
Efficient Evaluation of Multi-Task
Robot Policies With Active Experiment Selection

Abrar Anwar, Rohan Gupta, Zain Merchant, Sayan Ghosh, Willie Neiswanger, Jesse Thomason
University of Southern California

Abstract—Evaluating learned robot control policies to deter-
mine their performance costs the experimenter time and effort.
As robots become more capable in accomplishing diverse tasks,
evaluating across all these tasks becomes more difficult as it is
impractical to test every policy on every task multiple times.
Rather than considering the average performance of a policy
on a task, we consider the distribution of performance over
time. In a multi-task policy evaluation setting, we actively model
the distribution of robot performance across multiple tasks and
policies as we sequentially execute experiments. We show that
natural language is a useful prior in modeling relationships
between tasks because they often share similarities that can
reveal potential relationships in policy behavior. We leverage this
formulation to reduce experimenter effort by using a cost-aware
information gain heuristic to efficiently select informative trials.
We conduct experiments on existing evaluation data from real
robots and simulations and find a 50% reduction in estimates of
the mean performance given a fixed cost budget. We encourage
the use of our surrogate model as a scalable approach to track
progress in evaluation.

I. INTRODUCTION

With the growth of large-scale robot datasets and pretrained
policies, robot systems have become increasingly capable of
carrying out a wide variety of tasks; however, this diversity
makes evaluating these policies increasingly challenging. The
combinatorial growth makes an exhaustive evaluation even
more impractical. Language-guided manipulation [27, 18, 6]
and navigation [34, 33, 3] approaches continue to improve.
As such, there is a need for maintaining estimates of policy
performance and efficient evaluation strategies that can enable
systematic and scalable testing of multi-task robot policies
in the real world. Unlike fields such as computer vision or
natural language processing, physical robotics experiments
are conducted sequentially, and each policy rollout requires
significant experimenter time and effort. Our paper actively
estimates the performance of a set of policies over tasks, and
then uses this framework to explore cost-aware, informative
experiment sampling.

In practice, experimenters are typically interested in select-
ing the best checkpoints, tuning hyperparameters, or compar-
ing model architectures, which do not necessarily require a
full evaluation across every policy-task combination. A robot
policy that can “pick up an apple” is likely capable of “picking
up an orange” in an otherwise similar scene. Our work
explores this insight and considers the structural relationships
between tasks by framing robot evaluation as a population
parameter estimation problem. This formulation then lets us
design efficient, active experiment sampling strategies.

When evaluating a robot policy, it is common to consider
only average-case performance. However, robot performance
often has high variance, so we instead consider the evaluation
of a policy on a specific task as understanding the performance
distribution . How do we learn these performance distributions
in an effective and efficient manner?

To operationalize this problem, we characterize every
policy-task pair by a parameterized distribution reflecting
the experiment conditions. For example, we use a Bernoulli
distribution to model performance for tasks with binary reward
and a Gaussian distribution for a continuous reward. As an
experimenter conducts evaluations sequentially, we learn a
surrogate model that estimates parameters for the performance
distribution of every policy-task pair. Since evaluation is ex-
pensive, we want to minimize the cost of evaluation while still
estimating the performance of all policies across all tasks of
interest. Then, with our surrogate model, we leverage strategies
from the active learning literature to integrate cost-efficient
sampling heuristics.

II. BACKGROUND AND RELATED WORK

Active Testing. Similar to active learning, which selects
informative training labels, active testing [32, 31, 42] focuses
on selecting test instances to better estimate model perfor-
mance—especially relevant in robotics where evaluations are
costly. Surrogate models are commonly used to guide such
selections [8, 35], often with cost-aware sampling [21, 29].
Prior work in robotics has applied surrogate models to sim-
ulate outcomes [4], but without addressing evaluation cost.
We instead follow work on active learning for probabilistic
models [37] to model outcome uncertainty directly.

Evaluation of Robot Policies. The goal of robot eval-
uation is to compare policies and gain insight into their
behavior. Simulated evaluation [7, 1, 17, 12] is a common
policy testing method, but often poorly correlates with real-
world performance [30, 22]. We therefore focus on real-
robot evaluation, which is costly and noisy. Recent efforts
include selecting initial conditions [19], evaluating LLM-
based planners [16], actively assessing black-box symbolic
planners [38, 39, 26], or bounding policy performance using
outcome distributions [40]. Other work examines how initial
condition changes affect sensitivity [28, 41, 2, 11] or use these
factors to guide data collection [10]. We instead actively evalu-
ate multi-task policies and learn their underlying performance
distributions.

experiments
with >1 evals

Each cell is a
performance
distribuion

Tasks

Po
lic

ie
s

=

Surrogate Model

Estimate the performance of

each cell

Score Prospective ExperimentsWhich experiment
should I run?

Train

surrogate model

... ...

Run
experiment

Add outcome
to dataset

Acquisition
Function

Sample most informative
exp. for the cost

+[]task

Tasks Policies

policy

performance

distribution

estimated parameters

Estimated performance dists.
with Monte Carlo dropout

Expected
Info Gain

0.5

0.8

0.1

Cost of
experiment

0.5

1

3

Bernoulli

Gaussian

0 1

MLP

lift
eggplant

OpenVLA

lift
eggplant

Octo

lift
eggplant

Octo

lift
eggplant

RT-2-X

put eggplant
in pot

OpenVLA

put eggplant
in pot

Octo

put eggplant
in pot

RT-2-X

put eggplant
in pot

RT-2-X

lift
eggplant

OpenVLA

lift
eggplant

Octo

Fig. 1. Method. We build a surrogate parameter estimation model that learns task and policy embeddings to predict the outcome performance distribution
for each policy on every task. We use Bernoulli distributions for binary outcomes or a bimodal Gaussian for continuous outcomes. Given this parameter
estimation model, we develop an active testing strategy with cost-aware sampling based on expected information gain.

