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ABSTRACT

Enabling robots to flexibly schedule and compose learned skills for novel long-
horizon manipulation under diverse perturbations remains a core challenge. Early
explorations with end-to-end VLA models show limited success, as these models
struggle to generalize beyond the training distribution. Hierarchical approaches,
where high-level planners generate subgoals for low-level policies, bring certain
improvements but still suffer under complex perturbations, revealing limited ca-
pability in skill composition. However, existing benchmarks primarily empha-
size task completion in long-horizon settings, offering little insight into compo-
sitional generalization, robustness, and the interplay between planning and exe-
cution. To systematically investigate these gaps, we propose RoboHiMan, a hi-
erarchical evaluation paradigm for compositional generalization in long-horizon
manipulation. RoboHiMan introduces HiMan-Bench, a benchmark of atomic and
compositional tasks under diverse perturbations, supported by a multi-level train-
ing dataset for analyzing progressive data scaling, and proposes three evaluation
paradigms (vanilla, decoupled, coupled) that probe the necessity of skill compo-
sition and reveal bottlenecks in hierarchical architectures. Experiments highlight
clear capability gaps across representative models and architectures, pointing to
directions for advancing models better suited to real-world long-horizon manipu-
lation tasks. Anonymous project website: https://robohiman.github.io/.
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Figure 1: RoboHiMan Overview. To evaluate compositional generalization, RoboHiMan introduces:
(a) HiMan-Bench with four task types: atomic (A), atomic-perturbation (AP), compositional (C), and
compositional-perturbation (CP); (b) a hierarchical evaluation paradigm with diverse metrics and progressive
training data (L1–L4), where L1 uses minimal atomic data and L4 provides larger datasets; (c) Extensive ex-
periments highlight critical performance gaps across training datasets and evaluation modes, often overlooked
by prior benchmarks (notation “X→Y” denoting training on Level X and evaluation on task category Y).
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1 INTRODUCTION

In the field of robot manipulation, a long-term goal is to enable robots to perform diverse long-
horizon tasks (Zhang et al., 2024; Shi et al., 2025; Chen et al., 2024; 2025b;e;a). However, achieving
this goal requires overcoming a fundamental challenge: compositional generalization. Specifically,
we expect robots to, much like humans, master a set of atomic skills (e.g., opening a drawer, picking
up objects) through imitation learning, and flexibly schedule and compose them to complete new
long-horizon tasks (e.g., opening a drawer then placing an object inside) (Chen et al., 2025f). How-
ever, in real-world applications, compositional generalization intensifies as robots must contend with
various perturbations, such as changes in lighting, object appearance, or camera poses (Pumacay
et al., 2024). Therefore, evaluating compositional generalization involves testing whether models
can effectively compose skills under such diverse conditions. To systematically study this prob-
lem, we focus on a central research question: How well can models trained solely on atomic skills
generalize to long-horizon compositional tasks in the presence of various perturbations?

Existing manipulation benchmarks (James et al., 2020; Liu et al., 2023; Chen et al., 2025c; Mees
et al., 2022; Zhang et al., 2024; Chen et al., 2025f; Han et al., 2025) have played an important role
in advancing the field by providing diverse long-horizon tasks for training and evaluation. However,
they exhibit notable limitations: most benchmarks focus on evaluating models on complete long-
horizon tasks without systematically examining the flexible composition of atomic skills (James
et al., 2020; Liu et al., 2023; Chen et al., 2025c). DeCoBench (Chen et al., 2025f) considers skill
composition but lacks an in-depth analysis of how environmental perturbations affect composition-
ality. Colosseum (Pumacay et al., 2024) only assesses the robustness of atomic skills under pertur-
bations but does not evaluate multi-stage compositional tasks. More critically, existing benchmarks
make it difficult to disentangle whether failures arise from insufficient planning, poor execution, or
sensitivity to environmental perturbations (Mees et al., 2022; Zhang et al., 2024; Chen et al., 2025f;
Han et al., 2025). The rough metric and task design of them leave open questions about which
module is responsible for failures, which hinders the development of a new method in this domain.

To address these limitations, we propose RoboHiMan, A a hierarchical evaluation paradigm for
compositional generalization in long-horizon manipulation, which makes two core contributions.
The first is HiMan-Bench, a new benchmark dedicated to compositional generalization in robot
manipulation. Building on the design principles of DeCoBench and Colosseum, HiMan-Bench
evaluates whether models can compose atomic skills to accomplish long-horizon tasks under diverse
environmental perturbations, such as changes in object appearance, size, lighting, and distractors.
Compared with prior benchmarks, HiMan-Bench explicitly measures the effect of perturbations on
skill composition (advancing beyond DeCoBench) and systematically emphasizes multi-stage com-
positional tasks rather than only atomic skills (extending beyond Colosseum). To enable structured
evaluation, tasks are categorized into four types (Fig. 1(a)): atomic (A), atomic with perturba-
tions (AP), compositional (C), and compositional with perturbations (CP). This categorization
disentangles different aspects of capability, allowing separate assessment of basic skill mastery, skill
composition, and the robustness of both under realistic perturbations. Nevertheless, state-of-the-art
Visual-Language-Action (VLA) models (Kim et al., 2024; Black et al., 2024), even when pre-trained
on large-scale demonstrations, continue to struggle with composing skills in perturbed settings. Re-
cent studies (Huang et al., 2023; Chen et al., 2025f; Black et al., 2025) have attempted to mitigate this
by employing hierarchical frameworks that leverage the reasoning and planning abilities of Visual-
Language Models (VLMs). However, these approaches remain fragile when combining skills under
perturbations, raising a key question: When a model fails to achieve compositional generalization
in long-horizon tasks under perturbations, is the failure due to ineffective planning or insufficient
execution capability?

To this end, we introduce the second innovation of RoboHiMan, a hierarchical evaluation
paradigm (see Fig. 1(b)) for systematically evaluating model capabilities. It includes a progres-
sive multi-level training dataset (L1–L4), where L1 represents the most challenging setting with
minimal atomic skill data, and L4 the easiest with larger, more diverse datasets. This progression
allows analysis of how training complexity and exposure to perturbations affect long-horizon skill
composition. RoboHiMan evaluates models using three modes: Vanilla, Decoupled, and Coupled,
on a set of test tasks organized into four types shown in Fig 1(a). In Vanilla mode, the low-level
policy executes tasks directly without planner guidance; Decoupled mode evaluates the planner and
policy separately; and Coupled mode tests the full hierarchical system end-to-end. This setup allows
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Diverse
Perturbations

Atomic and
Compositional Tasks

Progressive Multi-Level
Training Dataset

Hierarchical
Evaluation

Eval. of Compositional
Gen. under Perturbations

RLBench (2020) ✗ ✗ ✗ ✗ ✗
CALVIN (2022) ✗ ✓ ✓ ✗ ✗
Libero-Long (2023) ✗ ✓ ✓ ✗ ✗
Colosseum (2024) ✓ ✗ ✓ ✗ ✗
VLABench (2024) ✓ ✓ ✗ ✓ ✗
DeCoBench (2025f) ✗ ✓ ✗ ✓ ✗
RoboCerebra (2025) ✗ ✓ ✗ ✓ ✗
RoboHiMan (Ours) ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of Long-Horizon Manipulation Benchmarks. Unlike prior benchmarks, RoboHiMan
explicitly evaluates compositional generalization under perturbations and also covers robustness, composition-
ality, multi-level training, and hierarchical evaluation.

us to disentangle failures arising from planning versus execution, while systematically assessing ro-
bustness under diverse task conditions. Together with progressive training, these modes provide rich
metrics to reveal detailed patterns of compositional generalization.

