
Published as a conference paper at ICLR 2024

HETEROGENEOUS PERSONALIZED FEDERATED
LEARNING BY LOCAL-GLOBAL UPDATES MIXING
VIA CONVERGENCE RATE

Meirui Jiang
Department of Computer Science and Engineering
The Chinese University of Hong Kong
mrjiang@cse.cuhk.edu.hk

Anjie Le
Department of Computer Science and Engineering
The Chinese University of Hong Kong
ajle@cuhk.edu.hk

Xiaoxiao Li
Department of Electrical and Computer Engineering
The University of British Columbia
xiaoxiao.li@ece.ubc.ca

Qi Dou∗

Department of Computer Science and Engineering
The Chinese University of Hong Kong
qidou@cuhk.edu.hk

ABSTRACT

Personalized federated learning (PFL) has emerged as a promising technique for
addressing the challenge of data heterogeneity. While recent studies have made
notable progress in mitigating heterogeneity associated with label distributions,
the issue of effectively handling feature heterogeneity remains an open question.
In this paper, we propose a personalization approach by Local-Global updates
Mixing (LG-Mix) via Neural Tangent Kernel (NTK)-based convergence. The core
idea is to leverage the convergence rate induced by NTK to quantify the impor-
tance of local and global updates, and subsequently mix these updates based on
their importance. Specifically, we find the trace of the NTK matrix can mani-
fest the convergence rate, and propose an efficient and effective approximation to
calculate the trace of a feature matrix instead of the NTK matrix. Such approx-
imation significantly reduces the cost of computing NTK, and the feature matrix
explicitly considers the heterogeneous features among samples. We have theoret-
ically analyzed the convergence of our method in the over-parameterize regime,
and experimentally evaluated our method on five datasets. These datasets present
heterogeneous data features in natural and medical images. With comprehensive
comparison to existing state-of-the-art approaches, our LG-Mix has consistently
outperformed them across all datasets (largest accuracy improvement of 5.01%),
demonstrating the outstanding efficacy of our method for model personalization.
Code is available at https://github.com/med-air/HeteroPFL.

1 INTRODUCTION

Personalized federated learning (PFL) aims to leverage the aggregated knowledge from other clients
to learn a client-specific model that best fits its own data distribution (Smith et al., 2018; Arivazha-
gan et al., 2019; Li et al., 2021b; Hanzely & Richtárik, 2021; Tan et al., 2022). Although many PFL
methods have tackled heterogeneity issues regarding label distribution shift (Jeong & Hwang, 2022;
Zhang et al., 2022), computation limitation (Diao et al., 2021; Setayesh et al., 2023), model archi-
tecture design (Makhija et al., 2022; Wang et al., 2022), etc, how to effectively address the feature
heterogeneity issue (Kairouz et al., 2021; Hsieh et al., 2020) is still an open question. In practice,
feature distributions across client data are often heterogeneous due to variations in acquisition or
generation conditions (Xu et al., 2021; Rieke et al., 2020; Li et al., 2021c). For instance, in health-
care domain, medical images collected from different hospitals exhibit appearance misalignment as
imaging protocol changes. Training one common global model for tackling various feature distribu-

∗Corresponding author.

1

https://github.com/med-air/HeteroPFL

Published as a conference paper at ICLR 2024

tions can be challenging. Therefore, personalization of the global FL model to each individual client
becomes imperative, but how to solve the feature heterogeneity is still unclear.

There have been many approaches proposed to improve the global model in order to tackle het-
erogeneous features. Despite the promising performance, the converged global model may not be
optimal for all clients (Kairouz et al., 2021; Li et al., 2020a; Sattler et al., 2020). Another way is
to train personalized models to overcome the feature distribution shifts. It is worth noting that deal-
ing with heterogeneous features under PFL setting is largely different from doing it under standard
FL. Specifically, PFL aims to fit clients’ individual feature distribution, whereas the standard FL
focuses on utilizing various feature distributions to enhance the global model. For instance, there
are some FL methods proposed to tackle the heterogeneous data by aligning the feature distribu-
tion over clients to promote global aggregation (Li et al., 2021c;a), and rectifying client gradient
direction to avoid aggregated gradients being distracted (Gao et al., 2022; Karimireddy et al., 2020).
These methods mainly focus on global updates. However, for PFL, it is essential to consider both
local and global updates and their interplay relations for achieving personalization.

To investigate the relations between local and global updates, we consider their effects during fed-
erated training. The global update typically is the aggregation (e.g., weighted averaging) of local
updates, while the local update solely relies on the client’s local data. In federated training, the
global update contains common knowledge from all clients’ data, thereby aiding in minimizing the
error of joint data distribution. However, it may not precisely align with the direction of the local
update when the data exhibits heterogeneity. For local update, it specifically minimizes the local
error, but suffers from limited local data size. From a personalization standpoint, the key incentive
is to minimize the local error with the help of other clients’ data (i.e., the common knowledge). In
this case, an ideal solution would be leveraging local updates to rectify the potential adverse effects
induced by data heterogeneity in global updates. A promising solution is to mix the local and global
updates, while the question is how to determine the mixing ratio.

One related work has proposed to mix the local and global models and select the ratio based on
the differences observed between the mixed model and the global model (Deng et al., 2020). How-
ever, considering that the local/global update strongly correlates with the input data, we argue that
attention must be given to the data aspect in the context of feature heterogeneous PFL. To answer
this question, we draw insight from the Neural Tangent Kernel (NTK) (Jacot et al., 2018; Huang
et al., 2021), which leverages the dot product of input data for measuring the convergence of neural
network training. By calculating the NTK matrix when employing local and global updates, we can
take the NTK-based convergence rate as a guiding factor to adaptively adjust the mixing ratio.

In this paper, we propose to achieve model personalization by Local-Global updates Mixing (LG-
Mix). Our key contribution is to determine the mixing ratio via NTK-based convergence. Specifi-
cally, we theoretically show that the trace of NTK is an effective measurement of the convergence
rate. By leveraging the convergence rate induced by NTK, we can assess the importance of local
and global updates, and perform mixing based on their importance. We propose an efficient and
effective approximation to calculate the trace of a feature matrix instead of the NTK matrix. This
approximation not only reduces the computational cost, but also explicitly considers heterogeneous
features among samples. We conduct comprehensive experiments to demonstrate the efficacy of
our method, including both performance comparisons and analytical studies. We also theoretically
analyzed the convergence of our method in the over-parameterized regime. Our experiments include
three computer vision datasets with heterogeneous features (diverse image styles/appearances), and
two real-world medical image datasets. Our method consistently outperforms state-of-the-art ap-
proaches across all datasets, showing its effectiveness in personalization.

2 RELATED WORKS

Federated Learning on Heterogeneous Data. To promote the training of a global model on hetero-
geneous data, various techniques have been proposed, such as regularizing local model training (Li
et al., 2020b; Durmus et al., 2021; Li et al., 2021a), facilitating model optimization (Karimireddy
et al., 2020; Reddi et al., 2021; Tran Dinh et al., 2021), enhancing aggregation algorithm (Wang
et al., 2020; Pillutla et al., 2019), improving feature normalization (Li et al., 2021c; Reisizadeh
et al., 2020), etc. For instance, SCAFFOLD (Karimireddy et al., 2020) proposed a new optimization
algorithm to reduce variance in local updates. Later on, FedNova (Wang et al., 2020) suggested

2

Published as a conference paper at ICLR 2024

using normalized stochastic gradients for global model aggregation, and MOON (Li et al., 2021a)
proposed using contrastive learning on latent feature representations to enhance the alignment be-
tween local and global models. FedDC (Gao et al., 2022) improved SCAFFOLD by dynamically
updating the client objective function. However, when aiming to maximize the performance for each
local client, learning one common global model may not be an optimal solution.

Personalization in Federated Learning. The PFL aims to utilize data from multiple clients to
learn a personalized model for each client. Existing methods have performed personalization by
leveraging: meta-learning (Fallah et al., 2020; Acar et al., 2021), multi-task learning (Smith et al.,
2018; Li et al., 2021b), model parameters decomposition (Collins et al., 2021; Oh et al., 2022),
model mixture (Deng et al., 2020; Hanzely et al., 2020; Hanzely & Richtárik, 2021), Bayesian treat-
ment (Kotelevskii et al., 2022; Ozkara et al., 2023), etc. For example, PerFedAvg (Fallah et al.,
2020) proposed to seek a meta-model that adapts to each client’s local dataset. APFL (Deng et al.,
2020) and L2SGD (Hanzely et al., 2020) proposed to mix the local and global model for personal-
ization. FedAlt (Pillutla et al., 2022) proposes to personalize partial model layers. FedBABU (Oh
et al., 2022) and FedRep (Collins et al., 2021) propose a similar idea of decoupling the learning
model into a model body and a local head, and the head is personalized. Recently, FedHKD (Chen
et al., 2023) proposes to use knowledge distillation to train local models and share hyper-knowledge
instead of parameters. However, although some optimization-based methods (e.g., APFL, L2SGD)
can be extended for heterogeneous features, they are not specifically designed for feature hetero-
geneity problems. The issue of feature distributional shifts in PFL remains under-explored.

3 LG-MIX: LOCAL-GLOBAL UPDATES MIXING VIA CONVERNGENCE

In this section, we begin by describing the model training process involving local and global updates.
Then we present our proposed method that performs update mixing guided by the convergence.

3.1 LOCAL AND GLOBAL UPDATES MIXING

Assume we have N clients joining the PFL for T communication rounds, and we use c to denote
the client index. Each client will perform K local update steps. We denote the aggregated server
model at the t-th communication round as u(t) and the client model in round t and local step k as
wc(t, k). Denote Sc as the data index of client c, assuming there are n input data and label pairs
{(xi, yi)} ∈ Rd × R}ni=1, which follow the global distribution D. Note that S1 ∪ · · · ∪ SN = [n],
and Si ∩ Sj = ϕ. The data of client c is {(xi, yi) : i ∈ Sc}, and it follows distribution Dc.

The local update is defined as the weight changes before and after local client training. Consider the
local model wc, the local update and global update at t-th round can be expressed as:

∆wc(t) = wc(t,K)− wc(t, 0), ∆u(t) = u(t+ 1)− u(t). (1)
Here, the global update takes the format of aggregation using local updates in practice, i.e., ∆u(t) =∑

c pc∆wc(t), where pc denotes the client importance (e.g., proportional to client sample number)
and the sum over all clients equals to 1. In FL, a typical paradigm is that each client receives the
global update during communication and then use it to update the local model. However, clients may
experience covariate shift or concept drift in the real world, i.e., given the joint probability Pc(x, y)
of input x and label y, we have Pc(x) varies even if Pc(y|x) is the same or Pc(x|y) varies across
clients while Pc(y) is unchanged. Therefore, D does not necessarily represent the actual distribution
of a client c’s data Dc well. That is, the global update may not concisely align with the direction of
the local update, solely using the global update is not sufficient to minimize the error of each client.

To overcome the potential shift inside the data distribution, we propose to perform the PFL by in-
corporating the local update into the global update to fit Dc. The insight is that the global update
contains common knowledge from all clients and conveys global information, while the local update
specifically encompasses local information. By mixing local and global updates, we can make the
best use of both local and global knowledge to maximize the performance for each client. Specifi-
cally, we consider the following update regime for model personalization:

wc(t+ 1)← wc(t) + λc(t)∆wc(t) + (1− λc(t))∆u(t), (2)
where λc is a coefficient of our choice to balance the local and global update. When λc approaches
0 or 1, the update regime corresponds to the vanilla FedAvg and local gradient descent respectively.
Next, we aim to find an optimal ratio to mix these two updates.

3

Published as a conference paper at ICLR 2024

3.2 MIXING RATIO CALCULATION BY NTK-CONVERGENCE

To find the optimal mixing ratio, the key point is to quantify which update is more important for
model optimization. In other words, the optimal mixing should minimize the loss faster than other
mixing ratios. Therefore, we propose to measure the convergence of using local/global updates, and
use the convergence rate to determine the mixing ratio. We measure the convergence by using the
tool NTK, which has been widely adopted to analyze the convergence of modern neural networks.

