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ABSTRACT

Medical Vision-Language models (VLMs) show significant promise for clinical
image understanding, offering the promise of greater medical accessibility and in-
terpretability. However, a critical performance gap in diagnostic accuracy exists
between their strong vision encoders and the full multimodal model. This perfor-
mance gap suggests that such VLM fails to make full use of the strength of its vi-
sion branch. Such misalignment also implies that these models often over-rely on
their language priors, producing plausible-sounding diagnoses without sufficiently
grounding their reasoning in visual evidence. Focusing on dermatology, we sys-
tematically investigate the root causes of this phenomenon. While fine-tuning can
improve accuracy, it often compromises the model’s essential reasoning capabili-
ties. To address these challenges, we introduce a inference-time pipeline designed
to close the performance gap while preserving the model’s reasoning abilities.
Our pipeline enhances diagnostic accuracy and faithfulness without requiring ad-
ditional training. These strategies are readily extensible, suggesting a path toward
more reliable and interpretable VLMs in medicine and beyond.

1 INTRODUCTION

Diagnosing conditions from dermatological images is a challenging task due to inherent complex-
ities, such as subtle variations in disease presentation and a lack of standardized image quality.
While advances in computer vision have enabled diagnostic models to achieve expert-level accuracy
(Brinker et al., 2019; Esteva et al., 2017; Liu et al., 2020; Soenksen et al., 2021; Wang et al., 2024),
their deployment in safety-critical domains like healthcare demands more than just precision. It is
crucial that a model’s decisions are interpretable, ensuring they are grounded in clinical evidence
rather than spurious correlations. The recent emergence of Vision-Language Models (VLMs) in
dermatology addresses this need, aiming not only for accurate diagnosis but also for explainable
reasoning, thereby paving the way for the reliable, real-world application of AI in medicine.

The development of dermatological VLMs has often relied on pre-training with large-scale, special-
ized datasets and advanced architectures. For example, DermLIP is a CLIP-based VLM (Radford
et al., 2021) that was pre-trained on Derm1M, a dataset with over one million image-text pairs, en-
abling tasks like zero-shot classification and concept identification (Yan et al., 2025a). Similarly,
MONET (Kim et al., 2024) has fine-tuned a CLIP model on over 100K dermatological images
paired with natural language descriptions from a large collection of medical literature, aiming for
interpretable diagnoses. Additionally, SkinVL (Zeng et al., 2025) and SkinGPT-4 (Zhou et al., 2024)
have integrated large language models into their dermatological VLMs and leveraged large derma-
tological corpora to facilitate classification with nuanced disease interpretation and visual question
answering. More recently, MedGemma, a family of medical foundation models, has emerged to
demonstrate superior medical reasoning capabilities (Sellergren et al., 2025). Built upon the pow-
erful Gemma 3 (Team et al., 2025) architecture and incorporating a medically tuned vision encoder
MedSigLIP, MedGemma excels at transparent reasoning, making it an ideal for clinical applications.

In this work, we uncover a critical paradox: while MedGemma’s vision encoder, MedSigLIP, pos-
sesses exceptional discriminative power, this strength fails to translate into the zero-shot diagnostic
accuracy of the full multimodal model. As shown in Fig. 1, we observe that a simple few-shot
linear probe on MedGemma’s vision encoder, which is medically tuned from SigLIP (Zhai et al.,
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Figure 1: A comparison of the zero-shot performance of the MedGemma-4B VLM against the linear
probe performance of its vision encoder, MedSigLIP. In this figure, LP denotes a linear probe on the
vision encoder, while VLM denotes a direct query for diagnosis to the full vision-language model.

Table 1: Classification performance across five dermatology datasets. The table compares the per-
formance for MedGemma-4B under three conditions: zero-shot inference, full-data fine-tuning, and
a linear probe on its vision encoder (MedSigLIP). Performance is compared against a linear probe
on a competitive vision encoder, PanDerm. Linear probing on both vision encoders significantly
outperforms the zero-shot with the VLM, even after fine-tuning. Results are averaged over five runs.

Data Details MedGemma-4B PanDerm

Datasets #Class #Train #Test Zero-Shot Fine-tune Linear Probe Linear Probe

ACC F1 ACC F1 ACC F1 ACC F1

Derm7pt 14 413 395 16.46 (± 0.02) 17.77 39.50 (± 2.15) 22.49 57.22 (± 0.88) 30.07 58.99 (± 0.76) 57.93
eSkinHealth 24 2,714 2,676 13.35 (± 0.15) 16.33 60.26 (± 1.42) 56.17 65.35 (± 0.54) 42.51 60.64 (± 0.61) 59.83
Fitzpatrick17k 20 3,100 3,100 16.73 (± 0.08) 11.13 47.32 (± 1.10) 45.16 66.32 (± 0.45) 66.90 64.87 (± 0.39) 64.88
SD-260 260 10,362 10,238 10.81 (± 0.05) 7.94 39.45 (± 0.95) 34.63 75.35 (± 0.32) 60.10 72.08 (± 0.28) 60.24
PAD-UFES-20 6 1,134 1,164 46.91 (± 0.12) 32.98 66.75 (± 1.85) 61.53 76.03 (± 0.91) 66.22 74.21 (± 0.84) 64.98

2023a), achieves remarkable classification accuracy across five skin disease datasets. Direct com-
parisons reveal that MedSigLIP is comparable to, and at times superior to, PanDerm (Yan et al.,
2025b), the specialized dermatology vision encoder of DermLIP, as shown in Table 1. Taken to-
gether, these results confirm that MedGemma’s vision branch possesses powerful discriminative
capabilities that are underutilized by the full multimodal model’s zero-shot classification perfor-
mance. Although fine-tuning may seem promising, our results indicate that applying LoRA (Hu
et al., 2022) to MedGemma underperforms a linear probe and often compromises the model’s rea-
soning abilities—the very reason for using a foundation model in the first place (see Table 1).

This discrepancy leads us to two fundamental questions: (1) What are the root causes of the large
performance gap between MedGemma’s highly capable vision encoder and its end-to-end zero-shot
diagnostic performance? (2) Can we develop fine-tuning-free strategies to close this gap, improv-
ing zero-shot accuracy while preserving the model’s essential reasoning abilities? To answer these
questions, our work makes the following contributions:

• We provide a systematic analysis of MedGemma-4B, identifying and verifying three root
causes of the performance gap: training data distribution mismatch, under-reliance on the
vision branch, and a fundamental misalignment between the discriminative objective of the
encoder and the generative objective of the language model.

• We introduce a fine-tuning-free inference pipeline that guides the VLM to enhance zero-
shot diagnostic accuracy and faithfulness without any model updates.

• We offer a set of actionable guidelines for practitioners to deploy large, often “black-box,”
VLMs more effectively, maximizing their performance in resource-constrained settings.

While our investigation is grounded in dermatology using MedGemma-4B, the identified challenges
and proposed solutions extend far beyond our specific use case. The over-reliance on language
priors and modality misalignment are fundamental issues facing the broader field of vision-language
research (Zhai et al., 2023b; Yang et al., 2025; Hu et al., 2024; Tong et al., 2024). Therefore, our
analysis provides valuable insights into a generalizable approach to improving the reliability and
visual grounding of VLMs in safety-critical applications beyond dermatology or healthcare.
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(a) (b) (c) (d)

Figure 2: These confusion matrices compare the impact of each fine-tuning-free strategy on the
Fitzpatrick17k dataset: (a) “direct answer”, (b) “in-context”, (c) a “describe-then-decide”, and (d) a
“top-5 to top-1” following a 2-shot linear probe. For class abbreviations, see Appendix 11.

