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Abstract

Autonomous vehicle (AV) systems rely on robust percep-001
tion models as a cornerstone of safety assurance. However,002
objects encountered on the road exhibit a long-tailed distri-003
bution, with rare or unseen categories posing challenges to004
a deployed perception model. This necessitates an expen-005
sive process of continuously curating and annotating data006
with significant human effort. We propose to leverage recent007
advances in vision-language and large language models to008
design an Automatic Data Engine (AIDE) that automati-009
cally identifies issues, efficiently curates data, improves the010
model through auto-labeling, and verifies the model through011
generation of diverse scenarios. This process operates it-012
eratively, allowing for continuous self-improvement of the013
model. We further establish a benchmark for open-world014
detection on AV datasets to comprehensively evaluate vari-015
ous learning paradigms, demonstrating our method’s supe-016
rior performance at a reduced cost.017

1. Introduction018

Autonomous vehicles (AVs) operate in an ever-changing019
world, encountering diverse objects and scenarios in a long-020
tailed distribution. This open-world nature poses a signifi-021
cant challenge for AV systems since it is a safety-critical022
application where reliable and well-trained models must be023
deployed. The need for continuous model improvement024
becomes apparent as the environment evolves, demand-025
ing adaptability to handle unexpected events. Despite the026
wealth of data collected on the road every minute, its effec-027
tive utilization remains low due to challenges in discerning028
which data to leverage. While solutions exist for this in in-029
dustry [1, 2], they are often trade secrets and presumably030
require significant human effort. Hence, developing a com-031
prehensive automated data engine can lower entry barriers032
for the AV industry.033

Designing automated data engines can be challenging,034
but the existence of Vision-Language Models (VLMs) and035
Large Language Models (LLMs) allows new avenues to036
these hard problems. A traditional data engine can be bro-037

Figure 1. Top: Components for DevOp systems for autonomous
driving. Bottom: With our automatic data system, we can achieve
similar performance with less labeling and training costs.

ken down into finding issues, curating and labeling data, 038
model training, and evaluation, all of which can benefit 039
from automation. In this paper, we propose an Automati- 040
cally Improving Data Engine (called AIDE) that leverages 041
VLMs and LLMs to automate the data engine. Specifi- 042
cally, we use VLMs to identify the issue, query relevant 043
data, auto-label data, and verify together with LLMs. The 044
high-level steps are shown in Fig. 1 top. 045

In contrast to traditional data engines that rely heavily 046
on extensive human labeling and intervention, AIDE auto- 047
mated the process by utilizing pre-trained VLMs and LLMs. 048
Different from other confidential solutions in industry [1, 049
2], we provide our efficient solutions to lower the entry 050
barrier. While open-vocabulary object detection (OVOD) 051
methods [3, 4] do not require any human annotations, they 052
are a good starting point for detecting novel objects but their 053
performances fall short on AV datasets compared to super- 054
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vised methods. Another line of research on minimizing la-055
beling costs is semi-supervised learning [5, 6] and active056
learning [7–10]. Although they generate pseudo-labels, the057
vast amount of data collected on the road is still not fully058
utilized, in contrast with our method which leverages pre-059
trained VLMs and LLMs for better data utilization.060

The detailed steps of AIDE are shown in Fig. 2. In061
the Issue Finder, we use a dense captioning model to de-062
scribe the image in detail, then match if the objects in the063
description are included in the label spaces or the predic-064
tions. This is based on the reasonable but previously unex-065
ploited assumption that large image captioning models are066
more robust starting points in zero-shot settings than OVOD067
(Tab. 3). The next step is to find relevant images that could068
contain the novel category using our Data Feeder. We find069
that VLM gives more accurate image retrieval than using070
image similarity to retrieve images (Tab. 4). We then use071
our existing label space plus the novel category to prompt072
the OVOD method, i.e., OWL-v2 [11], to generate predic-073
tions on the queried images. To filter these pseudo predic-074
tions, we use CLIP to perform zero-shot classification on075
the pseudo-boxes to generate pseudo-labels for the novel076
categories. Last, we exploit the LLM, e.g., ChatGPT [12],077
in Verification to generate diverse scene descriptions given078
the novel objects. Given the generated description, we again079
use VLM to query relevant images to evaluate the updated080
model. To ensure the correctness, we ask humans to review081
if the predictions of the novel categories are correct. If it is082
not, we ask humans to provide ground-truth labels, which083
are used to further improve the model. (Fig. 6)084