To study the convergence of the gradient descent at time step t, we can measure the evolution of
the error between the ground truth and model prediction at the t-th step with the help of the Gram
matrix H(t). The Gram matrix H(t) is a function of parameter w and input x, which characterizes
the optimization process of gradient descent (Du et al., 2019). This Gram matrix is often used as
an empirical approximation to the NTK, which describes the dynamics of gradient descent in the
infinite wide neural network (Arora et al., 2019a; Lee et al., 2020), and the spectral property of
the Gram matrix also governs convergence guarantees for networks in the finite width case (Huang
& Yau, 2020; Zhang et al., 2020; Brand et al., 2021). For instance, consider a two-layer neural
network with ReLU activation, the H(t) for input data pair xi, xj can be denoted as: H(t)i,j =
1
m

∑
r∈[m]

(
xT
i xj1wr(t)T xi≥0,wr(t)T xj≥0

)
, where m is the number of hidden nodes, r is the node

index. We omit the footnote c in w for ease of notation. Intuitively, the Gram matrix captures the
correlations between the training samples in the network evolution dynamics. Following Du et al.
(2019), we express the evolution of prediction error for one step of gradient descent as:

y − y(t+ 1) = (I − ηH(t))(y − y(t+ 1)), (3)
where y denotes the label, y(t) = f(w(t), x) and f : Rd → R is the model function. Based

on Eq.(3), we have the following observation, which illustrates the significance of between the
convergence rate and the trace of the Gram matrix.
Proposition 1. With the assumption that the error vector ξ(t) := y − y(t) can be regarded as a
random vector distributed uniformly in the space, by decomposing H(t) and ξ(t) into the eigenbasis
of H(t), we note that in gradient descent, the prediction error has an approximate convergence rate
of (1− 2η tr(H(t))/n), where η is the learning rate and is small, and tr(H(t)) is the trace of H(t).

Proof Sketch: Consider the eigen-decomposition H(t) =
∑n

i=1 si(t)vi(t)v
T
i (t), then ξ(t) =∑n

i=1(v
T
i (t)ξ(t))vi(t). Then we have ξ(t + 1) = (I − ηH(t))ξ(t) =

∑n
i=1(1 −

ηsi)(v
T
i (t)ξ(t))vi(t), which implies ∥ξ(t+1)∥2 =

∑n
i=1(1− ηsi)

2(vTi (t)ξ(t))
2. Then for η small

and error vector distributed uniformly in space, we have ∥ξ(t+1)∥2 ≈ (1− 2ηtr(H(t))/n)∥ξ(t)∥2.

This proposition means that the trace of the Gram matrix can serve as an effective metric for as-
sessing the convergence rate of the model on the data samples. Consequently, the convergence rate
can be quantified by leveraging the trace of the H matrix. Let us denote the Gram matrix of the
model obtained through global updates as H , and the Gram matrix acquired through local updates
as Hc. Intuitively, if the convergence rate using local updates surpasses that of global updates, a
greater emphasis on local updates becomes necessary. According to the proposition, for the same
amount of sample, if tr(Hc) > tr(H), then this means the local update converges more rapidly than
the global update. This proposition aligns with our intuitive understanding. Following this idea, we
would like to give the update with higher convergence rate a greater weight in the mixing ratio. To
be more specific, for client c at t-th step, we can calculate the mixing ratio as:

λc(t) = tr(Hc(t)) / (tr(Hc(t)) + tr(H(t))) . (4)
By taking the ratio back to Eq.(2), we have completed the regime to generate the personalized model.

3.3 ALGORITHM IMPLEMENTATION

In the preceding section, we have introduced the utilization of the trace of the Gram matrix for
determining the mixing ratio. However, the computation of the Gram matrix H in practical networks
poses significant challenges and is often computationally infeasible (Fort et al., 2020; Mohamadi
et al., 2023; Holzmüller et al., 2023). Specifically, the size of the H matrix increases rapidly as the
number of samples grows, making the computation impractical, particularly for large datasets. In
this case, we propose to approximate the calculation of tr(H) by two steps.

First, we draw upon previous studies (Seleznova et al., 2023; Kirichenko et al., 2023) that empha-
size the significance of the last layer in the dynamics and performance of neural networks. In our

4

Published as a conference paper at ICLR 2024

Algorithm 1: LG-Mix: Local-global updates mixing algorithm
Input: communication rounds T , number of clients N , local update steps K, client learning

rate ηl, global learning rate ηg , mixing ratio {λc}Nc=1, feature matrix {Σc}Nc=1, Σ.
1 for t = 0, 1, · · · , T − 1 do
2 for c = 1, 2, · · · , N in parallel do
3 for k = 0, 1, · · · ,K − 1 do
4 sample a batch of data pairs {(xi, yi)}, i ∈ Sc

5 wc(t, k + 1)← SGD
(
wc(t, k); {(xi, yi)}

)
// also output feature hc(xi)

6 Σc += hc(xi)hc(xi)
T ,Σ += h(xi)h(xi)

T // update feature matrix

7 ∆wc(t) = wc(t,K)− wc(t, 0) // send client update to server

8 u(t+ 1) = u(t) + ∆u(t),where ∆u(t) =
∑

c pc∆wc(t) // global model update
9 for c = 1, 2, · · · , N in parallel do

10 λc(t) = tr(Σc(t)) / (tr(Σc(t)) + tr(Σ(t))) // Eq.(6)
11 wc(t+ 1)← wc(t) + λc(t)∆wc(t) + (1− λc(t))∆u(t) // Eq.(2)

Output: The personalized models {wc}Nc=1, and the global model u.

approximation, we consider the evolution of the last layer. For the matrix H , we use Ĥ(t)i,j :=
1
m

∑
r∈[m]

(
hr(xi)hr(xj)

)
as a approximated representation, where h denotes the parameters up to

the penultimate layer. This approximation is also justified by the fact that hr(xi)hr(xj) is always
a factor of Hi,j = ⟨∇fw(xi),∇fw(xi)⟩, irrespective of the activation function employed. Here, w
is the parameter of the last layer, and f gives the prediction of the whole model. Notably, an exist-
ing work (Seleznova et al., 2023) has also shown that the empirical NTK with entries of last-layer
features highly aligns with the original NTK in terms of training dynamics.

Second, since our objective is to compute the matrix trace, it is unnecessary to calculate the complete
Ĥ . By leveraging a property of linear algebra, namely, tr

(
h(x)Th(x)

)
= tr

(
h(x)h(x)T

)
, we can

simplify the trace calculation as follows:

tr(Ĥ(t)) =
1

m

∑
i∈[n]

∑
r∈[m]

hr(xi)hr(xi) =
1

m
× tr(Σ(t)), (5)

where Σ(t) =
∑n

i=1 h(xi)h(xi)
T is a feature matrix in Rm×m considering features among all

samples. Note that ˆH(t) has a size of n × n, while Σ is m × m. As a result, the computational
cost is significantly reduced since the number of samples is typically much larger than the last-layer
feature dimension (e.g., 256 or 512).

With the aforementioned approximation, we can approximate the trace of the H matrix obtained
through local updates as tr(Hc(t)) ≈ tr(Σc(t)), where Σc(t) =

∑nc

i=1 hc(xi)hc(xi)
T . In the case of

the global H matrix, since the data is distributed and not directly accessible, we propose employing
features from local data in conjunction with the global model u. Consequently, we approximate
tr(H(t)) as tr(Σ(t)), where Σ(t) =

∑nc

i=1 h(xi)h(xi)
T .

Finally, the mixing ratio for client c at time step t can be calculated as follows:
λc(t) = tr(Σc(t)) / (tr(Σc(t)) + tr(Σ(t))). (6)

To further stabilize the ratio, we propose to consider the history information, that is, λc(t) =
1

t−1

∑t−1
i=1 λc(i). We have also studied the effects of such stabilization in our experiments.

4 CONVERGENCE ANALYSIS

We prove the following theorem that describes the convergence of our proposed PFL algorithm.
Theorem 1. For m = Ω(λ−4n4 log(n/δ)), randomly initialized parameters (i.e. w(0) ∼ N (0, I)),
and ηl = O(λ/κKn2), ηg = O(1), then with probability at least 1− δ over the random initializa-
tion, we have for ∀t:
∥y− y(t+1)∥2 ≤ ∥y− y(t)∥2 − ζηg(1− λ(t))s

(H)
min∥y− y(t)∥2 − ζ

∑
c
λ(t)s

(Hc)
min ∥yc − yc(t)∥2,

where ζ := ηlK
2N , and smin denotes the smallest eigenvalue of H matrix.

5

Published as a conference paper at ICLR 2024

Note that ∥y − y(t)∥2 =
∑

c ∥yc − yc(t)∥2, and

y(t) = (f(w1(t), x1), ..., f(w1(t), xn1), f(w2(t), x1),, f(wN (t), xnN
))T

yc(t) = (0, ..., 0, f(wc(t), x1), ..., f(wc(t), xnc
)︸ ︷︷ ︸

xi∈Sc

, 0, ..., 0)T

The proof is rather involved including bounding each of the terms in the recursion relation:

∥y − y(t+ 1)∥2 = ∥y − y(t)∥2 − 2(y − y(t))T (y(t+ 1)− y(t)) + ∥y(t+ 1)− y(t)∥2

We defer the details of the proof to Appendix B.

Discussion on the convergence result. To gain an intuition into the convergence result, we consider
the case when λ is not homogeneous among clients, and we consider a sub-optimal inequality as can
be deduced from Appendix B:

∥y−y(t+ 1)∥2≤∥y − y(t)∥2−ζηg(1−λmax(t))s
(H)
min∥y − y(t)∥2−ζ

∑
c
λc(t)s

(Hc)
min ∥yc−yc(t)∥

2

Then by rewriting s
(Hc)
min = s

(H)
min + δc, and ∥yc − yc(t)∥2 = 1+ϵc

N ∥y − y(t)∥2, we have

∥y−y(t+1)∥2 ≤ ∥y−y(t)∥2−ζ∥y−y(t)∥2
[
ηg(1−λmax(t))s

(H)
min+λ̄cs

(H)
min+

1

N

∑
c
λcδc(1+ϵc)

]
where λ̄c denotes the average value of {λc}. With the first two terms in the square bracket being
relatively fixed, we observe that with ϵc = o(1), larger value of λc is preferred for larger value of δc.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our approach on four classification datasets, including (1) Digits-5 (Zhou
et al., 2020; Li et al., 2021c) with digits images showing drastic differences in font style, color,
and background. (2) Office-Caltech10 (Gong et al., 2012) with images acquired in different cam-
eras or environments; (3) DomainNet (Peng et al., 2019) with different image styles; (4) Came-
lyon17 (Bandi et al., 2018) with histology images with different stainings from 5 hospitals, and
one segmentation task on the Retinal dataset which contains retinal fundus images from 6 different
sources (Fumero et al., 2011; Sivaswamy et al., 2015; Almazroa et al., 2018; Orlando et al., 2020).
As shown in Fig. 1, each client represents a data source, and data are heterogeneous across clients.

Digits5

Office-Caltech10

DomainNet

Camelyon

Retinal

Figure 1: Samples of five datasets show
various styles and appearances.

Compared methods and evaluation metrics. We com-
pare our approach with state-of-the-art (SOTA) PFL
methods, including APFL (Deng et al., 2020) and
L2SGD (Hanzely et al., 2020) for personalization by mix-
ing local and global models, which shares a similar idea
of ours; FedAlt (Pillutla et al., 2022) for personalizing
partial model layers; PerFedAvg (Fallah et al., 2020) for
learning a meta-model that adapts to each client’s local
data; FedBN (Li et al., 2021c) for personalizing batch
normalization layers; FedFomo (Zhang et al., 2021) for
aggregating certain client models based on client contri-
bution; FedBABU (Oh et al., 2022) and FedRep (Collins
et al., 2021), which propose to personalize the last model
layer; FedHKD (Chen et al., 2023) for using knowledge
distillation to personalize local models. For evaluation
metrics, we report the accuracy for all classification tasks,
and the Dice coefficient (Dice) and Hausdorff Distance

(HD) for the segmentation task. All results are reported with mean and standard deviation across
three independent runs.