2 PRELIMINARY

The MedGemma family of multimodal models is available in two variants: a 4B and a 27B parameter
version. Both models employ the MedSigLIP image encoder, which was pre-trained on a diverse
corpus of de-identified medical data, including chest X-rays, dermatology images, ophthalmology
images, and histopathology slides. The primary distinction between the two is that the 27B variant
was also pre-trained on an additional medical corpus that includes electronic health records (EHRs).
As our research focuses on visual diagnosis from images rather than EHR data, MedGemma-4B is
a more suitable choice for this study. We formalize the interaction with the VLM M, as follows:

M[Prompt, Image] → Response , (1)

where the model receives a textual prompt and an image of a skin condition as inputs and generates
a response containing a diagnosis and an explanation.

Datasets. To ensure a comprehensive and robust evaluation, our study considers five distinct datasets
selected to cover a wide spectrum of diseases and patient demographics. For broad coverage, we
include SD-260 (Yang et al., 2019), which contains clinical images across 260 skin conditions, and
Fitzpatrick17k (Groh et al., 2021), which features light-skinned images annotated with Fitzpatrick
Skin Types. Following the methodology of (Wang et al., 2025b) to leverage their disease checklists,
we use the same subset of Fitzpatrick17k as that used in their work. To assess performance on
more specific diseases and diverse populations, we incorporate Derm7pt (Kawahara et al., 2019),
focusing on its clinical photos of skin cancer, and eSkinHealth (Wang et al., 2025a), a specialized
dataset of Neglected Tropical Diseases (NTDs) in West African populations. Finally, to test the
model’s performance on familiar data, we also include PAD-UFES-20 (Pacheco et al., 2020), an
in-domain dataset of skin lesions that was used during MedGemma’s pre-training. For datasets
that do not provide an official train-test split, we partitioned the data by case and class with a 0.5
split ratio, with further details provided in Table 1 and Appendix. 12. Implementation details and
hyperparameter tuning results for fine-tuning and linear probing are provided in the Appendix. C.

3 METHODS

3.1 HYPOTHESIS 1: TRAIN-TEST DISTRIBUTION MISMATCH

We first hypothesize that the performance gap stems from a train-test distribution mismatch. That is,
the model may not have learned sufficient representations for certain conditions if they were rare or
absent in its training data. This distribution mismatch prevents the model from generalizing to these
“tail” or out-of-distribution classes during zero-shot inference.

Evidence. While the exact composition of MedGemma’s training data is not public, we can investi-
gate this hypothesis by analyzing the model’s prediction bias. The confusion matrix in Fig. 2 clearly
demonstrates this bias: the model shows a strong tendency to over-predict certain common condi-
tions, such as basal cell carcinoma (BCC). For instance, nearly all cases of lupus erythematosus
(LE) are misclassified as BCC. This raises a critical question: is this error due to a bias in the visual
pre-training data (a vision branch issue) or from an incomplete conceptual understanding in the lan-
guage model (a language branch issue)? By leveraging the model’s reasoning capabilities, we can
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Prompt

You are a helpful medical assistant. Look at the given image 
determine the most likely dermatology condition from the options 
with explanation.

Based on the image, the most likely diagnosis is basal cell 
carcinoma. The image shows a skin lesion with a pearly or waxy 
appearance, with visible blood vessels. This is a classic 
description of a basal cell carcinoma. These lesions are often 
found on sun-exposed areas of the skin, such as the face, neck, 
and hands.

Answer

Reference Information:
Sarcoidosis

Prompt

You are a helpful medical assistant. Look at the given image 
determine the most likely dermatology condition from the options 
with explanation.

Based on the image, the most likely diagnosis is basal cell 
carcinoma. The image shows a raised, pearly or waxy bump with 
a central black dot (often referred to as a "black dot" or "nutmeg" 
sign). This is a classic presentation of basal cell carcinoma, a 
common type of skin cancer. The lesion is often slow-growing 
and can be found on sun-exposed areas of the skin.

Answer

Reference Information:
Melanoma

Prompt

You are a helpful medical assistant. Look at the given image 
determine the most likely dermatology condition from the options 
with explanation.

Based on the image, the most likely condition is basal cell 
carcinoma. The image shows a lesion on the foot. BCCs are the 
most common type of skin cancer and often present as pearly or 
waxy bumps, or flat, flesh-colored or brown scar-like lesions. The 
lesion in the image appears as a raised, possibly slightly irregular 
area.

Answer

Reference Information:
Lesion masked

Figure 3: Examples of incorrect answers and hallucinated explanations from MedGemma-4B. The
model incorrectly diagnoses sarcoidosis (left) and melanoma (middle) as basal cell carcinoma, pro-
viding descriptions of features that are not present in the images. In the third example (right), the
lesion is manually masked, yet the model generates the same incorrect diagnosis and explanation,
indicating it may generate a prediction first and rationalize it with a post-hoc explanation.

BCC: 88%

NOT SURE: 72%

BCC: 22%

Others: 6%

(a) (b)

You are a helpful medical assistant. Look at the given image 
and describe visible lesion attributes. Then determine the 
most likely dermatology condition from the options. If you are 
unsure or cannot see any dermatologic condition, return NOT 
SURE.

You are a helpful medical assistant. Look at the given image 
and determine the most likely dermatology condition from the 
options. If you are unsure or cannot see any dermatologic 
condition, return NOT SURE.

Figure 4: Abstention Test. The model is tested on 200 images with masked lesions. In (a), we
present the images and prompt the model to diagnose based on visible signals. In (b), we present
the same images and prompt the model to first describe the visible lesion before diagnosing. Note
that the ”NOT SURE” option was exclusively used for this abstention test, and was not included in
the options list of the standard forced-choice classification task.

probe its conceptual knowledge. We prompted the model to describe the characteristics of diseases
it consistently fails to diagnose (i.e., those with 0% zero-shot accuracy). As shown in Appendix.14
and Appendix 15, the model is able to generate equally detailed and accurate descriptions for BCC
and LE, suggesting its language-based understanding of these rare diseases is intact. This evidence
indicates the problem most likely arises from an imbalanced visual training distribution.

Solution. Although the model may lack sufficient visual examples of rare diseases, it possesses
a foundational knowledge of general dermatological terms (e.g., “papules”, “inflammation,” “red-
dish,” ). We can leverage this by re-framing the task from recognizing a disease name to matching
visual evidence with a clinical description. Following the methodology of (Wang et al., 2025b), our
solution provides the model with contextual information in the prompt. Alongside each potential
disease name in the list of options, we include a description of its key visual characteristics using
a set of generic dermatological vocabularies. Instead of forcing the model to map visual cues to a
potentially unfamiliar disease label, this approach encourages it to map visual cues to a provided de-
scription. As shown in the improved confusion matrix in Fig. 2 (b), this strategy effectively guides
the model toward more accurate and diverse predictions. See visual descriptions in Appendix. 13.

3.2 HYPOTHESIS 2: UNDER-RELIANCE ON THE VISION BRANCH

4
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(a) (b) (c) (d) (e)

Figure 5: Attention heatmaps. Columns show (a) the original image, (b, d) attention from the prompt
querying direct answer (baseline), and (c, e) attention from our “describe-then-decide” strategy.
We visualize attention for the final diagnosis tokens (b, c) and for the entire response (d, e). The
’describe-then-decide’ prompt yields attention maps that are more accurately concentrated on the
lesion area, both during the final decision (c) and across the full response (e), confirming improved
visual grounding.
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Figure 6: Distribution of quality scores from
our human evaluation study. A dermatolo-
gist rated 100 generated descriptions, with
the score [0-5] indicating the number of clin-
ical criteria correctly described. The results
indicate a high level of quality and accuracy.

