Under review as a conference paper at ICLR 2026

MICROVERSE: A PRELIMINARY EXPLORATION TO-
WARD A MICRO-WORLD SIMULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in video generation have opened new avenues for macroscopic
simulation of complex dynamic systems, but their application to microscopic phe-
nomena remains largely unexplored. Microscale simulation holds great promise
for biomedical applications such as drug discovery, organ-on-chip systems, and
disease mechanism studies, while also showing potential in education and inter-
active visualization. In this work, we introduce MicroWorldBench, a multi-level
rubric-based benchmark for microscale simulation tasks. MicroWorldBench en-
ables systematic, rubric-based evaluation through 459 unique expert-annotated
criteria spanning multiple microscale simulation task (e.g., organ-level processes,
cellular dynamics, and subcellular molecular interactions) and evaluation dimen-
sions (e.g., scientific fidelity, visual quality, instruction following). MicroWorld-
Bench reveals that current SOTA video generation models fail in microscale simu-
lation, showing violations of physical laws, temporal inconsistency, and misalign-
ment with expert criteria. To address these limitations, we construct MicroSim-
10K, a high-quality, expert-verified simulation dataset. Leveraging this dataset,
we train MicroVerse, a video generation model tailored for microscale simula-
tion. MicroVerse can accurately reproduce complex microscale mechanism. Our
work first introduce the concept of Micro-World Simulation and present a proof
of concept, paving the way for applications in biology, education, and scientific
visualization. Our work demonstrates the potential of educational microscale sim-
ulations of biological mechanisms.

1 INTRODUCTION

World models [LeCun| (2022); |Bruce et al.| (2024); [Lu et al.| (2024)) have been extensively studied
for their ability to simulate environments and agent interactions. They offer a unified computational
framework for perceiving surroundings, controlling actions, and predicting outcomes, thereby re-
ducing reliance on real-world trials. This not only robotics engines |Luo & Du| (2024); [Lu et al.
(2024) engines and reinforcement learning planners Hafner et al.| (2020); |Agarwal et al.| (2025]), but
also enhances decision-making, supports safe exploration, and enables scalable learning.

Recently, video generative models have demonstrated strong potential to acquire commonsense
knowledge directly from raw video data, ranging from physical laws in the real world to embod-
ied behavioral patterns |Brooks et al.| (2024), laying the foundation for their use as real-world sim-
ulators. For example, prior work |Luo & Du|(2024) employs video-guided goal-conditioned explo-
ration, grounding large-scale video generation model priors into continuous action spaces through
self-supervision, enabling robots to master complex manipulation skills without explicit actions or
rewards; and other works |[Lu et al.|(2024) leverage video generation models for embodied decision-
making, allowing agents to imaginatively explore their environment with high generative quality
and consistent exploration.

Despite tremendous progress in video generation for natural scenes and human-centered do-
mains OpenAl| (2024); \Google DeepMind| (2025)); Kong et al.| (2024)); Wan et al.| (2025);|Yang et al.
(2024)), research efforts have remained predominantly focused on the macroscopic scale. This suc-
cess has not translated effectively to the microscopic scale, where current state-of-the-art models
fail to produce physically plausible or biologically meaningful dynamics, as shown in Figure [T}
Microscopic simulation, which tracks the interactions of atoms, molecules, and cells to uncover
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Figure 1: Failure cases of Sora and Veo3 on Microscale Simulation. Although Sora and Veo3
generate results that appear visually correct, their violations of physical laws are particularly evident.

underlying mechanisms, is crucial for applications in materials science, biomedical research
(2000), education (2002)), and interactive visualization (1992). The failure of
existing models, primarily due to a lack of incorporated biomedical knowledge, highlights a critical
gap despite the strong potential of microscale simulation for generating clinically realistic dynamics
in fields like drug discovery and disease modeling. To address this, we aim to explore the potential
of educational microscale simulations of biological mechanisms.

In this work, we introduce MicroWorldBench, a multi-level rubric-based benchmark for microscale
simulation tasks comprising 459 real-world tasks that span organ-level, cellular, and subcellular pro-
cesses. These tasks were jointly selected from a large candidate pool by LLMs and domain experts
for their diversity and relevance, with each task paired with self-contained, objective evaluation
criteria specifying the essentials for valid simulation. Our extensive experiments across a broad
spectrum of video generation models reveal that while most maintain superficial visual coherence
and adhere to prompts, they perform poorly in microscale settings, consistently failing to generate
biologically plausible dynamics. These failures indicate that current models, trained predominantly
on human-scale videos, lack grounding in microphysical principles and knowledge.

To mitigate the gap, we introduce MicroVerse, a video generation model tailored for microscale
simulation. MicroVerse is built on Wan2.1 model and trained with MicroSim-10K,
the first microscale dataset containing 9,601 expert-verified scenarios. Unlike human-scale datasets,
MicroSim-10K emphasizes physical plausibility and biological fidelity across diverse microscale
mechanisms. On MicroWorldBench, MicroVerse surpasses original model by more than +2.7 in
scientific fidelity, highlighting the importance of domain-specific data.