To verify the effectiveness of our AIDE, we propose a085
new benchmark on existing AV datasets to comprehensively086
compare our AIDE with other paradigms. With our Issue087
Finder, Data Feeder, and Model Updater, we bring 2.3%088
Average Precision (AP) improvement on the novel cate-089
gories compared with OWL-v2 without any human anno-090
tations and also surpass OWL-v2 by 8.9% AP on known091
categories (Tab. 1). We also show that with a single round092
of Verification, our automatic data engine can further bring093
2.2% AP on novel categories without forgetting the known094
categories, as shown in Fig. 1. To summarize, our contribu-095
tions are two-fold:096

• We propose a novel design paradigm for an automatic097
data engine for autonomous driving as automatic data098
querying and labeling with VLM and continual learning099
with pseudo labels. When scaling up for novel categories,100
this approach achieves an excellent trade-off between de-101
tection performance and data cost.102

• We introduce a new benchmark to evaluate such auto-103
mated data engines for AV perception that allows com-104
bined insights across multiple paradigms of open vocab-105
ulary detection, semi-supervised, and continual learning.106

2. Related Works 107

Data Engine for Autonomous Vehicles (AV) Exploiting 108
large-scale data collected by AV is crucial to speed up 109
the iterative development of the AV system [13]. Exist- 110
ing literature mostly focuses on developing general [14, 15] 111
learning engines or specific [16] data engines, and most 112
of them [17, 18] mainly focus on the model training part. 113
However, a fully functional AV data engine requires issue 114
identification, data curation, model retraining, verification, 115
etc. A thorough examination reveals a lack of systematic 116
research papers or literature that delves deeply into AV data 117
engines in academia, where a recent survey [13] also under- 118
scores the lack of study in this context. On the other hand, 119
existing solutions [1, 2] for AV data systems mainly rely on 120
the design of data infrastructure and still need lots amount 121
of human effort and intervention, thus limiting their mainte- 122
nance simplicity, affordability, and scalability. In contrast, 123
the present paper exploits the burgeoning progress of vi- 124
sion language models (VLMs) [19–21] to design our data 125
engine, where their strong open-world perception capabil- 126
ity largely improves our engine’s extendability and makes it 127
more affordable to scale up our AVs on detecting novel cat- 128
egories. To our best knowledge, this paper is also the first 129
work that provides a systematic design of data engines for 130
AVs with the integration of VLMs. 131
Novel Object Detection Conventional 2D object detection 132
has made enormous progress [22, 23] in the last decades, 133
while its closed-set label space makes unseen category de- 134
tection infeasible. On the other hand, open-vocabulary 135
object detection (OVOD) [4, 24–39] methods promises to 136
detect anything by a simple text prompting. However, 137
their performances are still inferior to closed-set object 138
detection since they must balance the specificity of pre- 139
trained categories and the generalizability of unseen cate- 140
gories. To scale up the capacity of open-vocabulary detec- 141
tor (OVD), recent works either pre-train OVD with weak 142
annotations (e.g., image captions) [40], or perform self- 143
training on daily object datasets [41, 42] or web-scale 144
datasets [4, 43]. However, balancing the trade-off between 145
improving the novel categories while mitigating the catas- 146
trophic forgetting of the known categories is still an open 147
problem that has not been resolved [11], making it hard to 148
adapt to task-specific applications like autonomous driving. 149

On the other hand, limited research has focused on novel 150
object detection for AVs. This is especially crucial because 151
a false-negative detection of unseen objects may result in fa- 152
tal consequences for AVs. Existing OVOD methods mostly 153
benchmark on datasets of general objects [42, 44] while 154
putting little attention on AV datasets [45–50]. Different 155
from the pursuit of generality in OVOD, perception in AVs 156
has its domain concerns oriented from the image-capturing 157
process by on-car cameras and the object categories due to 158
the scene prior (e.g., road/street objects), which demands 159
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Figure 2. Our design of the automatic data engine includes Issue Finder, Data Feeder, Model Updater, and Verification. The Issue Finder
automatically identifies novel categories using the dense captioning model. In the Data Feeder, we employ VLMs to efficiently search for
relevant data for training, significantly reducing the inference time for generating pseudo-labels in the subsequent steps and filtering out
unrelated images for training. The model is updated in the Model Updater using auto-labeling by VLMs, enabling the recognition of novel
categories without incurring any labeling costs. To verify the model, in Verification, we use LLMs to generate descriptions of variations in
scenarios and then assess predictions on images queried by VLMs.