Through extensive experiments, we identify: (1) Models without a planner perform poorly when
composing atomic skills, exposing the limitations of low-level policies in compositionality. (2)
While additional training data with compositional examples improves performance, a substantial
gap persists, highlighting the inherent difficulty of compositional generalization. (3) As shown in
Fig. 1(c), VLA models such as π0.5 (Black et al., 2025) perform well on LIBERO-10 (Liu et al.,
2023), but fail under the diverse perturbations in HiMan-Bench, exposing limitations that prior
benchmarks fail to capture. (4) Hierarchical systems remain brittle, as planning errors and imperfect
execution compound over long horizons, leading to a sharp degradation in overall performance.

In summary, RoboHiMan makes three contributions: (1) HiMan-Bench, a novel benchmark that
evaluates how well models can compose atomic skills to complete long-horizon manipulation tasks
under diverse environmental perturbations. (2) A novel hierarchical evaluation paradigm that com-
bines progressive multi-level training dataset with multiple evaluation modes, allowing separate
analysis of planning and execution performance while revealing robustness limitations. (3) A com-
prehensive analysis of model performance, uncovering key challenges in long-horizon composi-
tional generalization and providing insights beyond prior benchmark results.

2 RELATED WORKS

Long-Horizon Robotic Manipulation Benchmarks. Long-horizon tasks are widely regarded as
a key challenge for evaluating the planning and generalization capabilities of robotic manipula-
tion. Early benchmarks, e.g., RLBench (James et al., 2020), CALVIN (Mees et al., 2022), Libero-
Long (Liu et al., 2023), and more recently RoboTwin 2.0 (Chen et al., 2025c), include such tasks
but mainly train and evaluate models directly on long-horizon tasks without explicitly requiring skill
composition, thus providing limited insights into task planning. Yet in practice, agents must com-
pose learned skills to achieve long-horizon goals, beyond simple imitation (Belkhale et al., 2024;
Gao et al., 2025). Recent benchmarks such as VLA-Bench (Zhang et al., 2024), RoboCasa (Nasiri-
any et al., 2024), DeCoBench (Chen et al., 2025f), and RoboCerebra (Han et al., 2025) introduce
more challenging tasks involving language-conditioned decomposition and planning. However, they
still largely treat long-horizon problems as simple skill permutations and overlook real-world per-
turbations (e.g., color, texture, object size) on skill composition. Colosseum (Pumacay et al., 2024)
advances this line by systematically examining perturbations, revealing model vulnerabilities under
environmental variations. Yet its evaluation remains mostly at the atomic-task level, where suc-
cess does not guarantee robustness in compositional tasks. To this end, we propose RoboHiMan,
which inherits Colosseum’s perturbation design and further emphasizes their compounded effects
in long-horizon compositional tasks. As shown in Table 1, RoboHiMan uniquely assesses composi-
tional generalization under perturbations, together with robustness, skill composition, progressive
training, and hierarchical evaluation.

Vision-Language-Action Models for Long-Horizon Manipulation. In recent years, vi-
sion–language–action (VLA) models have become a promising paradigm in robotic manipulation,
processing visual and language inputs for action generation (Shao et al., 2025; Zhou et al., 2025;
Ma et al., 2024). Foundation-style pretraining, as in RT-1 (Brohan et al., 2022), RT-2 (Zitkovich
et al., 2023), OpenVLA (Kim et al., 2024), and π0 (Black et al., 2024), improves generalization by
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(a) HiMan-Bench Task Distribution (b) Multi-Level Training Dataset Design in HiMan-Bench

Figure 2: This figure illustrates the key design of HiMan-Bench, including (1) HiMan-Bench task distribu-
tion, and (2) multi-level training dataset design in HiMan-Bench.

learning from large-scale trajectories. In contrast, methods such as PerAct (Shridhar et al., 2023),
RVT (Goyal et al., 2023), RVT-2 (Goyal et al., 2024), and 3D Diffuser Actor (Ke et al., 2024)
leverage 3D representations to achieve fine-grained action prediction. These approaches, however,
often lack the explicit task-planning capabilities. To tackle long-horizon manipulation tasks, many
works (Wen et al., 2024; Chen et al., 2025d; Shi et al., 2025; Wen et al., 2025; Gao et al., 2025)
adopt hierarchical designs, where a foundation model decomposes instructions into sub-tasks that
low-level policies execute as actions. Yet these methods face two bottlenecks: (1) reliance on com-
plex prompt engineering and handcrafted pipelines, limiting scalability; and (2) error accumulation
when low-level policies fail to reliably follow high-level plans (Han et al., 2025). In HiMan-Bench,
we use natural language as the interface and evaluate both rule-based and VLM-based high-level
planners paired with low-level policies (Goyal et al., 2024; Ke et al., 2024; Black et al., 2024; 2025)
to systematically analyze the challenges faced at each hierarchy in complex long-horizon tasks.

3 ROBOHIMAN

In this section, we present RoboHiMan, a hierarchical evaluation paradigm for studying com-
positional generalization in long-horizon manipulation under perturbations. Sec. 3.1 introduces
HiMan-Bench, a benchmark comprising both atomic and compositional tasks with diverse perturba-
tions, along with a progressive multi-level training dataset spanning atomic to compositional skills.
Sec. 3.2 outlines the hierarchical evaluation paradigm, which includes three modes: vanilla, de-
coupled, and coupled. Together, these components form a unified framework for analyzing model
performance in compositional long-horizon manipulation.

