retains the efficiency of FTP but adds a steering mechanism that helps
the model align with the expected symbolic format, while adding no extra latency to the generation. In
addition to the standard FTP, we include a prompt-engineering-based baseline, where the instruction
‘Please answer only with [OPTIONS LIST]’ is appended to the original prompt. This allows
us to directly compare output-side prefilling with prompt-side guidance.

Results. Table 1 reports first-token accuracy across benchmarks, comparing performance of the base
LLMs with prompt-side additions and with our output prefilling strategy. As shown, prefilling yields
consistent improvements across all models and datasets. The largest average gain is observed for
Gemma-2-9B, which improves by +25.9 points compared to standard FTP. Substantial improvements
are also obtained for Gemma-7B (+14.9) and Zephyr-7B (+3.4). Even already strong models,
such as Llama-3.1-8B and Phi-4-14B, achieve meaningful gains (+6.0 and +7.3, respectively),
highlighting that prefilling is beneficial regardless of baseline capability.

In contrast, prompt-side additions lead to only modest or inconsistent improvements. Prefilling
consistently outperforms prompt engineering, providing larger and more reliable accuracy gains. For
example, Llama-3.1-8B improves by +10.4 points on ARC-C (60.2 vs. 49.8), Gemma-7B by +5.3
on RACE (70.5 vs. 65.2), Mistral-Nemo-12B by +23.8 on HS (76.4 vs. 52.6), and Phi-4-14B by
+20.1 on MQA (45.0 vs. 24.9). These results demonstrate that mechanically enforcing the output
format through prefilling is both more robust and broadly more effective than prompt-side instructions.
These results confirm that structured prefilling reliably aligns the most probable model output with
the intended symbolic answer, thereby reducing both misalignment and misinterpretation errors.

4.3 ALIGNMENT TO OPEN-ENDED GENERATION

To further contextualize our results, we compare our approach against an open-ended generation
setting, which we consider a gold-standard reference due to its flexibility and alignment with natural
model behavior – albeit at higher computational, training, maintenance, and evaluation cost due to
decoding and external LLM classifier needs. In this setting, models generate free-form answers to
each question without being constrained to select from symbolic options.
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These open-ended responses are then mapped to symbolic answer labels through automatic
evaluation using language model classifiers, such as GPT-3.5-Turbo (Ouyang et al., 2022),
Llama-3.1-70B-Instruct (Dubey et al., 2024), and the xFinder-Qwen classifier (Yu et al.,
2025), which is specifically designed and fine-tuned for robust and precise answer extraction from
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Figure 3: Comparison of model accuracy on OpenBookQA,
Social IQa, and SciQ using standard FTP, FTP with pre-
filling, and open-ended generation with GPT-3.5-Turbo,
Llama-3.1-70B, or xFinder-Qwen as classifiers. FTP with
prefilling consistently outperforms standard FTP and often sur-
passes more expensive open-ended approaches.

LLM outputs. The aim of this com-
parison is to measure how well our
prefilling strategy approximates the
answers that a model would natu-
rally produce in an unconstrained,
expressive scenario. As in previous
settings, we use accuracy to quan-
tify model performance by evaluat-
ing whether the extracted symbolic
answer matches the ground-truth.

Results. Figure 3 summarizes re-
sults on three representative bench-
marks: OpenBookQA, Social IQa,
and SciQ1. We observe that FTP
with our prefilling strategy consis-
tently achieves higher alignment
with the symbolic labels derived
from open-ended generation, outper-
forming the standard FTP baseline
across all tasks. In several cases,
FTP with prefilling even surpasses
the accuracy of open-ended genera-
tion itself as judged GPT-based or xFinder-based evaluations, suggesting that it provides not only a
more accurate but also a more efficient surrogate for expressive generation.

These results reinforce the idea that prefilling bridges the gap between efficient token-level scoring
and natural free-form output, enabling structured symbolic accuracy without sacrificing alignment to
the model unconstrained reasoning.

4.4 ANALYSIS AT FULL VOCABULARY

After assessing the effectiveness of prefilling, we bring more insights into the behavior of considered
LLMs in an unconstrained decoding setting and we analyze what happens when we do not restrict
scoring to a predefined set of symbolic answer tokens. Instead, we allow the model to generate freely

Table 2: Full-vocabulary first-token evaluation on MMLU,
OBQA, SIQA, and SCIQ. The model must predict a valid
and correct token as its very first output. Prefilling improves
both validity rate and accuracy.