We hypothesize that the VLM’s powerful, heavy-
weight language model component leads it to over-
rely on textual priors when making a diagnosis. This
behavior, documented in prior works (Yang et al.,
2025; Tong et al., 2024), causes the model to gen-
erate a plausible-sounding diagnosis without suffi-
ciently grounding its prediction and reasoning in the
visual evidence of the image.

Evidence. We first observe that the model is prone to
hallucinated reasoning, generating explanations that
are not grounded in the image. As shown in Fig.
3, when presented with an image of “sarcoidosis”,
MedGemma incorrectly identifies the condition as
BCC and provides a factually incorrect explanation,
as there is no visual evidence of a “pearly or waxy”
lesion. Similar observations are made for an image
of melanoma, even when the lesion is intentionally
masked. In these cases, the model tends to provide a
generic, post hoc explanation for BCC, indicating that its diagnosis is not derived from the image’s
visual features. To quantify this behavior, we masked 200 images and tested whether the model
would abstain from making a diagnosis when the primary lesion was hidden. As shown in Fig. 4(a),
the model failed to abstain in 88% of cases, instead defaulting to a BCC diagnosis. This provides
evidence that the model makes predictions without using its “eyes.”

Solution. To mitigate this over-reliance on language priors, we introduce a “describe-then-decide”
prompting strategy. This method forces the model to first articulate the visible features of the lesion

5
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before making a final diagnosis, thereby compelling it to “look at” the image. The premise is that an
accurate diagnosis should be preceded by an accurate visual description. This simple intervention
yields improved classification accuracy, as shown in the enhanced confusion matrix in Fig. 2(c) and
Table. 4. Additionally, when presented again the 200 masked images, the model’s abstention rate
increased from 12% to 72%, evidencing that this prompt encourages visual grounding.

To thoroughly validate that our “describe-then-decide” strategy effectively focuses the model on the
lesion area, we generate and analyze attention heatmaps. Here, we define two metrics:
Label-Token Heatmap (mlabel): This measures the average attention the model pays to the input
image tokens specifically when generating the words of the final diagnosis (e.g., “basal cell carci-
noma”). It helps us see what the model attends to at the moment of decision.
All-Tokens Heatmap (mall): This measures the average attention paid to the image tokens across
the entire generated response, including both the description and the diagnosis.

Specifically, let the generated sequence have S tokens. At step t, after averaging head layers, the
decoder gives an attention row ā(t) ∈ RTt . Let the image occupy a contiguous token block I =
{simg, . . . , simg+Limg−1}. Define the image-restricted vector, the slice of a token’s attention only
over the image tokens, with everything else (text tokens) dropped, as

r(t) ∈ RLimg , r(t)[j] =

{
ā
(t)
simg+j , simg + j ≤ Tt,

0, otherwise.
(2)

So RLimg is just a length-Limg real vector—one weight per visual token. To check how much the
model attends to the final lesion prediction when generating responses (see Fig. 5 (b-c)), the label-
token heat vector is

mlabel =
1

|Slabel|
∑

t∈Slabel

r(t) ∈ RLimg (3)

where Slabel indexes the tokens that spell the predicted diagnosis. Reshape mlabel to the token grid
and upsample to the image to render the heatmap. For the entire-response attention maps (see Fig.
5 (d-e)), all-tokens heat vector is

mall =
1

S

S∑
t=1

r(t) ∈ RLimg (4)

By comparing the heatmaps from a baseline prompt(that queries direct answer, 5 (b,d)) with those
from our “describe-then-decide” prompt (Fig. 5 (c,e), we can isolate the effect of our strategy. When
the label-token heatmap mlabel is more concentrated on the lesion, it indicates that requiring a de-
scription forces the model to re-consult the visual evidence before making its final choice. Similarly,
the “describe-then-decide” prompt yields broader yet meaningful attention in the mall heatmap, as
the model must scan the image to enumerate pixel-level attributes for the description.

3.3 HYPOTHESIS 3: MISALIGNMENT BETWEEN THE LANGUAGE AND VISION BRANCHES

While “describe-then-decide” improves visual grounding, it does not fully close the performance
gap. This leads to our third hypothesis: a fundamental objective misalignment between the VLM’s
components. The vision encoder is optimized for discriminative tasks (distinguishing classes),
whereas the large language model is optimized for generative tasks (explaining and reasoning).
We hypothesize that the VLM is better suited for explanation and description than for forced-choice
classification and that leveraging these distinct strengths is key to maximizing performance.

Evidence. Previous sections have already established that the vision encoder’s discriminative per-
formance surpasses that of the VLM. To complete our evidence, we now evaluate the VLM’s primary
strength: its ability to generate high-quality, descriptive text. Following the methodology of (Wang
et al., 2025b), we prompted MedGemma-4B to describe lesions using a structured format covering
five key clinical criteria:[Location Site, Lesion Type, Shape/Border, Color, Texture]. An example
of a generated description is shown in Fig. 7. To quantitatively assess quality, was instructed to
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Prompt

You are a helpful medical assistant. Look at the given 
image and describe the visible skin condition in terms 
of location, lesion type, shape, color and texture.

Location: The lesion is located on the dorsum (back) of the hand, specifically on the fingers. 
Lesion Type: The lesion appears to be a combination of several different types, including: 
 * Telangiectasias: These are small, dilated blood vessels that appear as fine, red lines or 
streaks. 
 * Hyperkeratosis: This refers to thickening of the outer layer of skin (epidermis). It can appear as 
rough, scaly patches. 
 * Possible Erythema: There is some redness present, which could indicate inflammation or 
increased blood flow. 
Shape: The lesion is irregular in shape, with a somewhat patchy distribution across the fingers. It 
doesn't have a distinct border.
Color: The lesion exhibits a range of colors, including: 
 * Red/Pink: This is due to the telangiectasias and possible erythema. 
 * Brownish/Yellowish: This could be due to hyperkeratosis or changes in the underlying skin. 
Texture: The texture is rough and scaly, consistent with hyperkeratosis. The telangiectasias may also 
contribute to a slightly rough feel. 
Overall Impression: The lesion is a complex one, likely representing a combination of vascular and 
epidermal changes. The presence of telangiectasias, hyperkeratosis, and possible erythema 
suggests a possible underlying condition. 

Answer

Figure 7: An example of a description generated by MedGemma-4B. When prompted to describe
the lesion from Fig.3 instead of diagnosing it, the model produces a detailed and clinically relevant
analysis of its features. This faithful description contrasts sharply with the hallucinated reasoning.

Table 2: Effectiveness of the proposed two-stage inference pipeline. Comparison of the Baseline
VLM (MedGemma zero-shot), the standalone Linear Probe (MedSigLIP), and Our Pipeline which
uses the Linear Probe to filter candidates (Top-5) for the VLM (Top-1). All accuracy values are Top-
1 (%). Ablation study on different number of shots can be found in Appendix C.3

Baseline VLM Linear Probe Our Pipeline
Dataset Zero-Shot (Vision Encoder Only) (LP Top-5 → VLM Top-1)

0-shot 1-shot 8-shot 1-shot 8-shot

Derm7pt 16.46 (± 0.01) 12.96 (± 1.75) 28.66 (± 1.38) 20.02 (± 2.39) 35.56 (± 0.99)
eSkinHealth 13.35 (± 0.23) 23.51 (± 1.91) 38.80 (± 1.06) 30.98 (± 2.85) 42.05 (± 1.48)
Fitzpatrick17k 16.73 (± 0.19) 17.63 (± 3.13) 38.43 (± 1.03) 25.35 (± 2.41) 37.82 (± 1.37)
SD-260 10.81 (± 0.13) 11.48 (± 2.27) 37.12 (± 1.46) 22.31 (± 1.95) 42.33 (± 0.92)
PAD-UFES-20 46.91 (± 0.20) 34.85 (± 1.83) 53.33 (± 1.34) 58.33 (± 2.24) 80.31 (± 1.23)

review the generated text against the original image and verify the accuracy of each of the five re-
quested criteria. The resulting quality score (0-5) strictly reflects the number of criteria correctly
described. As shown in Fig. 6, the model consistently achieves high scores (predominantly 4 or 5),
confirming that it can accurately perceive and articulate visual features. This performance stands in
stark contrast to the hallucinated and visually ungrounded explanations observed during the standard
zero-shot diagnosis (see Fig. 3), providing strong evidence that the model possesses the necessary
visual information but fails to effectively utilize it for the specific task of classification.