task-specific design to enable efficient and scalable system160
to iteratively enhance AVs on detecting novel objects during161
its lifecycle. To strike a better trade-off between specificity162
and generality, our proposed AIDE iteratively extends the163
closed-set detector’s label space so that we can retain de-164
cent performance on both novel and known categories for165
better detection.166

Semi-Supervised Learning (Semi-SL) and Active Learn-167
ing (AL) As AVs keep collecting data in operation, a na-168
tive solution to enable novel category detection is to man-169
ually identify the novel category over a collected unlabeled170
data pool, label them, and then train the detector. Semi-171
SL [5, 6, 9, 51–54] and AL [8, 10, 18, 55–58] seem to help172
as they require only a small amount of labeled data to ini-173
tialize the training. However, labeling even a small amount174
of data for novel categories will be challenging and costly175
when given a vast amount of unlabeled data [8, 56, 59–61]176
by AVs. Moreover, both Semi-SL and AL assume that the177
labeled and unlabeled data come from the same distribu-178
tion [51, 62, 63] and share the same label space. However,179
this assumption does not hold when new categories emerge,180
inevitably leading to changes in the label space. Naive181
fine-tuning of the detector only on the novel categories will182
lead to catastrophic forgetting [64–66] of known categories183
learned previously. However, Semi-SL methods for object184
detection do not consider continual learning, while exist-185
ing continual semi-supervised learning methods [67–70] are186
also specific to image classification, which is not applicable187
for object detection.188

3. Method 189

This section demonstrates our proposed AIDE, composed 190
of four components: Issue Finder, Data Feeder, Model 191
Updater, and Verification. The Issue Finder automatically 192
identifies missing categories in the existing label space by 193
comparing detection results and dense captions given an im- 194
age. This triggers the Data Feeder to perform text-guided 195
retrieval for relevant images from the large-scale image pool 196
collected by AVs. The Model Updater then automatically 197
labels queried images and continuously trains the novel cat- 198
egory with pseudo-labels on the existing detector. The up- 199
dated detector is then passed to the Verification module to 200
evaluate under different scenarios and trigger a new itera- 201
tion if needed. We outline our systematic design in Fig. 2. 202

3.1. Issue Finder 203

Given the large amount of unlabeled data collected by AVs 204
in daily operation, identifying the missing category of ex- 205
isting label space is difficult as it requires humans to ex- 206
tensively compare the detection results and image context 207
to spot the difference, which hinders the AV system’s iter- 208
ative development. To ease the difficulty, we consider the 209
multi-modality dense captioning (MMDC) models to auto- 210
mate the process. As the MMDC models like Otter [20] 211
are trained with several million multi-modal in-context in- 212
struction tuning datasets, they can provide fine-grained and 213
comprehensive descriptions of the scene context as shown 214
in Fig. 3, and we conjecture that they may be more likely to 215
return a synonym to the sought label of the novel category 216

3



CVPR
#10

CVPR
#10

CVPR 2024 Submission #10. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 3. Examples of the Issue Finder. We use Otter [20] to
generate detailed descriptions of an image, then identify the novel
category that is missing in the label space (shown in red).

Figure 4. Visualization of the queried images from Data Feeder on
three novel categories.

than an OVOD method to detect a bounding box for the217
novel category. Specifically, an unlabeled image will pass218
to both the detector deployed on-car and the MMDC model219
to get the list of predicted categories and the detailed cap-220
tions of the image, respectively. By basic text processing,221
we can readily identify the novel category the model can222
not detect. In that case, our data engine will trigger the Data223
Feeder to query relevant images for incrementally training224
the detector to extend its label space correspondingly.225

3.2. Data Feeder226

The purpose of Data Feeder is to first query meaningful im-227
ages that could contain the novel category. The goal is to (1)228
reduce the search space for pseudo-labeling and accelerate229
pseudo-labeling in Model Updater, and (2) remove trivial or230
unrelated images during training so we can reduce training231
time while also improving performance. This is especially232
important in real-world scenarios where a large amount of233
data can be collected every day. As novel categories can be234
arbitrary and open-vocabulary, a naive solution is to search235
similar images like the input image of Issue Finder by ex-236
ploiting the feature similarity, e.g., via similarity of the im-237
age feature by CLIP [71]. However, we find that the image238
similarity cannot reliably identify sufficient numbers of rel-239
evant images due to the high variety of the AV datasets (see240

Figure 5. Our two-stage pseudo-labeling for Model Updater: gen-
erate boxes by zero-shot detection and label by CLIP filtering.

