

000
001 **ARE MEDICAL VISION–LANGUAGE FOUNDATION**
002 **MODELS READY FOR DERMATOLOGY**
003
004
005

006 **Anonymous authors**
007 Paper under double-blind review
008
009

010 **ABSTRACT**
011

012 Medical Vision-Language models (VLMs) show significant promise for clinical
013 image understanding, offering the promise of greater medical accessibility and in-
014 terpretability. However, a critical performance gap in diagnostic accuracy exists
015 between their strong vision encoders and the full multimodal model. This per-
016 formance gap suggests that such VLM fails to make full use of the strength of its vi-
017 sion branch. Such misalignment also implies that these models often over-rely on
018 their language priors, producing plausible-sounding diagnoses without sufficiently
019 grounding their reasoning in visual evidence. Focusing on dermatology, we sys-
020 tematically investigate the root causes of this phenomenon. While fine-tuning can
021 improve accuracy, it often compromises the model’s essential reasoning capabili-
022 ties. To address these challenges, we introduce a inference-time pipeline designed
023 to close the performance gap while preserving the model’s reasoning abilities.
024 Our pipeline enhances diagnostic accuracy and faithfulness without requiring ad-
025 dditional training. These strategies are readily extensible, suggesting a path toward
026 more reliable and interpretable VLMs in medicine and beyond.
027

028 **1 INTRODUCTION**
029

030 Diagnosing conditions from dermatological images is a challenging task due to inherent complex-
031 ities, such as subtle variations in disease presentation and a lack of standardized image quality.
032 While advances in computer vision have enabled diagnostic models to achieve expert-level accuracy
033 ([Brinker et al., 2019](#); [Esteva et al., 2017](#); [Liu et al., 2020](#); [Soenksen et al., 2021](#); [Wang et al., 2024](#)),
034 their deployment in safety-critical domains like healthcare demands more than just precision. It is
035 crucial that a model’s decisions are interpretable, ensuring they are grounded in clinical evidence
036 rather than spurious correlations. The recent emergence of Vision-Language Models (VLMs) in
037 dermatology addresses this need, aiming not only for accurate diagnosis but also for explainable
038 reasoning, thereby paving the way for the reliable, real-world application of AI in medicine.

039 The development of dermatological VLMs has often relied on pre-training with large-scale, special-
040 ized datasets and advanced architectures. For example, DermLIP is a CLIP-based VLM ([Radford et al., 2021](#)) that was pre-trained on Derm1M, a dataset with over one million image-text pairs, en-
041 abling tasks like zero-shot classification and concept identification ([Yan et al., 2025a](#)). Similarly,
042 MONET ([Kim et al., 2024](#)) has fine-tuned a CLIP model on over 100K dermatological images
043 paired with natural language descriptions from a large collection of medical literature, aiming for
044 interpretable diagnoses. Additionally, SkinVL ([Zeng et al., 2025](#)) and SkinGPT-4 ([Zhou et al., 2024](#))
045 have integrated large language models into their dermatological VLMs and leveraged large derma-
046 tological corpora to facilitate classification with nuanced disease interpretation and visual question
047 answering. More recently, MedGemma, a family of medical foundation models, has emerged to
048 demonstrate superior medical reasoning capabilities ([Sellergren et al., 2025](#)). Built upon the pow-
049 erful Gemma 3 ([Team et al., 2025](#)) architecture and incorporating a medically tuned vision encoder
050 MedSigLIP, MedGemma excels at transparent reasoning, making it an ideal for clinical applications.

051 In this work, we uncover a critical paradox: while MedGemma’s vision encoder, MedSigLIP, pos-
052 sseses exceptional discriminative power, this strength fails to translate into the zero-shot diagnostic
053 accuracy of the full multimodal model. As shown in Fig. 1, we observe that a simple few-shot
linear probe on MedGemma’s vision encoder, which is medically tuned from SigLIP ([Zhai et al.,](#)