III. PROBLEM FORMULATION AND NOTATION

The objective of this work is to design an efficient strategy
to evaluate robot policies across tasks while balancing the
cost of experimentation. Consider a fixed set of M robot
policies, denoted by P = {π1, π2, . . . , πM} and a set of N
tasks T = {T1, T2, ..., TN}. Each task Tj ∈ T is a finite-
horizon MDP defined by states, actions, and a high-level
natural language instruction Li. Our framework is policy-
agnostic, does not assume access to policy model weights,
and can be applied to engineered robot systems in addition to
end-to-end models.

Population Parameter Estimation. We formulate the prob-
lem as population parameter estimation, similar to probabilistic
matrix factorization [25]. Let the performance of a policy
πi ∈ P on a task Tj ∈ T be represented by the random
variable Xij with distribution Pij , from which we can sample
evaluations xij ∼ Pij . Here, Pij represents the “true” per-
formance distribution. Since the underlying distribution Pij is
unknown, the goal of population parameter estimation is to
estimate a distribution Qij that models real-world evaluation
outcomes from Pij . We use θij to represent the parameters of
the learned distribution Qij . For example, θij = [µ, σ] if Qij

is a Gaussian distribution. Given a limited number of observed
samples from the true distribution, x1

ij , ..., x
n
ij ∼ Pij , the goal

is to estimate the parameters of an estimated distribution θij .
Our setting also has samples from other random variables, Xkl

corresponding to different policy-task pairs. Therefore, in this
work we want to estimate Θ = {θij}i=M,j=N

i,j=1 for all policy-
task pairs given a dataset D = {xk

ij}. These distributions
can be visualized as a grid of policy-task pairs as shown in
Figure 1.

The aim is to estimate the parameters of Qij of all policy-
task combinations by leveraging shared information across this
matrix. However, it is infeasible to directly evaluate all policy-
task pairs due to cost constraints. Therefore, we adopt an active
testing approach, where the objective is to iteratively select the
most informative experiments (πi, Tj) to efficiently learn Θ.

Active Testing. We apply an active learning paradigm to

learn a population parameter estimator f(πi, Tj). As such,
we define acquisition functions to guide the selection of task-
policy pairs or tasks alone, and then sample experiments that
are most informative. First, we define an acquisition function
a(πi, Tj), and the next experiment is selected by maximiz-
ing this function over all possible experiments: (π∗

i , T
∗
j) =

argmax(πi,Tj) a(πi, Tj). Although these acquisition functions
are informative, we want a balance between selecting infor-
mative experiments and their costs.

Evaluation Cost. In real-world evaluation, each policy-task
evaluation incurs a cost. Let ceval(Tj) denote the cost of a
single evaluation of a policy on task Tj . We make a simplifying
assumption that this cost is agnostic to changes in the policy
under evaluation. This cost could include the policy execution
time, the resources consumed during evaluation, or the manual
work to reset the scene. Furthermore, switching between tasks
typically incurs a larger cost involving reconfiguring the scene
or robot. We define this switching cost cswitch(Tj , Tk) as the
cost associated with transitioning from task Tj to Tk. For a
sequence of tasks that have been evaluated Ti1 , . . . , TiL (where
each ij ∈ N), we compute the total cost of evaluation ctotal =∑N

j=1 ceval(Tij) +
∑N−1

j=1 cswitch(Tij , Tij+1).
Given these costs, the problem is to design an evaluation

strategy that minimizes the total cost of evaluation while
learning the population parameters of test instances.

IV. METHOD

We design a framework for estimating the performance
of robot policies across tasks by using a surrogate model
conditioned on task and policy representations. We then use
this sequentially-learned surrogate model to inform cost-aware
sampling of experiments using information gain.

A. Surrogate Model

As we evaluate robot policies across tasks, we collect
outcomes in dataset D, whose outcomes samples from the
true distribution Pij . Our goal is to learn a surrogate model
f predicting population parameters θij of the performance

distribution Qij from D. With more rollouts, we update D
and retrain the surrogate. To capture similarities, we define
policy and task embeddings, eπi and eTj , which serve as
inputs to an MLP predicting parameters: θ̂ij = f(πi, Tj) =
MLP(eπi

, eTj
).

Task and Policy Representation. To define the task
and policy embeddings eπi

, eTj
, we design various types of

embeddings. In practice, we cannot know the relationship be-
tween policies in advance while we are conducting evaluation.
Therefore, we define the policy embedding to be a fixed,
randomly initialized embedding to act as an identifier for the
policy in a given experiment. For the task embedding eπi

, we
leverage language embeddings from MiniLMv2 [13] which
we reduce to 32 dimensions using PCA over all tasks.

Population Parameter Estimation. Robot learning out-
comes may be continuous (e.g., rewards, completion time)
or binary (e.g., task success), so the surrogate model must
represent different distribution types. For continuous out-
comes, we model Qij as a K-component Gaussian mixture,
x̂ij ∼ Qij =

∑K
k=1 pkN (µk, σk), with mixing coefficients

pk, means µk, and standard deviations σk predicted by the
surrogate model θij = f(πi, Tj). We train this model using
a mixture density loss [5, 14] to minimize the negative log-
likelihood of observed outcomes. In our experiments, we
use K = 2 to reflect the bimodal nature of robot perfor-
mance—policies typically either fail or achieve partial to full
success. For binary outcomes, we model Qij as a Bernoulli
distribution, where θij = {p ∈ [0, 1]} is trained via cross-
entropy loss.