Our contributions are summarized as follows: (i) We introduce the concept of Micro-World Sim-
ulation and present a proof of concept, which includes a clear objective, a dedicated benchmark,
a training dataset, and a tailored model. (ii) We propose MicroWorldBench, the first rubric-based
benchmark specifically designed for evaluating microscale simulation in video generation; (iii) we
construct MicroSim- 10K, a large-scale, expert-verified dataset of microscale simulation videos; (iv)
We introduce MicroVerse , a fine-tuned video generation model built upon MicroSim-10K, achiev-
ing competitive performance on MicroWorldBench by reducing violations of scientific constraints
and improving temporal and spatial consistency.

2  MICROWORLDBENCH: A RUBRIC-BASED BENCHMARK FOR
MICROSCALE SIMULATION

Generic Evaluation Fails to Capture Microscale Simulation Dynamics Existing evaluation meth-
ods for video models often rely on generic scoring rules or high-level principles|[Huang et al.|(2024);
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Figure 2: Illustration of MicroWorldBench Evaluation Process.

Zheng et al|(2025); He et al.| (2024), which are insufficient for microscale simulation. Such meth-
ods overlook the need for fine-grained microscopic simulations, resulting in misaligned outcomes
and failing to capture deficiencies in physical plausibility and biological fidelity. In this work, the
proposed Rubric evaluation addresses this gap by introducing task-specific criteria with differenti-
ated weights. Rubrics highlight the most critical dimensions identified by experts and ensure that
evaluations emphasize substantive shortcomings rather than being diluted by aggregate scoring.

In this section, we introduction the core structure of the rubric-based benchmark, covering task
selection (Sec. [2.1)), prompt design (Sec. , and rubric construction (Sec. [2.3), and describe the
methodology for model evaluation (Sec. .

2.1 TASK CHOICE

Biological systems are inherently hierarchical, encompassing levels from society, body, organ, and
tissue to cell, organelle, protein, and gene |Qu et al.| (2011). Given constraints of practicality impact
and data availability, in this work we focus on three representative levels as a principled sampling
of this hierarchy. Importantly, this choice does not discard existing scientific frameworks, but rather
reflects a consensus-based selection of the most representative and tractable scales.

1. Organ-level simulations are essential because they connect microscale behaviors with
macroscopic physiological functions. Dynamic processes such as cardiac contraction or
vascular deformation are directly related to medical diagnosis, surgical planning, and edu-
cation. A benchmark that evaluates these dynamics provides a direct path toward clinically
relevant applications.

2. Cellular-level simulations are central to biology and medicine, as cell migration, pro-
liferation, and interaction underpin processes such as tissue growth, wound healing, and
immune response. Accurate modeling at this level enables researchers and students to vi-
sualize and understand the driving forces of health and disease, creating opportunities for
both discovery and pedagogy.

3. Subcellular-level simulations present the most fine-grained view, capturing biochemical
and biophysical mechanisms that govern life at its foundation—fusion, apoptosis, signaling
cascades. Evaluating generative models at this level is particularly important, as these
processes are both visually subtle and mechanistically complex, requiring high fidelity and
physical plausibility.

2.2 PROMPT SUITE

Both the sampling process of diffusion-based video generation models and the development of
expert-driven evaluation rubrics are computationally expensive. To ensure efficiency, we control
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the number of tasks while maintaining diversity and coverage. The construction follows a two-stage
pipeline: (1) Collecting tasks related to microscale simulation from YouTube; and (2) Expert filtering
to retain only scientifically meaningful tasks. The final suite contains 459 tasks: 238 at the organ
level, 189 at the cellular level, and 32 at the subcellular level. The proportion of tasks is consistent
with the distribution of levels in the collected videos.

Collecting and Generating Prompts We retrieved over 8,000 YouTube videos using topic-specific
queries related to organ-level, cellular-level, and subcellular-level simulations. For each video, we
collected metadata including titles and descriptions. This information was then provided to GPT-4o,
which generated tasks describing the microscale mechanism. Finally, we generated 8,162 tasks. The
prompts used to instruct GPT-4o refer to Appendix [A]

Expert Filtering We filtered the generated tasks based on two criteria: (1) the diversity of the tasks,
and (2) the practical relevance of the tasks. For diversity, we asked GPT-4o to classify each task into
one of the following categories: Organ-level simulations, Cellular-level simulations, or Subcellular-
level simulations. For practical relevance, we invited three biology experts, and each task had to
receive agreement from at least two of the three experts. A task was retained in MicroWorldBench
only if it satisfied both criteria. Classification prompts are in Appendix

2.3 RUBRIC CRITERIA

As shown in Figure [2] each MicroWorldBench example includes a task instruction and rubric cri-
teria, drafted by LLMs and refined by experts. These criteria evaluate scientific fidelity, visual
quality, and instruction following. Scientific fidelity emphasizes mechanistic accuracy rather than
visual realism. An LLM-based grader then scores the output, providing a standardized, interpretable
assessment.