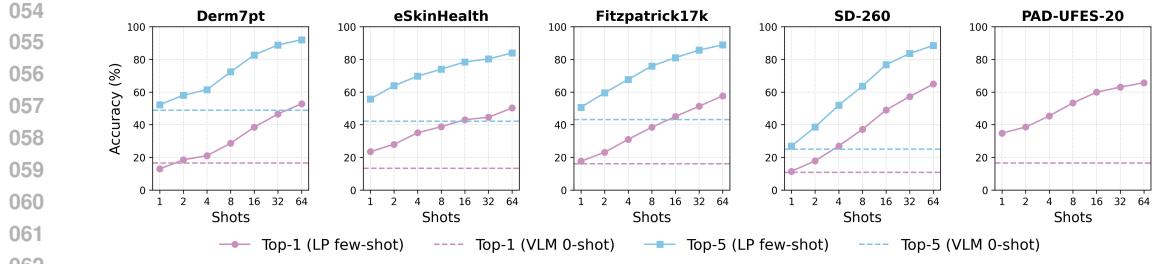


Figure 1: A comparison of the zero-shot performance of the MedGemma-4B VLM against the linear probe performance of its vision encoder, MedSigLIP. In this figure, LP denotes a linear probe on the vision encoder, while VLM denotes a direct query for diagnosis to the full vision-language model.

Table 1: Classification performance across five dermatology datasets. The table compares the performance for MedGemma-4B under three conditions: zero-shot inference, full-data fine-tuning, and a linear probe on its vision encoder (MedSigLIP). Performance is compared against a linear probe on a competitive vision encoder, PanDerm. Linear probing on both vision encoders significantly outperforms the zero-shot with the VLM, even after fine-tuning. Results are averaged over five runs.

Datasets	Data Details			MedGemma-4B						PanDerm	
	#Class	#Train	#Test	Zero-Shot		Fine-tune		Linear Probe		Linear Probe	
				ACC	F1	ACC	F1	ACC	F1	ACC	F1
Derm7pt	14	413	395	16.46 (± 0.02)	17.77	39.50 (± 2.15)	22.49	57.22 (± 0.88)	30.07	58.99 (± 0.76)	57.93
eSkinHealth	24	2,714	2,676	13.35 (± 0.15)	16.33	60.26 (± 1.42)	56.17	65.35 (± 0.54)	42.51	60.64 (± 0.61)	59.83
Fitzpatrick17k	20	3,100	3,100	16.73 (± 0.08)	11.13	47.32 (± 1.10)	45.16	66.32 (± 0.45)	66.90	64.87 (± 0.39)	64.88
SD-260	260	10,362	10,238	10.81 (± 0.05)	7.94	39.45 (± 0.95)	34.63	75.35 (± 0.32)	60.10	72.08 (± 0.28)	60.24
PAD-UFES-20	6	1,134	1,164	46.91 (± 0.12)	32.98	66.75 (± 1.85)	61.53	76.03 (± 0.91)	66.22	74.21 (± 0.84)	64.98

2023a), achieves remarkable classification accuracy across five skin disease datasets. Direct comparisons reveal that MedSigLIP is comparable to, and at times superior to, PanDerm (Yan et al., 2025b), the specialized dermatology vision encoder of DermLIP, as shown in Table 1. Taken together, these results confirm that MedGemma’s vision branch possesses powerful discriminative capabilities that are underutilized by the full multimodal model’s zero-shot classification performance. Although fine-tuning may seem promising, our results indicate that applying LoRA (Hu et al., 2022) to MedGemma underperforms a linear probe and often compromises the model’s reasoning abilities—the very reason for using a foundation model in the first place (see Table 1).

This discrepancy leads us to two fundamental questions: (1) What are the root causes of the large performance gap between MedGemma’s highly capable vision encoder and its end-to-end zero-shot diagnostic performance? (2) Can we develop fine-tuning-free strategies to close this gap, improving zero-shot accuracy while preserving the model’s essential reasoning abilities? To answer these questions, our work makes the following contributions:

- We provide a systematic analysis of MedGemma-4B, identifying and verifying three root causes of the performance gap: training data distribution mismatch, under-reliance on the vision branch, and a fundamental misalignment between the discriminative objective of the encoder and the generative objective of the language model.
- We introduce a fine-tuning-free inference pipeline that guides the VLM to enhance zero-shot diagnostic accuracy and faithfulness without any model updates.
- We offer a set of actionable guidelines for practitioners to deploy large, often “black-box,” VLMs more effectively, maximizing their performance in resource-constrained settings.