B. Cost-aware Active Experiment Selection

We explore cost-aware, active-experiment acquisition func-
tions that guide selection of experiments based on their ex-
pected utility while considering associated costs. To define
the acquisition function, we first focus on how to measure the
informativeness of a policy-task evaluation, which we capture
through expected information gain.

Expected Information Gain. Expected Information Gain
(EIG) quantifies the value of an experiment by estimating
how much it reduces the predictive uncertainty of the perfor-
mance distribution for a policy-task pair. Since the surrogate
model estimates performance distributions, we define the
EIG of a policy-task pair using a Bayesian Active Learning
by Disagreement (BALD) [15] formulation for probabilistic
models [37]:

I(πi, Tj) = H[Qij]︸ ︷︷ ︸
marginal entropy

−Eθij∼f(θij |D)[H[Qij |θij]]︸ ︷︷ ︸
expected conditional entropy

. (1)

The first term in Eq. 1 is the marginal entropy of Qij , repre-
senting overall uncertainty, while the second is the expected
conditional entropy given sampled parameters θij . Their dif-
ference, I(πi, Tj), measures disagreement across predicted
distributions—e.g., if multiple Gaussian parameter samples
yield diverse outcomes, the information gain is high. Since the
entropy of a Gaussian mixture lacks a closed-form solution,
we approximate it using a discretized empirical distribution

MetaWorld Checkpoints, Success RateOpenVLA, Success RateHAMSTER, Task Progress

Task: , Policy: Random Optimal
Task: , Policy: OptimalOptimal

Task: , Policy RandomVerb
Task: , Policy OptimalVerb

Task: , Policy RandomLang
Task: , Policy OptimalLang

Task: , Policy RandomRandom
Task: , Policy OptimalRandom

Fig. 2. Task and Policy Representation Experiments. We compute
the average log likelihood of all outcomes under probability distribution
represented by the predicted population parameters across various policy and
task representations.

with n = 25 bins. We adopt BALD to prioritize high-
disagreement queries, setting a(πi, Tj) = I(πi, Tj). To sample
θij efficiently, we apply dropout at test time [9, 24, 20] using
a single trained MLP surrogate.

Cost-Aware EIG. While EIG quantifies the informativeness
of an experiment, it does not consider the costs of conducting
evaluation. To make EIG cost-aware, we design the following
acquisition function based on prior work that simply integrates
cost with a multiplicative factor [29, 21]:

acost-aware(πi, Tj , Tcurrent) =
I(πi, Tj)

(λ · cswitch(Tcurrent, Tj)) + 1
, (2)

where I(πi, Tj) represents EIG for the policy πi on task
Tj , cswitch(Tcurrent, Tj)) is the cost of switching from current
task Tcurrent to new task Tj , and λ is a cost sensitivity
hyperparameter.

Active Experiment Selection. We use this acquisition
function to iteratively sample experiments (see Algorithm 1
in Appendix C). To avoid cold-start issues, we initialize D
with one randomly chosen task evaluated 3 times across all
policies, then train the surrogate model. At each step, we
compute a(πi, Tj) for all pairs, using MC dropout to sample
10 predicted distributions. We apply an ϵ-greedy strategy
(ϵ = 0.1) to balance exploration and exploitation. The selected
pair is evaluated 3 times, and outcomes are added to D. We
found 3 trials per query provided more reliable estimates. The
surrogate is retrained continuously on the updated dataset to
refine its predictions.

V. EXPERIMENTS

We evaluate our active testing framework on four offline
datasets (details in Appendix D). HAMSTER [23] includes 81
tasks with continuous outcomes modeled as Gaussians. Open-
VLA [18] has 4 policies on 29 tasks across two embodiments,
incorporating switching costs. MetaWorld Policies [43] cov-
ers 50 manipulation tasks with 10 policies, using binary
and continuous metrics, with switching costs reflecting object
differences. MetaWorld Checkpoints tracks one policy over
11 training checkpoints. These datasets vary in distributions,
costs, and task diversity.

A. Task and Policy Representation

Experiment Design and Baselines. As the ideal task or
policy representation is unclear, we compute an upper bound

MetaWorld Policies, Success Rate OpenVLA, Success Rate

MetaWorld Policies, Reward MetaWorld Checkpoints, Reward HAMSTER, Task Progress

MetaWorld Checkpoints, Success Rate

Cost-aware Task EIG Task EIG
RandomCost-aware EIG EIG
Random Task

Fig. 3. Average L1 Error of the Mean Over Cost. EIG-based methods
better estimate the means for both continuous and binary distributions. Task
sampling methods are more cost-efficient than policy-task sampling methods
at similar log likelihood.

by training learnable policy and task embeddings using all pre-
evaluated outcomes to predict performance. We describe this
in more detail in Appendix B-A. These Optimal embeddings
are tuned specifically for this task but require full data access a
priori. To study embedding effects, we design separate repre-
sentations for tasks and policies. As discussed in Section IV-A,
we use language embeddings for tasks. However, standard
embeddings emphasize nouns over verbs, causing similar-
noun actions with different verbs to be incorrectly grouped.
To address this, we: (1) extract verbs via POS tagging, (2)
compute embeddings for both the verb (everb

Tj
) and full task

(etask
Tj

), and (3) define eTj
= 0.8·everb

Tj
+0.2·etask

Tj
+0.1·N (0, 1).