3.1 HIMAN-BENCH

Task and Perturbation Factors Design. We construct HiMan-Bench following the task design
paradigm of RLBench (James et al., 2020), implemented with the PyRep (James et al., 2019) API
atop the CoppeliaSim (Rohmer et al., 2013) simulator. Building on the 10 atomic tasks and 12 com-
positional tasks provided by DeCoBench (Chen et al., 2025f), we leverage the Colosseum (Pumacay
et al., 2024) API to extend the task set, ultimately constructing the HiMan-Bench distribution
comprising 114 atomic tasks and 144 compositional tasks. Each atomic task consists of two sub-
stages, segmented by discrete robot-state changes to capture fundamental manipulator-object inter-
actions (James & Davison, 2022; Chen et al., 2025f;d), which are further composed into multi-stage
tasks. Some tasks require cross-domain transfer (e.g., from drawer to cupboard manipulation). Even
with atomic skills mastered, models must still correctly schedule and compose them to follow long-
horizon language instructions such as “take the strawberry jello out of the drawer and put it into
the cupboard”, highlighting challenges in long-horizon planning, cross-domain generalization, and
robust skill composition.

Specifically, to systematically investigate the role of skill composition in long-horizon tasks and its
robustness under environmental perturbations, we adopt 12 perturbation factors introduced in Colos-
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Figure 3: The overview of hierarchical evaluation paradigm
seum (Pumacay et al., 2024): manipulation object color (MO Color), texture (MO Texture), and
size (MO Size); receiver object color (RO Color), texture (RO Texture), and size (RO Size);
light color (Light Color); table color (Table Color) and texture (Table Texture); dis-
tractor objects (Distractor); background texture (Background Texture); and camera pose
(Camera Pose). The perturbation space covers 20 colors, 213 textures, and 78 distractor objects
sampled from the YCB Object Dataset (Çalli et al., 2015). Object size scaling ranges depend on the
specific task (e.g., cupboard [0.75, 1.15], drawer [0.9, 1.15]). Lighting perturbations are applied by
sampling RGB values from [0.0, 0.0, 0.0] to [0.5, 0.5, 0.5], while camera perturbations are applied to
three viewpoints (front, left shoulder, right shoulder) with position offsets in [−0.1,−0.1,−0.1] to
[0.1, 0.1, 0.1] and Euler-angle perturbations in [−0.05,−0.05,−0.05] to [0.05, 0.05, 0.05]. This de-
sign aligns with existing benchmarks while extending evaluation to more challenging tasks, thereby
enabling systematic assessment of robustness and generalization. Fig. 2(a) illustrates the distribu-
tion of atomic and compositional task instances across different perturbation factors and variants
in HiMan-Bench. For clarity, HiMan-Bench organizes tasks into four categories: atomic (A)-
10 tasks, atomic with perturbations (AP)-104 tasks, compositional (C)-12 tasks, and compo-
sitional with perturbations (CP)-132 tasks. Additional implementation details are provided in
Appendix B.

Multi-level Training Dataset Design. HiMan-Bench proposes a hierarchical training data design
to systematically investigate the impact of different data “recipes” on generalization performance.
This design covers configurations ranging from the most challenging to the most comprehensive,
strictly following a progressive order from difficult to easy (from difficult to easy). The construction
details of each layer (data recipes and the number of expert demonstrations) are summarized in
Fig. 2(b). L1: Contains demonstrations of A tasks, with 20 demonstrations for each task. This is the
most challenging setting. If a model trained on this dataset performs well on compositional tasks, it
indicates strong compositional generalization ability. L2: Builds upon L1 by introducing AP tasks,
with 1 demonstration per AP task. The goal is to improve robustness across diverse variants, which
is crucial for reducing error accumulation in long-horizon tasks. L3: Extends L2 by including
demonstrations of 4 C tasks ( put in without close, sweep and drop, take out without close, and
transfer box), with 5 demonstrations per task. This allows the model to directly observe part of the
multi-step compositional processes. L4: Further extends L3 by introducing CP tasks for the 4 C
tasks, with 1 demonstration per CP task. This exposes the model to more compositional scenarios.

3.2 HIERARCHICAL EVALUATION PARADIGM

RoboHiMan employs a hierarchical evaluation paradigm for different models: a high-level planner
first decomposes the instruction into subtasks relevant to the current stage, while a low-level policy
executes these subtasks by generating robot actions. Formally, both the planner and the policy take
as input a natural language instruction l and a visual observation o, where o can be either multi-view
2D signals (e.g., RGB images) or 3D representations (e.g., point clouds). The planner then produces
a subtask description s, which the low-level policy translates into a sequence of robot actions {a1:T }.
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For comparison, we also consider a non-hierarchical baseline, in which the planner is omitted and
the low-level policy directly maps (l, o) to {a1:T }. This contrast enables explicit evaluation of the
contribution of hierarchical design to generalization in long-horizon compositional tasks.

Evaluation Paradigm. As illustrated in Fig. 3, the RoboHiMan evaluation paradigm is organized
into three settings: 1) Vanilla (Non-hierarchical, Online). The low-level policy executes the entire
task online directly from the original instruction without planner, serving as a non-hierarchical base-
line. 2) Decoupled (Hierarchical, Planner and Policy Evaluated Separately). This paradigm
aims to analyze the limitations of the high-level planner and low-level policy independently, and
includes two variants: i) Rule-based Planner (Online): A rule-based planner schedules subtasks
online based on robot state changes, with transition boundaries given by annotations. Following De-
CoBench (Chen et al., 2025f), we use physical interaction changes between the gripper and objects
to determine transitions. Despite its heuristic nature, this mode provides a strong baseline for the
low-level policy. ii) VLM-based Planner (Offline): A vision-language model is evaluated as the plan-
ner in an offline setting. The model predicts the current subtask at fixed intervals, and its planning
accuracy is measured in a VQA-style evaluation, reflecting its ability in scene understanding and
task decomposition. 3) Coupled (Hierarchical, Online). The full hierarchical architecture is de-
ployed online. The VLM-based planner generates subtask descriptions upon detecting gripper state
transitions, which are then executed by the low-level policy. This setting evaluates the end-to-end
integration of planning and execution.

4 EXPERIMENTS

We conduct experiments to address the questions below: Q1: Skill Composition Without Planning
(Sec. 4.2). Can models without a planner reliably combine atomic skills to solve tasks? Q2: Scaling
Effects of Training Data (Sec. 4.3). How does performance change as training data expands from
atomic to compositional tasks with perturbations? Q3: Sensitivity to Perturbations (Sec. 4.4).
Which perturbations most hinder skill composition, and how do models handle them? Q4: Gen-
eralization to Unseen Compositions (Sec. 4.5). Can models generalize to new task compositions
beyond those seen in training? Q5: Bottlenecks in Hierarchical Architectures (Sec. 4.6). Do fail-
ures stem from flawed planning, weak execution, or both? Q6: Real-World Validation (Sec. 4.7).
Do real-world tasks face similar challenges, and can hierarchical architectures help?