Implementation details. In our implementation, all methods use the same training settings. We
use the SGD optimizer with a learning rate of 0.01 and CrossEntropy loss for classification tasks
and use Adam optimizer with learning rate of 1e−3 with β = (0.9, 0.99), dice loss (Milletari et al.,
2016) for the segmentation task. For more experimental results and training implementation details,
please refer to Appendix. D.

6

Published as a conference paper at ICLR 2024

Table 1: Performance comparison with SOTA PFL methods on classification datasets of Digits5
(different strokes and colors) and Office-Caltech10 (different shapes and view angles).

Dataset Digits5 Office-Caltech10

Client A B C D E Avg. A B C D Avg.

FedAvg (PMLR 2017) 98.85 89.95 95.82 99.28 88.70 94.52 78.18 56.99 51.04 61.58 61.95
(0.03) (0.09) (0.48) (0.0) (0.37) (0.14) (2.36) (1.69) (6.51) (3.91) (1.13)

APFL (Arxiv) 96.62 90.07 96.94 99.12 91.17 94.78 78.05 53.48 64.76 57.91 63.55
(2.47) (0.53) (0.89) (0.15) (2.31) (0.43) (3.21) (0.86) (17.04) (13.46) (0.42)

L2SGD (NeurIPS 2020) 98.87 89.99 96.00 99.29 88.84 94.60 78.18 56.99 51.04 68.25 63.62
(0.05) (0.07) (0.2) (0.01) (0.37) (0.1) (2.36) (1.69) (6.51) (1.86) (1.18)

FedAlt (ICML 2022) 99.20 90.51 98.26 99.32 92.36 95.93 77.31 55.95 44.79 75.14 63.30
(0.05) (0.27) (0.38) (0.03) (0.08) (0.08) (2.69) (2.01) (1.8) (4.27) (0.37)

PerFedAvg (NeurIPS 2020) 99.05 89.55 96.11 99.23 89.53 94.69 71.73 56.55 61.46 74.01 65.94
(0.06) (0.12) (0.11) (0.02) (0.27) (0.1) (1.39) (2.2) (4.77) (3.53) (0.61)

FedBN (ICLR 2021) 99.22 91.48 96.20 99.32 91.14 95.47 80.10 58.18 79.17 83.05 75.13
(0.16) (0.2) (0.11) (0.01) (0.58) (0.16) (0.91) (2.46) (3.61) (4.48) (1.75)

FedFomo (ICLR 2021) 98.83 90.49 95.95 99.33 89.19 94.76 74.76 54.69 54.58 67.34 62.84
(0.04) (0.44) (0.22) (0.04) (0.38) (0.15) (0.9) (1.09) (2.01) (2.84) (0.69)

FedRep (ICML 2021) 98.86 90.35 95.99 99.53 89.15 94.78 78.53 57.74 56.25 67.23 64.94
(0.12) (0.09) (0.47) (0.01) (0.19) (0.16) (1.05) (0.93) (5.41) (5.95) (2.76)

FedBABU (ICLR 2022) 98.85 90.15 95.75 99.53 88.74 94.60 77.84 57.74 56.25 67.23 64.76
(0.04) (0.17) (0.39) (0.01) (0.49) (0.17) (0.6) (1.29) (6.25) (7.06) (2.74)

FedHKD (ICLR 2023) 98.11 90.38 95.41 99.47 90.06 94.69 77.14 56.52 53.98 65.48 63.28
(0.48) (0.19) (0.88) (0.09) (0.87) (0.36) (1.31) (1.46) (0.34) (3.04) (0.72)

LG-Mix (Ours) 99.29 92.35 98.66 99.41 95.77 97.10 80.45 56.55 86.46 93.79 79.31
(0.03) (0.17) (0.05) (0.02) (0.05) (0.04) (0.6) (0.68) (1.8) (2.59) (1.06)

Table 2: Performance comparison with SOTA PFL methods on classification datasets of DomainNet
(different styles) and Camelyon17 (different stainings).

Dataset DomainNet Camelyon17

Client A B C D E F Avg. A B C D E Avg.

FedAvg (PMLR 2017) 58.17 35.06 53.61 51.97 67.05 54.15 53.34 95.44 92.20 93.96 97.21 97.71 95.30
(0.0) (1.65) (2.52) (0.99) (1.95) (0.72) (0.53) (1.05) (0.62) (0.88) (0.27) (0.33) (0.28)

APFL (Arxiv) 58.11 36.87 53.29 46.60 69.02 58.00 53.65 96.27 92.94 96.70 97.95 98.25 96.42
(1.35) (2.0) (1.8) (7.54) (3.02) (0.81) (1.61) (0.29) (1.23) (0.4) (0.13) (0.15) (0.23)

L2SGD (NeurIPS 2020) 59.00 34.60 53.88 50.33 69.82 56.02 53.94 96.67 93.02 94.71 97.55 97.68 95.93
(0.72) (2.13) (1.28) (2.73) (2.33) (1.67) (0.26) (0.33) (0.32) (0.18) (0.15) (0.26) (0.13)

FedAlt (ICML 2022) 59.82 37.14 58.47 58.57 72.45 54.27 56.79 98.10 95.51 98.41 98.80 98.74 97.91
(0.48) (0.97) (1.47) (3.65) (2.0) (0.73) (0.69) (0.18) (0.13) (0.01) (0.01) (0.11) (0.06)

PerFedAvg (NeurIPS 2020) 59.57 35.42 55.99 48.47 67.60 56.08 53.85 96.71 93.05 95.06 97.68 97.92 96.08
(1.52) (0.99) (1.06) (0.31) (0.92) (2.64) (0.39) (0.52) (0.41) (0.47) (0.4) (0.2) (0.3)

FedBN (ICLR 2021) 58.17 36.94 55.61 69.10 73.25 53.31 57.73 96.65 92.84 94.22 97.55 97.60 95.77
(0.87) (1.14) (1.75) (1.91) (3.61) (4.68) (0.69) (0.49) (0.45) (0.4) (0.13) (0.31) (0.21)

FedFomo (ICLR 2021) 59.28 36.38 56.43 49.40 69.33 57.34 54.69 96.67 92.25 95.18 97.60 96.42 95.62
(2.37) (1.07) (1.58) (4.8) (2.19) (1.09) (1.35) (0.34) (0.51) (0.51) (0.16) (0.47) (0.13)

FedRep (ICML 2021) 60.08 36.33 56.36 47.80 67.98 58.78 54.56 97.07 93.64 96.79 98.12 98.28 96.78
(3.67) (0.98) (0.76) (4.51) (2.05) (0.91) (0.95) (0.15) (0.37) (0.05) (0.15) (0.1) (0.08)

FedBABU (ICLR 2022) 60.71 37.14 56.26 44.63 68.50 59.12 54.40 96.69 92.93 94.30 97.53 97.41 95.77
(3.17) (0.72) (1.65) (1.03) (3.06) (1.31) (0.75) (0.06) (0.53) (0.66) (0.19) (0.2) (0.2)

FedHKD (ICLR 2023) 59.04 36.78 54.01 48.81 67.82 56.84 53.88 96.32 93.91 94.75 96.91 97.56 95.89
(0.46) (1.37) (1.25) (1.29) (1.35) (1.29) (0.41) (0.3) (0.76) (0.62) (0.72) (0.26) (0.24)

LG-Mix (Ours) 60.84 37.20 61.49 78.07 78.62 60.23 62.74 98.77 97.98 98.93 99.13 98.95 98.75
(0.38) (0.95) (0.74) (1.04) (0.67) (1.15) (0.12) (0.02) (0.09) (0.07) (0.09) (0.04) (0.05)

5.2 PERFORMACNE COMPARISON RESULTS

We first present the classification performance on four datasets, which cover the heterogeneous fea-
tures regarding covariate shift and concept drift. Table 1 and 2 report all results, including each
client and the average performance. It can be observed that most PFL methods outperform the
common global model learned by FedAvg. As FedBN is specifically designed for heterogeneous
features, it presents larger improvements than other methods on most tasks. Interestingly, we find
the FedAlt, which personalizes partial layers (i.e., the output layer), also clearly outperforms other
PFL methods on most tasks. This may be owing to its alternating update strategy and the importance
of the output layer in classification tasks. Compared with all methods, our approach shows signif-
icant improvements on 18 over 20 clients on four datasets, with the largest average performance
improvements of 5.01% and least average performance improvements of 0.84%. This demonstrates
the effectiveness of our strategy specifically designed by considering the data heterogeneity.

We further perform the comparison on the retinal fundus image segmentation. The fundus image
varies with different machines, illumination conditions, field of view, etc. The results are shown in
Table. 3. Note that we do not include FedBABU, FedRep, and FedHKD because they are specifically
designed for classification and suffer a significant performance drop on segmentation. The data

7

Published as a conference paper at ICLR 2024

Table 3: Comparison with SOTA PFL methods on the real-world retinal fundus image segmentation.
Retinal Fundus Image Segmentation

Client A B C D E F Avg. A B C D E F Avg.
Dice Coefficient (Dice) ↑ Hausdorff Distance (HD) ↓

FedAvg (PMLR 2017) 83.95 83.00 81.15 87.98 67.60 91.07 82.46 7.71 4.77 8.35 4.19 68.14 2.38 15.92
(1.73) (1.05) (2.1) (0.51) (0.66) (0.32) (0.12) (0.42) (0.02) (2.59) (0.9) (31.41) (2.38) (5.04)

APFL (Arxiv) 74.03 72.76 70.03 81.30 66.27 90.56 75.83 27.91 52.47 43.07 18.00 76.69 5.73 37.31
(10.16) (9.94) (10.41) (6.63) (3.93) (0.75) (6.55) (18.2) (0.1) (27.87) (15.41) (42.1) (5.73) (22.22)

L2SGD (NeurIPS 2020) 84.46 83.73 82.20 88.40 68.90 91.12 83.14 7.55 4.81 7.95 4.18 57.76 2.48 14.12
(0.42) (0.29) (1.57) (0.19) (0.66) (0.28) (0.39) (0.11) (0.02) (2.59) (1.5) (15.55) (2.48) (2.84)

FedAlt (ICML 2022) 85.01 85.19 84.06 88.98 64.48 91.05 83.13 6.20 5.07 5.25 3.59 75.60 2.58 16.38
(2.03) (0.91) (1.93) (0.67) (2.46) (0.36) (0.57) (0.39) (0.02) (0.54) (0.3) (43.05) (2.58) (7.22)

PerFedAvg (NeurIPS 2020) 85.87 84.55 84.74 88.75 67.91 91.10 83.82 7.32 4.54 7.79 3.82 73.58 2.47 16.59
(0.4) (0.75) (1.53) (0.38) (1.77) (0.12) (0.29) (0.23) (0.02) (4.21) (0.61) (39.54) (2.47) (6.04)

FedBN (ICLR 2021) 84.77 83.26 83.88 88.45 67.03 91.07 83.08 7.60 4.82 5.69 2.95 63.34 2.70 14.52
(0.29) (0.51) (0.61) (0.5) (1.55) (0.09) (0.4) (0.25) (0.01) (0.4) (0.15) (18.31) (2.7) (2.99)

FedFomo (ICLR 2021) 71.48 80.47 76.62 86.19 55.10 89.87 76.62 12.29 4.71 12.08 5.10 154.01 2.72 31.82
(5.94) (0.75) (5.67) (1.01) (2.3) (0.71) (2.66) (2.37) (0.06) (3.07) (0.4) (25.43) (2.72) (3.47)

LG-Mix (Ours) 89.25 86.76 85.86 89.79 83.95 90.86 87.75 4.43 3.63 4.53 3.57 6.38 2.34 4.15
(0.54) (0.31) (0.67) (0.08) (1.11) (0.07) (0.17) (0.25) (0.01) (0.15) (0.09) (1.2) (2.34) (0.22)

from client E (fifth column of Retinal in Fig. 1) shows different appearances due to its different
image settings (dual) from others (mono). This scenario further illustrates the necessity of model
personalization. Our approach consistently outperforms all compared methods. Specifically, for
client E with a unique imaging setting, our method shows very large improvements (15.05%) on
Dice compared with the second best, while most PFL methods fail to present a high performance.

5.3 ANALYTICAL STUDIES

We further analyzed the key properties of our method, including (a) the personalization weight
change during training, (b) why our personalization is helpful, (c) the client scalability of our
method, (d) the distance between the final personalized model and global model, and (e) the ef-
fects of considering history personalization weights.