Solution. Our solution is a two-stage pipeline that leverages the complementary strengths of the
vision and language components. Instead of forcing the VLM to perform a task it is not optimized
for, we delegate the initial discriminative work to the vision encoder. First, we use the powerful
vision encoder with a few-shot linear probe to identify the top-5 most likely diagnosis candidates
for a given image. This narrows the field to a small set of high-probability candidates. Then, we
feed these top-5 candidates to the full VLM and prompt it to make the final diagnosis from only that
reduced set. We term this strategy as “Top-5 to Top-1”.

As shown in Table. 2, this approach is highly effective, especially in low-data regimes. With 1 to 8
shots, the two-stage pipeline’s accuracy is significantly higher than that of a linear probe alone. The
benefit diminishes as the number of shots increases (e.g., 16 or more), as the linear probe becomes
powerful enough on its own (see Appendix C.3). This makes our approach particularly valuable for
real-world medical applications where labeled data is scarce.

This strategy offers three additional benefits. First, by providing the VLM with only 5 options
instead of 20 or more, it reduces the prompt length, saving token space for more context. Second,
the vision encoder is a plug-and-play component; practitioners can substitute MedSigLIP with any
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Table 3: Zero-shot prompts.
Type Prompt

direct answer (baseline) You are a helpful medical assistant. Look at the given image and determine the most
likely dermatology condition from the options:
(A) Granuloma annulare
(B) Lupus erythematosus
(C) Vitiligo.
... ...

in-context You are a helpful medical assistant. Look at the given image and determine the most
likely dermatology condition from the options:
(A) Granuloma annulare, characterized by smooth skin-colored or pink papules ar-
ranged in an annular ring with firm ridge.
(B) Lupus erythematosus, characterized by scaly plaques with follicular plugging
and central scarring on sun-exposed skin; acute malar rash appears as flat red but-
terfly across cheeks sparing folds.
(C) Vitiligo, characterized by sharply bordered milky white macules on face, hands,
or genital skin with normal texture and pigment loss.
... ...

describe-then-decide You are a helpful medical assistant. Look at the given image and describe visible
lesion attributes (location, lesion type, shape/border, color, texture). Then determine
the most likely diagnosis from the options:
(A) Granuloma annulare
(B) Lupus erythematosus
(C) Vitiligo.
... ...

other powerful, domain-specific vision encoder to potentially boost performance further. Third, and
perhaps most importantly, we still have the model’s reasoning capabilities at our disposal.

3.4 ABLATION STUDY AND COMBINED PERFORMANCE

Having investigated the root causes of the performance gap and proposed a corresponding remedy
for each, we now conduct an ablation study to evaluate the individual and combined effects of
our strategies. We compare the following five zero-shot prompting configurations, with the results
presented in Table. 4. For the “Top-5 to Top-1” and “all combined” configurations, we use a 8-
shot linear probe to generate the initial candidates. We choose 8 shots because, as shown in Table
10, it represents a point of high efficacy in the low-data regime before performance gains begin to
saturate. For the SD-260 dataset, providing expert-verified clinical descriptions for all 260 classes
was infeasible. Therefore, for this study, we use a subset of SD-260 containing only the classes that
overlap with the other datasets. Example of the prompts are shown in Table. 3.

The results of the ablation study provides evidence for the effectiveness of the proposed fine-tuning-
free pipeline. We observe that each of the three strategies (in-context, “describe-then-decide”, and
“top-5 to top-1”) independently yields a significant improvement in Top-1 accuracy over the direct
answer baseline across all five datasets. This validates our three-part analysis, confirming that each
hypothesis addresses a distinct limitation of the VLM. Most importantly, the “all combined” design
consistently achieves the highest performance, substantially outperforming any single strategy. This
demonstrates that the benefits of each strategy are not only independent but also cumulative, working
together to progressively close the performance gap and enhance diagnostic accuracy.

3.5 GENERALIZATION TO OTHER VLMS FOR DERMATOLOGY

To demonstrate that the identified challenges and proposed solutions are not specific to the
MedGemma architecture, we extended our evaluation to SkinVL (Zeng et al., 2025). As a LLaVA-
based model, SkinVL represents a distinct architectural lineage from MedGemma. First, we con-
firmed that the performance gap is a pervasive issue: consistent with MedGemma, a simple linear
probe on SkinVL’s vision encoder significantly outperforms its zero-shot VLM accuracy (see Ap-
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Table 4: Ablation study on the effectiveness of each proposed strategy. This table presents the
zero-shot Top-1 accuracy for five different configurations. The “direct answer” column serves as the
baseline, using a standard classification prompt. The “in-context” strategy augments the prompt with
clinical descriptions; “describe-first” requires the model to describe visual features before diagnosis;
and “top-5 to top-1” is our two-stage strategy where the VLM reranks candidates from a 8-shot linear
probe. The final “all combined” column integrates all proposed strategies.

Dataset direct answer in-context describe-first top-5 to top-1 all combined

Derm7pt 16.46 (± 0.17) 26.72 (± 0.82) 30.98 (± 1.37) 35.10 (± 1.95) 38.27 (± 0.81)
eSkinHealth 13.35 (± 0.23) 30.07 (± 1.51) 29.77 (± 0.92) 43.94 (± 1.03) 48.00 (± 0.86)
Fitzpatrick17k 16.73 (± 0.25) 24.01 (± 2.01) 24.75 (± 1.53) 28.32 (± 1.67) 40.97 (± 1.41)
SD-260 (subset) 24.31 (± 0.15) 34.29 (± 1.06) 33.80 (± 1.37) 40.01 (± 2.18) 44.90 (± 0.91)
PAD-UFES-20 46.22 (± 0.17) 52.23 (± 1.26) 62.33 (± 1.58) 75.23 (± 2.07) 84.68 (± 1.80)

pendix D for full comparison). Second, we evaluated our training-free pipeline on SkinVL. Due to
its stricter context window, we adapted the pipeline to perform “Top-5 to Top-1” filtering first. As
shown in Table 5, our strategies yield consistent performance gains across multiple datasets, even
improving upon the high baselines of Fitzpatrick17k (a dataset included in SkinVL’s pre-training).
This confirms that our approach generalizes effectively to LLaVA-based architectures.

Table 5: Generalizability on SkinVL (LLaVA-based). Top-1 Accuracy (%) comparison. Our pro-
posed inference pipeline consistently improves performance over the direct answer baseline, demon-
strating robustness across different VLM architectures.