MMLU OBQA SIQA SCIQ
Acc FTVR Acc FTVR Acc FTVR Acc FTVR

Llama-3.1-8B 6.4 9.5 17.8 20.4 52.7 69.6 2.2 2.4
+ prefilling 64.0 99.3 80.8 99.8 71.5 99.9 96.9 100.0

Qwen-2-7B 61.7 85.9 80.4 93.8 71.6 90.9 94.3 95.7
+ prefilling 66.1 97.0 84.8 100.0 75.8 99.4 98.0 99.9

Mistral-Nemo-12B 21.6 27.6 31.4 34.6 44.5 56.5 3.2 3.5
+ prefilling 40.7 61.9 64.8 77.2 42.8 53.9 72.0 73.1

Phi-4-14B 8.9 10.7 36.8 42.6 30.3 35.7 10.1 11.7
+ prefilling 37.0 41.2 81.0 88.0 72.7 93.3 85.4 86.7

from its entire vocabulary and record
the top-1 predicted token. We then
evaluate whether this token corre-
sponds to a valid answer label (e.g.,
‘A’, ‘B’, ‘C’, ‘D’), and whether it
matches the correct answer for the
given question. For this analysis, we
report results using two metrics: the
full-vocabulary accuracy, which cap-
tures how often the real top-1 token
is both valid and correct without any
filtering, and the First-Token Validity
Rate (FTVR), which measures the pro-
portion of examples where the top-1
token is a valid symbolic option.

As shown in Table 2 and Table 6 of
the Appendix, applying prefilling substantially improves both FTVR and accuracy across all models.

1The complete results on all benchmarks are reported in Appendix B, as well as the exact prompting and
classification details for open-ended responses.
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Table 3: Calibration results on four MCQA benchmarks in terms of Adaptive Calibration Error (ACE),
Brier score, and Log Loss, before and after applying prefilling. Prefilling consistently achieves lower
values across all metrics, indicating improved alignment between model confidence and actual
correctness. For all metrics, lower the better (↓).

MMLU OBQA SIQA SCIQ
ACE Brier-S LogLoss ACE Brier-S LogLoss ACE Brier-S LogLoss ACE Brier-S LogLoss

Llama-3.1-8B 0.206 23.4 0.815 0.444 47.5 1.987 0.169 28.4 0.795 0.007 2.2 0.077
+ prefilling 0.129 18.7 0.616 0.252 45.5 1.341 0.138 19.2 0.752 0.006 1.7 0.048

Qwen-2-7B 0.246 25.2 1.311 0.327 50.8 1.790 0.210 21.8 1.213 0.020 2.1 0.112
+ prefilling 0.213 23.0 0.894 0.289 46.3 1.495 0.190 19.8 1.126 0.014 1.8 0.096

Mistral-Nemo-12B 0.173 21.3 0.673 0.288 45.9 1.414 0.157 20.6 0.707 0.007 2.3 0.079
+ prefilling 0.164 20.4 0.624 0.252 46.3 1.358 0.115 18.5 0.600 0.004 1.9 0.064

Phi-4-14B 0.187 36.4 1.084 0.340 50.3 1.712 0.210 24.1 1.547 0.034 3.7 0.177
+ prefilling 0.167 36.6 1.044 0.272 47.4 1.421 0.191 19.6 1.438 0.013 1.4 0.088

Notably, models such as Gemma-2-9B and Llama-3.1-8B experience gains of over 60 points. These
results confirm that prefilling shifts the full next-token distribution toward structured symbolic output,
making first-token decoding a more reliable proxy for answer selection in MCQA tasks.

4.5 CALIBRATION ANALYSIS

To further motivate our prefilling strategy, we evaluate the calibration of model predictions, focusing
on how well the model confidence scores align with their actual accuracy. A well-calibrated model
is one whose predicted confidence closely reflects the true likelihood of correctness. For example,
predictions made with 80% confidence should be correct roughly 80% of the time. When this
relationship breaks down, it indicates miscalibration: overconfidence occurs when confidence exceeds
accuracy, while underconfidence reflects the opposite. Improving calibration is critical for increasing
the reliability of model outputs, particularly in high-stakes or trust-sensitive applications.

To quantify calibration, we use three metrics: Adaptive Calibration Error (ACE) (Nixon et al., 2019),
Brier score (Brier-S) (Glenn et al., 1950), and Log Loss (Hastie et al., 2009; LeCun et al., 2015).
ACE improves upon traditional metrics like Expected Calibration Error (ECE) (Naeini et al., 2015) by
addressing issues related to fixed binning and multi-class settings. Lower ACE values indicate better
calibration. The Brier-S, on the other hand, captures the mean squared difference between predicted
probabilities and binary outcomes. A lower Brier-S indicates both accurate and well-calibrated
predictions, while a higher score penalizes incorrect predictions made with high certainty. Log
Loss, instead, measures the discrepancy between predicted probabilities and true labels across all
classes. It is particularly sensitive to overconfident incorrect predictions, complementing the Brier-S
by emphasizing mistakes made with high certainty. The formal definitions of each metric are provided
in Appendix D.