Due to limited expert availability and efficiency concerns, we adopt a collaborative approach where
LLMs generate initial rubric drafts and experts perform revision and validation. This method not
only improves the efficiency of rubric construction but also ensures broader coverage and more
comprehensive consideration despite the small number of experts.

Stage 1: Rubric Drafts Generation For each task, GPT-5 generates a set of fine-grained criteria:
P = (a;,d;, i, w; )f\il, where a; denotes the evaluation dimension, d; is the description of the i-th
criterion, s; € +1, —1 is the polarity indicating whether the point contributes (41) or deducts (—1),
and w; € (0,1] is the weight reflecting its importance (e.g., w; = 1.0 for core scientific require-
ments, w; = 0.5 for key but secondary requirements, and w; = 0.2 for auxiliary or presentational).

The score for each task is defined as: §' = Zf\il s; - w;. To ensure comparability across tasks, we

. el _ S Jr . . o, . .
normalize it: Syorm = S oF x 100 where > w;" is the maximum score from positive criteria,
=1 W]

ensuring a maximum of 100 and preventing minor positives from offsetting severe scientific errors.”

Stage 2: Expert Revision and Validation Domain experts refine the LLM-generated rubric through
the following actions:

* Deleting or filtering criteria: Experts refine the criteria by modifying or removing d; that
are redundant, irrelevant, or scientifically trivial.

* Adjusting weights: When the weight of certain criteria does not align with the scientific
validity of the task, experts modify the corresponding weight w;.

* Supplementing criteria: If the automatically generated criteria fail to cover essential scien-
tific dimensions, experts can introduce new tuples (a;, d;, s;, w;).

We invited three experts to participate in the revision and validation process. Each expert first in-
dependently reviewed and modified the evaluation criteria, including adjusting weights, removing
redundant items, and supplementing any missing dimensions. All modifications were documented
with clear rationale to ensure transparency. The proposed changes from all experts were then aggre-
gated, and conflicts were resolved through discussion, majority voting. For more analysis on expert
revision and validation, refer to the Appendix [D}
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Table 1: Performance comparison of different video generation models on MicroWorldBench. Bold
indicates the best performance.

Model \ Average \ Organ-level Cellular-level Subcellular-level

Open-Source Video Generation Models

HunyuanVideo 23.2 23.1 23.8 19.4
CogVideoX-5B 43.5 39.9 47.0 38.6
Wan2.1-T2V-1.3B 49.4 459 51.7 52.4
Wan2.2-TI2V-5B 51.6 46.6 53.9 49.5
Wan2.1-T2V-14B 54.8 55.7 54.4 52.8
Wan2.2-T2V-A14B 53.8 56.3 52.0 53.3
MicroVerse-1.3B (Ours) 50.2 47.6 51.7 53.3
Commercial Video Generation Models
Sora 50.7 55.9 46.1 55.0
Veo3 77.2 71.5 76.9 78.2

Table 2: Performance comparison of different video generation models on MicroWorldBench
(dimension-wise scores). Bold indicates the best performance.

Model Average Scientific Fidelity Visual Quality Instruction
Following
Open-Source Video Generation Models
HunyuanVideo 232 15.6 48.2 234
CogVideoX-5B 43.5 37.4 64.1 38.6
Wan2.1-T2V-1.3B 49.4 40.3 71.8 50.1
Wan2.2-TI2V-5B 51.6 40.7 82.7 47.0
Wan2.1-T2V-14B 54.8 427 86.0 53.8
Wan2.2-T2V-A14B 53.8 37.8 92.8 55.4
MicroVerse-1.3B (Ours) 50.2 43.0 68.5 49.3
Commercial Video Generation Models
Sora 50.7 35.3 96.4 37.9
Veo3 77.2 65.7 97.0 77.0

2.4 EVALUATION RESULTS AND ANALYSIS

Settings We evaluated video generation models on microscopic simulation tasks using MicroWorld-
Bench, including open-source models (e.g., Wan2.1 |Wan et al.|(2025), HunyuanVideo |[Kong et al.
(2024)) and commercial models (e.g., Sora|OpenAl| (2024)), Veo3|Google DeepMind| (2025))). Infer-
ence was conducted once per model under default settings to ensure fairness and consistent resolu-
tion. Rubric evaluation employed LLM-as-a-Judge [Zheng et al.| (2023)), with GPT-5 serving as the
Judge. The configurations and sampling details in the Appendix [F|

Overall Results As shown in Table[I] the performance of different models varies significantly across
organ-level, cellular-level, and subcellular-level tasks. Although commercial closed-source models,
such as Veo3, substantially outperform open-source models in overall scores, their advantage is
mainly confined to the visual quality dimension rather than scientific fidelity.