Inference Strategy Derm7pt eSkinHealth Fitzpatrick17k

Direct Answer (Baseline) 12.77 (± 0.12) 23.76 (± 0.21) 10.05 (± 0.08)
+ Top-5 Filtering 29.66 (± 1.45) 40.25 (± 1.82) 58.37 (± 1.15)
+ In-Context Description 31.19 (± 1.33) 44.03 (± 2.01) 62.97 (± 1.28)
+ Describe-then-Decide (Ours) 32.56 (± 0.95) 44.89 (± 1.67) 63.91 (± 1.05)

4 RELATED WORKS

4.1 FOUNDATION MEDICAL VISION-LANGUAGE MODELS FOR DERMATOLOGY

Recent advancements in dermatology have been driven by a series of specialized VLMs (Zhang
et al., 2024; Lin et al., 2023). DermLIP, for instance, was trained on Derm1M, a large-scale dataset
of over one million image-text pairs, to enable zero-shot classification and concept identification
(Yan et al., 2025a). Similarly, MONET was developed by fine-tuning a CLIP model on over 100,000
image-caption pairs from medical literature to achieve transparent, concept-based diagnoses (Kim
et al., 2024). Such strategies of designing specialized curricula have also proven effective in other
medical domains, such as retinal image analysis, to ensure robust feature learning for medical VLMs
(Holland et al., 2025). Other models like. SkinVL (Zeng et al., 2025) and SkinGPT-4 (Zhou et al.,
2024) have integrated large language models to facilitate more nuanced disease interpretation and
visual question answering. SkinVL was trained on nearly 10,000 specialized image-captions and
27,000 QA pairs derived from professional textbooks, while SkinGPT-4 was aligned with Llama-2
(Touvron et al., 2023) using over 52,000 skin disease images. While these models have demonstrated
strong performance on specific dermatological tasks, our work focuses on. MedGemma (Team et al.,
2025; Sellergren et al., 2025), a generalist medical foundation model. We selected MedGemma be-
cause its architecture, featuring a powerful, medically-tuned vision encoder (MedSigLIP) combined
with an advanced language model (Gemma 3), represents the state-of-the-art in transparent med-
ical reasoning. This makes it an ideal testbed for investigating the fundamental vision-language
alignment challenges that are broadly relevant to the next generation of medical AI.
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4.2 MISALIGNMENT OF VLMS AND OVER-RELIANCE ON LANGUAGE PRIOR

A central challenge in current VLM is the misalignment between their powerful vision encoders and
the end-to-end multimodal system (Xing et al., 2025). This often manifests as an over-reliance on
the language model’s priors, where the VLM fails to properly integrate visual information during
reasoning. Studies have shown that as a VLM generates a response, its attention to visual input
can gradually diminish, sometimes having a negligible influence on the final output (Yang et al.,
2025). This tendency to “look away” from the image leads to models producing plausible-sounding
but visually ungrounded responses and hallucinations. (Tong et al., 2024) investigated this issue,
demonstrating that even advanced models like GPT-4V exhibit elementary visual shortcomings that
can be traced back to weaknesses in the underlying CLIP vision encoder. They found that models
struggle with basic visual patterns related to orientation, counting, and object attributes, suggesting
the visual representations are not fully utilized. This misalignment is further exacerbated during
instruction tuning, which can cause catastrophic forgetting; (Zhai et al., 2023b) found that fine-
tuning often degrades the model’s core visual perception, causing it to lose the robust classification
abilities of its original vision encoder. To mitigate such inconsistencies, recent works have proposed
automated structured reporting to standardize model outputs and reduce hallucination (Delbrouck
et al., 2025). Taking together, these challenges underscore the critical need for strategies that enforce
strong visual grounding in the final reasoning process of vision language models.

5 CONLUSION AND DICUSSION

In this work, we investigated a critical paradox in medical foundation models: the significant per-
formance gap between a VLM’s powerful vision encoder and its end-to-end zero-shot diagnostic
accuracy. Focusing on MedGemma-4B in the context of dermatology, we systematically iden-
tified and validated three root causes for this discrepancy: a train-test distribution mismatch, an
over-reliance on language priors, and a fundamental objective misalignment between the vision
and language components. To address these challenges, we introduced a fine-tuning-free inference
pipeline composed of three distinct strategies: providing in-context clinical descriptions, enforcing
a “describe-then-decide” reasoning process, and leveraging the vision encoder for candidate selec-
tion in a “Top-5 to Top-1” framework. Our experiments demonstrate that these interventions, both
individually and combined, significantly improve zero-shot classification accuracy, reduce diagnos-
tic bias, and enhance the model’s visual grounding, all without requiring any costly fine-tuning that
could compromise its valuable reasoning abilities. While our analysis centered on a single model in
dermatology, the issues of modality misalignment and language-prior dominance are endemic to the
broader field of vision-language research. Therefore, our proposed strategies offer a model-agnostic
and data-efficient blueprint for improving the faithfulness and reliability of VLMs in any safety-
critical domain where decisions must be grounded in tangible evidence. Future work should explore
the application of these principles to other medical specialties and foundation models, paving the
way for more robust and trustworthy AI in clinical practice.
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REPRODUCIBILITY STATEMENT
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Appendix

A USE OF LARGE LANGUAGE MODELS

We used a large language model (LLM) solely for language polishing—e.g., editing grammar, im-
proving clarity and flow, and standardizing tone. The LLM did not contribute to research ideation,
experimental design, analysis, or result generation. The LLM is not an author or contributor, and its
use complies with ICLR’s policy on LLM usage.

B LIMITATIONS

While our work provides valuable insights and effective remedies for the performance gap in med-
ical VLMs, we acknowledge its limitations. The proposed fine-tuning-free strategies are designed
to mitigate the identified issues and significantly improve zero-shot performance, but they do not
represent a complete solution to the underlying architectural challenges of modality misalignment
in foundation models. Therefore, future work should focus on extending this analysis to a broader
range of models and medical domains. Validating these strategies on other modalities, such as radi-
ology (X-rays), pathology, and ophthalmology, would be a critical next step to confirm their gener-
alizability. Furthermore, exploring how these principles could inform the development of new VLM
architectures, designed from the ground up to ensure better vision-language alignment, presents an
exciting avenue for future research.

While we recognize that a full clinical utility study involving multiple experts and inter-rater reli-
ability analysis is critical for real-world deployment, such an extensive study is beyond the scope
of this technical analysis. A comprehensive clinical decision-making evaluation is a necessary and
immediate priority for future work.

C IMPLEMENTATION DETAILS

C.1 LORA FINE-TUNING

To ensure a rigorous evaluation of the model’s adaptability, we fine-tuned MedGemma-4B-it using
Low-Rank Adaptation (LoRA). Given the high memory requirements of 4B parameter models, we
employed QLoRA (Dettmers et al., 2023), loading the base model in 4-bit precision with bfloat16
compute dtype. We applied LoRA adapters to all linear layers to maximize model expressivity while
keeping the number of trainable parameters low. We also explicitly set the embed tokens module
to be trainable. The optimization was performed using the fused AdamW optimizer with a linear
learning rate scheduler and a warmup ratio of 0.03. To determine the optimal configuration, we
conducted a grid search over the LoRA rank (r), scaling factor (α), and learning rate. The search
space and selected hyperparameters are detailed in Table C1. We trained for 10 epochs with a batch
size of 4 and gradient accumulation steps of 4. The final selected configuration (Rank 8, Alpha
16, LR 1e−4) was chosen based on validation set performance and used for all reported fine-tuning
results. Details can be found in Table. 6.

Table 6: Hyperparameter search space and selected configuration for LoRA fine-tuning.
Hyperparameter Search Space Selected Value
LoRA Rank (r) {4, 8, 16} 8
LoRA Alpha (α) {8, 16, 32} 16
Learning Rate {5e−5, 1e−4, 2e−4} 1e−4

LoRA Dropout - 0.05
Target Modules - All Linear Layers
Precision - 4-bit (QLoRA)
Optimizer - AdamW (Fused)
Training Epochs - 10
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Table 7: Full grid search results for LoRA fine-tuning on the Fitzpatrick17k dataset. The optimal
configuration selected for the final model is highlighted in bold.