Trend of the personalization weight. We compare our personalization weight with APFL, which
finds the optimal mixing ratio based on differences between mixed and global models. We present
the weight curves on the Digits5 dataset in Figure 2 (a). APFL tends to mix local and global models
evenly (in the range of 0.5 - 0.6). In contrast, our method tends to use more local updates at the
beginning and gradually decreases the personalization weight. It finally leads to a stable value. This
trend fits the intuition that the global update might be distracted by heterogeneous features and may
not be very informative at the early training stage. Client D is always higher than 0.6, we speculate
that client D has more data samples than others, which contribute most to global updates.

Feature value distribution. We further study the feature value distribution. This helps further vali-
date the quality of the learned personalized model. If a model learns confident representations, then
the related neurons should be highly activated Zhou et al. (2018), i.e., the values are higher than the
activation criteria (0 for ReLU in our analysis). The results on five clients from the Digits5 dataset
are shown in Figure 2 (b). Our analysis shows that our personalized model achieves significantly
higher feature values than learning a FedAvg global model on heterogeneous features. Moreover,
our method also outperforms client standalone training on some clients, such as clients A, B, and E.
This demonstrates the effectiveness of our method in learning accurate and effective representations
by incorporating both local and global knowledge.

（c）

Ac
cu
ra
cy

(%
)

Number of clients

（a）

Communication rounds

Pe
rs
on

al
iza

tio
n
w
ei
gh
t

Client A Client B Client C

Fe
at
ur
e
va
lu
es

Client D Client E

Fe
at
ur
e
va
lu
es

（b）

FedAvg (5 clients) Ours (5 clients) Standalone

Figure 2: Analytical studies on key features of our method, including (a) the personalization weight
changes; (b) the benefits of personalization via observing feature values; (c) client scalability.

8

Published as a conference paper at ICLR 2024

Pa
ra
m
et
er

di
ffe

re
nc
e

Layer Layer

Digit5 Classification (Convolutional Neural Network) Retinal Fundus Image Segmentation (U-Net)

Figure 3: Distance between local and global model on the classification and segmentation model.

Client scalability study. We perform the client scalability analysis on our proposed method by
comparing it with the two better-performing methods, FedAlt and FedBN, on the Digits5 dataset.
We report the average test accuracy by increasing the number of training clients, which also results
in different training feature distributions. The results are shown in Figure 2 (c), it can be observed
that all PFL methods show better scalability than the baseline FedAvg. In particular, our method
shows a stable increasing trend with a lower standard deviation among clients (shaded area), while
performance improvements of FedBN are saturated by involving more clients, and FedAlt presents
an unstable trend with a larger standard deviation.

Distance between personalized and global model. We also analyze the distance between the per-
sonalized model and the global model, in order to investigate how updates mixing reflect in model
parameters. Specifically, we report the differences (i.e., wc − u in layer-wise) of each layer in the
classification/segmentation model in Figure 3. Our analysis shows that the output layer varies sig-
nificantly from the global model in classification, which validates the design of personalizing the
classification head in FedBABU, FedRep, and FedAlt. Note that layers 2,4,6,8 are batch normal-
ization layers, which also supports the idea of FedBN. However, our method does not specify any
target layers but effectively personalizes these important layers identified by other methods. As
for the segmentation model, all layers show variance, and the differences become larger in the de-
coder and output layer. This explains the failure of methods like FedBABU and FedRep, which
only personalized the output layer. Overall, our mixing of local and global updates can effectively
personalize the proper model parameters across all layers.

Table 4: Ablation study for effects of stabilizing personalization weights
by considering the history weights.

Task Digits5 Office-Caltech10 DomainNet Camelyon17 Retinal (Dice)
Second best 95.93 (0.08) 75.13(1.75) 57.73 (0.69) 97.91 (0.06) 83.82(0.29)

Ours w/o history 97.10 (0.05) 78.25 (1.12) 60.33(2.23) 98.70(0.13) 87.73 (0.26)

Ours 97.10 (0.04) 79.31(1.06) 62.74(0.12) 98.75(0.05) 87.75(0.17)

Ablation study on us-
ing history personal-
ization weights. We
conduct ablation studies
to evaluate the effective-
ness of our strategy for
stabilizing personalization weights. We compare our method with the second-best method on each
dataset and report the results in Table. 4. The results show that utilizing historical personalization
weights improves performance on all classification tasks and has lower standard deviation, which
validates the effectiveness of our stabilization strategy.

6 CONCLUSION

In this work, we proposed a novel approach to address the challenge in PFL for heterogeneous
features. Our approach mixes local and global updates by measuring the NTK-based convergence
during training. Specifically, we take the trace of NTKs using local/global updates as the hint to
perform the mixing, and approximate the NTK calculation as a feature matrix calculation for com-
putation efficiency. Besides the empirical solutions and significant performance improvements, we
also theoretically analyze the convergence rate of our method using NTK. Our approach has no strict
restrictions on model architectures and can be applied to a wide range of PFL applications. For fu-
ture work, it is promising to investigate the effectiveness of our method on other data heterogeneity,
such as the class distributional shift, and the larger model, such as the transformer.

Acknowledgement. This work was supported in part by National Natural Science Foundation of
China (Project No. 62201485), in part by Hong Kong Research Grants Council Project No. T45-
401/22-N, in part by Science, Technology and Innovation Commission of Shenzhen Municipality
Project No. SGDX20220530111201008, in part by Canada NSERC Discovery Grant (RGPIN-2022-
05316).

9

Published as a conference paper at ICLR 2024

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ruizhao Zhu, Ramon Matas, Matthew Mattina, Paul What-
mough, and Venkatesh Saligrama. Debiasing model updates for improving personalized feder-
ated training. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pp. 21–31. PMLR, 18–24 Jul 2021.

Ahmed Almazroa, Sami Alodhayb, Essameldin Osman, Eslam Ramadan, Mohammed Hum-
madi, Mohammed Dlaim, Muhannad Alkatee, Kaamran Raahemifar, and Vasudevan Lakshmi-
narayanan. Retinal fundus images for glaucoma analysis: the riga dataset. In Medical Imaging
2018: Imaging Informatics for Healthcare, Research, and Applications, volume 10579, pp. 55–
62. SPIE, 2018.

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Fed-
erated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. Advances in neural information processing
systems, 32, 2019a.

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis
of optimization and generalization for overparameterized two-layer neural networks. CoRR,
abs/1901.08584, 2019b. URL http://arxiv.org/abs/1901.08584.

Peter Bandi, Oscar Geessink, Quirine Manson, Marcory Van Dijk, Maschenka Balkenhol, Meyke
Hermsen, Babak Ehteshami Bejnordi, Byungjae Lee, Kyunghyun Paeng, Aoxiao Zhong, et al.
From detection of individual metastases to classification of lymph node status at the patient level:
the camelyon17 challenge. IEEE Transactions on Medical Imaging, 2018.

Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (overparametrized)
neural networks in near-linear time. Innovations in Theoretical Computer Science (ITCS), 2021.

Huancheng Chen, Chaining Wang, and Haris Vikalo. The best of both worlds: Accurate global and
personalized models through federated learning with data-free hyper-knowledge distillation. In
The Eleventh International Conference on Learning Representations, 2023.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared repre-
sentations for personalized federated learning. In International Conference on Machine Learning,
pp. 2089–2099. PMLR, 2021.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning, 2020.

Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and communication efficient
federated learning for heterogeneous clients. In International Conference on Learning Represen-
tations, 2021. URL https://openreview.net/forum?id=TNkPBBYFkXg.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks, 2019.

Alp Emre Durmus, Zhao Yue, Matas Ramon, Mattina Matthew, Whatmough Paul, and Saligrama
Venkatesh. Federated learning based on dynamic regularization. In International Conference on
Learning Representations, 2021.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning with the-
oretical guarantees: A model-agnostic meta-learning approach. Advances in Neural Information
Processing Systems, 33:3557–3568, 2020.

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy,
and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape
geometry and the time evolution of the neural tangent kernel. Advances in Neural Information
Processing Systems, 33:5850–5861, 2020.

10

http://arxiv.org/abs/1901.08584
https://openreview.net/forum?id=TNkPBBYFkXg

Published as a conference paper at ICLR 2024

Francisco Fumero, Silvia Alayón, José L Sanchez, Jose Sigut, and M Gonzalez-Hernandez. Rim-
one: An open retinal image database for optic nerve evaluation. In 2011 24th international
symposium on computer-based medical systems (CBMS), pp. 1–6. IEEE, 2011.

Liang Gao, Huazhu Fu, Li Li, Yingwen Chen, Ming Xu, and Cheng-Zhong Xu. Feddc: Federated
learning with non-iid data via local drift decoupling and correction. In CVPR, 2022.

Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised
domain adaptation. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.
2066–2073. IEEE, 2012.

Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models, 2021.

Filip Hanzely, Slavomı́r Hanzely, Samuel Horváth, and Peter Richtárik. Lower bounds and opti-
mal algorithms for personalized federated learning. Advances in Neural Information Processing
Systems, 33:2304–2315, 2020.

David Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart. A framework and bench-
mark for deep batch active learning for regression. Journal of Machine Learning Research, 24
(164):1–81, 2023.

Kevin Hsieh, Amar Phanishayee, et al. The non-iid data quagmire of decentralized machine learning.
In International Conference on Machine Learning. PMLR, 2020.

Baihe Huang, Xiaoxiao Li, Zhao Song, and Xin Yang. Fl-ntk: A neural tangent kernel-based frame-
work for federated learning convergence analysis, 2021.

Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and neural tangent hier-
archy. In International conference on machine learning, pp. 4542–4551. PMLR, 2020.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Vinay Jayaram and Alexandre Barachant. Moabb: trustworthy algorithm benchmarking for bcis.
Journal of neural engineering, 15(6):066011, 2018.

Wonyong Jeong and Sung Ju Hwang. Factorized-fl: Personalized federated learning with parameter
factorization & similarity matching. In Advances in Neural Information Processing Systems,
2022.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, et al. SCAFFOLD:
Stochastic controlled averaging for federated learning. In International Conference on Machine
Learning, 2020.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is sufficient
for robustness to spurious correlations, 2023.

Nikita Yurevich Kotelevskii, Maxime Vono, Alain Durmus, and Eric Moulines. Fedpop: A bayesian
approach for personalised federated learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=KETwimTQexH.

Jason D Lee, Ruoqi Shen, Zhao Song, Mengdi Wang, et al. Generalized leverage score sampling for
neural networks. Advances in Neural Information Processing Systems, 33:10775–10787, 2020.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In CVPR, pp.
10713–10722, 2021a.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3):50–60, 2020a.

11

https://openreview.net/forum?id=KETwimTQexH

Published as a conference paper at ICLR 2024

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and sys-
tems, 2:429–450, 2020b.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization, 2021b.

Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. FedBN: Federated learn-
ing on non-IID features via local batch normalization. In International Conference on Learning
Representations, 2021c.

Disha Makhija, Xing Han, Nhat Ho, and Joydeep Ghosh. Architecture agnostic federated learn-
ing for neural networks. In International Conference on Machine Learning, pp. 14860–14870.
PMLR, 2022.

Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional neural net-
works for volumetric medical image segmentation. In 2016 fourth international conference on
3D vision (3DV), pp. 565–571. IEEE, 2016.

Mohamad Amin Mohamadi, Wonho Bae, and Danica J Sutherland. A fast, well-founded approxi-
mation to the empirical neural tangent kernel. In International Conference on Machine Learning,
pp. 25061–25081. PMLR, 2023.

Jaehoon Oh, SangMook Kim, and Se-Young Yun. FedBABU: Toward enhanced representation for
federated image classification. In International Conference on Learning Representations, 2022.

José Ignacio Orlando, Huazhu Fu, João Barbosa Breda, et al. Refuge challenge: A unified frame-
work for evaluating automated methods for glaucoma assessment from fundus photographs. Me-
dIA, 59:101570, 2020.

Kaan Ozkara, Antonious M. Girgis, Deepesh Data, and Suhas Diggavi. A statistical framework for
personalized federated learning and estimation: Theory, algorithms, and privacy. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=FUiDMCr_W4o.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 1406–1415, 2019.

Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated learning.
arXiv preprint arXiv:1912.13445, 2019.

Krishna Pillutla, Kshitiz Malik, Abdel-Rahman Mohamed, Mike Rabbat, Maziar Sanjabi, and Lin
Xiao. Federated learning with partial model personalization. In International Conference on
Machine Learning, pp. 17716–17758. PMLR, 2022.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, et al. Adaptive federated optimization. In
International Conference on Learning Representations, 2021.

Amirhossein Reisizadeh, Farzan Farnia, Ramtin Pedarsani, and Ali Jadbabaie. Robust federated
learning: The case of affine distribution shifts. arXiv preprint arXiv:2006.08907, 2020.

Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi Albarqouni, Spyri-
don Bakas, Mathieu N Galtier, Bennett A Landman, Klaus Maier-Hein, et al. The future of digital
health with federated learning. NPJ digital medicine, 3(1):1–7, 2020.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE transactions on neu-
ral networks and learning systems, 32(8):3710–3722, 2020.

Mariia Seleznova, Dana Weitzner, Raja Giryes, Gitta Kutyniok, and Hung-Hsu Chou. Neural (tan-
gent kernel) collapse. arXiv preprint arXiv:2305.16427, 2023.

12

https://openreview.net/forum?id=FUiDMCr_W4o
https://openreview.net/forum?id=FUiDMCr_W4o

Published as a conference paper at ICLR 2024

Mehdi Setayesh, Xiaoxiao Li, and Vincent W.S. Wong. Perfedmask: Personalized federated learning
with optimized masking vectors. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

Jayanthi Sivaswamy, S Krishnadas, Arunava Chakravarty, G Joshi, A Syed Tabish, et al. A compre-
hensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis.
JSM Biomedical Imaging Data Papers, 2(1):1004, 2015.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. Federated multi-task
learning, 2018.

Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix chernoff bound,
2020.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning.
IEEE Transactions on Neural Networks and Learning Systems, 2022.

Quoc Tran Dinh, Nhan H Pham, Dzung Phan, and Lam Nguyen. Feddr–randomized douglas-
rachford splitting algorithms for nonconvex federated composite optimization. Advances in Neu-
ral Information Processing Systems, 34:30326–30338, 2021.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33, 2020.

Tianchun Wang, Wei Cheng, Dongsheng Luo, Wenchao Yu, Jingchao Ni, Liang Tong, Haifeng
Chen, and Xiang Zhang. Personalized federated learning via heterogeneous modular networks.
In 2022 IEEE International Conference on Data Mining (ICDM), pp. 1197–1202. IEEE, 2022.

Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian, and Fei Wang. Federated
learning for healthcare informatics. Journal of Healthcare Informatics Research, 5(1):1–19, 2021.

Michael Zhang, Karan Sapra, Sanja Fidler, Serena Yeung, and Jose M. Alvarez. Personalized fed-
erated learning with first order model optimization. In International Conference on Learning
Representations, 2021.

Xu Zhang, Yinchuan Li, Wenpeng Li, Kaiyang Guo, and Yunfeng Shao. Personalized federated
learning via variational bayesian inference. In International Conference on Machine Learning,
pp. 26293–26310. PMLR, 2022.

Yi Zhang, Orestis Plevrakis, Simon S Du, Xingguo Li, Zhao Song, and Sanjeev Arora. Over-
parameterized adversarial training: An analysis overcoming the curse of dimensionality. Ad-
vances in Neural Information Processing Systems, 33:679–688, 2020.

Bolei Zhou, David Bau, Aude Oliva, and Antonio Torralba. Interpreting deep visual representations
via network dissection. IEEE transactions on pattern analysis and machine intelligence, 41(9):
2131–2145, 2018.

Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Learning to generate novel
domains for domain generalization. In European Conference on Computer Vision, pp. 561–578.
Springer, 2020.

13

Published as a conference paper at ICLR 2024

APPENDIX A NOTATION

Table 5: Major notations occurred in the paper.
Notations Dimension Description
k,K N number and total number of local update steps
c,N N client index, total number of clients
nc, n N number of samples of client c and overall
m N number of hidden neurons

ηl, ηg R client-level learning rate, global learning rate
wc, u Rp local model of client c, global model
(xi, yi) Rm sample pair of index i

yc(t), y(t) R model prediction at time t with local model, global model
Sc set of size nc collection of samples of client c

APPENDIX B GLOBAL CONVERGENCE

B.1 FORMULATION

B.1.1 THE NEURAL NETWORK

For the following theoretical analysis, we follow Du et al. (2019)Song & Yang (2020)Huang et al.
(2021) to consider an one-hidden-layer neural network with ReLU activation:

f(u, x) =
1√
m

m∑
r=1

arϕ(u
T
r x)

where m is the total number of neurons in the hidden layer, ar’s are Rademacher random vari-
ables (take values {±1} with equal probability) and ϕ is the activation function. Each client aim to
optimize its MSE loss:

Lmse
c (u, x) =

1

2

∑
i∈Sc

(f(u, xi)− yi)
2

where Sc represents the collection of data of client c. The global loss is taken as the average of the
loss of each client:

L(u, x) =
1

N

∑
c∈[N]

Lc(u, x)

B.1.2 OUR ALGORITHM

We first formulate our proposed algorithm mathematically to establish consistent notations and fa-
cilitate analysis.

In FL, each client alternate between performing local updates on its local data and communicating
with the central server for global aggregation. Each client takes K local updates between each
communication round. The local update is performed using vanilla gradient descent with a local
learning rate ηl, and wc(t, k) represents the weight parameters of client c at global round t and local
step k:

wc(t, k + 1)← wc(t, k)− ηl
∂Lc(wc(t, k))

∂wc(t, k)
After each communication, the global aggregation procedure is conducted by taking the average of
local updates of all N clients, and a learning rate of ηg is added for the global update:

∆u(t) =
ηg
N

∑
c∈[N]

∆wc(t)

where ∆wc(t) = wc(t,K) − wc(t, 0) = −
∑

k ηl
∂Lc(wc(t,k))

∂wc(t,k)
is the cumulative local updates of

client c at global round t. For the local step, a combination of local update and global update is
taken, with λ(t) ∈ [0, 1] being the combination factor:

wc(t+ 1, 0)← wc(t, 0) + (1− λ(t))∆u(t) + λ(t)∆wc(t)

14

Published as a conference paper at ICLR 2024

B.1.3 GRADIENT UPDATES

With the above setting, we can explicitly write out the gradient updates:

∆wc,r(t) = −
∑

k∈[K]

ηl
∂Lmse

c (wc,r(t, k))

∂wc,r(t, k)
= − ηl√

m

∑
k∈[K]

∑
i∈Sc

[f(wc,r, xi)− yi]arxi1wT
c,rxi≥0

∆ur(t) = −
ηlηg
N
√
m

∑
c∈[N]

∑
k∈[K]

∑
i∈Sc

[f(wc,r(t, k), xi)− yi]arxi1wT
c,rxi≥0

B.2 CONVERGENCE ANALYSIS

We analyze the convergence behavior of all clients collectively. That is, we consider the dynamics
of ∥y − y(t)∥2 =

∑
c ∥yc − yc(t)∥2, where

y(t) = (f(w1(t), x1), ..., f(w1(t), xn1
), f(w2(t), x1),, f(wN (t), xnN

))T

yc(t) = (0, ..., 0, f(wc(t), x1), ..., f(wc(t), xnc
)︸ ︷︷ ︸

xi∈Sc

, 0, ..., 0)T

are the stacked vector of predictions and y, yc are the corresponding ground truth.

Note first the following recurrence relation (†):

∥y − y(t+ 1)∥2 = ∥[y − y(t)]− [y(t+ 1)− y(t)]∥2

= ∥y − y(t)∥2 − 2(y − y(t))T (y(t+ 1)− y(t)) + ∥y(t+ 1)− y(t)∥2

= ∥y − y(t)∥2 − 2
∑
c

(yc − yc(t))
T (yc(t+ 1)− yc(t))︸ ︷︷ ︸

the cross term

+∥y(t+ 1)− y(t)∥2

We will express ∥y − y(t+ 1)∥2 in terms of ∥y − y(t)∥2 with a shrinking factor, by bounding each
of these terms, and hence prove the convergence of the algorithm.

B.2.1 THE CROSS TERM

We first investigate the cross term. Note that the difficulty in the analysis mainly comes from the
non-linear activation pattern. However, this is overcame by a key observation in classical NTK
theoryDu et al. (2019)Huang et al. (2021) that the activation patterns stay the same for most of the
neurons.

We follow their approaches to define

Qi := {r ∈ [m] : ∀m ∈ Rds.t.∥w − wr(0)∥2 ≤ R,1wr(0)T xi≥0 = 1wT xi≥0}

which represent the set of neurons whose activation pattern does not change during training for
sample xi, and let Q̄i denote its complement. Then for each sample i ∈ Sc,

yi(t+ 1)− yi(t) =
1√
m

∑
r∈[m]

ar

[
ϕ(wT

r (t+ 1)xi)− ϕ(wT
r (t)xi)

]
=

1√
m

∑
r∈Qi

ar(1− λc(t))∆uT
r (t)xi1wT

r (t)xi≥0︸ ︷︷ ︸
v1,i

+
1√
m

∑
r∈Qi

arλc(t)∆wT
c,r(t)xi1wT

r (t)xi≥0︸ ︷︷ ︸
v2,i

+v3,i

15

Published as a conference paper at ICLR 2024

where

v1,i = −
(1− λc(t))ηlηg

Nm

∑
k∈[K],r∈Qi

∑
j∈S′

c,c
′∈[N]

(y(t, k)j − yj)x
T
i xj1wT

c′,r(t,k)xj≥0,wT
c,r(t)xi≥0

v2,i = −
λc(t)ηl

m

∑
k∈[K],r∈Qi

∑
j∈Sc

(yc(t, k)j − yc,j)x
T
i xj1wT

c,r(t,k)xj≥0,wT
r (t)xi≥0

v3,i =
1√
m

∑
r/∈Qi

ar

[
ϕ(wT

r (t+ 1)xi)− ϕ(wT
r (t)xi)

]
We can already notice the almost symmetric kernel factor in the terms above. We give the formal
definitions here.
Definition 1 (Global Gram matrix). For t ∈ [T], k ∈ [K], c, c′ ∈ [N], i ∈ Sc and j ∈ Sc′ , we define
the global gram matrix as:

H(t, k)i,j :=
1

m

∑
r∈[m]

xT
i xj1wT

c,r(t)xi≥0,wT
c′,r(t,k)xj≥0 ∈ Rn×n

H(t, k)⊥i,j :=
1

m

∑
r/∈Qi

xT
i xj1wT

c,r(t)xi≥0,wT
c′,r(t,k)xj≥0 ∈ Rn×n

Note that this definition is similar to, but not exactly the same as, the definition in FL-NTKHuang
et al. (2021). This is because they considered the vanilla FedAvg with no personalization of model
parameters.
Definition 2 (Local Gram matrix). For t ∈ [T], k ∈ [K], c ∈ [N] and i, j ∈ Sc′ , we define the local
gram matrix as:

Hc(t, k)i,j =
1

m

∑
r

xT
i xj1wT

c,r(t)xi≥0,wT
c,r(t,k)xj≥0 ∈ Rnc×nc

Hc(t, k)
⊥
i,j =

1

m

∑
r/∈Qi

xT
i xj1wT

c,r(t)xi≥0,wT
c,r(t,k)xj≥0 ∈ Rnc×nc

However, in order to maintain consistent dimensions and correspond to our definition of yc, we can
extend the dimension of Hc to n× n by adding zeros to the undefined entries, i.e.,0 · · · 0

... Hc

...
0 · · · 0

 ∈ Rn×n

From now on, the symbol Hc will refer to this n× n matrix. Note that (Hc)i,j = Hi,j1i,j∈Sc .