The results are reported in Table 3, showing that prefilling consistently improves model calibra-
tion. In particular, examining the ACE metric, Llama-3.1-8B improves substantially on MMLU
(from 0.206 to 0.129) and OpenBookQA (from 0.444 to 0.252). Even stronger baselines such as
Phi-4-14B benefit from prefilling, with ACE on OpenBookQA dropping from 0.340 to 0.272.
Consistent gains are also observed in terms of Brier-S, confirming that models become not only more
accurate but also less overconfident in their incorrect predictions. This is especially noticeable on
Social IQa, where overconfident errors are common: for instance, Llama-3.1-8B improves from
28.4 to 19.2, and Phi-4-14B from 24.1 to 19.6. Turning to Log Loss, prefilling reduces scores
across all benchmarks and models. For example, Llama-3.1-8B decreases from 1.987 to 1.341
on OpenBookQA, and Phi-4-14B from 1.712 to 1.421 on the same benchmark. Since Log Loss
heavily penalizes overconfident errors, these reductions indicate that prefilling helps models produce
probability estimates that are better calibrated and more reliable.

The calibration diagrams in Figure 4 provide a more detailed view across different confidence
levels. We observe that models such as Gemma-2-9B and Zephyr-7B tend to be overconfident in
the mid-confidence range, while Llama-3.1-8B remains overconfident even at maximum predicted
confidence (100%). This calibration analysis suggests that, in addition to improving accuracy,
prefilling also enhances the trustworthiness of model confidence estimates.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.2 0.4 0.6 0.8
Confidence

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ac
cu

ra
cy

Gemma-2-9B, MMLU

0.2 0.4 0.6 0.8
Confidence

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Zephyr-7B, MMLU

0.2 0.4 0.6 0.8
Confidence

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Llama-3.1-7B, SIQA

0.2 0.4 0.6 0.8
Confidence

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Mistral-Nemo-12B, OBQA
Ideal FTP FTP+Prefilling

Figure 4: Calibration curves comparing standard FTP and FTP with prefilling. Prefilling improves
calibration, moving predictions closer to the ideal confidence (i.e., accuracy alignment).

4.6 SYMBOLIC OUTPUT STRUCTURE ANALYSIS

While standard accuracy metrics quantify how often a model fails, they offer limited insight into
how models fail. To deepen our understanding of model behavior, we analyze auxiliary statistics that
capture qualitative patterns in error generation.

Specifically, to analyze robustness against first-token misinterpretation, we introduce a new metric
that answers the following question: When the model predicts a valid symbolic answer (e.g., ‘A’, ‘B’),
how consistent is the continuation? Ideally, an aligned model should either stop after the symbolic

Table 4: Evaluation of symbolic output structure across four
MCQA benchmarks in terms of CD and FTVR. Prefilling
consistently increases FTVR and lowers CD, indicating that
it reduces misinterpretation errors and promotes more stable
symbolic completions.

MMLU OBQA SCIQ
CD (↓) FTVR (↑) CD (↓) FTVR (↑) CD (↓) FTVR (↑)

Llama-3.1-8B 4.38 9.5 0.44 20.4 0.42 2.4
+ prefilling 0.05 99.3 0.02 99.8 0.01 100.0

Qwen-2-7B 0.30 85.9 0.06 93.8 0.03 95.7
+ prefilling 0.04 97.0 0.03 100.0 0.01 99.9

Mistral-Nemo-12B 0.19 27.6 0.02 34.6 0.11 3.5
+ prefilling 0.09 61.9 0.01 77.2 0.01 73.1

Phi-4-14B 7.86 10.7 0.90 42.6 5.14 11.7
+ prefilling 0.10 41.2 0.01 88.0 0.01 86.7

token or follow it with a predictable
structure. In contrast, inconsistent
or verbose continuations may in-
dicate that the answer token was
generated as part of a grammatical
phrase rather than as an intended
choice. We capture this behavior us-
ing the Continuation Diversity (CD),
defined as the number of distinct
second tokens that follow a valid
first-token prediction, in relation to
the calculated First-Token Validity
Rate (FTVR). Formally, it is com-
puted as CD = S

FTVR , where S is
the number of unique second tokens
that follow a valid first-token pre-
diction. Low CD suggests that the
model reliably adheres to a symbolic format (e.g., consistently producing ‘A.’), whereas high CD
may signal poor format consistency and potential misinterpretation.

As shown in Table 4, the prefilling strategy consistently improves this metric by substantially reducing
the diversity of second-token continuations. Notably, values approaching or surpassing 1 indicate that
the number of distinct second tokens is comparable to or larger than the number of valid first-token
predictions, suggesting unstable or inconsistent generation patterns.

5 CONCLUSION

This work demonstrates the significant benefits of using output prefilling to enhance the reliability of
FTP evaluation in MCQA tasks. By adding a structured prefix to the model response template, we
substantially improve issues of first-token misalignment and misinterpretation, steering the model
toward more accurate and consistent predictions. Experiments across several MCQA benchmarks
show that this method not only improves alignment between the predicted token and the correct
answer but also boosts overall accuracy and calibration, with FTP accuracies comparable to those
obtained via open-ended generation evaluated by external GPT, Llama, or xFinder classifiers. Notably,
these gains are achieved without fine-tuning or any model modifications. To our knowledge, this
is the first work to rigorously quantify the effectiveness of prefilling with modern general-purpose
LLMs, highlighting its promise as a lightweight strategy for choice-based evaluation scenarios.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 Technical
Report. arXiv preprint arXiv:2303.08774, 2023.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms.
arXiv preprint arXiv:1905.13319, 2019.