Tab. 4). Instead, our Data Feeder utilizes the VLMs to 241
perform text-guided image retrieval on the image pool to 242
query for relevant images related to the novel categories. 243
We consider BLIP-2 [21] given its strong open-vocabulary 244
text-guided retrieval capability. Precisely, given an image 245
and a specific text input, we measure the cosine similarity 246
between their embeddings from BLIP-2 and only retrieve 247
the top-k images for further labeling in our Model Updater. 248
For the text prompt, we experiment with common prompt 249
engineering practice [71] and find that a template like “An 250
image containing {}” can readily provide good precision 251
and recall for the novel categories in practice. Fig. 4 shows 252
some examples of retrieved images. 253

3.3. Model Updater 254

The goal of our Model Updater is to make our detector learn 255
to detect novel objects without human annotations. To this 256
end, we perform pseudo-labeling on the images queried by 257
the Data Feeder and then use them to train our detector. 258

3.3.1 Two-Stage Pseudo-Labeling 259

Motivated by the previous success in pseudo-labeling for 260
object detection [41], we designed our pseudo-labeling pro- 261
cedure with two parts: box and label generation. Such a 262
two-stage framework can help us better dissect the issue of 263
pseudo-label generation and improve the label generation 264
quality. Box generation aims to identify as many object 265
proposals in the image as possible, i.e., high recall for local- 266
izing novel categories, to guarantee a sufficient number of 267
candidates for label generation. To this end, region proposal 268
networks (RPN) pretrained with closed-set label space [41] 269
and the open vocabulary detectors (OVD) [11] can be con- 270
sidered, where the former can localize generic objects while 271
the latter can perform text-guided localization. We observe 272
that the SOTA OVD, i.e., OWL-v2 [11] that has been self- 273
trained on web-scale datasets [43], exhibits a higher recall 274
to localize novel categories compared to the RPN. We con- 275
jecture that proposals of RPN may be readily biased toward 276
the pre-trained categories. 277

Thus, we choose OWL-v2 as our zero-shot detector to 278
get the box proposal. Specifically, we append the novel 279
category name provided by Issue Finder to our existing la- 280
bel space and create the text prompts, then we prompt the 281
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OWL-v2 to inference on an image. Note that we only retain282
the box proposals and remove the labels from the OWL-283
v2’s predictions. This is because we empirically find that284
OWL-v2 can not achieve reliable precision on the novel cat-285
egories presented in AV datasets, e.g., less than 10% AP av-286
eraging over the novel categories in AV datasets [45, 50],287
while it can get >40% AP on novel categories of LVIS [42]288
datasets. We conjecture that this performance degradation289
may come from the domain shift of the images collected in290
the AV scenario. For instance, the pretraining data of OWL-291
v2 mainly comes from the daily image captured by humans292
from a close distance. However, the street objects are al-293
ways small in the image due to their long distance from the294
on-car camera, and the aspect ratio of the image presented295
in AV datasets is relatively large, making OWL-v2 hard to296
classify the correct label of the object proposals.297

Motivated by this insight, we consider conducting an-298
other round of label filtering with CLIP [71] to purify the299
predictions of the OWL-v2 and generate the pseudo labels.300
Specifically, we pass the box prediction by OWL-v2 to the301
original CLIP model [71] for zero-shot classification (ZSC),302
as shown in Fig. 5. To mitigate the potential issue of the303
aspect ratio mentioned above, we increase the box size to304
crop the image and then send the cropped image patch to305
CLIP for ZSC. This can involve more scene contextual in-306
formation to help the CLIP better differentiate between the307
novel and known categories. Regarding the label space for308
CLIP to do zero-shot classification, we first create a base309
label space, which is a combination of the label space from310
datasets we have pre-trained and COCO [44], to ensure that311
we can mostly cover daily objects that would probably be312
present in the street. The base label space will automatically313
extend when the Issue Finder identifies novel categories not314
in the base label space.315