Rank (r) Alpha (α) Learning Rate Accuracy (%)

4 8 5× 10−5 42.15
4 8 3× 10−4 46.12
4 8 4× 10−4 45.88

4 16 5× 10−5 41.80
4 16 3× 10−4 45.05
4 16 4× 10−4 44.20

4 32 5× 10−5 35.60
4 32 3× 10−4 39.40
4 32 4× 10−4 37.10

8 8 5× 10−5 43.50
8 8 3× 10−4 46.45
8 8 4× 10−4 46.10

8 16 5× 10−5 44.10
8 16 3× 10−4 47.32
8 16 4× 10−4 46.95

8 32 5× 10−5 38.90
8 32 3× 10−4 41.25
8 32 4× 10−4 40.50

16 8 5× 10−5 43.20
16 8 3× 10−4 45.90
16 8 4× 10−4 45.50

16 16 5× 10−5 44.80
16 16 3× 10−4 46.98
16 16 4× 10−4 46.40

16 32 5× 10−5 43.10
16 32 3× 10−4 46.15
16 32 4× 10−4 45.20

C.2 LINEAR PROBE

For feature extraction, we utilized the pre-trained medgemma-4b-it vision encoder in bfloat16 pre-
cision. We extracted the global image representation by computing the mean of the last hidden state
tokens rather than using a single [CLS] token. The head was trained using the AdamW optimizer
and CrossEntropyLoss for 100 epochs with a batch size of 128, as shown in Table. 8.

Table 8: Implementation details and hyperparameters for Linear Probing experiments.
Hyperparameter Value
Vision Encoder MedSigLIP (Frozen)
Feature Pooling Global Average Pooling
Precision (Backbone) bfloat16
Precision (Head) float32
Optimizer AdamW
Batch Size 128
Epochs 100
Learning Rate {3× 10−5, 3× 10−4, 3× 10−3}
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C.3 ABLATION STUDY ON THE NUMBER OF SHOTS

We selected the 8-shot setting based on the analysis presented in Table 10, where 8-shot maximizes
the utility of our pipeline. At 8-shot, the vision encoder is strong enough to capture the correct
diagnosis in the Top-5 (high recall), but not yet perfect at Top-1 (low precision), creating the ideal
scenario for the VLM to apply its reasoning for re-ranking. Beyond 8 shots, the vision encoder
becomes self-sufficient, and the added value of VLM reasoning diminishes.

D PERFORMANCE ANALYSIS ON SKINVL

Table 9: Performance Gap Analysis on SkinVL. Comparison of the zero-shot VLM performance
against full Fine-Tuning (FT) and a Linear Probe (LP) on the vision encoder. Consistent with
MedGemma, the Linear Probe significantly outperforms the zero-shot VLM, confirming the under-
utilization of visual features.

VLM Zero-Shot Fine-Tuning (FT) Linear Probe (LP)
Dataset ACC F1 ACC F1 ACC F1
Derm7pt 12.77 15.05 44.81 22.98 50.16 26.59
eSkinHealth 13.76 10.33 57.74 39.24 62.77 42.90
Fitzpatrick17k 10.05 8.27 42.84 30.49 58.88 46.22

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 10: Effectiveness of the “Top-5 to Top-1” reranking strategy. This table compares three meth-
ods: the baseline zero-shot VLM, a standard k-shot linear probe (LP Top-1), and our two-stage
approach. In our method, a k-shot linear probe selects the Top-5 candidates, which are then used
by the VLM to produce a final prediction. The results show that our two-stage strategy consistently
outperforms the direct linear probe’s Top-1 accuracy in the low-data regime.

Dataset 0-shot Top-1 1-shot 2-shot 4-shot 8-shot 16-shot

Top1 Top5 0-Shot Top1 Top5 0-Shot Top1 Top5 0-Shot Top1 Top5 0-Shot Top1 Top5 0-Shot

Derm7pt 16.46 12.96 52.25 20.02 18.53 58.03 25.73 21.06 61.42 32.80 28.66 72.35 35.56 38.53 82.68 37.95
eSkinHealth 13.35 23.51 55.75 30.98 27.99 63.84 33.67 35.04 69.70 41.22 38.80 73.96 42.05 43.04 78.41 43.17
Fitzpatrick17k 16.73 17.63 50.58 25.35 23.08 59.50 27.42 31.01 67.67 33.68 38.43 75.88 37.82 45.05 80.99 38.01
SD-260 10.81 11.48 26.89 22.31 17.90 38.61 25.02 26.97 51.92 33.50 37.12 63.61 42.33 49.01 76.72 44.72
PAD-UFES-20 46.91 34.85 93.99 58.33 38.56 96.70 67.60 45.36 98.33 77.85 53.33 98.63 80.31 59.90 98.99 91.11

Table 11: Skin Condition Distribution for Fitzpatrick17k
Skin Condition Real Training Real Test Synthetic

Acne (ACN) 92 91 93
Actinic Keratosis (AK) 88 87 164
Allergic Contact Dermatitis (ACD) 215 215 181
Basal Cell Carcinoma (BCC) 234 234 154
Eczema (ECZ) 102 102 166
Erythema Multiforme (EM) 118 118 155
Folliculitis (FOL) 171 171 114
Granuloma Annulare (GA) 106 105 148
Keloid (KEL) 78 78 135
Lichen Planus (LP) 246 245 151
Lupus Erythematosus (LE) 205 205 172
Melanoma (MEL) 130 131 155
Mycosis Fungoides (MF) 91 91 165
Pityriasis Rosea (PR) 96 97 156
Prurigo Nodularis (PN) 85 85 152
Psoriasis (PSO) 326 327 165
Sarcoidosis (SAR) 174 175 162
Scabies (SCA) 170 169 176
Squamous Cell Carcinoma (SCC) 290 291 175
Vitiligo (VIT) 83 83 161

Total 3100 3100 3100
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Table 12: Dataset details.

Dataset # Classes Train Size Test Size Class Names

Derm7pt 14 413 395 clark nevus, melanoma, reed or spitz nevus, seborrheic kerato-
sis, basal cell carcinoma, vascular lesion, lentigo, blue nevus,
dermal nevus, dermatofibroma, combined nevus, congenital ne-
vus, miscellaneous, recurrent nevus

eSkinHealth 24 2,714 2,676 buruli ulcer, scabies, yaws, prurigo nodularis, tinea corporis,
erysipelas, tinea capitis, leprosy, impetigo, necrotizing fasci-
itis, contact dermatitis, lichen planus, tinea versicolor, folliculi-
tis, chickenpox, acne, vitiligo, abscess, keratosis, herpes zoster,
atopic dermatitis, eczema, lipome, mycetoma

Fitzpatrick17k 20 3,100 3,100 psoriasis, squamous cell carcinoma, lichen planus, basal cell
carcinoma, allergic contact dermatitis, lupus erythematosus,
sarcoidosis, folliculitis, scabies, melanoma, erythema multi-
forme, granuloma annulare, eczema, pityriasis rosea, mycosis
fungoides, acne, actinic keratosis, prurigo nodularis, vitiligo,
keloid