Visual Quality vs. Scientific Fidelity Table 2] shows that nearly all models achieve high scores in
visual quality (80-97), yet their scientific fidelity lags far behind (most open-source models score
only 15-43). This result demonstrates that current models often generate videos that “look right”
but fail to strictly adhere to physical and biological laws.

Performance Differences Across Hierarchical Tasks Both advanced open-source models (e.g.,
Wan2.2-T2V-A14B) and top commercial models (Sora, Veo3) exhibit lower performance on cellu-
lar and subcellular tasks compared to organ-level simulations. This may be attributed to the higher
requirements for physical and biological consistency in these tasks, as well as the scarcity of mi-
croscale training data that can capture complex dynamics.



Under review as a conference paper at ICLR 2026

B = ol
Step3 Remaining Clips l inal Clips
12,194 9,601

Step2 Remaining Clips —

Step1 Remaining Clips 26,841 Expert Filtered
33,535 Subtitles Filtered 259
14,647
Original Clips
67,853 . Black Borders Filtered
6,694

Classifier Filtered
34,318

Figure 3: Overview of our data filtering pipeline.

Scale Effects in Open-Source Models Within the Wan series, increasing model size from 1.3B to
14B mainly improves visual quality, while scientific fidelity shows little significant growth. This
suggests that expanding model parameters alone is not sufficient to solve the core scientific fidelity
challenges in microscale simulation.

3  MICROVERSE: TOWARD MICROSCALE SIMULATION VIA A
EXPERT-VERIFIED DATASET

The results of MicroWorldBench indicate that current models remain limited in their ability to model
microscale mechanism governed by physical and biological principles. Most large-scale video
datasets—such as InternVid Wang et al.| (2023b), UCF101 |[Soomro et al.| (2012), and OpenVid-
IM Nan et al.| (2024)—primarily consist of natural scenes or human activities, offering little rele-
vance to microscopic processes. To address this challenge, we propose a new microscale simula-
tion models, termed MicroVerse, which explicitly incorporate physical grounding and fine-grained
biological dynamics. A key prerequisite for developing such models is the availability of domain-
specific data that accurately capture microscopic processes with physical fidelity.

3.1 DATA CONSTRUCTION: MICROSIM-10K

Collecting videos from YouTube We used the official YouTube API to search for videos related to
microsimulation and filtered them based on the following criteria: (1) resolution of at least 720p;
and (2) licensed under Creative Commons. These requirements ensure that the collected videos are
suitable and freely available for training. In total, we obtained 12,848 relevant videos.

Splitting videos After obtaining the videos, we segmented them into multiple semantically consis-
tent and short clips. We used OpenCLIP |llharco et al.| (2021) for video segmentation: whenever
the similarity between adjacent frames fell below 0.85, a split was made. In total, 67,853 clips
were generated. Since not all clips were related to microsimulation, we trained a classifier based on
VideoMAE [Tong et al.| (2022) to filter them. The model achieved an accuracy of over 92%, signifi-
cantly improving the quality of the dataset. With the help of the classifier, 34,318 clips were filtered
out. For details of the clip classification model related to microsimulation, refer to the Appendix [C|

Automatic and expert filtering To improve the quality and physical consistency of the clips, we
first applied OpenCV || to detect black borders and used EasyOCR || to detect subtitles in order to
filter out those affecting semantic representation, retaining 12,194 clips. Experts then reviewed the
data, removing meaningless or physically inconsistent clips, resulting in 9,601 clips.

Generating captions We leverage a multimodal LLM (GPT-40) to generate detailed captions. Due
to context limits, we uniformly sampled 8 frames per clip as visual input. To minimize hallucina-
tions, we supply the video title and description.

"https://github.com/opencv/opencv-python
*https://github.com/Jaided Al/EasyOCR
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Prompt MLLM to Generate Video Caption

The provided images are sampled from a video clip (8 evenly spaced frames). This clip is taken from
a video with the following metadata:

Video Title: ; Video Description:

Using the visual content of the clip, together with the title and description, please generate a clear,
detailed, and accurate description of what is shown. Focus on the subject, explains the scene and
actions, and emphasizes visible details, textures, and fine structures.

3.2 DATA STATISTICS

3.2.1 FUNDAMENTAL ATTRIBUTES
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Figure 4: Distributions of fundamental video attributes in the MicroSim-10K.

MicroSim-10K is the first large-scale dataset dedicated to microscale simulation, comprising 9,601
high-quality video clips. As shown in Figure ] all clips have a resolution of at least 720p and a
duration of 5-60 seconds, ensuring that each captures a complete and coherent microscopic process.
The dataset spans diverse biological mechanisms across organ, cellular, and subcellular levels, of-
fering broad coverage of key scenarios. Each clip is paired with a detailed caption generated by a
multimodal LLM and validated by experts, with an average length of around 150 words, providing
precise semantic alignment for model training.

3.2.2 POPULARITY AND RELEVANCE
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Figure 5: Distributions of video popularity indicators in the MicroSim-10K.