We will show that the convergence can be governed by the spectral property of these Gram matrices.
Substitute them into the cross term, we get:∑

c

(yc − yc(t))
T (yc(t+ 1)− yc(t)))

=
∑
c

(1− λc)ηlηg
N

∑
i∈Sc

(yc,i − yc(t)i)
∑

k∈[K],j∈[n]

(y(t, k)j − yj)(H(t, k)i,j −H(t, k)⊥i,j)

+
∑
c

λcηl
∑
i∈Sc

(yc,i − yc(t)i)
∑

k∈[K],j∈Sc

(yc(t, k)j − yc,j)(Hc(t, k)i,j −Hc(t, k)
⊥
i,j)

−
∑
c

∑
i∈Sc

(yc,i − yc(t)i)v3,i

16

Published as a conference paper at ICLR 2024

Let

C1 := −
∑
c

(1− λc(t))ηlηg
N

∑
i∈Sc

(yc,i − yc(t)i)
∑
k,j

(y(t, k)j − yj)(H(t, k)i,j −H(t, k)⊥i,j)

C
(c)
2 := −λc(t)ηl

∑
i∈Sc

(yc,i − yc(t)i)
∑

k,j∈Sc

(yc(t, k)j − yc,j)(Hc(t, k)i,j −Hc(t, k)
⊥
i,j)

C2 :=
∑
c

C
(c)
2

C3 := −
∑
c

∑
i∈Sc

(yc,i − yc(t)i)v3,i

Then by substituting them back into the recursive relation (†), we get:

∥y − y(t+ 1)∥2 = ∥y − y(t)∥2 + 2(C1 + C2 + C3) + ∥y(t+ 1)− y(t)∥2

We will bound each of these terms and hence prove the result.

B.3 CONVERGENCE ANALYSIS - MAIN THEOREM

We first restate the main convergence theorems.

Theorem 1. For uniform λc(t) = λ(t),∀c, for m = Ω(λ−4n4 log(n/δ)), randomly initialized
parameters (i.e. w(0) ∼ N (0, I)), and ηl = O(λ/κKn2), ηg = O(1), then with probability at
least 1− δ over the random initialization, we have for ∀t:

∥y − y(t+ 1)∥2 ≤ ∥y − y(t)∥2 − ζηg(1− λ(t))s
(H)
min∥y − y(t)∥2 − ζ

∑
c

λ(t)s
(Hc)
min ∥yc − yc(t)∥2

where ζ := ηlK
2N .

Theorem 2. For non-uniform λc(t), let λmin(t) := minc λc(t) and λmax(t) := maxc λc(t),
For m = Ω(λ−4n4 log(n/δ)), randomly initialized parameters (i.e. w(0) ∼ N (0, I)), and
ηl = O(λ/κKn2), ηg = O(1), then with probability at least 1 − δ over the random initializa-
tion, we have for ∀t:

∥y−y(t+1)∥2 ≤ ∥y−y(t)∥2−ζηg(1−λmax(t))s
(H)
minK∥y−y(t)∥

2−ζ
∑
c

λmin(t)s
(Hc)
min ∥yc−yc(t)∥

2

where ζ := ηlK
2N .

We will give the proof of theorem 1 in the subsequent sections, and we note that theorem 2 is a
natural extension of theorem 1 so the proof also naturally extends.

B.4 USEFUL LEMMAS

Before giving the proof of the theorem, we state two useful lemmas.

The first lemma gives bounds on the norm of the local and global updates.

Lemma 1. With ∥xi∥2 = 1, we have

∥∆ur(t)∥2 ≤
2ηlηgK(1 + 2ηlnK)

√
n

N
√
m

∥y − y(t)∥2

∥∆w(c)
r (t)∥2 ≤

2ηlK(1 + 2ηlncK)
√
nc√

m
∥yc − yc(t)∥2

17

Published as a conference paper at ICLR 2024

Proof. The first inequality follows from FL-NTK. For the second inequality, consider:

∥∆w(c)
r (t)∥2 = ηl

∥∥∥ ar√
m

∑
k∈[K]

∑
i∈Sc

[y(t, k)i − yi]xi1wT
k,cxi≥0

∥∥∥
≤ ηl√

m

∑
k∈[K]

∑
i∈Sc

|yi − y(t, k)i|

≤
ηl
√
nc√
m

∑
k∈[K]

∥yc − yc(t, k)∥

≤
ηlK(1 + 2ηlncK)

√
nc√

m
∥yc − yc(t)∥2

The second lemma bounds the sum of client prediction error by that of the global error.

Lemma 2. ∑
c

∥yc − yc(t)∥ ≤
√
N∥y − y(t)∥

Proof. By Jensen’s inequality, and since the square root function is concave,√
1

N

∑
c

∥yc − yc(t)∥2 ≥
1

N

∑
c

∥yc − yc(t)∥

B.5 PROOF OF THEOREM 1

We provide here a detailed proof of theorem 1, and we note that the same proof naturally extends to
prove theorem 2. We will use λ to represent λ(t) for ease of notation.

Firstly, here are two results that directly follow from FL-NTK. They provide bounds on the effect of
global and local updates respectively.

Proposition 2. With probability at least 1− n exp(−mR) over random initialization, we have

C1 ≤
ηlηg(1− λ)

N
∥y − y(t)∥2(−Ks

(H)
min + 40

√
nRK(1 + 2ηlK

√
n) + 2ηls

(H)
maxK

2
√
n))

+
8ηgηl(1− λ)

N
K(1 + 2ηlnK)nR∥y − y(t)∥2

Proposition 3. With probability at least 1− n exp(−mR) over random initialization, we have

C
(c)
2 ≤ ληl

N
∥yc − yc(t)∥2(−Ks

(Hc)
min + 40

√
nRK(1 + 2ηlK

√
n+ 2ηls

(Hc)
maxK

2
√
n))

+
8ληl
N

K(1 + 2ηlnK)nR∥yc − yc(t)∥2

For the following two propositions, we assume that all clients possess the same number of samples,
i.e., nc = n/N,∀c. Additionally, let η̃g denote max{1, ηg}.
The following proposition aims to bound the effect of updates on neurons whose activation pattern
changed during the algorithm.

Proposition 4. With probability at least 1− n exp(−mR) over random initialization, we have

C3 ≤
8ηlη̃gK

N
(1 + 2ηlnK)nR∥y − y(t)∥2

18

Published as a conference paper at ICLR 2024

Proof. Consider

∥v3∥22 ≤
1− λ

m

∑
i∈[n]

(∑
r∈Q̄i

|∆ur(t)
Txi|

)2

︸ ︷︷ ︸
A

+
λ

m

∑
i∈[n]

(∑
r∈Q̄i

|∆wr(t)
Txi|

)2

︸ ︷︷ ︸
B

and

A ≤
(8(1− λ)ηgηlK

N
(1 + 2ηlnK)nR∥y − y(t)∥

)2

As for B,

B =
λ

m

∑
c

∑
i∈Sc

(∑
r∈[m]

1r∈Q̄i
|∆ur(t)

Txi|
)2

≤ λη2l
m

∑
c

4K2(1 + 2ηlncK)2nc

m
∥yc − yc(t)∥2 · nc(4mR)2

≤
(8ληlK

N
(1 + 2ηlnK)nR∥y − y(t)∥

)2

where for the second inequality we used the assumption made above. Then

C3 := −
∑
i∈[n]

(yi − yi(t))v3,i

≤ ∥y − y(t)∥2∥v3∥2

≤ 8ηlη̃gK

N
(1 + 2ηlnK)nR∥y − y(t)∥2

Now we have bounded the cross term. For the last term, we have the following inequality:

Proposition 5. We have

∥y(t+ 1)− y(t)∥2 ≤
4η2l η̃

2
gn

2K2(1 + 2ηlnK)2

N2
∥y − y(t)∥2

Proof.

∥y(t+ 1)− y(t)∥2 ≤ 1− λ

m

∑
i∈[n]

(∑
r∈[m]

|∆ur(t)
Txi|

)2

+
λ

m

∑
i∈[n]

(∑
r∈[m]

|∆wr(t)
Txi|

)2

≤
(1− λ)η2gη

2
l

m

(2K(1 + 2ηlnK)
√
n

N
√
m

∥y − y(t)∥
)2

· nm2

+
∑
c

λη2l
m

(2K(1 + 2ηlncK)
√
nc√

m
∥yc − yc(t)∥

)2

· ncm
2

≤
4η2l η̃

2
gn

2K2(1 + 2ηlnK)2

N2
∥y − y(t)∥2

where we have used the assumption that nc = n/N .

19

Published as a conference paper at ICLR 2024

Now by substituting the above results to the recursion equation, we get:

∥y − y(t+ 1)∥2 ≤ ∥y − y(t)∥2

+
2ηlηg(1− λ)

N
∥y − y(t)∥2(−Ks

(H)
min + 40

√
nRK(1 + 2ηlK

√
n)

+ 2ηls
(H)
maxK

2
√
n)) +

16ηgηl(1− λ)

N
K(1 + 2ηlnK)nR∥y − y(t)∥2

+
∑
c

2ληl
N
∥yc − yc(t)∥2(−Ks

(Hc)
min + 40

√
nRK(1 + 2ηlK

√
n

+ 2ηls
(Hc)
maxK

2
√
n)) +

16ληl
N

K(1 + 2ηlnK)nR
∑
c

∥yc − yc(t)∥2

+
16ηlη̃gK

N
(1 + 2ηlnK)nR∥y − y(t)∥2

+
4η2l η̃

2
gn

2K2(1 + 2ηlnK)2

N2
∥y − y(t)∥2

Then by the choice of ηl ≤ min{ s
(H)
min

1000κn2K ,minc{
s
(Hc)
min

1000κcn2K }} where κ := smax/smin and ηlηg ≤

min{ s
(H)
min

1000κn2K ,minc{
s
(Hc)
min

1000κcn2K }} and R ≤ s
(H)
min/(1000n), we have

∥y − y(t+ 1)∥2 ≤ ∥y − y(t)∥2

− (1− λ)ηlηgs
(H)
minK

N
∥y − y(t)∥2 −

∑
c

ληls
(Hc)
min K

N
∥yc − yc(t)∥2

+ 40
ηlηgKnR

N
∥y − y(t)∥2 × 2

+
η2l η̃

2
gn

2K2

N2
∥y − y(t)∥2

≤ ∥y − y(t)∥2 − (1− λ(t))ηlηgs
(H)
minK

2N
∥y − y(t)∥2

−
∑
c

λ(t)ηls
(Hc)
min K

2N
∥yc − yc(t)∥2

by substituting in the condition on ηl and R.

Quod erat demonstrandum.

APPENDIX C GENERALIZATION

In this section, we prove the generalization bounds. That is, we aim to find a bound on

LD(f) := E(x,y)∼D[l(f(x), y)]

where f refer to the prediction function we consider. Note that, in practice, this is approximated by
the empirical loss LS(f) = 1

n

∑
i∈[n] l(f(xi), yi). We also consider a more general initialization

scheme wr ∼ N (0, σ2I).

C.1 SETUP

We follow Arora et al. (2019b); Huang et al. (2021) to consider a non-degenerate data distribution.

Definition 3 (Non-degenerate Data Distribution). A distribution D over Rb × R is (λ, δ, n)-non-
degenerate, if with probability at least 1−δ, for n iid samples {(xi, yi)}ni=1 chosen fromD, s(H

∞)
min ≥

s > 0.

20

Published as a conference paper at ICLR 2024

We also state here the definition of the dynamic matrices which can be used to describe the evolution
of the neural network:

Definition 4 (Global Trajectory Matrix).

J(t, k) =
1√
m

 a1x11wT
c1,1(t,k)x1≥0 · · · a1xn1wT

cn,1(t,k)xn≥0

...
. . .

...
amx11wT

c1,m(t,k)x1≥0 · · · amxn1wT
cn,m(t,k)xn≥0

 ∈ Rmd×n

Definition 5 (Local Trajectory Matrix).

Jc(t, k) =
1√
m

a1x11wT

c1,1(t,k)x1≥0 · · · a1xnc
1wT

cnc ,1(t,k)xnc≥0

...
. . .

...
amx11wT

c1,m(t,k)x1≥0 · · · amxnc
1wT

cnc ,m(t,k)xnc≥0

 ∈ Rmd×nc

for xi’s sample of client c, and where appropriate, we fill in the undefined entries with 0 to form a
matrix of dimension md× n.

Note that H = JTJ and Hc = JT
c Jc. We also give some useful notations following the above

definitions.