Maksym Andriushchenko, Francesco Croce, and Nicolas Flammarion. Jailbreaking Leading Safety-
Aligned LLMs with Simple Adaptive Attacks. In ICLR, 2025.

Nishant Balepur, Rachel Rudinger, and Jordan Lee Boyd-Graber. Which of These Best Describes
Multiple Choice Evaluation with LLMs? A) Forced B) Flawed C) Fixable D) All of the Above. In
ACL, 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language Models are
Few-Shot Learners. In NeurIPS, 2020.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. A Survey on Evaluation of Large Language Models. ACM
TIST, 2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. PaLM:
Scaling Language Modeling with Pathways. JMLR, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have Solved Question Answering? Try ARC, the AI2 Reasoning
Challenge. arXiv preprint arXiv:1803.05457, 2018.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 Herd of Models.
arXiv preprint arXiv:2407.21783, 2024.

Denis Emelin, Ronan Le Bras, Jena D Hwang, Maxwell Forbes, and Yejin Choi. Moral Stories:
Situated Reasoning about Norms, Intents, Actions, and their Consequences. arXiv preprint
arXiv:2012.15738, 2020.

W Brier Glenn et al. Verification of forecasts expressed in terms of probability. Monthly Weather
Review, 1950.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, et al. The Elements of Statistical Learning, 2009.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring Massive Multitask Language Understanding. In ICLR, 2021.

Ari Holtzman, Peter West, Luke Zettlemoyer, and Yejin Choi. Surface Form Competition: Why the
Highest Probability Answer Isn’t Always Right. In EMNLP, 2021.

Jie Huang and Kevin Chen-Chuan Chang. Towards Reasoning in Large Language Models: A Survey.
In ACL Findings, 2023.

Ehsan Kamalloo, Nouha Dziri, Charles LA Clarke, and Davood Rafiei. Evaluating Open-Domain
Question Answering in the Era of Large Language Models. In ACL, 2023.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Clark, and
Hannaneh Hajishirzi. UnifiedQA: Crossing Format Boundaries With a Single QA System. In
EMNLP Findings, 2020.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
Language Models are Zero-Shot Reasoners. In NeurIPS, 2022.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. RACE: Large-scale ReAding
Comprehension Dataset From Examinations. In EMNLP, 2017.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep Learning. Nature, 521, 2015.

Wangyue Li, Liangzhi Li, Tong Xiang, Xiao Liu, Wei Deng, and Noa Garcia. Can multiple-choice
questions really be useful in detecting the abilities of LLMs? In LREC-COLING, 2024.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic Evaluation of Language
Models. arXiv preprint arXiv:2211.09110, 2022.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. LogiQA: A
Challenge Dataset for Machine Reading Comprehension with Logical Reasoning. In IJCAI, 2020.

Ollie Liu, Deqing Fu, Dani Yogatama, and Willie Neiswanger. DeLLMa: Decision Making Under
Uncertainty with Large Language Models. arXiv preprint arXiv:2402.02392, 2024.

Yougang Lyu, Shijie Ren, Yue Feng, Zihan Wang, Zhumin Chen, Zhaochun Ren, and Maarten
de Rijke. Cognitive Debiasing Large Language Models for Decision-Making. arXiv preprint
arXiv:2504.04141, 2025.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a Suit of Armor Conduct
Electricity? A New Dataset for Open Book Question Answering. In EMNLP, 2018.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer. Rethinking the Role of
Demonstrations: What Makes In-Context Learning Work? In EMNLP, 2022.

Francesco Maria Molfese, Luca Moroni, Luca Gioffré, Alessandro Scirè, Simone Conia, and Roberto
Navigli. Right Answer, Wrong Score: Uncovering the Inconsistencies of LLM Evaluation in
Multiple-Choice Question Answering. arXiv preprint arXiv:2503.14996, 2025.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vander-
wende, Pushmeet Kohli, and James Allen. A Corpus and Cloze Evaluation for Deeper Understand-
ing of Commonsense Stories. In NAACL, 2016.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining Well Calibrated
Probabilities Using Bayesian Binning. In AAAI, 2015.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A Comprehensive Overview of Large Language
Models. arXiv preprint arXiv:2307.06435, 2023.

Jeremy Nixon, Michael W Dusenberry, Linchuan Zhang, Ghassen Jerfel, and Dustin Tran. Measuring
Calibration in Deep Learning. In CVPR Workshops, 2019.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, et al. Training language models to follow instructions with human feedback. In NeurIPS,
2022.

Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Back.
Reasoning with Large Language Models, a Survey. arXiv preprint arXiv:2407.11511, 2024.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and Narrowing the Compositionality Gap in Language Models. In EMNLP, 2023.

Shibani Santurkar, Esin Durmus, Faisal Ladhak, Cinoo Lee, Percy Liang, and Tatsunori Hashimoto.
Whose Opinions Do Language Models Reflect? In ICML, 2023.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. SocialIQA: Common-
sense Reasoning about Social Interactions. In EMNLP, 2019.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A Question
Answering Challenge Targeting Commonsense Knowledge. In NAACL, 2019.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Leonard Tang. A trivial jailbreak against llama 3. https://github.com/haizelabs/
llama3-jailbreak, 2024.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open Models
Based on Gemini Research and Technology. arXiv preprint arXiv:2403.08295, 2024.

Xinpeng Wang, Chengzhi Hu, Bolei Ma, Paul Röttger, and Barbara Plank. Look at the Text:
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A ANALYSIS ACROSS MULTIPLE TEMPLATES

In addition to the main experiments, which utilize the default prefilling template (i.e., ‘Given the
question and the possible options, my answer is: ’), we conduct a supplementary
analysis to assess the robustness of models performance across template variations. Specifically, we
evaluate the models using a set of 10 distinct templates, each phrased differently but conveying the
same task. For this analysis, we report the average accuracy and standard deviation across the 10
templates to capture both overall performance and sensitivity to prompt formulation.

The set of templates used in this analysis alternates short, concise wording to longer, more context-
aware versions, like:

• ‘I choose: ’
• ‘Having evaluated the question and its choices, I conclude with: ’
• ‘My final answer is: ’
• ‘Upon careful reflection, the response I find most appropriate is: ’
• ‘Alright, I’m going with: ’
• ‘After reviewing the options thoughtfully, I’ve decided on: ’
• ‘Given the question and the possible options, my answer is: ’
• ‘Let’s cut to the chase, the answer is: ’
• ‘After thorough consideration of the question and all potential
answers, my final selection is: ’

• ‘Given the context and underlying assumptions in both the question and
its options, I determine the most fitting response to be: ’

The average accuracies, together with their standard deviations, are reported in Table 5, alongside the
results already displayed in Table 1. From the results, we can observe that these average accuracies are
generally comparable to those obtained using the single default template. These results demonstrate
that the prefilling strategy is robust across different template formulations and is not highly sensitive
to template phrasing. In a few rare cases, however, significant improvements are observed. For
example, Gemma-7B achieves an accuracy 5.9 percentage points higher than the default template on
the Moral Stories benchmark, while Phi-4-14B shows a 5.8-point gain on the LogiQA benchmark.
These results suggest that the default template may not always be the most effective choice.

This variability aligns with the understanding that no single template style is optimal across all
models. Differences in architecture, pretraining corpora, and alignment strategies influence how
models interpret and get affected by certain tokens. As a result, a template that benefits one model
may be suboptimal for another.

Moreover, we find that longer templates can exert a stronger influence on the model generation. While
this added guidance is generally beneficial, leading to better task alignment, it may also introduce
unintended biases or dilute the task signal in others. These variations open opportunities for users to
tailor template styles to the specific model they are using, while retaining confidence that reasonable
rephrasings do not significantly degrade performance.

B OPEN-ENDED GENERATION

Prompting and Classification Setup. We leverage GPT-3.5-Turbo, Llama-3.1-70B-Instruct,
and xFinder-Qwen to classify the open-ended generations produced by the models in response to
benchmark questions. To generate these responses, we follow the same prompting procedure used for
the FTP method: the model is presented with the question and all possible answer options, and in this
case, it is allowed to generate freely until the EOS token.

To convert each open-ended response into a symbolic answer label, we prompt GPT-3.5-Turbo,
Llama-3.1-70B-Instruct, and xFinder-Qwen with the following instruction:

Given these possible options:
{options}\n
And this given output:
{response}\n
Classify the output into one and only one
of the aforementioned options.

13
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Table 5: Average accuracies and standard deviations across 10 distinct prompt templates using
prefilling. Results are compared against those obtained with the default template and without
prefilling. This highlights the robustness of the prefilling strategy to prompt rephrasing.

General Comprehension Commonsense Narrative STEM Reasoning
MMLU RACE OBQA SIQA MS CQA SC HS MC-T SciQ MQA ARC-E ARC-C LQA

Llama-3.1-8B 63.1 78.1 71.2 70.9 87.0 72.7 93.2 52.2 82.1 97.1 24.0 90.2 52.7 28.9
+ prefilling (default) 68.4 83.2 84.8 72.3 93.2 76.5 96.4 69.0 82.5 98.3 33.8 94.7 60.2 34.0
+ prefilling (avg) 66.9 82.9 81.7 71.8 91.3 76.6 96.4 66.0 79.0 98.1 34.9 92.7 58.8 33.3