3.3.2 Continual Training with Pseudo-labels316

Directly training our existing detector on the pseudo-labels317
of novel categories presents a challenge, as these labels may318
lead the detector to overfit and catastrophically forget the319
known categories. The issue arises because the unlabeled320
data can contain both novel and known categories that the321
detector has previously learned. Without labels for those322
known categories and only having labels for novel cate-323
gories, the model may incorrectly suppress predictions for324
known categories, focusing solely on predicting novel cate-325
gories. As training progresses, the known categories gradu-326
ally fade from memory. To address this issue, we draw in-327
spiration from existing self-training strategies and include328
the pseudo-labels of the known categories that have been329
trained on. Consequently, our existing detector is updated330
with the pseudo-labels of both novel and known categories.331
To obtain pseudo-labels for the known categories, we first332

Figure 6. Visualization on the Verification. LLM output: We use
LLM to generate descriptions of the novel category with variations
of the scenarios. Queried image: For each description, we use
VLM to query images from our training data. Verification: we let
humans review whether the novel category has been detected.

use our detector to infer data before applying OWL-v2 to 333
the data. Empirically, we find that including pseudo-labels 334
for known categories helps the model distinguish between 335
known and novel categories, boosting the performance of 336
novel categories and mitigating the catastrophic forgetting 337
issues associated with known categories. Additionally, ac- 338
knowledging that pseudo-labels for both known and novel 339
categories may not be perfect, we filter the pseudo-labels. 340
For known categories, we only use pseudo-labels with high 341
predicted confidence from our detector. For novel cate- 342
gories, we have already incorporated CLIP to filter pseudo- 343
labels, as mentioned in Section 3.3.1. 344

3.4. Verification 345

The Verification step aims to evaluate whether the updated 346
detector can detect the novel categories under different sce- 347
narios, to ensure the model can handle unexpected or un- 348
seen scenarios. To this end, we prompt the ChatGPT [12] 349
with the name of novel categories to generate diverse scene 350
descriptions. These descriptions contain variations of the 351
scenarios, such as different appearances of the objects, sur- 352
rounding objects, time of the day, weather conditions, etc. 353
For each scene description, we again use BLIP-2 to query 354
relevant images, which are used to test the model’s robust- 355
ness. To ensure the correctness, we ask humans to review 356
if the predictions for the novel categories are correct. If the 357
predictions are correct, the detector has passed the unit test. 358
Otherwise, we ask humans to provide the ground-truth la- 359
bel, which can be used to further improve the model. Com- 360
pared to existing solutions that have humans manually ex- 361
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Method Algorithm
Cost ($) Accuracy (%)

Training Labeling Novel Known Forgetting

Fully-Supervised 0.3 1005.2 24.1 29.9 -

Open Vocabulary Object Detection
OwL-ViT [4] 0.9 0 2.0 5.5 -
OwL-v2 [11] 0.9 0 9.7 17.9 -

Semi-Supervised Learning Unbiased Teacher-v1 [5] 1.1 1.0 6.3 1.2 -28.7

AIDE (Ours)
w/o Data Feeder 5.7 0 10.1 26.8 -3.1
w/ Data Feeder 0.6 0 12.0 26.6 -3.3

Table 1. Cost and accuracy for fully-supervised, open-vocabulary object detection, semi-supervised learning, and our data engine (AIDE)
to detect one novel category from Mapillary and nuImages. We initialize Semi-SL and ours with the same detector.

Method −→ OVOD Supervised Training Semi-SL AIDE (Ours)
Algorithm −→ OWL-v2 [11] UTeacher-v1 [5] w/o Data Feeder w/ Data Feeder

#Labels per Category −→ 0 10 20 50 All 10 0 0

Mapillary motorcyclist 4.0 5.9 12.4 13.7 19.6 8.3 4.0 8.4
Mapillary bicyclist 0.9 8.9 10.8 12.4 22.4 3.5 7.7 11.9
nuImages construction vehicle 4.7 3.4 8.4 7.3 22.6 4.3 5.4 5.7
nuImages trailer 3.6 0.3 1.3 1.9 13.6 0.4 2.2 3.7
nuImages traffic cone 35.3 12.9 21.4 28.5 42.2 16.4 31.0 30.7