4.1 EXPERIMENTAL SETUP

All simulation experiments are conducted on the proposed HiMan-Bench tasks introduced in
Sec. 3.1, while the detailed setup of the real-world experiments is provided in the Appendix D.

High-Level Planner. We adopt Qwen2.5-VL (Bai et al., 2025) as the vision-language model (VLM)
backbone for the high-level planner. The training process is based on frames sampled at fixed
intervals from demonstration data, using the current frame’s visual observation and the full task
instruction as input, and the corresponding subtask description as output. The model is fine-tuned
on the HiMan-Bench dataset, with training and inference prompts detailed in Appendix C.1.

Low-Level Policy. We select four state-of-the-art VLA models (RVT-2 (Goyal et al., 2024), 3D
Diffuser Actor (Ke et al., 2024), π0 (Black et al., 2024), and π0.5 (Black et al., 2025)) as low-level
policies. For each baseline model, we follow the original policy design but modify the handling
of language inputs. Since language plays a crucial role in distinguishing stages and guiding skill
composition, we provide stage-specific instructions at different execution points. The input-output
formats of each baseline model are summarized in Table 3, and the implementation details are
provided in Appendix C.1.

Evaluation Metric. For atomic tasks, we generate 720 episodes for evaluation, and for composi-
tional tasks, 900 episodes. For each task, we include 15 episodes without perturbations (denoted
as None) and 5 episodes for each perturbation factor, plus 5 episodes with all perturbations en-
abled (denoted as All). During online evaluation, the environment is configured to match these test
episodes. Because of variations in object placement or workspace sampling, some offline episodes
are not fully reproducible online. We therefore report results only on valid episodes, which account
for about 90% of the total. Performance is reported as the average success rate over atomic tasks (A),
perturbed atomic tasks (AP), compositional tasks (C), and perturbed compositional tasks (CP). For
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offline evaluation, we measure only the high-level planner’s subtask prediction accuracy. Frames
are sampled every 10 steps for atomic tasks and every 30 steps for compositional tasks, and each
sampled frame is modeled as a VQA instance to evaluate planning accuracy.

4.2 SKILL COMPOSITION WITHOUT PLANNING

To address Q1, we train four baseline VLA models on HiMan-Bench’s multi-level datasets and eval-
uate them on diverse test sets. In Fig. 1(c), models without a planner (Vanilla) show marginal gains
from richer data, and their performance on both compositional (C) and perturbed compositional (CP)
tasks remains near zero, indicating that models without a planner cannot compose atomic skills into
coherent long-horizon behaviors. In contrast, rule-based planner (RP) variants achieve substantial
improvements, especially with compositional (L3) and perturbed (L4) training data.

Finding: (i) Data diversity and scale offer limited benefits for Vanilla models, slightly improving
robustness but failing to enable skill composition. (ii) Explicit planning is essential, as it supports
robust skill composition and underscores the role of hierarchical reasoning in complex long-
horizon tasks.

4.3 SCALING EFFECTS OF TRAINING DATA

Figure 4: Performance scaling curves on atomic and composi-
tional tasks under different scaling levels.

Regarding Q2, the results in Fig. 4 il-
lustrate the scaling effects of multi-
level training data under a rule-based
planner. For evaluations on atomic
tasks (A&AP), all models show an
upward trend in performance from L1
to L2. This indicates that adding ex-
pert trajectories of atomic skills un-
der perturbations can indeed enhance
model robustness. However, after in-
corporating compositional skill data, the performance on atomic tasks improves only marginally and
may even degrade in some cases. In contrast, for all compositional tasks (C&CP), models trained
only with atomic-level data (L1, L2) fail to generalize to compositional settings. Although π0-RP,
π0.5-RP, and RVT2-RP show some improvement when trained with L3 and L4 data, the gains remain
marginal. By comparison, 3D-Diffuser-Actor-RP benefits from L2 training with modest generaliza-
tion gains, but its performance drops at L3 and improves again at L4. For compositional tasks, even
with multi-level data including perturbations and compositional demonstrations, the generalization
ability of current models remains highly constrained, revealing a clear bottleneck.

Finding: (i) Scaling atomic-skill data improves atomic performance and, as robust atomic exe-
cution is a prerequisite, also benefits compositional tasks. (ii) Increasing both the quantity and
diversity of compositional-skill training data further enhances model performance on composi-
tional tasks. However, the overall success rate remains low, even though all compositional tasks
can in principle be solved by combining the atomic skills the model has learned.

4.4 SENSITIVITY OF SKILL COMPOSITION TO PERTURBATIONS.
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Figure 5: Robustness under perturbations across different settings.
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To investigate Q3, we conduct robustness experiments to systematically analyze the effects of pertur-
bations across different tasks and model scales. As shown in Fig. 5, model robustness exhibits con-
sistent trends under various perturbation factors. Fig. 5(a) shows that skill composition is particularly
sensitive to perturbations such as object color (MO Color, RO Color), texture (MO Texture,
RO Texture), and all factors enabled (All). Models trained only on atomic data (L1, L2) display
limited adaptability, whereas introducing even a small amount of perturbed data in compositional
tasks (L3, L4) leads to improvements: the model not only learns skill composition but also becomes
more robust to unseen variations in appearance, geometry, and viewpoint. Fig. 5(b) and Fig. 5(c)
further compare different architectures. RVT-2 and 3D Diffuser-Actor consistently outperform the
baseline policies π0 and π0.5 across all training scales, while π0.5 performs better than π0.

Finding: (i) For compositional tasks with various perturbations, including perturbed
compositional-skill data in training, effectively improves the model’s robustness in performing
compositional tasks. In comparison, adding perturbed atomic-skill data alone provides only lim-
ited gains in robustness. (ii) Both data design and architectural inductive biases (e.g., keyframe
selection, 3D information integration) contribute to improved generalization and robustness.

4.5 COMPOSITIONAL GENERALIZATION TO UNSEEN TASKS

Figure 6: Generalization performance
on seen/unseen compositional tasks.

To answer Q4, we evaluate the baseline VLA models after L4
training, where testing covers 12 compositional tasks and their
perturbed versions (C&CP), among which 4 tasks were already
seen in training (see Sec. 3.1 and Appendix C for details). As
shown in Fig. 6, RVT2-RP and 3D Diffuser-Actor-RP achieve
relatively low success rates even on the seen C&CP tasks, in-
dicating that the models have not sufficiently mastered the cor-
responding compositional skills. On the unseen tasks, the suc-
cess rates remain similarly limited, further suggesting a lack
of effective compositional generalization. In contrast, while
π0 and π0.5 achieve moderate performance on seen tasks, they
almost completely fail on unseen tasks, which further highlights their lack of generalization.

Finding: Even with partial exposure to compositional skills during training, current models still
show clear limitations in learning and utilizing skill compositions, making it difficult to achieve
true compositional generalization on unseen tasks.