Notation 1.
J̃(t, k) = (Jc1(t, k), Jc2(t, k), · · · , JcN (t, k)) ∈ Rmd×n

Notation 2.

H̃ =

H1 · · · 0
...

. . .
...

0 · · · HN

 ∈ Rn×n

We also use a notation vec(A) to express the vectorization of a matrix A in column-first order. Then
the gradient update rule can be expressed as:

vec(Wc(t, k + 1)) = vec(Wc(t, k))− ηlJc(t, k)(yc(t, k)− yc)

vec(U(t+ 1)) = vec(U(t))− ηlηg
N

∑
k

J(t, k)(y(t, k)− y)

vec(Wc(t+ 1)) = vec(Wc(t))− ληl
∑
k

Jc(t, k)(yc(t, k)− yc) (7)

− (1− λ)
ηlηg
N

∑
k

J(t, k)(y(t, k)− y)

C.2 SOME USEFUL RESULTS

We first quote a result from Huang et al. (2021) which will be used later.

Lemma 3. For J(t, k) as defined above, with probability at least 1−n exp(−m exp(−m(Rσ−1 +
δ)/10)), we have

∥J(t, k)− J(0, 0)∥F ≤ 2n(Rσ−1 + δ)

The following lemma give an approximation on the dynamics of the global model.

Lemma 4. For A(λ) = (1−λ)
ηlηgK

N H∞+ληlKH̃∞
c and β(λ) = (1−λ)

ηlηgK
N +ληlK, we have

y(t)− y = −(I −A(λ))ty + e(t)

where

∥e(t)∥2 ≤ O
(
(1− β(λ)smin)

t

(√
nσ +

tβ(λ)n7/2

sminσ
√
m

)
poly(log(m/δ)

)
21

Published as a conference paper at ICLR 2024

Proof. Recall that from Appendix B, we have [y(t)− y]− [y(t− 1)− y] = v1 + v2 + v3, and that

v1,i = −
(1− λ)ηlηgK

N

∑
j∈[n]

(yj(t)− yj)H
∞
i,j

− (1− λ)ηlηg
N

∑
j∈[n],k

(yj(t, k)− yj(t))H
∞
i,j

− (1− λ)ηlηg
N

∑
j∈[n],k

(yj(t, k)− yj)(H(t, k)i,j −H∞
i,j)

− (1− λ)ηlηg
N

∑
j∈[n],k

(yj(t, k)− yj)(H
⊥(t, k)i,j)

and similar for v2,i except that i, j ∈ Sc for some client c.

Let

ξi(t) :=v1,i(t) + v2,i(t) + v3,i(t)

+
(1− λ)ηlηgK

N

∑
j∈[n]

(yj(t)− yj)H
∞
i,j

+ ληlK
∑
j∈Sc

(yj(t)− yj)(H
∞
c)i,j

Note that by Appendix B, ∥v3(t)∥ =
16ηlη̃gK

N (1 + 2ηlnK)nR∥y − y(t)∥, ∥yc(t) − yc(t, k)∥ ≤
2ηlnK∥yc(t)−yc∥, ∥y−y(t, k)∥2 ≤ 2(1+2ηlnK)∥y−y(t)∥2, ∥H(w,w)−H(w1, w2)∥F ≤ 4nR
and ∥H(t, k)⊥∥F ≤ 4nR etc. By taking the maximum order among the terms, we have that

∥ξ(t)∥2 ≤ O
(β(λ)n3smax

√
log(mδ) log2(n/δ)

σλ
√
m

∥y − y(t)∥2
)

where β(λ) :=
(1−λ)ηlηgK

N + ληlK.

Then

y(t)− y = (I −A(λ))(y(t− 1)− y) + ξ(t− 1)

= (I −A(λ))t(y(0)− y) +
∑

τ∈[t−1]

(I −A(λ))τξ(t− 1− τ)

= −(I −A(λ))ty + e(t)

where

e(t) = (I −A(λ))ty(0) +
∑

τ∈[t−1]

(I −A(λ))τξ(t− 1− τ)

and since
∥y(0)∥22 ≤ nσ2 · 2 log(2mn/δ) · log2(4n/δ)

we have

∥e(t)∥2

≤ O
(
(1− β(λ)smin)

t

(√
nσ2

√
2 log(2mn/δ) log(8n/δ) + t

β(λ)n7/2 log(m/δ) log2(n/δ)

sminσ
√
m

))
≤ O

(
(1− β(λ)smin)

t

(√
nσ +

tβ(λ)n7/2

sminσ
√
m

)
poly(log(m/δ)

)

22

Published as a conference paper at ICLR 2024

C.3 AVERAGE GENERALIZATION

When examing a new OOD sample, we would use the average of all current parameters for predic-
tion. Therefore, we first examine the generalization performance of the average of all paramters:

W (t) :=
1

N

∑
c

Wc(t)

By (7), we have:

vec(W (t+1)) = vec(W (t))− ληl
N

∑
k,c

Jc(t, k)(yc(t, k)−yc)−(1−λ)
ηlηg
N

∑
k

J(t, k)(y(t, k)−y)

Lemma 5. For A(λ) = (1−λ)
ηlηgK

N H∞+ληlKH̃∞
c and γ(λ) = (1−λ)

ηlηgK
N +ληlK

N , we have

∥W (t)−W (0)∥F ≤ (yTA(λ)−TH∞A(λ)−1y)1/2

+O
(nσ

smin
· poly(log(m/δ)) +

n4

σ1/2m1/4
· poly(log(m/δ))

)
Proof.

vec(W (T))− vec(W (0))

=
∑

t∈[T−1]

[
− (1− λ)

ηlηg
N

∑
k

J(t, k)(y(t, k)− y)− ληl
N

∑
c

∑
k

Jc(t, k)(yc(t, k)− yc)
]

=
∑

t∈[T−1],k

−γ(λ)

K
J(t, k)(y(t, k)− y)

=
∑

t∈[T−1],k

γ(λ)

K
J(t, k)(I −A(λ))ty −

∑
t∈[T−1],k

γ(λ)

K
J(t, k)(y(t, k)− y(t) + e(k))

=
∑

t∈[T−1]

γ(λ)J(0, 0)(I −A(λ))ty

+
∑

t∈[T−1],k

γ(λ)

K
(J(t, k)− J(0, 0))(I −A(λ))ty

−
∑
t,k

γ(λ)

K
J(t, k)(y(t, k)− y(t) + e(k))

=B1 +B2 +B3

where

B1 =
∑

t∈[T−1]

γ(λ)J(0, 0)(I −A(λ))ty

B2 =
∑

t∈[T−1],k

γ(λ)

K
(J(t, k)− J(0, 0))(I −A(λ))ty

B3 =
∑
t,k

γ(λ)

K
J(t, k)(y(t, k)− y(t) + e(k))

Then by substituing in the following claims, we have

∥W (T)−W (0)∥F

≤(yTA(λ)−TH∞A(λ)−1y)1/2 +O
(nσ

smin
· poly(log(m/δ)) +

n4

σ1/2m1/4
· poly(log(m/δ))

)

23

Published as a conference paper at ICLR 2024

Claim 1. With probability at least 1− δ over random initialization, as t→∞, we have

∥B1∥22 ≤ yT (A(λ)−1)TH∞A(λ)−1y +O(
n2

√
log(n/δ)

s2min

√
m

)

Claim 2. With probability at least 1− δ over random initialization, we have

∥B2∥2 ≤
n3/2poly(log(m/δ))

m1/4σ1/2s
3/2
min

Claim 3.

∥B3∥2 ≤ (
nσ

smin
+

n4

s3minσ
√
m
) · poly(log(m/δ))

The above three claims are the slightly modified version of Claim C.8-10 in Huang et al. (2021), So
the proofs from there naturally extend to the proofs of these three claims.

Theorem 3. For T sufficiently large, σ = O(λpoly(log n, log(1/δ))/n)), m =
Ω(σ−2(n16poly(log n, log(1/δ), λ−1))), the loss function l being 1-Lipschitz in its first argument,
then with probability at least 1− δ over the random initialization, the population loss LD(f) of the
global model W := 1

N

∑
c Wc is upper bounded by

LD(f) ≤
√

2yTA(λ)−TH∞A(λ)−1y/n+O
(√

log(n/sminδ)/2n)
)

where A(λ) = (1− λ)
ηlηgK

N H∞ + ληlKH̃∞
c .

Proof. This is an extension of the result in Huang et al. (2021), by substituting lemma 5 into the
proof of Theorem C.11 in Huang et al. (2021).

C.4 CLIENT LEVEL

For further inspection on the algorithm, we consider a client level generalization. That is, we con-
sider the generalization bound on a client’s parameter Wc. Note that:

vec(Wc(t+1)) = vec(Wc(t))−ληl
∑
k

Jc(t, k)(yc(t, k)−yc)−(1−λ)
ηlηg
N

∑
k

J(t, k)(y(t, k)−y)

We first define a matrix that will be used later.

Definition 6 (Cross Gram matrix).

H×
c (t, k)i,j =

1

m

∑
r

xT
i xj1wT

0,rxi≥0,wT
c,r(t,k)xj≥0 ∈ Rnc×n

where i ∈ Sc and j spans all clients.

This matrix describes the effect of the global update on the client’s local model.

Theorem 4. For T sufficiently large, σ = O(λpoly(log n, log(1/δ))/n)), m =
Ω(σ−2(n16poly(log n, log(1/δ), λ−1))), the loss function l being 1-Lipschitz in its first argument,
then with probability at least 1− δ over the random initialization, the population loss LD(f) of the
client model Wc is upper bounded by

LD(f) ≤
√
2yTA(λ)−TGc(λ)A(λ)−1y/n+O

(√
log(n/sminδ)/2n)

)
where Gc(λ) = (1− λ)2

η2
l η

2
gK

2

N2 H + λ2η2l K
2Hc + λ(1− λ)η2l ηgK

2H×
c .

This theorem is a natural extension of theorem 3, and the proof also naturally extends. Further
discussion is left for future work.

24

Published as a conference paper at ICLR 2024

APPENDIX D EXPERIMENTS

In this section, we show more experimental results and implementation details. Sec. D.1 gives
more details for implementation, including dataset details, model architectures, training, and testing
details. Sec. D.2 shows more experiment results, including the performance regarding various batch
sizes, the complete evaluation metrics on the binary classification on the Camelyon17 dataset.

D.1 EXPERIMENTAL DETAILS

We here introduce the complete details of datasets, data splitting, and implementation details.

Digits5. Digits-5 zhou2020learning,fedbn with digits images showing drastic differences in font
style, color, and background. We take each data source/style as a client. We train a 6-layer convo-
lutional neural network for the digit classification, specifically, the model has 3 convolutional layers
and 3 fully-connected layers, we further add batch normalization layers after the first five layers to
fit the requirements of FedBN. We use the SGD optimizer with a learning rate of 0.01 and batch size
of 128. The loss function is the Cross Entropy loss. The total number of training rounds is 100 with
a local update epoch of 1. All input images are resized to 28× 28.

Office-Caltech10. Office-Caltech10 gong2012geodesic contains images acquired in different cam-
eras or environments, with four different data sources in total. We take ResNet-18 as the backbone
and use the SGD optimizer with a learning rate of 0.01 and batch size of 32. The loss function is
the Cross Entropy loss. The total number of training rounds is 200 with a local update epoch of 1.
The input images are normalized using the mean and std of Imagenet in PyTorch, which is specifi-
cally mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. All input images are resized to
256× 256

DomainNet. DomainNet peng2019moment has images with different image styles (clipart, info-
graph, painting, quickdraw, real, and sketch). Following FedBN, we choose the top-10 class based
on data amount from DomainNet containing images over 345 categories for simplicity. The training
settings are the same as the Office-Caltech10 dataset, and we change the training round from 200 to
100, since the model converges faster on the DomainNet dataset.

Camelyon17. Camelyon17 bandi2018detection shows histology images with different stains from
5 hospitals. All histopathology images are stained with the H.E. staining and show various appear-
ances. We use the DenseNet121 as the backbone, SGD optimizer with a learning rate of 0.01, and
batch size of 32. We train the model for 40 rounds in total, and the local update epoch is 1. The
image input size is 96 × 96. The loss function is the Cross Entropy loss. Note that this dataset is a
very large dataset which contains over 450,000 histology images.