Average 9.7 6.3 10.9 12.8 24.1 6.6 10.1 12.0

Table 2. Per-category accuracy (AP %) on novel categories with different methods.

amine the model prediction one by one, our Verification ex-362
ploits the LLM to facilitate the search for potential failure363
cases by diverse scene generation, where the search cost can364
be largely saved, and the cost of verifying a correct detec-365
tion or even fixing an incorrect one is lower.366

4. Experiments367

4.1. Experimental Setting368

Datasets and Novel Categories Selection In reality, the AV369
system can hardly train with a single source of data, e.g.,370
AVs may operate in various locations in the world to collect371
data. To simulate such a nature faithfully, we leverage the372
existing AV datasets to jointly train our closed-set detector,373
including Mapillary [50], Cityscapes [47], nuImages [45],374
BDD100k [49], Waymo [46], and KITTI [48]. We use this375
pretrained detector as the initialization for the supervised376
training, Semi-SL, and our AIDE for a fair comparison.377
There are 46 categories in total after combining the label378
spaces. To simulate the novel categories and ensure that the379
selected categories are meaningful and crucial for AV in the380
street, we choose 5 categories as novel categories: “motor-381
cyclist” and “bicyclist” from Mapillary, “construction vehi-382
cle”, “trailer”, and “traffic cone” from nuImages. The rest383
41 categories are set as known. We remove all the annota-384
tions for these categories in our joint datasets and also re-385
move the related categories with similar semantic meanings,386
e.g., “bicyclist” vs “cyclist”. We attach more details of the387
dataset statistics in the supplementary material.388

Methods for Comparison To our knowledge, there is lit- 389
tle work about the systematic design for automatic data en- 390
gines tailored to the novel object detection for AV systems. 391
Thus, it is hard to identify a comparable counterpart for our 392
AIDE. To this end, we dissect our evaluation into two parts: 393
(1) compare to alternative detection methods and learning 394
paradigms on the performance of novel object detection; (2) 395
ablation study and analysis of each step of the automatic 396
data engine. For (1), as our AIDE can enable the detector to 397
detect novel categories without any labels, we first compare 398
our method with the zero-shot OVOD methods on novel cat- 399
egories’ performance. Moreover, to show the efficiency and 400
effectiveness of our AIDE in reducing label cost, we fur- 401
ther compare with semi-supervised learning (Semi-SL) and 402
fully supervised learning that trains the detector with differ- 403
ent ratios of ground-truth labels. Specifically, we compare 404
our data engine to state-of-the-art (SOTA) OVOD methods 405
like OWL-v2 [11], OWL-ViT [4], and Semi-SL methods 406
like Unbiased Teacher [5, 6]. 407

Experimental Protocols We treat each of the five selected 408
classes as novel classes and conduct experiments separately 409
to simulate the scenario that one novel class has been iden- 410
tified at a time by our Issue Finder. For Semi-SL methods, 411
we provide different numbers of ground-truth images for 412
training. Each image could contain one or multiple objects 413
of the novel category. We evaluate all comparison methods 414
on the dataset of the novel category for a fair comparison. 415

Evaluation As our AIDE automates the whole data cura- 416
tion, model training, and verification process for the AV 417
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system, we are interested in how our engine can strike a418
balance between the cost of searching and labeling images419
and the performance on novel object detection. We mea-420
sure the human labeling costs [72] and also the GPU infer-421
ence costs [73], i.e., the usage of VLMs/LLMs in our AIDE422
and training the model with pseudo labeled for our AIDE or423
with ground-truth labels for comparison methods, denoted424
as ‘Labeling + Training Cost’ in Fig. 1. The labeling cost425
for a bounding box is $0.06 [72], and the GPU cost is $1.1426
per hour [73]. The cost of ChatGPT is negligible (< $0.01).427
Experimental Details Given the real-time requirement for428
inference, we choose the Fast-RCNN [22] as our detector429
instead of OVOD methods like OWL-ViT [4] as the FPS for430
OWL-ViT is only 3. We run our AIDE to iteratively scale up431
its capability of detecting novel objects. For multi-dataset432
training, we follow the same recipe from [74]. For each433
novel category, we train for 3000 iterations with the learning434
rate of 5e-4, and we use the same hyperparameter for all the435
comparison methods if they require training. We attach our436
full experimental details in the supplementary material.437