To capture the educational and communicative value of microscale simulations, MicroSim-10K re-
tains metadata such as views, likes, and comments. As shown in Figure@ the videos in MicroSim-
10K have been widely viewed, with many reaching hundreds of thousands of views, and they have
received substantial likes and comments, reflecting strong popularity and broad accessibility across
both scientific and public communities.

3.3 TRAINING MICROVERSE

For training, we fine-tune the Wan2.1 model. A text prompt P is encoded as a sequence: P =
(po,p1, - - -, Pm), While the target video V' is decomposed into T" frames. Each frame is mapped
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into the latent space via a VAE |[Kingma & Welling| (2013)) encoder, yielding the sequence: L =
(lo,11,...,l7). The text input P is transformed into embeddings E using CLIP text encoder, and
the latent sequence L is processed by a Diffusion Transformer (DiT) |[Peebles & Xie|(2023).

The training objective is to predict the latent representation of the video through a denoising diffu-
sion process. At timestep ¢, the loss function is defined as:

£=E[lle = eo(Le,t, B, M

where L, is the noisy latent representation at timestep ¢, € denotes the injected noise, €y is the
model’s noise prediction, ¢ is the current diffusion timestep, and FE is the text embedding.

During fine-tuning, with probability defined by the 10%, the text conditioning is entirely masked,
enabling Classifier-Free Guidance (CFG)[Ho & Salimans|(2022) training. This mixture of uncondi-
tional and conditional training improves the generation quality of the model during inference.

4 EXPERIMENTS

Experiment Settings We train MicroVerse using 8 NVIDIA H200 GPUs, fully fine-tuning all pa-
rameters of Wan2.1-T2V-1.3B |Wan et al.| (2025) with a learning rate of le-5 and a batch size of
8. The training process is designed to improve the model’s capability to generate microscopic sim-
ulation videos conditioned on text prompts. We conducted a comparative with other models on
MicroWorldBench. Additional training details are provided in the Appendix [E]

Human Evaluation To evaluate alignment with human preferences, we conducted a human study
comparing MicroVerse with Sora and Veo3. The evaluation included 60 samples across three levels
of microsimulation (20 samples per level), all sourced from the 20 most popular microsimulation
videos on YouTube. Model outputs were randomly shuffled, and three evaluators independently
selected the preferred result based on instruction fidelity and visual clarity, or marked a tie. The final
results were reported as preference ratios.

4.1 RESULTS OF OUR MICROVERSE

Improvement in Scientific Fidelity Table 2| shows that MicroVerse achieves a significant improve-
ment in Scientific Fidelity, reaching a score of 43.0 and outperforming all open-source models. This
enhancement is attributed to the training on the physics-grounded MicroSim-10K dataset, which en-
ables the model to better adhere to biological and physical laws. Although there is a slight decrease
in Visual Quality (68.5) and Instruction Following (49.3), this does not affect our core objective:
advancing scientific fidelity.

Breakthrough in Subcellular-Level Tasks According to Table [If on the highly challenging
subcellular-level tasks, MicroVerse achieves a score of 53.3, surpassing all open-source models.
This demonstrates that our dataset enables MicroVerse to make notable progress on microscale sim-
ulation tasks where existing models typically struggle.

4.2 ANALYSIS

Human Evaluation Results Figure [6] shows the results of human evaluation. Compared with
Wan2.1-1.3B models, MicroVerse performs excellently in the dimension of Scientific Fidelity. Its
outstanding performance in Scientific Fidelity further validates the effectiveness of MicroSim-10K.
In addition, the Cohen’s Kappa coefficient among the three independent experts was above 0.80,
indicating strong interrater agreement and confirming the reliability of the scoring process. More
details on Cohen’s Kappa coefficient can be found in Appendix [H

Consistency among Judgers in MicroWorldBench To ensure that MicroWorldBench’s evaluation
aligns closely with human judgment across all dimensions, we conducted human preference labeling
on a large set of generated videos. Specifically, we computed the consistency of evaluation tasks
across different models as well as between the models and humans. Figure [6]shows the consistency
relationships among different models and between the models and humans.
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Figure 6: Human Evaluation and Consistency Results.

5 RELATED WORK

World Model World models [LeCun| (2022); |Bruce et al.| (2024); [Lu et al.| (2024) have garnered
significant attention. They simulate dynamic environments by predicting future states and estimat-
ing rewards based on current observations and actions. Their ability to model state transitions has
been extended to real-world scenarios through joint learning of policies and world models, improv-
ing sample efficiency in simulated robotics [Seo et al.| (2023), real-world robots |Wu et al.[ (2022),
clinical decision [Yang et al. (2025)), and autonomous driving Wang et al.| (2023a). For example,
some work Du et al| (2023)) explores long-horizon video planning by combining vision—-language
and text-to-video models. Others [Luo & Du| (2024) focus on linking video models to continuous
actions through goal-conditioned exploration. Recent works |Lu et al.| (2024)) also use video genera-
tive models to let agents explore environments more effectively. MeWM |Yang et al.| (2025)) applies
world modeling to medical image analysis and clinical decision-making.