±8.6e−3 ±5.9e−3 ±1.4e−2 ±6.6e−3 ±2.8e−2 ±5.6e−3 ±7.7e−3 ±2.8e−2 ±5.5e−2 ±1.4e−3 ±9.6e−3 ±3.9e−3 ±9.0e−3 ±6.2e−3

Qwen-2-7B 68.9 87.0 83.8 75.6 88.1 79.4 97.1 53.4 88.3 97.5 29.8 94.3 48.0 33.0
+ prefilling (default) 69.1 86.7 84.8 76.1 92.6 79.4 97.3 65.2 86.1 97.4 36.5 94.7 56.6 35.5
+ prefilling (avg) 68.9 86.6 84.4 76.1 91.7 79.5 97.5 65.3 86.7 97.5 37.3 94.7 55.9 33.1

±8.6e−3 ±3.4e−3 ±1.0e−2 ±6.0e−3 ±4.8e−2 ±6.1e−3 ±2.6e−3 ±6.0e−2 ±4.5e−2 ±3.7e−3 ±1.4e−2 ±1.9e−3 ±2.0e−2 ±6.2e−3

Gemma-7B 45.9 50.4 40.6 34.2 77.5 51.6 69.6 36.3 60.1 89.0 24.1 55.9 43.9 26.4
+ prefilling (default) 52.4 70.5 71.2 65.2 64.3 68.6 92.0 56.3 91.0 95.1 25.1 86.7 49.1 26.1
+ prefilling (avg) 52.7 70.3 70.9 65.3 70.4 68.3 92.1 55.5 89.6 94.9 25.7 86.8 49.6 26.2

±3.8e−3 ±2.5e−3 ±7.2e−3 ±4.5e−3 ±7.1e−2 ±4.7e−3 ±6.5e−3 ±2.4e−2 ±2.3e−2 ±2.6e−3 ±1.2e−2 ±3.5e−3 ±1.5e−2 ±6.5e−3

Gemma-2-9B 33.9 49.5 38.8 56.3 85.9 39.6 97.6 43.0 72.2 31.8 27.8 38.6 52.4 31.0
+ prefilling (default) 72.1 86.3 89.8 74.2 87.3 79.0 97.9 69.8 78.5 98.3 34.0 96.6 60.8 35.8
+ prefilling (avg) 71.6 86.4 89.4 74.4 88.0 78.9 97.8 70.9 77.3 98.3 34.5 96.6 59.8 34.1

±3.5e−3 ±3.3e−3 ±1.1e−2 ±2.1e−3 ±4.1e−2 ±4.7e−3 ±1.9e−3 ±5.2e−2 ±2.1e−2 ±1.1e−3 ±2.0e−2 ±1.0e−3 ±2.0e−2 ±1.1e−2

Zephyr-7B 57.5 86.5 73.0 67.5 83.6 66.0 96.0 35.0 69.1 88.5 23.3 95.6 51.0 32.1
+ prefilling (default) 58.8 87.3 70.8 68.5 86.2 69.0 96.0 36.1 93.3 93.1 24.3 98.1 51.0 40.6
+ prefilling (avg) 58.1 73.4 71.6 67.5 85.7 68.5 96.3 36.3 91.0 93.8 24.7 87.8 52.2 33.1

±2.1e−3 ±2.6e−3 ±1.1e−2 ±6.8e−3 ±3.9e−2 ±1.4e−2 ±3.9e−3 ±2.0e−2 ±4.2e−2 ±6.5e−3 ±1.7e−2 ±3.5e−3 ±1.4e−2 ±1.3e−2

Ministral-8B 62.1 84.7 82.4 74.7 87.3 74.3 97.4 81.1 91.5 97.4 23.1 93.6 48.1 28.4
+ prefilling (default) 63.9 84.7 85.2 75.9 89.9 75.0 98.2 86.5 91.9 98.0 24.5 93.7 49.1 34.6
+ prefilling (avg) 63.5 84.3 84.2 75.5 90.0 75.3 98.0 85.9 91.6 97.6 24.5 93.4 51.3 32.2

±4.2e−3 ±6.5e−3 ±1.2e−2 ±5.4e−3 ±3.1e−2 ±4.4e−3 ±1.6e−3 ±1.0e−2 ±2.0e−2 ±2.6e−3 ±1.4e−2 ±2.7e−3 ±3.3e−2 ±1.1e−2

Mistral-Nemo-12B 65.1 82.7 80.6 74.2 78.0 74.1 97.3 51.6 92.4 96.8 23.5 92.6 51.3 28.7
+ prefilling (default) 66.0 83.1 80.8 75.8 80.9 75.4 96.9 76.4 93.3 97.2 25.4 93.1 54.7 32.0
+ prefilling (avg) 65.0 83.0 79.8 75.1 82.4 74.3 97.0 73.1 91.7 97.2 25.7 92.5 54.4 31.4