We found that adding small noise helped differentiate similar
tasks. We refer to this weighted representation as Verb.

We compare to standard Language and Random embed-
dings. Since there is no canonical policy representation, we
use Optimal and Random embeddings, leaving further ex-
ploration for future work. Experiments run for 750 steps with
three seeds, sampling by selecting a random task and testing
each policy three times. To evaluate embeddings, we compute
the average log-likelihood of outcomes under the surrogate
model’s predicted population parameters. More details on
baselines and training for Optimal are in Appendix E.

Results. We find that random embeddings for tasks or
policies consistently underperform, as they fail to encode
meaningful structure or shared information. Although Ran-
dom improves slightly as more experiments are sampled
because the model can slowly better interpolate. The impact
of representation is also task-dependent: HAMSTER, with its
variations around object types (e.g., “pick up the milk” vs.
“pick up the shrimp”), benefits significantly from language-
based embeddings. In contrast, OpenVLA’s task set is all more
similar yields smaller differences between using language
or not. Meanwhile, Metaworld Checkpoints, with wider task
diversity, shows stronger gains from Verb over Lang.

B. Cost-Aware Experiment Selection

Sampling Strategies. We compare two families of strate-
gies: (1) selecting a policy-task pair, and (2) selecting a task
and evaluating all policies d = 3 times. For pairwise selection,
we use: Random Sampling, which samples uniformly; EIG,
which selects the pair with highest expected information
gain (EIG, see Section IV-A); and Cost-aware EIG, which
accounts for task-switching cost via Equation 2. For task-based
sampling, we use: Random Task, sampling tasks uniformly;
Task EIG, selecting the task with highest total EIG; across
policies and Cost-aware Task EIG, which maximizes sum
total cost-aware EIG across policies. The task-based sampling
strategies are more realistic to how experimenters evaluate
their robots today, as experimenters typically select a task
and then evaluate every policy. All methods are run for 1500
steps across three seeds with Random policy and Verb task
embeddings. We report the L1 distance between the true
and estimated means derived from the estimated population
parameters per policy-task pair (see Appendix F for details).

We find EIG methods consistently outperform baselines in
estimating mean performance, often at lower cost. For exam-
ple, in OpenVLA, Cost-Aware Task EIG reduces L1 error by
50% over random sampling at the same budget. Improvements
are most evident mid-way through evaluation since early stages
lack coverage and late stages see all baselines converge. Fit-
ting full performance distributions remains challenging: EIG
slightly improves log-likelihoods over random, with dataset-
dependent benefits. As shown in Figure 4, early predictions
tend to center on the mean but improve with more data. Even
without cost constraints, the surrogate model offers a scalable
way to monitor and refine performance.

Concluding Statement. By framing robot evaluation as
an active testing problem, we investigate the relationships
between tasks to predict policy performance distributions. The
surrogate model not only informs cost-aware sampling but also
serves as a scalable tool for tracking evaluation progress. We
hope this ability enables more informed decision-making in
the robot development lifecycle.

MetaWorld Policies

Reward

t = 0 t = 150 t = 750 True Distribution

0.0

HAMSTER

Task Progress

OpenVLA

Success Rate

1.0

Fig. 4. Predicted Mean Distributions. We use random sampling with 3 eval-
uations per policy-task pair to show that our surrogate model can actively learn
the full distribution of performance and learn the performance distribution
over time. For example, for MetaWorld Policies at t = 750, 750/3 = 250
policy-task pairs were sampled of the total 50∗10 = 500 possible policy-task
pairs that could be evaluated, the estimated mean performance is qualitatively
comparable to the true mean.

REFERENCES

[1] Peter Anderson, Ayush Shrivastava, Joanne Truong, Ar-
jun Majumdar, Devi Parikh, Dhruv Batra, and Stefan Lee.
Sim-to-real transfer for vision-and-language navigation.
Conference on Robot Learning (CoRL), 2021.

[2] Abrar Anwar, Rohan Gupta, and Jesse Thomason. Con-
trast sets for evaluating language-guided robot policies.
Conference on Robot Learning (CoRL), 2024.

[3] Abrar Anwar, John Welsh, Joydeep Biswas, Soha Pouya,
and Yan Chang. Remembr: Building and reasoning
over long-horizon spatio-temporal memory for robot
navigation. International Conference on Robotics and
Automation (ICRA), 2025.

[4] Varun Bhatt, Heramb Nemlekar, Matthew C Fontaine,
Bryon Tjanaka, Hejia Zhang, Ya-Chuan Hsu, and Ste-
fanos Nikolaidis. Surrogate assisted generation of
human-robot interaction scenarios. Conference on Robot
Learning (CoRL), 2023.

[5] Christopher M Bishop. Mixture density networks. Tech-
nical Report, 1994.

[6] Kevin Black, Noah Brown, Danny Driess, Adnan Es-
mail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy
Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-
language-action flow model for general robot control.
arXiv preprint arXiv:2410.24164, 2024.

[7] Matt Deitke, Winson Han, Alvaro Herrasti, Anirud-
dha Kembhavi, Eric Kolve, Roozbeh Mottaghi, Jordi
Salvador, Dustin Schwenk, Eli VanderBilt, Matthew
Wallingford, Luca Weihs, Mark Yatskar, and Ali Farhadi.
RoboTHOR: An Open Simulation-to-Real Embodied AI
Platform. Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

[8] Katharina Eggensperger, Frank Hutter, Holger Hoos, and
Kevin Leyton-Brown. Efficient benchmarking of hyper-
parameter optimizers via surrogates. In Proceedings of
the AAAI conference on artificial intelligence, 2015.