4.2. Overall Performance438

In this section, we provide the overall performance of novel439
object detection after running our AIDE for a complete cy-440
cle. Our results are shown in Fig. 1 and Tab. 1. Compared441
to the SOTA OVOD method, OwL-v2 [11], our method442
outperforms by 2.3%AP on novel categories and 8.7%AP443
on known categories, showing that our AIDE can benefit444
from mining the open-vocabulary knowledge from OVOD445
method. This is due to our simple yet effective continual446
training strategy described in Section 3.3.2. Moreover, our447
AIDE suffers much less from catastrophic forgetting com-448
pared to Semi-SL methods, since current Semi-SL methods449
for object detection do not contain continual learning set-450
tings. Existing works on continual semi-supervised learn-451
ing [67, 70] only consider image classification and are not452
applicable to object detection. Combining our AIDE with453
and without the Data Feeder makes it apparent that our Data454
Feeder can sufficiently reduce the inference time cost as the455
Data Feeder can pre-filter irrelevant images, and the Model456
Updater only needs to assign pseudo-labels on a small num-457
ber of relevant images. Tab. 1 shows that pre-filtering leads458
to better AP on novel categories.459

4.3. Analysis on AIDE460

In the following subsections, we will dissect each part of461
our AIDE to validate our design choice.462

4.3.1 Issue Finder463

As mentioned in Section 3.1, the main goal of our Issue464
Finder is to automatically identify categories that do not ex-465
ist in our label space. To this end, we evaluate the success466

Dataset Category Name
Dense Captioning OVOD

Precision (%) AP50 (%)

Mapillary motorcyclist 83.3 9.5
Mapillary bicyclist 89.5 1.6
nuImages const. vehicle 65.6 12.9
nuImages trailer 24.7 7.1
nuImages traffic cone 87.9 60.3

Average 70.2 18.3

Table 3. Comparing with using OVOD to identify and localize
novel categories, Dense Captioning better predicts missing cate-
gories more reliably in our Issue Finder.

Dataset Category Image similarity
VLM Retrieval

CLIP BLIP-2

Mapillary motorcyclist 22.6 19.0 50.4
Mapillary bicyclist 17.9 28.8 50.5
nuImages const. vehicle 14.2 51.2 55.6
nuImages trailer 10.5 23.3 16.5
nuImages traffic cone 29.5 47.3 99.3

Average 18.9 33.9 54.5

Table 4. Ablation studies of the Data Feeder. We report accu-
racy (%) of the top-1k images queried by image similarity search
and text-based retrieval with VLM, i.e., CLIP and BLIP-2.

rate of automatically identifying the novel categories. We 467
find that dense captioning models can automatically predict 468
if the image contains the novel categories more precisely, 469
compared to using OVOD methods to identify and localize 470
novel objects when they are given the names of the novel 471
categories, as shown in Tab. 3. Note that the goal here is 472
to only identify the missing categories, hence we choose to 473
use dense captions here and leverage OVOD to help localize 474
the novel object in the later steps. 475

4.3.2 Data Feeder 476

The goal of the Data Feeder is to curate relevant data from a 477
large pool of images with high precision. We compare sev- 478
eral choices, including image similarity search by CLIP fea- 479
ture, and text-guided image retrieval by VLMs, i.e., BLIP-2 480
and the CLIP. We report the accuracy of top-k queried im- 481
ages over different categories in Tab. 4, showing that im- 482
age similarity search is inferior to VLMs. This is because 483
the novel categories can have large intra-class variations, 484
and thus only one image may not be representative of find- 485
ing sufficient amounts of relevant images. Compared with 486
CLIP, our choice of BLIP-2 performs better on average. 487

4.3.3 Model Updater 488

We ablate the design choices for our box and pseudo-label 489
generation. For box generation, we compare our choice 490
of using box proposals from OWL-v2 with using proposals 491
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Category SAM VL-PLM w/o CLIP ex. known Ours

motorcyclist 0.5 10.1 3.3 2.8 8.4
bicyclist 2.8 6.5 3.2 2.1 11.9

const. vehicle 1.4 4.3 4.0 3.5 5.7
trailer 0.4 0.4 2.0 1.1 3.7

traffic cone 14.5 10.4 30.0 30.9 30.7

Average AP (%) 3.9 6.3 8.5 8.1 12.0

Table 5. Ablation of Model Updater on box generation with SAM
and VL-PLM, label generation without CLIP filtering, and contin-
ual training excluded pseudo labels of known categories.