±7.4e−3 ±1.0e−2 ±1.2e−2 ±4.6e−3 ±9.0e−2 ±1.1e−2 ±3.4e−3 ±3.4e−2 ±3.2e−2 ±4.0e−3 ±1.5e−2 ±7.9e−3 ±2.1e−2 ±6.9e−3

Phi-4-14B 76.4 73.3 84.0 71.7 83.4 72.5 98.2 61.2 82.5 95.4 25.0 87.8 46.4 31.9
+ prefilling (default) 79.7 73.4 90.0 77.3 93.2 79.6 98.7 87.8 86.1 98.3 45.0 87.8 60.2 34.6
+ prefilling (avg) 79.0 87.2 89.6 76.5 94.1 79.4 98.4 86.7 81.2 98.0 45.2 98.1 59.6 40.4

±2.1e−3 ±2.7e−3 ±1.4e−2 ±1.1e−2 ±3.7e−2 ±6.2e−3 ±3.5e−3 ±1.7e−2 ±1.0e−1 ±4.4e−3 ±2.8e−2 ±2.3e−3 ±3.3e−2 ±2.1e−2

Return only the option letter
(A, B, C, etc.).

where options contains the list of candidate answers in the format:

A) option_1
B) option_2
...

and response is the text generated by the evaluated model. In all cases, the predicted classification is
consistently returned either as the bare letter (e.g., ‘B’) or the letter followed by parenthesis (e.g., ‘B)’).
We then compare the predicted letter with the ground-truth answer to compute the final accuracy.

Expanded Comparison with Llama- and xFinder-Based Classification. In addition to the analysis
presented in Section 4.3, we evaluate the open-ended generations produced by all models across the
benchmark datasets. The results using Llama-3.1-70B-Instruct are reported in Figure 5, while
the results using the xFinder-Qwen classifier are reported in Figure 6. Llama-3.1-70B-Instruct
is chosen for its accessibility and reproducibility, whereas xFinder-Qwen is chosen because it is
optimized for accurately identifying and extracting answers from LLM-generated text.

As shown, the accuracies obtained from Llama-classified generations are on par with those of the
FTP approach enhanced with prefilling across all datasets and models, indicating that our prefilling
strategy is a robust and effective evaluation strategy. The only cases where we observe noticeably
lower results compared to open-ended classification are MathQA and ARC-C. The reduced accuracy
of both FTP and FTP with prefilling on these datasets suggests that more advanced reasoning is
required, and that prefilling alone cannot compensate for this limitation.

A similar trend is observed with xFinder-classified results: in most cases, FTP with prefilling achieves
higher accuracies, while for OpenBookQA and Moral Stories, FTP with prefilling and open-ended
generation evaluated via xFinder perform roughly equally. For MathQA, results are more mixed, with
open-ended generation sometimes providing an advantage, but not consistently across all models.
Nonetheless, MathQA results highlight our main message: even when prefilling does not close the
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gap to open-ended reasoning in reasoning-heavy tasks, it still provides consistent gains without
additional compute.

C FULL RESULTS ON FULL-VOCABULARY EVALUATION

Table 6: Full-vocabulary first-token evaluation on four MCQA
benchmarks for all tested LLMs. The model must predict
a valid and correct token as its very first output. Prefilling
improves both validity and full-vocabulary accuracy.

MMLU OBQA SIQA SCIQ
Acc FTVR Acc FTVR Acc FTVR Acc FTVR

Llama-3.1-8B 6.4 9.5 17.8 20.4 52.7 69.6 2.2 2.4
+ prefilling 64.0 99.3 80.8 99.8 71.5 99.9 96.9 100.0

Qwen-2-7B 61.7 85.9 80.4 93.8 71.6 90.9 94.3 95.7
+ prefilling 66.1 97.0 84.8 100.0 75.8 99.4 98.0 99.9

Gemma-7B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
+ prefilling 34.9 56.4 69.8 95.6 64.5 98.6 90.5 95.0

Gemma-2-9B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
+ prefilling 71.4 99.2 88.6 98.6 73.6 95.3 98.2 99.8

Zephyr-7B 38.4 65.8 56.6 76.6 53.4 80.5 20.4 22.1
+ prefilling 52.9 89.9 69.2 92.2 57.3 86.1 63.5 66.0

Ministral-8B 27.1 37.1 77.0 89.2 71.9 94.3 9.5 9.5
+ prefilling 41.7 55.3 77.2 93.2 56.7 71.5 71.8 73.8

Mistral-Nemo-12B 21.6 27.6 31.4 34.6 44.5 56.5 3.2 3.5
+ prefilling 40.7 61.9 64.8 77.2 42.8 53.9 72.0 73.1

Phi-4-14B 8.9 10.7 36.8 42.6 30.3 35.7 10.1 11.7
+ prefilling 37.0 41.2 81.0 88.0 72.7 93.3 85.4 86.7

Table 6 complements the partial re-
sults in Table 2 by reporting full-
vocabulary accuracy and First To-
ken Validity Rate (FTVR) for all
models and benchmarks. While
most models benefit from prefill-
ing, this full breakdown reveals
particularly brittle behavior in the
Gemma models: both Gemma-7B
and Gemma-2-9B consistently pro-
duce 0% full-vocabulary accuracy
and 0% FTVR under standard FTP.
This failure is due to their tendency
to always begin responses with
the token ‘The’, forming pream-
bles like ‘The correct answer
is’ instead of immediately emit-
ting a symbolic option. As a result,
their top-1 token never matches the
valid label set when decoding is un-
constrained. The prefilling strategy
successfully overrides this default
behavior, enabling proper symbolic
alignment and resulting in large per-
formance gains across different MCQA benchmarks.