SD-260 260 10,362 10,238 abrasion, acne excoriee, acne keloidalis nuchae, acne vulgaris,
acrokeratosis verruciformis, actinic solar damage, actinex treat-
ment, actinic cheilitis, actinic keratosis, cutis rhomboidalis
nuchae, actinic favre-racouchot, pigmentation, actinic solar
elastosis, solar purpura, telangiectasia, actinic wrinkles, acute
eczema, allergic contact dermatitis, alopecia areata, anagen ef-
fluvium, androgenetic alopecia, angiofibroma, angiokeratoma,
angioma, angular cheilitis, aphthous ulcer, apocrine hydrocys-
toma, arsenical keratosis, atopic dermatitis, balanitis xerotica
obliterans, basal cell carcinoma, ”beaus lines”, ”beckers nevus”,
”behcets syndrome”, benign keratosis, blue nevus,
bowenoid papulosis, ”bowens disease”, cafe au lait macule, cal-
lus, candidiasis, cellulitis, chalazion, cherry angioma, clubbing
of fingers, combined nevus, compound nevus, congenital ne-
vus, contact dermatitis, ”crowes sign”, cutanea larva migrans,
cutaneous horn, cutaneous leishmaniasis, cutaneous t-cell lym-
phoma, cutis marmorata, darier-white disease, dermatofibroma,
dermatomyositis, dermatosis papulosa nigra, desquamation,
digital fibroma, dilated pore of winer, discoid lupus erythe-
matosus, disseminated actinic porokeratosis, drug eruption, dry
skin eczema, dyshidrosiform eczema, dysplastic nevus, eccrine
poroma, eczema, epidermal nevus, epidermoid cyst,
epithelioma adenoides cysticum, erythema ab igne, erythema
annulare centrifigum, erythema craquele, erythema multiforme,
exfoliative erythroderma, factitial dermatitis, favre-racouchot,
fibroma, fibroma molle, fixed drug eruption, follicular mu-
cinosis, follicular retention cyst, fordyce spots, frictional
lichenoid dermatitis, ganglion, geographic tongue, granula-
tion tissue, granuloma annulare, green nail, guttate psoriasis,
hailey-hailey disease, half and half nail, halo nevus, hand foot
mouth disease, herpes gestationis, herpes simplex virus, her-
pes zoster, hidradenitis suppurativa, hirsutism, histiocytosis x,
hyperkeratosis palmaris et plantaris, hypertrichosis, ichthyosis,
ichthyosis vulgaris, id reaction, impetigo, infantile atopic der-
matitis, insect bite,
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Dataset # Classes Train Size Test Size Class Names

intradermal nevus,inverse psoriasis, ischemia, junction nevus,
keloid, keratoacanthoma, keratolysis exfoliativa of wende, ker-
atosis pilaris, kerion, koilonychia, ”kyrles disease”, leiomyoma,
lentigo maligna melanoma, lentigo simplex, leprosy, leukemia
cutis, leukocytoclastic vasculitis, leukonychia, lichen planus,
lichen sclerosis et atrophicus, lichen simplex chronicus, lichen
spinulosis, linear epidermal nevus, lipoma, livedo reticularis,
lymphangioma circumscriptum, lymphocytic infiltrate of jess-
ner, lymphocytoma cutis, lymphomatoid papulosis, mal per-
forans, malignant melanoma, median nail dystrophy, melasma,
metastatic carcinoma, milia, molluscum contagiosum, mor-
phea, mucha-habermann disease, mucous membrane psoriasis,
myxoid cyst, nail cosmesis, nail dystrophy, nail nevus, nail pso-
riasis, nail ridging, nail trauma, neurodermatitis, neurofibroma,
neurotic excoriations, nevus cell nevus, nevus comedonicus, ne-
vus incipiens, nevus sebaceous of jadassohn, nevus spilus, num-
mular eczema, onychogryphosis, onycholysis, onychomycosis,
onychoschizia, paronychia, pearly penile papules, pediculosis
pubis, pemphigus foliaceus, perioral dermatitis, photodermati-
tis, pilomatrixoma, pincer nail syndrome, pitted keratolysis,
pityriasis alba, pityriasis rosea, pityriasis rubra pilaris, pityri-
asis versicolor, pityrosporum folliculitis, poikiloderma atroph-
icans vasculare, pomade acne, porokeratosis of mibelli, port
wine stain, pseudofolliculitis barbae, pseudorhinophyma, psori-
asis, pterygium inversum unguis, pustular psoriasis, pyoderma
gangrenosum, pyogenic granuloma, racquet nail, radiodermati-
tis, rhinophyma, rosacea, scabies, scalp psoriasis, scar, scarring
alopecia, ”schambergs disease”, sebaceous gland hyperplasia,
seborrheic dermatitis, seborrheic keratosis, skin tag, solar elas-
tosis, solar lentigo, spindle cell nevus, squamous cell carcinoma
(scc), stasis dermatitis, stasis edema, stasis ulcer, steroid acne,
steroid atrophy, steroid striae, steroid use, stomatitis, straw-
berry hemangioma, striae, subacute cutaneous lupus erythe-
matosus, subungual hematoma, superficial actinic porokerato-
sis, syringoma, systemic lupus erythematosus, ”terrys nails”,
thermal burn, tick bite, tinea capitis, tinea corporis, tinea cruris,
tinea faciale, tinea incognito, tinea manus, tinea pedis, tinea
versicolor, toe deformity, traction alopecia, trichilemmal cyst,
trichoepithelioma, trichofolliculoma, trichostasis spinulosa, tri-
chotillomania, tuberous sclerosis, twenty nail dystrophy, ul-
cer, urticaria, uvl burn, varicella, verruca vulgaris, viral exan-
them, virilization, vitiligo, ”von recklinghausens disease”, wart,
wound infection, xerosis, x-linked ichthyosis

PAD-UFES-20 6 1,134 1,164 actinic keratosis, basal cell carcinoma, melanoma, nevus, seb-
orrheic keratosis, squamous cell carcinoma
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Table 13: Skin condition descriptions used in this study.

Condition Description

acne Face/chest/back comedones and inflamed papules/pustules ±nodules; red or skin-colored with
black/white heads; oily, ±crust.

actinic keratosis Sun-exposed rough, scaly flat/slightly raised papule ¡1 cm; pink/red/brown; gritty sandpaper
feel.

allergic contact dermatitis At contact sites, ill-defined pink-red (darker on dark skin) patches/plaques ±vesicles/edema;
weepy/crusty/scaly surface.

basal cell carcinoma Sun-exposed pearly/waxy papule or thin scaly patch with rolled edge ±central ulcer; translucent
or brown/black; smooth/shiny ±crust.

eczema Flexural dry itchy ill-defined patches/plaques ±tiny vesicles; red/pink or purple/gray on dark
skin; flaky ±lichenified.

erythema multiforme Acral target lesions—round 1–3 cm with dark center, pale ring, red outer rim—mostly flat
±blister.

folliculitis Hair-bearing sites with clustered 2–5 mm follicle-centered pustules/red papules; red/darker base
with white/yellow pus; dome-shaped ±crust.

granuloma annulare Hands/feet/wrists/ankles smooth firm non-scaly papules forming annular rings; skin-
colored/pink/red (purple on dark skin).

keloid Over scars on chest/shoulders/earlobes etc., shiny firm hairless raised irregular growth extend-
ing beyond wound; pink/red or darker.

lichen planus Wrists/ankles etc. flat-topped polygonal 2–10 mm violaceous papules/plaques with fine white
Wickham striae; shiny ±scale.

lupus erythematosus Malar ‘butterfly’ smooth pink rash ±discoid coin-shaped scaly scarred plaques on scalp/ears;
red or hyperpigmented; rough if discoid.

melanoma Anywhere (palms/soles/nails in dark skin) asymmetric lesion with irregular borders, color var-
iegation, often ¿6 mm; becomes raised/crusted/ulcerated.