Video Generation Video generation has seen rapid progress in the past two years. The release
of Sora |OpenAl| (2024) has ignited strong research interest in text-to-video generation, leading to
breakthroughs in quality, coherence, and controllability [Blattmann et al.| (2023)). Other commercial
systems such as Veo3, Kling, HunyuanVideo |Kong et al.| (2024}, and Hailuo |HailuoAl| (2024) have
achieved impressive performance and are widely applied in video production, advertising, and edu-
cation. With the technology maturing, domain-specific models are emerging to address specialized
needs. For instance, MedGen Wang et al.|(2025) generates accurate, high-quality medical videos for
health education, while AniSora [Jiang et al.| (2025) focuses on producing detailed and stylistically
rich animated content. Despite these advances, the use of video generation for microscale simulation
remains largely unexplored.

Rubric Evaluation Rubric-based evaluation has become a standard approach for assessing LLMs
on open-ended tasks, offering task-specific and interpretable criteria that improve grading consis-
tency. HealthBench Arora et al.[(2025) scales this paradigm to 5,000 multi-turn conversations with
48k clinician-authored rubrics covering accuracy, safety, and communication. Building on this,
Baichuan-M2 [Team| (2025)) dynamically generates case-specific rubrics as verifiable reward signals
for reinforcement learning, enabling adaptive and context-aware supervision. Rubrics as Rewards
(RaR) |Gunjal et al.| (2025) further formalizes rubric-based RL and shows significant gains over
Likert-style scoring. These efforts highlight rubric-guided evaluation and training as a promising
methodology for developing reliable, aligned, and LLMs.

6 CONCLUSIONS

Video generation excel at natural and human-centered macroscopic scenes but fail to capture faithful
microscale dynamics. This work introduces MicroWorldBench, the first rubric-based benchmark for
microscale video generation with 459 expert-curated tasks and well-defined rubric criteria. In addi-
tion, we build MicroSim-10K and develop MicroVerse which demonstrate remarkable performance
on microscale simulation tasks. By integrating physical constraints and expert supervision, Micro-
Verse not only improves visual fidelity but also advances toward biologically meaningful dynamics,
enabling applications in biomedical research, education, and interactive scientific visualization.
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LIMITATION

Our work aims to explore the potential of educational microscale simulations of biological mecha-
nisms, rather than the reproduction of results observed in wet lab experiments. However, our current
approach does not explicitly incorporate the underlying physical laws that govern biomedical mi-
croscale dynamics, such as fluid mechanics in blood flow, diffusion—reaction equations in molecular
transport, or biomechanical constraints in cellular processes. Consequently, this limitation restricts
the applicability of the model in scenarios that require high-precision scientific simulation and pre-
diction.

ETHICS STATEMENT

All data are publicly available, compliant with YouTube’s terms, and we exclude personal/sensitive
content. Captions were auto-generated (MLLMs) and manually verified to remove inappropriate/i-
dentifiable material. The dataset is intended solely and strictly for research purposes and should not
be used for non-research settings. We do not own the copyright of these data and will only publicly
release the URLSs linked to the data instead of the raw data.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. The proposed benchmark,
along with the training and evaluation code, has been made publicly available in an anonymous
repository to facilitate verification and replication. The paper provides a detailed description of
the experimental setup, including evaluation procedures, training steps, and hardware informa-
tion, as well as a complete specification of the benchmark to help researchers accurately under-
stand and reproduce our experiments. We believe these measures will further advance research in
this field. Please visit our anonymous Github: https://anonymous.4open.science/r/
rsrsyzyz/

LARGE LANGUAGE MODELS USAGE STATEMENT

In this work, large language models (LLMs) served as a writing aid to polish the manuscript’s
language. We utilized ChatGPT specifically to refine sentence structure and improve grammatical
correctness. Importantly, the LLM played no role in generating the research itself; the intellectual
contributions, experimental design, data interpretation, and findings are entirely the work of the
authors.
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A GENERATE PROMPT FROM THE VIDEO TITLE AND DESCRIPTION

Generate Prompt from the Video Title and Description.

Your task: Based on the “video title” and “video description” I provide, craft an extremely detailed,
professional, and keyword-rich English prompt specifically for generating breathtaking microscopic-
world videos. Do not give any explanation, output directly. Don’t use bullet points. Write it as a single,
complete paragraph.

Generate a complete, ready-to-use video-generation prompt. This prompt must include all of the
following sections:

1. Main Subject: Clearly describe the central object within the microscopic scene.
2. Scene & Action: Describe what is happening.
3. Details & Textures: Emphasize the details that should be visible.

The video title is:

The video description is:

B PROMPT LLM CLASSIFIES BASED ON TASK DESCRIPTIONS

Prompt LLM Classifies Based on Task Descriptions.