D CALIBRATION METRICS

Here, we provide detailed definitions and explanations of the calibration metrics used in Section 4.5.
In particular, Adaptive Calibration Error (ACE) (Nixon et al., 2019) partitions predictions into
adaptive ranges such that each range contains an equal number of predictions, mitigating bias from
sparsely populated bins and better reflecting calibration across all classes. The adaptive ranges are
created by first sorting the predicted probabilities for each class. The sorted list is then divided into R
contiguous ranges such that each range contains approximately ⌊N/R⌋ predictions, where N is the
total number of predictions for that class. This ensures that each range is equally populated, allowing
ACE to focus on regions with sufficient data while avoiding the sparsity issues that affect fixed bins.
Formally, let R be the number of adaptive ranges and K the number of classes. ACE is defined as

ACE =
1

KR

K∑
k=1

R∑
r=1

|acc(r, k)− conf(r, k)| , (3)

where acc(r, k) and conf(r, k) denote the empirical accuracy and average predicted confidence for
class k in adaptive range r, respectively. Unlike Expected Calibration Error (ECE) (Naeini et al.,
2015), which only considers the probability of the predicted class for each example, ACE evaluates
calibration for each class separately by including the predicted probabilities for all classes, not just
the one with the highest predicted probability.

The Brier score (Glenn et al., 1950) is the mean squared error between the predicted probability pi
for the correct class and the true label yi across all n examples:

Brier Score =
1

n

n∑
i=1

(pi − yi)
2. (4)
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It quantifies both the accuracy and the calibration of the probabilistic predictions, penalizing confident
incorrect predictions.

Log Loss (Hastie et al., 2009; LeCun et al., 2015), also known as negative log likelihood or cross-
entropy loss, evaluates the probabilistic predictions by aggregating the log-probabilities assigned to
the true classes. For a single example with true class y and predicted probabilities pk, it is defined as

Log Loss(xi, yi) = −
K∑

k=1

yi,k log(pi,k), (5)

where K is the number of classes, yi,k is 1 if class k is the true label and 0 otherwise, and pi,k is the
predicted probability assigned to class k.

The overall Log Loss across a dataset of n examples is then computed as the average:

Log Loss =
1

n

n∑
i=1

Log Loss(xi, yi). (6)

This formulation penalizes predictions that assign low probability to the true class; equivalently, it
severely penalizes overconfident misclassifications in which the model assigns high probability to an
incorrect class. Compared to the Brier score, which applies a quadratic penalty, Log Loss is harsher
on highly confident errors.

E LIMITATIONS

This work focuses specifically on evaluating first-token vulnerabilities in MCQA tasks under symbolic
decoding setups such as FTP. Our analysis centers on two types of error (i.e., first-token misalignment
and misinterpretation) arising from formatting mismatches between model outputs and expected
symbolic responses. The scope of our study is also limited to a subset of English-language benchmarks
and does not yet consider multilingual or domain-shifted tasks.

While our controlled experiments and prefilling-based mitigation strategy shed light on the fragility
of symbolic decoding, we do not examine how other decoding regimes, such as beam search or
temperature sampling, might interact with these failure modes. Additionally, our study does not
explore whether similar misalignment effects occur in open-ended QA, summarization, or dialogue
tasks, where symbolic constraints are looser or absent.

We hope that future work will extend our analysis to broader tasks and languages, and will develop
decoding strategies and prompt formats that are inherently robust to structural ambiguity and symbolic
misalignment.

F LLM USAGE

This work systematically analyzes the performance of LLMs on MCQA tasks. Apart from the
experiments described in the paper, LLMs were used only for minor writing polish. They did not
contribute to the design of experiments, the analysis of results, or the generation of scientific content.
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Figure 5: Accuracy comparison on all the benchmarks using standard FTP, FTP with prefilling, and
open-ended generation with Llama-3.1-70B as classifier. Again, FTP with prefilling consistently
outperforms standard FTP and often outperforms or is on par with the more computationally expensive
open-ended generation approach.
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Figure 6: Accuracy comparison on all the benchmarks using standard FTP, FTP with prefilling, and
open-ended generation with xFinder-Qwen as classifier. Again, FTP with prefilling consistently
outperforms standard FTP and often outperforms or is on par with the more computationally expensive
open-ended generation approach.
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