[9] Yarin Gal and Zoubin Ghahramani. Dropout as a
bayesian approximation: Representing model uncertainty
in deep learning. International Conference on Machine
Learning (ICML), 2016.

[10] Jensen Gao, Annie Xie, Ted Xiao, Chelsea Finn, and
Dorsa Sadigh. Efficient Data Collection for Robotic
Manipulation via Compositional Generalization. Pro-
ceedings of Robotics: Science and Systems (RSS), 2024.

[11] Jensen Gao, Suneel Belkhale, Sudeep Dasari, Ashwin
Balakrishna, Dhruv Shah, and Dorsa Sadigh. A taxon-
omy for evaluating generalist robot policies. 2025.

[12] Theophile Gervet, Soumith Chintala, Dhruv Batra, Jiten-
dra Malik, and Devendra Singh Chaplot. Navigating to
objects in the real world. Science Robotics, 2023.

[13] Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang.
Minillm: Knowledge distillation of large language mod-
els. In International Conference on Learning Represen-
tations (ICLR), 2024.

[14] David Ha and Jürgen Schmidhuber. World models.

Conference on Neural Information Processing System
(NeurIPS), 2018.

[15] Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and
Máté Lengyel. Bayesian active learning for classification
and preference learning. arXiv preprint arXiv:1112.5745,
2011.

[16] Zichao Hu, Francesca Lucchetti, Claire Schlesinger, Yash
Saxena, Anders Freeman, Sadanand Modak, Arjun Guha,
and Joydeep Biswas. Deploying and Evaluating LLMs
to Program Service Mobile Robots. IEEE Robotics and
Automation Letters (RA-L), 2024.

[17] Abhishek Kadian, Joanne Truong, Aaron Gokaslan,
Alexander Clegg, Erik Wijmans, Stefan Lee, Manolis
Savva, Sonia Chernova, and Dhruv Batra. Sim2Real
Predictivity: Does Evaluation in Simulation Predict Real-
World Performance? IEEE Robotics and Automation
Letters (RA-L), 2020.

[18] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted
Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov,
Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong,
Thomas Kollar, Benjamin Burchfiel, Russ Tedrake, Dorsa
Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
Openvla: An open-source vision-language-action model.
Conference on Robot Learning (CoRL), 2024.

[19] Hadas Kress-Gazit, Kunimatsu Hashimoto, Naveen Kup-
puswamy, Paarth Shah, Phoebe Horgan, Gordon Richard-
son, Siyuan Feng, and Benjamin Burchfiel. Robot learn-
ing as an empirical science: Best practices for policy
evaluation. arXiv, 2024.

[20] Emanuele Ledda, Giorgio Fumera, and Fabio Roli.
Dropout injection at test time for post hoc uncertainty
quantification in neural networks. Information Sciences,
2023.

[21] Eric Hans Lee, Valerio Perrone, Cedric Archambeau,
and Matthias Seeger. Cost-aware bayesian optimization.
arXiv preprint arXiv:2003.10870, 2020.

[22] Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier
Mees, Homer Rich Walke, Chuyuan Fu, Ishikaa Lunawat,
Isabel Sieh, Sean Kirmani, Sergey Levine, Jiajun Wu,
Chelsea Finn, Hao Su, Quan Vuong, and Ted Xiao.
Evaluating real-world robot manipulation policies in sim-
ulation. Conference on Robot Learning (CoRL), 2024.

[23] Yi Li, Yuquan Deng, Jesse Zhang, Joel Jang, Marius
Memmel, Caelan Reed Garrett, Fabio Ramos, Dieter
Fox, Anqi Li, Abhishek Gupta, and Ankit Goyal. Ham-
ster: Hierarchical action models for open-world robot
manipulation. International Conference on Learning
Representations (ICLR), 2025.

[24] Antonio Loquercio, Mattia Segu, and Davide Scara-
muzza. A general framework for uncertainty estimation
in deep learning. IEEE Robotics and Automation Letters
(RA-L), 2020.

[25] Andriy Mnih and Russ R Salakhutdinov. Probabilistic
matrix factorization. Conference on Neural Information
Processing Systems (NeurIPS), 2007.

[26] Rashmeet Kaur Nayyar, Pulkit Verma, and Siddharth Sri-

vastava. Differential assessment of black-box ai agents.
AAAI Conference on Artificial Intelligence, 2022.

[27] Octo Model Team, Dibya Ghosh, Homer Walke, Karl
Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey
Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You
Liang Tan, Lawrence Yunliang Chen, Pannag Sanketi,
Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and
Sergey Levine. Octo: An open-source generalist robot
policy. Robotics: Science and Systems (RSS), 2024.

[28] Amit Parekh, Nikolas Vitsakis, Alessandro Suglia, and
Ioannis Konstas. Investigating the Role of Instruction
Variety and Task Difficulty in Robotic Manipulation
Tasks. Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2024.

[29] Biswajit Paria, Willie Neiswanger, Ramina Ghods, Jeff
Schneider, and Barnabás Póczos. Cost-aware bayesian
optimization via information directed sampling. In Adap-
tive Experimental Design and Active Learning in the Real
World Workshop at ICML, 2020.

[30] Wilbert Pumacay, Ishika Singh, Jiafei Duan, Ranjay
Krishna, Jesse Thomason, and Dieter Fox. THE COLOS-
SEUM: A Benchmark for Evaluating Generalization for
Robotic Manipulation. Robotics: Science and Systems
(RSS), 2024.