4.6 BOTTLENECKS IN HIERARCHICAL ARCHITECTURES

Atomic Task

VLM: place the block in the bottom drawer✓

GT: place the block in the bottom drawer
Compositional Task

GT: grasp the top drawer handle

VLM: place the block in the bottom drawer✗

Compositional Task
GT: sweep dirt to dustpan

VLM: drop the rubbish into the dustpan✗

L1→A&AP L1→C&CP L2→A&AP L2→C&CP L3→A&AP L3→C&CP L4→A&AP L4→C&CP

Qwen2.5VL-7B (Offline) 0.466 0.153 0.676 0.182 0.673 0.181 0.610 0.305

RVT2-RP (Online) 0.590 0.281 0.678 0.287 0.653 0.357 0.603 0.395
RVT2-VLM (Online) 0.351 0.000 0.369 0.002 0.432 0.000 0.316 0.013

Performance Drop (↓) 0.239 0.281 0.309 0.285 0.221 0.357 0.287 0.382

Table 2: Comparison of offline vs. online evaluation. Blue numbers show RVT2-VLM performance drops
relative to RVT2-RP.

Regarding Q5, Table 2 reveals the core bottlenecks of hierarchical architectures. In offline evalua-
tion, when the planner is trained solely on atomic skill data, its generalization to unseen composi-
tional skills is clearly limited; even after introducing some compositional skills during training, the
success rate improves but remains relatively low. In online evaluation, this issue is further amplified,
and the impact of planning errors becomes more pronounced. Specifically, in online evaluation, both
RVT2-RP and RVT2-VLM maintain strong performance on atomic tasks and their perturbed variants
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(A&AP). However, on compositional tasks and perturbed compositional tasks (C&CP), RVT2-VLM
shows a significant performance drop compared to RVT2-RP. In particular, in L4→C&CP setting,
its success rate decreases by 0.382, revealing marked vulnerability. Further analysis indicates that
performance degradation in complex tasks stems from the compounded effects of planning failures
and low-level policy execution issues. The VLM-based high-level planner fails to fully leverage the
capabilities of the low-level policy when dealing with long-horizon compositional tasks.

Finding: The bottlenecks of hierarchical architectures stem from three main issues: (i) the high-
level planner may generate incorrect plans. (ii) the low-level policy may fail during execution.
(iii) if the hierarchical system is not properly designed, failures at the high or low level are not
effectively handled, leading to error accumulation and eventual task failure.

4.7 REAL-WORLD VALIDATION

Diverse Perturbations --> Fail Rule-Based Planner (Success)Vanilla (Fail)

Figure 7: Real World Experimental Results.
To answer Q6, we conduct real-world validation experiments (Appendix D). We designed a small
set of atomic skills, their long-horizon compositions, and diverse perturbations (e.g., distractors,
object position changes, and human interventions). In Fig. 7, end-to-end execution without a planner
(π0.5-vanilla) achieved only 17.5% success on compositional tasks, dropping further to 10.0% under
perturbations. In contrast, pairing the same low-level policy with a rule-based planner(where the arm
moves to the next human-annotated sub-instruction whenever it stays idle near the initial pose for
a fixed duration), π0.5-RP substantially improved performance to 47.5% and 27.5%, respectively.
These results confirm: (i) real-world long-horizon manipulation indeed faces compositional
generalization challenges under perturbations, and (ii) hierarchical architectures demonstrate
clear potential benefits, achieving higher performance when an idealized planner selects sub-
instructions.

5 CONCLUSION

In this work, we propose RoboHiMan, a hierarchical evaluation paradigm for studying composi-
tional generalization under perturbations in long-horizon manipulation. RoboHiMan first intro-
duces a novel benchmark, HiMan-Bench, which evaluates the ability of different VLA models to
compose atomic skills into long-horizon behaviors under diverse perturbations. In addition, we
design three evaluation paradigms that can effectively disentangle the sources of planning and exe-
cution failures across progressively expanded training settings. Based on extensive experiments, we
draw the following key conclusions: (1) Compositional skill learning is intrinsically challenging,
and simply scaling up data cannot fundamentally solve this problem; (2) Model robustness to per-
turbations is as critical as compositionality itself; (3) Hierarchical systems require stronger feedback
mechanisms to achieve effective coordination between planning and execution.

Looking forward, RoboHiMan opens up promising research directions for the robotics and VLA
communities. Future work should explore robust skill composition mechanisms, feedback-rich
hierarchical architectures, and perturbation-aware training recipe that improve robustness un-
der distribution shifts. Equally important is the development of scalable compositional datasets
and new evaluation metrics that go beyond task success to capture error recovery and skill reusabil-
ity. By providing both a challenging benchmark and an analytical framework, RoboHiMan aims to
accelerate progress toward building generalizable robotic agents capable of reliable long-horizon
manipulation in realistic environments.
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ETHICS STATEMENT

Our experiments are limited to desktop-level robot manipulation in simulated and controlled envi-
ronments. As such, we do not expect our work to pose significant societal risks. Future work should
consider safety when extending to real-world scenarios.

REPRODUCIBILITY STATEMENT

We have made resources to facilitate reproduction of our results publicly accessible. Specifically,
our anonymous project repository (https://robohiman.github.io/ ) provides code, documentation, and
example visualizations of our experiments. Detailed experimental settings can be found in Ap-
pendix C.
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A THE USE OF LARGE LANGUAGE MODELS

We used a large language model (LLM) as a general-purpose tool to assist with writing and polishing
the manuscript; all ideas, experiments, and analyses are our own, and we take full responsibility for
the content.

B TASK DESIGN IN SIMULATION

HiMan-Bench consists of 114 atomic tasks (A&AP) shown in Fig. 8 and 144 compositional tasks
(C&CP) shown in Fig. 9. The specific task types without perturbations follow the same design as
DecoBench (Chen et al., 2025f), while the perturbation types are selected from Colosseum (Pumacay
et al., 2024). For completeness, we provide a detailed description of the task specifications here.

B.1 ATOMIC TASKS

(1) open drawer
Description: Grasp the <top/middle/bottom> drawer handle; Pull the <top/middle/bottom>
drawer open.
Success Metric: Success when the specified drawer is opened by at least 0.15 meters.

(2) close drawer
Description: Move close to the <top/middle/bottom> drawer handle; Push the <top/middle/bot-
tom> drawer shut.
Success Metric: Success when the target drawer is pushed to within 0.03 meters of its fully closed
position.

(3) put in opened drawer
Description: Pick up the block on the drawer’s surface; Place the block in the <top/middle/bottom>
drawer.
Success Metric: Success when the block is detected by the proximity sensor inside the target drawer.