Retinal. Retinal fundus dataset contains retinal fundus images acquired from 6 different institu-
tions (Fumero et al., 2011; Sivaswamy et al., 2015; Almazroa et al., 2018; Orlando et al., 2020).
We use the U-Net for segmentation, the optimizer is Adam with a learning rate of 1e−3 and
β = (0.9, 0.99). We train the model for 100 communication rounds in total with a local update
epoch of 1. The batch size is 8. We use the dice loss and report both the Dice score and HD
distance. All images are resized to 256× 256.

For all datasets, we take each data source as one client and split the data of each client into train,
validation, and testing sets with a ratio of 0.6, 0.2, and 0.2. We choose the best model based on the
validation data and report the test performance accordingly. Code will be released after acceptance.

D.2 MORE EXPERIMENTS

Here we present more experiment results, which mainly include two parts. The first part is the
study on the effects of batch size on our method’s performance, and the second part is the complete
evaluation results on the Camelyon17 dataset.

Effects of batch sizes. As our implementation accumulates the feature matrix iteratively during
local steps (Line 7 in the algorithm box), the batch size may slightly change the values of the feature
matrix. In this case, we further explore the performance changes by using different batch sizes
(4,8,16,32,64,128) on the Digit5 dataset. The results are shown in Table. 6. From the results it can be
observed that changing batch size has very mild effects on the final performance, the overall accuracy

25

Published as a conference paper at ICLR 2024

Table 6: Performance using different batch sizes on the Digits dataset.
Batchsize MNIST SVHN USPS Synth MNISTM Average

8 99.40 93.53 98.92 99.70 97.19 97.75
16 99.49 93.85 98.87 99.68 97.41 97.86
32 99.40 93.37 99.03 99.62 96.86 97.66
64 99.37 92.87 98.87 99.50 96.14 97.35

128 99.25 92.17 98.71 99.42 95.71 97.05

changes are less than 1%. This further supports our implementation of iteratively accumulating the
feature matrix during local SGD, which takes less computational cost than re-calculate all samples
again after 1 local epoch.

Complete evaluation on Camelyon17. As the classification task on the Camelyon17 dataset is a
binary classification, so we further report the full evaluation metrics, including the Accuracy, AUC,
sensitivity, specificity, and the F1-score. From the Table. 7, it can be observed that our proposed
method consistently outperforms all compared methods regarding all metrics.

Table 7: Complete evaluation metrics on the Camelyon17 dataset.
Accuracy AUC Sensitivity Specificity F1-score

FedAvg 95.30 98.90 94.91 95.69 95.30
APFL 96.42 99.35 94.42 98.42 96.42

L2SGD 95.93 99.22 95.12 96.73 95.92
FedAlt 97.91 99.57 96.55 97.90 97.22

PerFedAvg 96.08 99.24 95.37 96.79 96.08
FedBN 95.77 99.15 95.02 96.53 95.77

FedFOMO 95.62 99.15 95.35 95.90 95.62
FedRep 96.78 99.39 96.78 96.79 96.78

FedBABU 95.77 99.15 95.03 96.52 95.77
FedHKD 95.89 98.43 93.89 94.67 94.28

LG-Mix (Ours) 98.75 99.89 98.63 98.87 98.75

Loss and accuracy curves. We have further analyzed the convergence speed of our method by
comparing the training loss, validation loss and validation accuracy on the Digits5 dataset. We
select the top 3 ranked methods on the Digits5 dataset, and the results are shown in Fig. 4. From the
figure, it can be observed that other methods show quicker convergence speed and higher validation
performance than the baseline method FedAvg, and our method further promotes the convergence
speed, especially the training loss. These curves further demonstrate the efficacy on the convergence
rate of our proposed method.

Tr
ai
ni
ng

lo
ss

Communication rounds

Va
lid
at
io
n
lo
ss

Communication rounds

Va
lid
at
io
n
ac
cu
ra
cy

Communication rounds

Figure 4: Training loss, validation loss, and validation accuracy. The comparison includes the
FedAvg, the top 3 ranked SOTA methods, and our method on the Digits5 dataset.

Training time costs. We further investigate the training time costs and report the wall-clock time
by comparing our method and others on all tasks. The GPU we used for training is GeForce RTX

26

Published as a conference paper at ICLR 2024

Table 8: Wall-clock time (hours) for different methods on different tasks.
Method Digits5 OfficeCaltech10 DomainNet Camelyon17 Retinal

FedAvg 3.70 1.28 17.37 55.01 25.95
APFL 4.38 1.70 19.59 79.12 26.36

L2SGD 3.83 1.40 18.42 57.17 26.79
FedAlt 4.09 1.47 28.77 76.80 34.16

PerFedAvg 3.79 1.45 18.66 56.97 26.44
FedBN 3.73 1.26 17.43 55.03 26.56

FedFOMO 6.02 2.80 19.04 76.80 36.90
FedRep 4.32 1.41 19.18 55.77 -

FedBABU 3.96 1.31 15.92 62.12 -
FedHKD 22.43 2.64 37.33 68.71 -

LG-Mix (Ours) 5.86 1.32 18.92 57.98 26.55

Table 9: GPU memory cost (MB) comparison on different tasks.
Method Digits5 OfficeCaltech10 DomainNet Camelyon17 Retinal

FedAvg 270.24 1042.32 1042.32 1096.89 1814.29
APFL 600.77 2993.48 2993.48 2955.24 4504.02

L2SGD 456.18 2057.62 1157.62 2072.09 2329.91
FedAlt 458.27 1042.33 1042.33 1096.89 2297.57

PerFedAvg 270.24 1042.32 1042.32 1096.89 1814.29
FedBN 458.27 1042.32 1042.32 1097.99 2295.21

FedFOMO 458.28 1948.98 1948.98 1985.06 2837.97
FedRep 458.27 1042.30 1042.30 1096.89 -

FedBABU 458.27 1042.30 1042.30 1096.89 -
FedHKD 864.28 3589.56 3589.56 3021.02 -

LG-Mix (Ours) 472.37 2101.01 2101.01 1905.38 3730.69

2080 Ti. The results are shown in Table 8. We report the training ours. From the table, we can see
FedHKD takes a significant time cost than other methods, which is because it requires performing
an extra validation process using different client models, in order to generate the hyper-knowledge.
For method APFL, it needs to take an extra forward pass and also optimize the mixing ratio factor
in their method by calculating the parameter differences. Please note that we do not report the
time cost of FedRep, FedBABU, and FedHKD on the retinal dataset, because they are specifically
designed for the classification task. Compared with all these methods, our proposed method shows
a reasonable computational time cost. The cost is slightly higher than some baseline methods, but it
is a trade-off between the computational cost and performance.

GPU memory cost. We have investigated the GPU memory cost by comparing our method and
others. Compared with FedAvg, our method additionally stores a copy of the global model during
local training, and it calculates the trace of latent feature matrices. We have tracked the peak GPU
memory cost of each method and list the costs on different tasks in Table 9. It can be observed that
APFL and FedHKD show significantly higher GPU memory costs than others, which is because they
require more memory to store the local copy of the global model. Specifically, APFL stores the local
model, the local copy of the global model, and a local personalized model. FedHKD requires storing
local models from other clients to generate the hyper knowledge for distillation. Our method lies in
a reasonable range of GPU memory cost while presenting higher performance. Please note that we
do not report FedRep, FedBABU, and FedHKD on the retinal dataset because they are specifically
designed for the classification task.

Extended experiments on the BCI dataset. We extend our evaluation from the image domain to
the Brain-Computer Interface (BCI) data, which consists of classifying the mental imagery EEG
datasets. Specifically, we use four datasets from the MOABB benchmark (Jayaram & Barachant,
2018). We choose four datasets (AlexMI, BNCI2014 001, BNCI2015 004, Zhou2016) which con-
tain common classes of right hand and feet. We estimated the covariance matrix representations

27

Published as a conference paper at ICLR 2024

Table 10: Comparison on the BCI dataset.
Method Accuracy AUC Sensitivity Specificity F1-score

FedAvg 67.38 69.71 68.14 66.77 67.29
APFL 71.01 75.48 71.21 71.08 70.97

L2SGD 67.39 69.96 69.11 65.88 67.31
FedAlt 68.46 72.74 69.72 67.52 68.45

PerFedAvg 67.47 71.25 64.22 70.56 67.35
FedBN 68.06 70.62 68.28 68.03 68.03

FedFOMO 64.69 68.56 65.36 64.18 64.53
FedRep 68.10 69.82 69.75 66.68 68.01

FedBABU 68.03 70.45 69.99 66.25 67.95
FedHKD 68.69 70.34 64.99 72.32 68.44

LG-Mix (Ours) 73.74 78.11 75.19 72.58 73.72

of each EEG signal as a feature and performed the tangent space projection for the matrices. The
final input of each dataset is a 1-d vector, and we further add zero-paddings to have the same input
dimension. We compared our method with others and reported the performance under five metrics
in Table 10. From the table, we can observe that PFL methods show better performance than the
FedAvg on such heterogeneous features, while our method outperforms all compared methods on
five metrics. This further validates the efficacy of our method on 1-d signal data.

APPENDIX E DISCUSSIONS

In this paper, we present a novel PFL approach aimed at addressing the challenges posed by hetero-
geneous features during the training process. Our proposed method incorporates considerations of
the convergence rate of both local and global models. To achieve the model personalization, we take
the trace of the Gram matrix using local/global updates for gradient descent as an approximation of
the convergence rate. By employing the ratio of the trace, we perform a linear combination of local
and global updates. Additionally, due to the substantial increase in computational costs associated
with the Gram matrix as the number of samples grows, our implementation further approximates the
calculation by calculating the trace of a latent feature matrix. The latent feature is extracted from
the last hidden layer. However, our method only considers the feature matrix to mix local and global
updates. While this approximation is reasonable and reflects the convergence rate in principle, it
may not be an accurate estimation when using large foundation models as the model backbone.
When using large foundation models, such as pre-trained deep neural networks, the convergence
behavior may differ due to the model’s architecture and complexity. In such cases, relying solely
on the last-layer latent feature for trace approximation might not capture the true convergence rate
accurately. Therefore, there is a risk of obtaining less precise estimations in these scenarios. To ad-
dress this limitation and obtain more comprehensive measurements for combining local and global
updates, one potential approach is to consider the prediction errors of local and global models. By
incorporating the model errors into the mixing process, we can potentially gain insights into the
convergence behavior of the models. This approach would provide a more holistic perspective on
the convergence rate and guide the combination of local and global updates more effectively. How-
ever, exploring the use of large foundation models in federated learning is still an open question.
The unique challenges and considerations introduced by these models need to be thoroughly inves-
tigated. Future research should focus on validating the effectiveness of our method when applied to
federated learning scenarios involving large foundation models.

Our method aims to improve the personalization of client models for heterogeneous features. This
can have benefits in various applications, such as healthcare, where medical images collected from
different hospitals are heterogeneous. By improving the model personalization, our method can
potentially improve the accuracy and effectiveness for better healthcare outcomes. Our work also
has several potential implications for future research. First, our approach provides a new perspective
on addressing heterogeneous features in PFL, and can be extended to segmentation asks, whereas
many existing PFL methods are only validated on classification tasks. Second, our work proposes

28

Published as a conference paper at ICLR 2024

an NTK viewpoint for analyzing our PFL method by combining local and global updates, it will be
interesting to extend the NTK framework for analyzing the general PFL frameworks.

29

	Introduction
	Related Works
	LG-Mix: Local-Global Updates Mixing via Converngence
	Local and Global Updates Mixing
	Mixing Ratio Calculation by NTK-convergence
	Algorithm Implementation

	Convergence Analysis
	Experiments
	Experimental Settings
	Performacne Comparison Results
	Analytical Studies

	Conclusion
	Notation
	Global Convergence
	Formulation
	The Neural Network
	Our Algorithm
	Gradient updates

	Convergence analysis
	The Cross Term

	Convergence analysis - Main Theorem
	Useful Lemmas
	Proof of Theorem 1

	Generalization
	Setup
	Some Useful Results
	Average Generalization
	Client level

	Experiments
	Experimental Details
	More Experiments

	Discussions