[31] Tom Rainforth, Adam Foster, Desi R Ivanova, and Fred-
die Bickford Smith. Modern bayesian experimental
design. Statistical Science, 39(1):100–114, 2024.

[32] Christoph Sawade, Niels Landwehr, Steffen Bickel, and
Tobias Scheffer. Active risk estimation. In Proceedings of
the 27th International Conference on Machine Learning
(ICML-10), pages 951–958, 2010.

[33] Dhruv Shah, Ajay Sridhar, Nitish Dashora, Kyle Sta-
chowicz, Kevin Black, Noriaki Hirose, and Sergey
Levine. Vint: A foundation model for visual navigation.
Conference on Robot Learning (CoRL), 2022.

[34] Dhruv Shah, Błażej Osiński, Sergey Levine, et al. Lm-
nav: Robotic navigation with large pre-trained models
of language, vision, and action. Conference on Robot
Learning (CoRL), 2023.

[35] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P
Adams, and Nando De Freitas. Taking the human out of
the loop: A review of bayesian optimization. Proceedings
of the IEEE, 104(1):148–175, 2015.

[36] David Snyder, Asher James Hancock, Apurva Ba-
dithela, Emma Dixon, Patrick Miller, Rares Andrei Am-
brus, Anirudha Majumdar, Masha Itkina, and Haruki
Nishimura. Is your imitation learning policy better than
mine? policy comparison with near-optimal stopping.
arXiv preprint arXiv:2503.10966, 2025.

[37] Christopher Tosh, Mauricio Tec, and Wesley Tansey.
Targeted active learning for probabilistic models. arXiv
preprint arXiv:2210.12122, 2022.

[38] Pulkit Verma, Shashank Rao Marpally, and Siddharth
Srivastava. Discovering user-interpretable capabilities of
black-box planning agents. International Conference on
Principles of Knowledge Representation and Reasoning

HAMSTER Evaluations

81 Tasks
5 Policies
Task Progress

50 Tasks
10 Policies
Reward or Success Rate
Multiple types of eval.

29 Tasks
2 embodiments

4 Policies
Success Rate

OpenVLA Evaluations

MetaWorld Policy and MetaWorld Checkpoint Evaluations

Fig. 5. Offline Datasets used for Experiments. We consider 4 settings of
offline evaluations, as denoted above.

(KR), 2021.
[39] Pulkit Verma, Rushang Karia, and Siddharth Srivas-

tava. Autonomous capability assessment of sequen-
tial decision-making systems in stochastic settings.
Conference on Neural Information Processing Systems
(NeurIPS), 2023.

[40] Joseph A Vincent, Haruki Nishimura, Masha Itkina,
Paarth Shah, Mac Schwager, and Thomas Kollar. How
Generalizable Is My Behavior Cloning Policy? A Statis-
tical Approach to Trustworthy Performance Evaluation.
IEEE Robotics and Automation Letters (RA-L), 2024.

[41] Annie Xie, Lisa Lee, Ted Xiao, and Chelsea Finn.
Decomposing the generalization gap in imitation learning
for visual robotic manipulation. International Conference
on Robotics and Automation (ICRA), 2024.

[42] Emine Yilmaz, Peter Hayes, Raza Habib, Jordan Burgess,
and David Barber. Sample efficient model evaluation.
arXiv preprint arXiv:2109.12043, 2021.

[43] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian,
Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-
world: A benchmark and evaluation for multi-task and
meta reinforcement learning. Conference on Robot
Learning (CoRL), 2020.

APPENDIX A
LIMITATIONS

Cost-effective performance distribution estimation.
While our approach better estimates the mean performance of
policy-task pairs (see Section V-B), the surrogate model does
not learn the parameters of the performance distribution in a
more cost-effective manner than random sampling, as reflected
in the lower log-likelihoods in Figure 6. This is likely because
cost-aware strategies favor repeating low-cost experiments.
As a result, task coverage decreases, and the model sees
fewer diverse or uncommon items. We focused on ensuring
that the surrogate model is able to estimate the landscape
of performance across tasks and policies at low cost, but in

practice, experimenters care about policy comparisons. Our
framework can be combined with concurrent work on optimal
stopping for experiments during policy comparisons [36], or
focus on other applications such as finding the best average
policy, finding a ranked ordering of policies, or finding the
worst performing tasks. Each of these would require different
active sampling strategies.

Cost-aware, myopic experiment selection. We represented
robot execution costs naively at a fixed cost; however, different
tasks may have different execution costs that may depend on
whether a policy fails on its task or not, such as having to
clean up spilled milk. When execution or switching costs are
non-uniform, single-step look-ahead is typically not sufficient
for cost-aware experiment selection. More optimal cost-aware
solutions must plan future evaluations with respect to cost
and potential information gain. Future work can extend our
methods by developing myopic, look-ahead algorithms that
can select longer sequences of experiments at a time.

Language-based task representations. For computing our
language representations, the design of Verb involved a
weighted sum between verb and full-instruction embeddings.
We found this heuristic term to perform better, and the weight-
ings of these terms to not impact performance. Most language
embeddings emphasize objects, as they act like bag-of-words
models, but verbs are more indicative of the task in robotics.
This finding motivates future work in learning robotics-specific
task representations that are grounded in actions and are
available a priori. There are also hierarchical relationships
between tasks such as “pour milk” likely depending on being
able to “pick up the milk” that this work does not consider.

Policy representation. We used simple random or optimal
embeddings for policy representations and found minimal dif-
ferences between the two, but learning policy embeddings may
better predict performance. Policy embedding priors might be
formed by encoding the training data of those policies or their
predictions to offline data.