(4) take out of opened drawer
Description: Pick up the block in the <top/middle/bottom> drawer; Place the block on the drawer’s
surface.
Success Metric: Success when the block is detected by the proximity sensor on the drawer’s surface.

(5) box out of opened drawer
Description: Pick up the strawberry jello box in the <top/middle/bottom> drawer; Place it on the
drawer’s surface.
Success Metric: Success when the jello box is detected on the drawer’s surface, outside of the
drawer.

(6) box in cupboard
Description: Pick up the <strawberry jello/spam/sugar> on the table; Place the item in the cup-
board.
Success Metric: Success when the item is detected inside the cupboard by a proximity sensor.

(7) box out of cupboard
Description: Pick up the <strawberry jello/spam/sugar> in the cupboard; Place the item on the
table.
Success Metric: Success when the item is detected on the table by a proximity sensor.

(8) broom out of cupboard
Description: Pick up the broom in the cupboard; Place the broom on the table.
Success Metric: Success when the broom is detected on the table by a proximity sensor.

(9) sweep to dustpan
Description: Pick up the broom on the table; Sweep dirt into the dustpan.
Success Metric: Success when all dirt particles are detected in the dustpan by a proximity sensor.
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(10) rubbish in dustpan
Description: Pick up the rubbish on the table; Drop the rubbish into the dustpan.
Success Metric: Success when the rubbish is detected inside the dustpan by a proximity sensor.

(a) Open Drawer

(b) Close Drawer (c) Put Block in Opened Drawer (d) Box in Cupboard

(e) Box out of Opened Drawer (f) Sweep to Dustpan (g) Box out of Cupboard

(h) Broom out of Cupboard (i) Rubbish in Dustpan (j) Take out of Opened Drawer

Figure 8: Atomic tasks with perturbations.

B.2 COMPOSITIONAL TASKS

(1) put in without close
Description: Grasp the <top/middle/bottom> drawer handle; Pull the <top/middle/bottom>
drawer open; Pick up the block on the drawer’s surface; Place the block in the <top/middle/bot-
tom> drawer.
Success Metric: Success when the block is detected inside the specified drawer by a proximity
sensor.

(2) take out without close
Description: Grasp the <top/middle/bottom> drawer handle; Pull the <top/middle/bottom>
drawer open; Pick up the block in the <top/middle/bottom> drawer; Place the block on the drawer’s
surface.
Success Metric: Success when the block is detected on the drawer’s surface by a proximity sensor.

(3) put in and close
Description: Grasp the <top/middle/bottom> drawer handle; Pull the <top/middle/bottom>
drawer open; Pick up the block on the drawer’s surface; Place the block in the <top/middle/bot-
tom> drawer; Push the <top/middle/bottom> drawer shut.
Success Metric: Success when the block is inside the specified drawer and the drawer is closed.

(4) take out and close
Description: Grasp the <top/middle/bottom> drawer handle; Pull the <top/middle/bottom>
drawer open; Pick up the block in the <top/middle/bottom> drawer; Place the block on the drawer’s
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surface; Push the <top/middle/bottom> drawer shut.
Success Metric: Success when the block is on the drawer’s surface and the drawer is closed.

(5) put two in same
Description: Grasp the <top/middle/bottom> drawer handle; Pull the drawer open; Pick up the first
block on the drawer’s surface; Place the first block in the drawer; Pick up the second block on the
drawer’s surface; Place the second block in the same drawer.
Success Metric: Success when both blocks are detected inside the specified drawer.

(6) take two out of same
Description: Grasp the <top/middle/bottom> drawer handle; Pull the drawer open; Pick up the first
block in the drawer; Place the first block on the drawer’s surface; Pick up the second block in the
drawer; Place the second block on the drawer’s surface.
Success Metric: Success when both blocks are detected on the drawer’s surface.

(7) put two in different
Description: Grasp the first drawer handle; Pull the drawer open; Pick up the first block on the
drawer’s surface; Place the first block in the first drawer; Push the drawer shut; Grasp the second
drawer handle; Pull the drawer open; Pick up the second block; Place the second block in the second
drawer.
Success Metric: Success when each block is detected inside its corresponding drawer.

(8) take two out of different
Description: Grasp the first drawer handle; Pull the drawer open; Pick up the first block in the
drawer; Place the first block on the drawer’s surface; Push the drawer shut; Grasp the second drawer
handle; Pull the drawer open; Pick up the second block; Place the second block on the drawer’s
surface.
Success Metric: Success when both blocks are detected on the drawer’s surface.

(9) box exchange
Description: Pick up the sugar in the cupboard; Place the sugar on the table; Pick up the spam on
the table; Place the spam in the cupboard.
Success Metric: Success when the sugar is on the table and the spam is in the cupboard.

(10) sweep and drop
Description: Pick up the rubbish on the table; Drop the rubbish into the dustpan; Pick up the broom;
Sweep dirt into the dustpan.
Success Metric: Success when all dirt pieces and rubbish are detected in the dustpan.

(11) transfer box
Description: Grasp the <top/middle/bottom> drawer handle; Pull the drawer open; Pick up the
strawberry jello in the drawer; Place the strawberry jello in the cupboard.
Success Metric: Success when the strawberry jello is detected inside the cupboard.

(12) retrieve and sweep
Description: Pick up the broom in the cupboard; Sweep dirt into the dustpan.
Success Metric: Success when all dirt pieces are detected in the dustpan.

C ADDITIONAL EXPERIMENTS IN SIMULATION

C.1 IMPLEMENTATION DETAILS

Low-level Policy. We select four state-of-the-art VLA models (RVT-2 (Goyal et al., 2024), 3D
Diffuser Actor (Ke et al., 2024), π0 (Black et al., 2024), and π0.5 (Black et al., 2025)) as low-level
policies. RVT-2: A two-stage multi-view transformer that predicts coarse regions of interest and
refines gripper poses using zoomed-in views. Trained with 4 views, batch size 24, for 15 epochs
(100k steps). 3D Diffuser Actor: A conditional 3D diffusion transformer that integrates tokenized
3D scene representations, language, and proprioception. Trained with a batch size of 8 for 600k
steps. π0: A VLA transformer that combines a pre-trained VLM with a continuous-action expert
via flow matching. Trained with a batch size of 32 for 50k steps, with an action chunk size of 50.
π0.5: Extends π0 by incorporating multimodal inputs and hierarchical inference, enabling broader
generalization. Trained with the same batch size and settings as π0.
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(a) Box Exchange (b) Put in and Close (c) Put in without Close

(d) Put Two in Different (e) Put Two in Same (f) Retrieve and Sweep

(g) Sweep and Drop (h) Take out and Close (i) Take out without Close

(j) Take Two out of Different (k) Take Two out of Same (l) Transfer Box

Figure 9: Compositional tasks with perturbations.