Dataset Category Diversity (%)

Mapillary motorcyclist 57.6
Mapillary bicyclist 62.2
nuImages const. vehicle 77.0
nuImages trailer 82.0
nuImages traffic cone 70.4

Average 69.8

Table 6. Our Verification step can indeed find diverse scenarios.
The diversity is measured by the number of distinct images among
100 queried images using descriptions generated by ChatGPT.

from VL-PLM [41], which generates box proposals by the492
region proposal network (RPN) of MaskRCNN [75] pre-493
trained on COCO. We also compare with using proposals494
from Segment Anything model (SAM) [16], specifically we495
use the FastSAM [76] since it is faster in inference while496
having the same performance as SAM. As shown in the497
ablation studies in Tab. 5, our choice of using OWL-v2498
is the best among using VL-PLM and SAM. We observe499
that SAM may generate many small objects with no seman-500
tic meaning, suppressing the effective amount of pseudo-501
labels. This is expected as the pre-training of SAM does502
not use semantic labels. For label generation, we compare503
with using OWL-v2 prediction directly without filtering by504
CLIP, i.e., “w/o CLIP”, showing that filtering labels with505
CLIP is necessary. Last, compared with training our de-506
tector without pseudo-labels of known category, denoted as507
“ex. known”, we outperform by 3.9% AP on novel cate-508
gories. Moreover, the AP of known categories without us-509
ing pseudo-label is only 1.58%, while Ours is 26.6% as510
shown in Tab. 1. This verifies the effect of using pseudo-511
labels of known categories as discussed in Sec. 3.3.2.512

4.3.4 Verification513

The goal of the Verification is to evaluate the detector’s ro-514
bustness and to verify the performance under diverse sce-515
narios. Humans only need to examine if the predictions are516
correct in each scenario which reduces the monitoring cost517
since the scenarios are diverse and it takes less time to check518
the predictions than to annotate. To test if the generated sce-519

Figure 7. Visualization on the Verification. Left: In the queried
image from the training set for verification, the model is not pre-
dicting the motorcyclist. Middle: Similarly on the queried image
from the validation set, the model is not predicting the motorcy-
clist. Right: After updating the model again, our model can suc-
cessfully predict the motorcyclist.

narios are diverse, we measure the number of unique images 520
among 100 images queried by generated descriptions and 521
repeat the process ten times. As shown in Tab. 6, our Veri- 522
fication can indeed find diverse scenarios, as 69.8% images 523
are distinct on average, even on such small training datasets. 524

If the prediction is incorrect, we can ask annotators to la- 525
bel the images, which are used to further improve the detec- 526
tor. To this end, we randomly select 10 LLM-generated de- 527
scriptions, for which top-1 retrieved image (based on BLIP- 528
2 cosine similarity) was predicted incorrectly, and labeled 529
these 10 images to update our detector by Model Updater. 530
As shown in Fig. 7, after updating the model with a few 531
human supervisions, our model can successfully predict the 532
object, e.g., the motorcyclist in the figure, which was miss- 533
detected before. For the overall performance, we achieve 534
14.2% AP on novel categories, which improves our zero- 535
shot performance by 2.2% AP, while the total cost only 536
increases to $1.59. This is still less than $2.1 of semi- 537
supervised learning, and our AP for known categories re- 538
mains 26.6% after Verification. 539

5. Conclusion 540

We proposed an Automatic Data Engine (AIDE) that can 541
automatically identify the issues, efficiently curate data, im- 542
prove the model using auto-labeling, and verify the model 543
through generated diverse scenarios. By leveraging VLMs 544
and LLMs, our pipeline reduces labeling and training costs 545
while achieving better accuracies on novel object detection. 546
The process operates iteratively which allows continuous 547
improvement of the model, which is critical for autonomous 548
driving systems to handle expected events. We also estab- 549
lish a benchmark for open-world detection on AV datasets, 550
demonstrating our method’s better performance at a reduced 551
cost. One of the limitations of AIDE is that VLM and LLM 552
can hallucinate in issue finder and verification. Despite the 553
effectiveness of AIDE, for a safety-critical system, some 554
human oversight is always recommended. 555
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