Av
er

ag
e

Lo
g

Li
ke

lih
oo

d

MetaWorld Policies, Success Rate OpenVLA, Success Rate

Av
er

ag
e

Lo
g

Li
ke

lih
oo

d

MetaWorld Policies, Reward MetaWorld Checkpoints, Reward HAMSTER, Task Progress

Av
er

ag
e

Lo
g

Li
ke

lih
oo

d

Av
er

ag
e

Lo
g

Li
ke

lih
oo

d

Av
er

ag
e

Lo
g

Li
ke

lih
oo

d

MetaWorld Checkpoints, Success Rate

Cost-aware Task EIG Task EIG
RandomCost-aware EIG EIG
Random Task

Av
er

ag
e

Lo
g

Li
ke

lih
oo

d

Fig. 6. Average Log Likelihood Over Cost. We show the average log
likelihood of all the outcomes in our offline dataset against the cost of
evaluation for MetaWorld Policies, MetaWorld Checkpoints, HAMSTER, and
OpenVLA over continuous and binary performance distributions. Each set of
experiments is run for 1500 trials. We find that EIG-based approaches struggle
to model the true distribution in a more cost-efficient manner than Random
Task sampling. Task-based sampling strategies are more cost-efficient than
policy-task approaches.

APPENDIX B
SURROGATE MODEL

A. Computing optimal representations

To compute the optimal embeddings, we take the MLP
surrogate model, add a learnable task and policy embedding,
and then supervise against its respective loss against all the
evaluation data a priori. This approach quickly learns to esti-
mate the performance distribution parameters, conditioned on
the learnable embeddings. Then, once training has converged,
we stop training, reset the surrogate model’s weights, and
freeze the policy and task embedding layers. This surrogate
model is then used for actively learning the policy distribution
parameters.

B. Surrogate model details

We actively train the surrogate model, which is a 2-layer
MLP that takes in the policy and task embeddings and outputs
the number of parameters. We train with a learning rate of
1e-4 and a weight decay of 1e-4. We train with a dropout
of 10% and also use dropout during parameter sampling.
For computing metrics such as L1 error, log-likelihoods, and
others, we do not use dropout.

APPENDIX C
ACTIVE EXPERIMENT SELECTION PROCEDURE

Below, we provide the active experiment selection procedure
in detail.

Algorithm 1 Active Experiment Selection Procedure
Require: A set of policies πi ∈ P to evaluate over tasks

Tj ∈ T , an empty dataset of outcomes D, an untrained
surrogate model p(πi, Tj), exploration rate ϵ = 0.1

1: Randomly sample a single task Tj and evaluate every
policy 3 times. Add outcomes xk

ij to D
2: Set Tcurrent = Tj

3: Increment Ctotal = Ceval + ceval · |P| · 3
4: Train the surrogate model p(·) on D for k epochs
5: for each query step do
6: Use MC dropout to sample 10 predicted distributions

from the surrogate model for every policy-task pair
7: Use sampled distributions to compute scores sij =

a(πi, Tj , Tcurrent) according to Eq. 2
8: With probability ϵ, select a random (πi, Tj)
9: Otherwise, select (πi, Tj) = argmax(πi,Tj) sij

10: Conduct 3 evaluations and observe x1
ij , x

2
ij , x

3
ij ∼ Pij

11: Add these outcomes to D
12: Train f(·) on D for k epochs
13: Increment Ctotal = Ctotal + ceval · 3
14: if Tj ̸= Tcurrent then ▷ Task switching cost applies
15: Increment Ctotal = Ctotal + cswitch(Tcurrent, Tj)
16: Update Tcurrent = Tj

17: end if
18: end for

Experiment sampling. We run each policy-task pair three
times, since preliminary experiments showed that estimating

binary performance distributions required more trials to esti-
mate the population parameters. Using 1 trial per policy-task
selection led to more costly task switches with poor parameter
estimations. Additionally, The OpenVLA evaluation dataset
used 10 trials for each task, so we used 3 trials per policy-task
pair as we could execute that experiment 3 times if needed.

Expected Information Gain Computation Though our
approach to mitigating the cold-start problem with test-time
dropout inspired by past work [24, 20] appears to have
improved performance during sampling, this approach has not
been rigorously tested by the Bayesian optimization commu-
nity in particular. We had also tried other approaches, such as
ensembling and variational prediction, but these approaches
also overfit to the small size of the dataset early in the
evaluation procedure.

APPENDIX D
OFFLINE DATASET DETAILS

A. HAMSTER

We use evaluations from HAMSTER [23], which compares
a hierarchical VLA model against 4 other policies across 81
diverse tasks with varying objects, complexity, and linguistic
variation. Each policy-task pair is evaluated once using a con-
tinuous progress metric. We model each outcome as the mean
of a Gaussian distribution with fixed variance. For HAMSTER,
we have a cost of 0.5 per execution of an experiment, then an
additional switching cost of +1 if a task is of the same task
type but requires adding/removing objects. If a new task type
is selected, we then add a cost of +2 for requiring new, often
large, objects to be brought into the scene.

B. OpenVLA

From OpenVLA [18], we use evaluations of 4 policies
across 29 tasks. Partial successes (e.g., 0.5) are rounded down
to binary outcomes. We have a cost of 0.5 per execution of an
experiment. If a task is changed, such as moving an eggplant
to lifting a battery, a cost of 1 is applied. OpenVLA also has
multiple embodiments available, Bridge and the Google Robot.
If there is an embodiment change, we set the changing cost
to 3, as this change is relatively large.