Table 3 summarizes the configuration of the low-level policies used in our hierarchical framework.
RVT-2 and 3D Diffuser Actor take multi-view RGB images from front, wrist, and left/right shoulder
cameras, while π0 and π0.5 receive RGB images from front and wrist cameras only. For language
processing, RVT-2 and 3D Diffuser Actor use CLIP (Radford et al., 2021), whereas π0 and π0.5 use
PaliGemma-3B (Beyer et al., 2024). Action prediction is modeled differently for these groups: RVT-
2 and 3D Diffuser Actor follow the paradigm used in (James & Davison, 2022; James et al., 2022;
Shridhar et al., 2023), predicting the next keypoint in the trajectory rather than the full trajectory,
which reduces learning difficulty and improves training efficiency. In contrast, π0 and π0.5 are
trained on data sampled at 20 Hz, with an action horizon of 50 frames.

Model View Vision Modality Language Encoder Action

RVT-2 Front & Wrist & Left Shoulder
& Right Shoulder

Multi-View Re-rendered
RGB CLIP Next Keypoint Prediction

& EEF Pose

3D Diffuser Actor Front & Wrist & Left Shoulder
& Right Shoulder RGB-D CLIP Next Keypoint Prediction

& EEF Pose

π0 Front & Wrist RGB PaliGemma-3B Trajectory & Joint

π0.5 Front & Wrist RGB PaliGemma-3B Trajectory & Joint

Table 3: Input, output, and language encoder configurations of low-level policies.
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High-level planner. We use Qwen2.5-VL (Bai et al., 2025) as an implementation of a high-level
planner. To construct training data, we sample one frame every ten frames from the robot trajectories
as input, and the output includes the reasoning and the current sub-task stage. The template for
predicting the next sub-task is shown in Table 4. For generating reasoning data, we use the prompt
template in Table 5, where we provide the sampled frame, the sub-task description, and the frame
at which the sub-task ends, and the model generates reasoning conditioned on the answer, i.e.,
explaining why the sub-task should be performed based only on the start frame and task instruction.

Prompt Template: Next Sub-task Prediction

This is a tabletop manipulation scene with a Franka robotic arm. The task is:
{task description}.

You are given {image paths|length} different views of the same scene: {image paths}
Based on the task and the current scene, determine what the robot should do next (the next sub-task).

Output in the following XML format: <reasoning> natural language description of reasoning
</reasoning> <sub task> natural language description of the next sub-task </sub task>

Table 4: Prompt Template for Next Sub-task Prediction in VLM-based Planner.

Prompt Template: Sub-task Reasoning

This is a tabletop manipulation scene with a Franka robotic arm. The task is:
{task description}.

You are given the following images:

- Start frame views: {start frame images}
- End frame views [just for understanding]: {end frame images}
The sub-task performed to move from the start frame towards the end frame is: {sub task}
Provide reasoning for why this sub-task should be performed next, based only on the start frame and
task instruction. Do not use information from the end frame in your reasoning.

Output in the following XML format: <reasoning> Describe the scene first, then explain why this
sub-task is chosen based on the start frame and task instruction only. </reasoning>

Table 5: Prompt Template for Sub-task Reasoning in VLM-based Planner.

C.2 DETAILED RESULTS

This section presents detailed experimental results. Table 6 summarizes the performance of different
hierarchical frameworks trained with varying levels of data across different types of tasks. Table 7
lists the variation factors corresponding to the numeric headers used in the following tables. Ta-
bles 8–11 report the performance of each model under different perturbations for both atomic and
compositional tasks, providing a comprehensive view of how various models handle disturbances in
the environment.

D EXPERIMENTAL SETUP FOR REAL WORLD

Robot Setup. We use Cobot Mobile ALOHA, a robot based on the Mobile ALOHA system de-
sign (Fu et al., 2025). It is equipped with two wrist cameras and a front camera. In our experiments,
we primarily use the right arm, which provides 6-DoF joints plus one gripper degree of freedom,
while the left arm remains static.
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L1 → A&AP L1 → C&CP L2 → A&AP L2 → C&CP L3 → A&AP L3 → C&CP L4 → A&AP L4 → C&CP

RVT2-RP 0.590 0.281 0.678 0.287 0.653 0.357 0.603 0.395
3D-Diffuser-Actor-RP 0.759 0.004 0.882 0.143 0.880 0.062 0.898 0.335
π0-RP 0.463 0 0.522 0 0.540 0.020 0.553 0.065
π0.5-RP 0.502 0 0.551 0 0.532 0.048 0.556 0.105

RVT2-Vanilla 0.092 0 0.105 0.001 0.063 0.001 0.117 0
3D-Diffuser-Actor-Vanilla 0.103 0 0.235 0 0.052 0 0.259 0
π0-Vanilla 0.153 0 0.168 0 0.126 0 0.162 0.005
π0.5-Vanilla 0.085 0 0.089 0 0.091 0 0.099 0.006

Table 6: Performance across different training levels (L1–L4) and test task (A&AP, C&CP).

Index 0 1 2 3 4 5 6
Perturbation No variation factors All variation factors MO Color RO Color MO Texture RO Texture MO Size

Index 7 8 9 10 11 12 14
Perturbation RO Size Light Color Table Color Table Texture Distractor Objects Background Texture Camera Pose

Table 7: Description of variation factor indices.

0 1 2 3 4 5 6 7 8 9 10 11 12 14

L1 → A&AP 0.707 0.087 0.391 0.385 0.611 0.480 0.800 0.641 0.511 0.578 0.729 0.681 0.739 0.660
L1 → C&CP 0.384 0.018 0.250 0.017 0.310 0 0.366 0.435 0.172 0.302 0.255 0.404 0.388 0.370
L2 → A&AP 0.771 0.326 0.543 0.447 0.722 0.680 0.711 0.795 0.783 0.756 0.604 0.652 0.826 0.681
L2 → C&CP 0.313 0.060 0.236 0.148 0.298 0.133 0.417 0.383 0.196 0.319 0.300 0.389 0.365 0.354
L3 → A&AP 0.757 0.227 0.467 0.605 0.778 0.520 0.744 0.692 0.622 0.667 0.688 0.638 0.783 0.745
L3 → C&CP 0.467 0.179 0.273 0.143 0.412 0.067 0.471 0.341 0.310 0.462 0.356 0.341 0.421 0.422
L4 → A&AP 0.686 0.318 0.578 0.526 0.611 0.360 0.625 0.641 0.600 0.622 0.688 0.644 0.609 0.638
L4 → C&CP 0.455 0.174 0.275 0.196 0.409 0 0.619 0.511 0.373 0.385 0.440 0.438 0.435 0.477

Table 8: RVT2-RP performance across different training levels, test tasks, and perturbations.