Your task: You are an expert in scientific video classification. Given a task description, classify it into
one of the following categories for diversity:

1. Organ-level simulations — tasks focusing on the behavior, dynamics, or interactions at the
scale of whole organs or organ systems.

2. Cellular-level simulations — tasks focusing on the behaviors and interactions of single cells
or collections of cells, such as cell division, cell fusion, cell migration, or cell signaling.

3. Subcellular-level simulations — tasks focusing on molecular, genetic, or biochemical pro-
cesses within cells, such as protein folding, gene regulation, or intracellular signaling.

The task description is:

Please output only the most appropriate category label based on the task description provided.

C VIDEOMAE-BASED MICROSIMULATION CLASSIFIER

To filter out video clips related to microsimulation, we trained a classifier using 2,580 manually
annotated samples based on the VideoMAE model. The training was implemented within the Trans-
formers [3_1 with a learning rate of 5e-5 and a total of 10 epochs, enabling the model to effectively
capture video features and achieve accurate classification. Finally, our classifier achieved an accu-
racy of 92% on the test set.

Table 3: Dataset statistics for microsimulation classification.

Category \ Total \ Train (80%) Test (20%)
Microsimulation-related 1107 885 222
Non-microsimulation 1473 1178 295
Total \ 2580 \ 2063 517
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D ANALYSIS OF THE PROCESS OF EXPERT REVISION AND VALIDATION

We analyzed the frequency with which three experts employed the four types of rubric operations
when handling different tasks. As shown in Figure [§] all experts tended to favor Adjust Weights,
while Supplement was used relatively infrequently. Follow-up interviews with the three experts
revealed that the Supplement operation is more cumbersome, as it requires identifying additional
evaluation criteria beyond those automatically generated by the LLM, which can introduce extra
burden.

E TRAINING SETTINGS ON MICROVERSE

We train MicroVerse using 8§ NVIDIA H200 GPUs, fully fine-tuning all parameters of Wan2.1-T2V-
1.3B. Table 4{shows the detailed training parameter settings used to train MicroVerse.

Table 4: Training parameter settings.

Parameter \ Value
—-—-train_batch_size 8
—--max_train_steps 5000
——learning.rate le-5
—--mixed precision bf16
—-—-training.cfg.rate 0.1
—-num_height 480
——num_width 832
——num_frames 81
—--weight_decay 0.01
—-—dit_precision fp32
——enable_gradient_checkpointing_type full

F INFERENCE SETTINGS ON MICROVERSE

Table 5: Inference parameter settings.

Parameter \ Value
-—height 480
——width 832
——num_frames 81
——guidance_scale 5.0
——num_inference_steps 50

3https://github.com/huggingface/transformers
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Figure 9: Training loss decreases steadily over 5k iterations.
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G

Prompt GPT-5 to Generate Rubric Criteria

PROMPT GPT-5 TO GENERATE RUBRIC CRITERIA

Task:

You are a biology expert. Your task is to design a set of rubrics to evaluate the completion of a given
task based on the provided Prompt.

The rubric should consist of multiple triplets in the form:

{ai7 di, Siy wl}
* a;: the evaluation aspect, restricted to one of the following three categories:

— Scientific Fidelity: Accurate representation of organs, cells, and subcellular structures
in scale, morphology, and spatial relationships, with dynamic processes consistent with
biological and physical laws.

— Visual Quality: Emphasis on clarity, detail, and aesthetics, including model precision,
rendering, lighting, and color balance.

— Instruction Following: Generated videos strictly follow the prompt description.
¢ d;: description of the i-th evaluation criterion.

* s;: polarity of the criterion, either 41 (contributes positively) or —1 (deducts points); leave
this field empty.

 w;: weight of importance in the range (0, 1]:
— 1.0 — core scientific requirements
— 0.5 — important but secondary requirements
— 0.2 — auxiliary or presentational requirements

Output example:

"al": "Scientific Fidelity",
"dl": "Key cell structures are clearly defined and proportionally
accurate",
"Sl": |l+l",
"wlll: "1‘0"
}
Constraint:

1. Do not give any explanation, output directly.
2. Please describe the evaluation criterion (d;) in as much detail as possible.

3. Directly describe the key rubrics in the evaluation criterion, and do not use words such as
whether’.

4. Only English output is allowed.
Given prompt:

H

We used Cohen’s Kappa coefficient to measure agreement among the three experts. Table [6]indicate

INTER-RATER RELIABILITY AMONG HUMAN EVALUATORS

strong agreement among the experts, confirming the reliability of the scoring process.

Table 6: Comparison of Cohen’s Kappa values between experts.