mycosis fungoides Non-sun areas with dry scaly patches → thicker scaly plaques (±smooth tumor nodules); pink-
red to brown/darker; irregular.

pityriasis rosea Trunk herald patch then multiple smaller ovals along skin lines; pink/salmon
(gray/brown/purple on dark skin) with fine collarette scale.

prurigo nodularis Reachable areas with multiple very itchy 1–3 cm firm nodules, often crusted/scabbed on top;
pink/red/brown/black; thick/rough with excoriations.

psoriasis Elbows/knees/scalp/lower back well-demarcated plaques with thick silvery/gray scale; pink/red
or purple/dark brown; dry/flaky (Auspitz sign).

sarcoidosis Face/shins/scars with smooth firm plaques/nodules/patches; purplish/red-brown or
lighter/darker areas; rubbery; shin nodules are tender.

scabies Finger webs/wrists/waist/genitals etc. with 5–15 mm wavy burrows plus clustered 1–2 mm
itchy papules/vesicles; excoriated/crusted.

squamous cell carcinoma Sun-exposed or scarred sites with firm scaly/crusted nodule/plaque/ulcer ±raised border/central
depression; pink/red or darker; rough, may bleed.

vitiligo Sharply bordered depigmented patches (often symmetric) on face/hands/feet/genitals; chalk-
white contrast; normal texture without scale.

nevus Anywhere well-circumscribed round/oval macule/papule/nodule with smooth borders; uniform
tan/brown/black or skin-colored; smooth flat or dome-raised.

seborrheic keratosis Anywhere except palms/soles ‘stuck-on’ waxy papule/plaque with sharp borders; tan to dark
brown/black or mixed; warty/greasy with keratin plugs.

buruli ulcer Limb lesion evolves from painless nodule/plaque/edema to undermined necrotic ulcer; circu-
lar/irregular with yellow-white base and violaceous/brown edge; moist ±slough.

yaws Leg/foot raspberry-like papilloma ±ulcer then multiple papules/plaques/shallow ulcers; dome-
lobulated; bright red → red-brown/yellow; verrucous/granular ±crust.

tinea capitis Scalp alopecic scaly ring-like patch with broken hairs/black dots ±boggy kerion or yellow scu-
tula; gray-white/red-brown; fine scale or boggy crust.

tinea corporis Exposed skin annular plaques with raised scaly active border and central clearing; poly-
cyclic/serpiginous; rim scaly, center smoother.

erysipelas Lower legs/face sharply demarcated lobulated cellulitic plaque ±tense bullae; fiery
red/violaceous; smooth tense shiny peau d’orange.

leprosy Cool sites hypopigmented/coppery patches with sensory loss or plaques/nodules/diffuse infil-
tration; round/oval with raised rim; dry hairless/anhidrotic or thick shiny.

necrotizing fasciitis Rapidly enlarging ill-defined limb/trunk plaque with dusky patches, ecchymoses and flaccid
bullae → black necrotic eschar; tense shiny then leathery.

impetigo Perioral/exposed erosions with honey-colored crust after vesicles/pustules (bullous form flaccid
blisters); round/oval, coalescent; moist → sticky crust.
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Table 14: Basal Cell Carcinoma (BCC): visual checklist
Section Details

Location
• Sun-exposed areas most commonly:
• Face (nose, cheeks, forehead), ears, neck
• Scalp (esp. with thinning hair), upper chest/shoulders, back, hands, arms

Lesion type (morphology)
• “Pearly”/waxy bump (common presentation)
• Papillary: raised, dome-shaped bump
• Nodular: firm, raised nodule
• Superficial infiltrating: flat, scaly or crusted patch/plaque
• Morpheaform: indurated, scar-like plaque
• Micropapillary: flat/scaly with small raised papules
• Infiltrating BCC: flat, scaly lesion that can mimic other dermatoses

Shape
• Often irregular with poorly defined borders
• Typically asymmetrical
• Evolving in size, shape, or color over time

Color
• Pink or red; may be white/waxy
• Brown/tan or (less commonly) black
• Blue/purple hues if ulcerated

Texture
• Smooth or waxy; may be scaly or crusted
• Ulcerated surface can occur and is concerning

Condition Description

tinea versicolor Upper trunk/shoulders/neck flat hypo- or hyperpigmented macules/patches with fine powdery
‘bran’ scale accentuated by scraping; coalescing map-like.

varicella Face/trunk then scalp/limbs crops of itchy 2–4 mm thin-walled vesicles on pink/dark base →
crusted scabs; discrete ±coalescent; glistening then flaky.

abscess Axillae/buttocks/groin etc. tender dome-shaped red-violaceous nodule that becomes fluctuant
with pointing yellow/white center; shiny tense skin; purulent drainage after rupture.

atopic dermatitis Flexures/hands/eyelids etc. itchy ill-defined papules→plaques with acute weeping/crust or
chronic lichenification; pink-red or purple-brown/gray; dry rough.

keratosis pilaris Outer arms/thighs/cheeks tiny follicular keratin plugs (‘goose-bump’ papules) in indistinct
patches; skin-colored to red; rough sandpapery dry feel.

herpes zoster Single-dermatome band of clustered clear vesicles on pink/purple base not crossing midline →
pustules/crusts; 2–4 mm; tense/glossy then adherent crust.

lipoma Trunk/neck/limbs soft smooth mobile subcutaneous dome/oval nodule with normal overlying
color; rubbery/doughy consistency.

mycetoma Foot/leg/hand firm lobulated subcutaneous mass with multiple draining sinus openings extrud-
ing colored grains; overlying skin normal→hyperpigmented; crusted seepage.

lymphatic filariasis Lower legs/feet (±arms/genitals) chronic lymphedema to elephantiasis with column-like limb,
bulbous foot and verrucous corrugated plaques; hyper/hypopigmented; thick ‘mossy’ hyperker-
atosis.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 15: Lupus Erythematosus (LE): visual checklist
Section Details

Location
• Sun-exposed areas most common: face (cheeks, nose, forehead), ears, neck, chest, upper

arms
• Mucous membranes: oral cavity (inner cheeks, gums, tongue), nose, eyelids
• Other sites (less common): scalp, nails, genital area

Lesion type
• Malar (butterfly) rash: flat/slightly raised erythema across cheeks and nasal bridge
• Discoid lupus: chronic coin-shaped, raised, scaly, scarring plaques; may leave hypo-

/hyperpigmentation
• Photosensitivity: rash/exacerbation after sun exposure
• Oral ulcers: shallow ulcers on inner cheeks, gums, or tongue
• Livedo reticularis: net-like reddish-blue mottling (legs/arms/face)
• Vasculitis: purpura, petechiae, ulcers
• Alopecia: diffuse thinning or patchy hair loss
• Raynaud’s phenomenon: digits turn white/blue with cold or stress

Shape
• Malar rash: butterfly-shaped, may have central clearing
• Discoid: coin-shaped, raised, scaly plaques
• Oral ulcers: round/oval
• Livedo: reticular (net-like) pattern
• Purpura/petechiae: small pinpoint to macular spots
• Alopecia: patchy or generalized

Color
• Malar: red, sometimes with central clearing
• Discoid: red/erythematous; may heal with hypo- or hyperpigmentation
• Oral ulcers: red to violaceous
• Livedo: reddish-blue mottling
• Purpura/petechiae: red or purple
• Alopecia: variable (depends on cause and background skin)

Texture
• Malar: flat or slightly raised
• Discoid: raised, scaly; may become crusted; can scar
• Oral ulcers: smooth base, slightly irregular margins
• Livedo: smooth surface with reticular pattern
• Purpura/petechiae: flat to slightly raised
• Alopecia: variable; scalp may be smooth or scaly depending on subtype
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