0 1 2 3 4 5 6 7 8 9 10 11 12 14

L1 → A&AP 0.946 0.051 0.750 0.811 0.800 0.920 0.812 0.875 0.795 0.936 0.159 0.727 0.773 0.957
L1 → C&CP 0.006 0 0 0 0 0 0.023 0 0 0 0 0.019 0 0
L2 → A&AP 0.151 0.037 0.148 0.145 0.043 0.333 0.067 0.148 0.173 0.148 0.127 0.151 0.161 0.200
L2 → C&CP 0.971 0.452 0.957 0.944 0.882 0.840 0.821 0.882 0.957 0.896 0.702 0.891 0.913 1.000
L3 → A&AP 0.955 0.333 0.978 0.973 0.938 0.920 0.806 0.969 0.978 0.979 0.711 0.909 0.750 0.978
L3 → C&CP 0.063 0.041 0.037 0.077 0 0 0.050 0.055 0.020 0.098 0.104 0.078 0.080 0.120
L4 → A&AP 0.955 0.512 0.935 0.946 0.875 0.960 0.861 0.938 0.978 0.979 0.689 0.932 0.909 0.978
L4 → C&CP 0.393 0.113 0.286 0.385 0.319 0.200 0.447 0.377 0.346 0.418 0.157 0.339 0.400 0.333

Table 9: 3D-Diffuser-Actor-RP performance across different training levels, test tasks, and pertur-
bations.

0 1 2 3 4 5 6 7 8 9 10 11 12 14

L1 → A&AP 0.468 0.300 0.409 0.579 0.444 0.320 0.488 0.441 0.465 0.545 0.545 0.391 0.556 0.442
L1 → C&CP 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2 → A&AP 0.582 0.275 0.500 0.658 0.500 0.400 0.512 0.500 0.442 0.581 0.545 0.478 0.622 0.512
L2 → C&CP 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L3 → A&AP 0.574 0.289 0.533 0.711 0.556 0.360 0.585 0.500 0.488 0.545 0.636 0.578 0.533 0.512
L3 → C&CP 0.024 0.017 0 0.018 0.021 0.067 0 0.018 0.057 0 0.034 0.036 0 0.017
L4 → A&AP 0.560 0.300 0.578 0.658 0.722 0.440 0.605 0.588 0.628 0.581 0.568 0.511 0.600 0.442
L4 → C&CP 0.063 0 0.096 0.057 0.087 0.133 0.098 0.089 0.056 0.071 0.077 0.056 0.054 0.036

Table 10: π0-RP performance across different training levels, test tasks, and perturbations.

Task Design. For the real-world setting, we design a set of atomic and compositional tasks to
verify whether the challenges highlighted in RoboHiMan also arise in physical environments. The
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0 1 2 3 4 5 6 7 8 9 10 11 12 14

L1 → A&AP 0.503 0.310 0.511 0.553 0.611 0.560 0.600 0.514 0.455 0.511 0.556 0.391 0.596 0.455
L1 → C&CP 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2 → A&AP 0.566 0.366 0.543 0.553 0.778 0.480 0.500 0.657 0.545 0.545 0.667 0.404 0.574 0.614
L2 → C&CP 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L3 → A&AP 0.524 0.238 0.574 0.605 0.722 0.238 0.524 0.657 0.568 0.614 0.578 0.478 0.617 0.500
L3 → C&CP 0.037 0.074 0 0.019 0.060 0 0.070 0.070 0.069 0.018 0.051 0.075 0.036 0.088
L4 → A&AP 0.569 0.238 0.587 0.632 0.667 0.440 0.524 0.629 0.659 0.545 0.533 0.543 0.681 0.523
L4 → C&CP 0.114 0.040 0.123 0.074 0.096 0 0.182 0.103 0.130 0.093 0.136 0.057 0.161 0.069

Table 11: π0.5-RP performance across different training levels, test tasks, and perturbations.

atomic tasks include four skills as shown in Fig. 10: (1) open the top drawer (open drawer),
(2) close the top drawer (close drawer), (3) pick an item from the box and place it on the table
(box item on table), and (4) pick an item from the table and place it into the opened top drawer
(table item in opened drawer). On top of these primitives, we compose four long-horizon
tasks as shown in Fig. 11: (1) pick an item from the table, put it on the opened drawer, and then close
it (table item in opened drawer close), (2) open the top drawer, pick an item from the
table, put it inside, and then close the drawer (table item in drawer), (3) pick an item from the
box, put it into the opened drawer, and then close it (box item in opened drawer close),
and (4) open the top drawer, pick an item from the box, put it into the drawer, and then close the
drawer (box item in drawer).

(a) Open drawer (b) Close drawer

(c) Box item on table (d) Table item in opened drawer

Figure 10: Atomic Tasks in Real World.

To assess robustness, we further introduce three perturbation factors: (i) distractors, by placing
irrelevant objects in the scene; (ii) positional variations, by changing the initial locations or heights
of objects; and (iii) human interventions, such as moving objects during execution or occluding the
camera. These tasks and perturbations are not intended as a complete real-world benchmark, but
rather as evidence that the issues identified in RoboHiMan are also encountered in real physical
settings.

Training data. For training, we collected demonstrations covering both atomic and composi-
tional tasks. Specifically, each of the four atomic tasks—open the top drawer (open drawer),
close the top drawer (close drawer), pick an item from the box and place it on the table
(box item on table), and pick an item from the table and place it into the opened top drawer
(table item in opened drawer)—was recorded with 40 demonstrations each. For compo-
sitional tasks, we only selected one long-horizon task, namely opening the top drawer, picking an
item from the box, putting it into the drawer, and then closing the drawer (box item in drawer),
for which we recorded a single demonstration. In addition, for all selected tasks (both atomic and
compositional), we recorded one extra demonstration under each of the perturbation settings, in-
cluding distractors, object position variations, and human interventions. This setup ensures that the
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training data not only covers core skills but also explicitly exposes the model to diverse real-world
perturbations.

Evaluation. For real-world experiments, we adopted π0.5 as the low-level policy. Two evaluation
modes were considered: (i) directly executing the original instruction without any planner, and (ii)
using a rule-based planner, similar to the simulation setup, to decompose the task into subgoals. For
each compositional task, we evaluated 20 episodes in total, consisting of 10 trials without perturba-
tions and 10 trials with perturbations. The average success rate across these episodes was reported
as the final performance metric.

(b) Put item which is on the table into opened drawer then close

(c) Put item which is in the box  into opened drawer then close

(d) Put item which is on the table into drawer then close

(e) Put item which is in the box  into drawer then close

(a) Diverse Perturbations

Distractors

Positional 
Variations

human interventions

Figure 11: Compositional Tasks in Real World.
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