Comparison Pair

Cohen’s Kappa

Expertl vs. Expert?2 0.87
Expertl vs. Expert3 0.83
Expert2 vs. Expert3 0.81
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I A RUBRIC EXAMPLE FROM MICROWORLDBENCH

0:00 0:04 0:24

Prophase Prometaphase Telophase

Figure 10: Example of a cell mitosis simulation video frame, taken from an excellent example video
on YouTube.
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Table 7: Rubric Example for Cell Mitosis Evaluation

Dimension

Criteria

Scientific Fidelity

Visual Quality

Instruction Following

Weight = +1.0 The sequence of stages, segregation patterns, and ploidy
changes in mitosis and meiosis are accurately represented; mitosis
produces two genetically identical diploid daughter cells, whereas
meiosis involves two successive divisions resulting in four genetically
diverse haploid gametes.

Weight = +1.0 The alignment of chromosomes at the metaphase plate
and their segregation from metaphase to anaphase occur correctly; sister
chromatids are distinctly differentiated from homologous chromosomes;
the attachment of kinetochores to spindle microtubules and the direction
of their tension conform to biological principles.

Weight = +1.0 Structural details and dynamic coordination between the
spindle apparatus and the centrosome (centriole) are accurate; spindle
pole positioning, microtubule polarity, and force distribution are
appropriate; the relationship between the microtubule-organizing center
and cell polarity is correctly established.

Weight = +1.0 The timing and mechanisms of DNA replication and
genetic recombination are correctly presented; DNA replication occurs
during the pre-mitotic S phase, homologous pairing and crossing over
take place in prophase I of meiosis, and no DNA replication occurs
between meiosis I and II.

Weight = +0.5 The image demonstrates high clarity and fine presentation
of microstructural details, with sharp edges of subcellular structures,
well-defined layer separation, and absence of wax artifact noise.

Weight = +0.5 The animation exhibits coherent motion with stable
temporal rhythm, smooth phase transitions, and natural movement
trajectories, without any stuttering or tearing.

Weight = +0.2 The 3D modeling and material texture are credible, with
consistent form proportions and scale hierarchy; the textures are detailed,
and surface microstructures are discernible.

Weight = +0.2 Coordination of lighting, shadows, and depth of field;
controlled volumetric scattering and highlights without excess; clear
subject contours with well-defined micro-scale detailing.

Weight = +0.5 Accurately present the key stages of mitosis in a single
somatic cell, ensuring a clear transition and coherent progression
between meiotic divisions I and II in gonadal germ cells.

Weight = +0.5 Accurate reproduction of subcellular elements and
dynamics: chromosome separation following metaphase plate alignment,
coordinated movement of spindle fibers and centrioles, and continuous
changes and details of the cell membrane/cytokinesis.

Weight = +0.2 Accurately describe genetic outcomes and differences:
mitosis produces two genetically identical diploid daughter cells, while
meiosis results in four genetically diverse haploid gametes, highlighting
the mechanistic distinctions.

Weight = +0.2 Compliance with technical specifications and viewing
angle requirements: within an approximate total duration of 5 seconds,
information is organized clearly; microscopic close-up focuses on the
single-cell subject; the camera remains stable, transitions are clear, and
the subject is unobstructed.

Weight = -0.5 Presence of fundamental conceptual and procedural
errors: confusion between mitosis and meiosis, incorrect sequencing of
stages, inaccurate ploidy descriptions, omission of the two meiotic
divisions, or failure to represent the single-cell focus.
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J EXAMPLE OF REAL BIOLOGICAL VIDEO CLIPS
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Caption: A high-magnification microscopic view reveals a tightly packed layer of rounded, polygonal cells with finely granular cytoplasm

and dark, well-defined nuclei, their thin bright borders forming a mosaic-like tissue texture. At the center, one prominent cell is caught in

the midst of mitosis, distinguished by its luminous, ring-shaped outline and a nucleus that appears elongated or partially split as condensed

chromatin masses align and separate—visual cues of an active division stage. Surrounding cells remain in interphase, showing intact round

nuclei with small dark spots suggestive of nucleoli, providing contrast to the dynamic structural rearrangements within the dividing cell.

The overall scene captures the subtle shifts in texture, contrast, and intracellular organization characteristic of living cells undergoing cell
*\_division.

Figure 11: Example of real biological video clips.

20

/



	Introduction
	MicroWorldBench: A Rubric-Based Benchmark for Microscale Simulation
	Task Choice
	Prompt Suite
	Rubric Criteria
	Evaluation Results and Analysis

	MicroVerse: Toward Microscale Simulation via a Expert-Verified Dataset
	Data Construction: MicroSim-10K
	Data Statistics
	Fundamental Attributes
	Popularity and Relevance

	Training MicroVerse

	Experiments
	Results of our MicroVerse
	Analysis

	Related Work
	Conclusions
	Generate Prompt from the Video Title and Description
	Prompt LLM Classifies Based on Task Descriptions
	VideoMAE-Based Microsimulation Classifier
	Analysis of the Process of Expert Revision and Validation
	Training Settings on MicroVerse
	Inference Settings on MicroVerse
	Prompt GPT-5 to Generate Rubric Criteria
	Inter-Rater Reliability Among Human Evaluators
	A Rubric Example from MicroWorldBench
	Example of real biological video clips