C. MetaWorld Policies/Checkpoints

MetaWorld [43] is an open-source simulated benchmark
containing a set of 50 different manipulation environments
for multi-task learning. With MetaWorld, we use both binary
success and continuous reward normalized between 0 and 1.

For MetaWorld evaluation, we have a cost of 0.5 per
execution of an experiment. In MetaWorld tasks, some tasks
keep the same objects in the same scene such as opening or
closing a window, while others would require new objects
like a faucet or a door. Because these changes are easier to
enumerate, we apply only a task switching cost of +1 if the
primary object changes, and a switching cost of 0 in the case
of the same object being manipulated.

We train 10 multi-task policies with varying architectures
and noise to ensure diverse behaviors, and then evaluate

100 times in each environment to serve as an approximation
of the true performance population distribution. For training
these policies, we rollout an expert policy for 100 episodes
for the 50 tasks to build our training set. We then train
a state-based, language-conditioned behavior cloning policy.
The policy takes in a 768-dimensional language embedding,
a 39-dimensional state vector, and outputs a 4-dimensional
action. For MetaWorld Checkpoints, we train a single MLP-
based policy for 100 epochs, recording the policy performance
at epoch 1, 10, 20, ..., 100 for a total of 11 checkpoints. For
MetaWorld Policies, we instead train 10 policies on random
MLP architecture sizes and also apply different amounts of
noise to the proprioceptive inputs to the policy to mimic a
noisy understanding of state information. We do this procedure
to produce policies that vary more in performance while still
having a systematic “flaw” in understanding the scene, which
we hope would be captured in our policy embeddings. Then,
for each policy and environment, we sample 50 evaluations
each and store them offline for sampling.

APPENDIX E
TASK AND POLICY REPRESENTATION EXPERIMENT

DESIGN

We evaluate how different task and policy representations
affect the quality of the surrogate model’s predictions. Because
each experiment involves both a task and a policy, we define
embedding strategies for each separately. Below, we detail the
representations evaluated in our experiments.

a) Task Representations.: We define 4 different task
reprsentations.

• Optimal: Learned task embeddings trained to directly
predict performance using all available data. These serve
as an upper bound but are not feasible in real settings
due to their reliance on full data access.

• Verb: Our primary method, which constructs a represen-
tation from a weighted combination of the task’s instruc-
tion embedding and its extracted verbs. This captures both
linguistic and action-related structure (see Section IV-A).

• Language: A baseline that uses only the sentence embed-
ding of the full task description, without decomposition.

• Random: Randomly initialized vectors for each task.
These break any meaningful structure and serve as a naive
control.
b) Policy Representations.: Since we cannot compute

policy representations apriori, we use the two following ap-
proaches, and leave the question on discovering new policy
representations to future work.

• Optimal: Learned policy embeddings trained using full
data to predict outcomes. As with task embeddings, these
are used only to establish a performance upper bound.

• Random: Random vectors assigned to each policy, used
as a baseline in the absence of structured policy de-
scriptors. We leave the design of more informed policy
representations (e.g., based on architecture, behavior, or
training data) to future work.

All embedding configurations are evaluated over 750 exper-
iment steps, across three random seeds. In each step, a task is
sampled uniformly at random, and all policies are evaluated
three times on that task. To assess surrogate model quality,
we compute the average log likelihood of all outcomes in the
offline dataset under the predicted distribution derived from
the model’s estimated population parameters.

APPENDIX F
SAMPLING STRATEGY DETAILS

We explore two main families of sampling strategies for
selecting experiments: (1) selecting a specific policy-task pair,
and (2) selecting a task and evaluating all policies on that task.
Below, we detail each method:

• Random Sampling: Select a policy-task pair (πi, Tj)
uniformly at random. Acquisition function: a(πi, Tj) =
1/(|P| × |T |).

• EIG: Select the policy-task pair with the highest expected
information gain (EIG), as described in Section IV-A.
Acquisition function: a(πi, Tj) = I(πi, Tj).

• Cost-aware EIG: Incorporate task-switching costs by
selecting the pair that maximizes cost-adjusted EIG. See
Equation 2 for the full formulation.

• Random Task: Select a task Tj uniformly at random and
evaluate all policies on it, d = 3 times each. Acquisition
function: a(Tj) = 1/|T |.

• Task EIG: Select a task by summing the EIG across all
policies and choosing the task with the highest total infor-
mation gain. Acquisition function: a(Tj) =

∑
i I(πi, Tj).

• Cost-aware Task EIG: Like Task EIG, but incorporates
cost-awareness by summing the cost-adjusted EIG across
all policies relative to the current task. Acquisition func-
tion: a(Tj) =

∑
i acost-aware(πi, Tj , Tcurrent).

These strategies are evaluated over 1500 experiment steps
across three random seeds. We use Random policy em-
beddings and Verb task embeddings throughout. Our main
evaluation metric is the L1 error between the true mean
outcome of a policy-task pair and the surrogate’s predicted
mean.

	Introduction
	Background and Related Work
	Problem Formulation and Notation
	Method
	Surrogate Model
	Cost-aware Active Experiment Selection

	Experiments
	Task and Policy Representation
	Cost-Aware Experiment Selection

	Appendix A: Limitations
	Appendix B: Surrogate Model
	Computing optimal representations
	Surrogate model details

	Appendix C: Active Experiment Selection Procedure
	Appendix D: Offline Dataset Details
	HAMSTER
	OpenVLA
	MetaWorld Policies/Checkpoints

	Appendix E: Task and Policy Representation Experiment Design
	Appendix F: Sampling Strategy Details