While our investigation is grounded in dermatology using MedGemma-4B, the identified challenges and proposed solutions extend far beyond our specific use case. The over-reliance on language priors and modality misalignment are fundamental issues facing the broader field of vision-language research (Zhai et al., 2023b; Yang et al., 2025; Hu et al., 2024; Tong et al., 2024). Therefore, our analysis provides valuable insights into a generalizable approach to improving the reliability and visual grounding of VLMs in safety-critical applications beyond dermatology or healthcare.

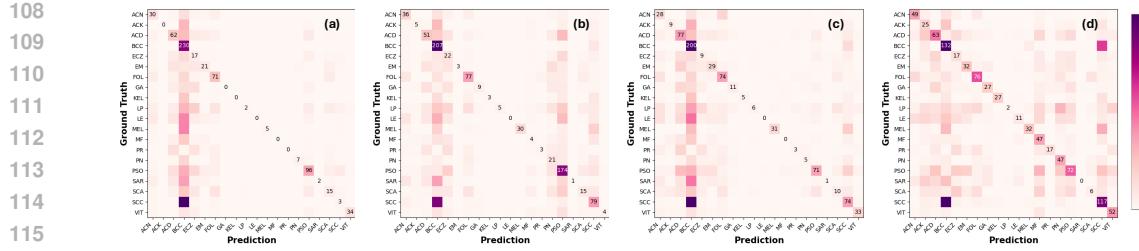


Figure 2: These confusion matrices compare the impact of each fine-tuning-free strategy on the Fitzpatrick17k dataset: (a) “direct answer”, (b) “in-context”, (c) a “describe-then-decide”, and (d) a “top-5 to top-1” following a 2-shot linear probe. For class abbreviations, see Appendix 11.

2 PRELIMINARY

The MedGemma family of multimodal models is available in two variants: a 4B and a 27B parameter version. Both models employ the MedSigLIP image encoder, which was pre-trained on a diverse corpus of de-identified medical data, including chest X-rays, dermatology images, ophthalmology images, and histopathology slides. The primary distinction between the two is that the 27B variant was also pre-trained on an additional medical corpus that includes electronic health records (EHRs). As our research focuses on visual diagnosis from images rather than EHR data, MedGemma-4B is a more suitable choice for this study. We formalize the interaction with the VLM \mathcal{M} , as follows:

$$\mathcal{M}[\text{Prompt}, \text{Image}] \rightarrow \text{Response} , \quad (1)$$

where the model receives a textual prompt and an image of a skin condition as inputs and generates a response containing a diagnosis and an explanation.

Datasets. To ensure a comprehensive and robust evaluation, our study considers five distinct datasets selected to cover a wide spectrum of diseases and patient demographics. For broad coverage, we include SD-260 (Yang et al., 2019), which contains clinical images across 260 skin conditions, and Fitzpatrick17k (Groh et al., 2021), which features light-skinned images annotated with Fitzpatrick Skin Types. Following the methodology of (Wang et al., 2025b) to leverage their disease checklists, we use the same subset of Fitzpatrick17k as that used in their work. To assess performance on more specific diseases and diverse populations, we incorporate Derm7pt (Kawahara et al., 2019), focusing on its clinical photos of skin cancer, and eSkinHealth (Wang et al., 2025a), a specialized dataset of Neglected Tropical Diseases (NTDs) in West African populations. Finally, to test the model’s performance on familiar data, we also include PAD-UFES-20 (Pacheco et al., 2020), an in-domain dataset of skin lesions that was used during MedGemma’s pre-training. For datasets that do not provide an official train-test split, we partitioned the data by case and class with a 0.5 split ratio, with further details provided in Table 1 and Appendix. 12. Implementation details and hyperparameter tuning results for fine-tuning and linear probing are provided in the Appendix. C.

3 METHODS

3.1 HYPOTHESIS 1: TRAIN-TEST DISTRIBUTION MISMATCH

We first hypothesize that the performance gap stems from a train-test distribution mismatch. That is, the model may not have learned sufficient representations for certain conditions if they were rare or absent in its training data. This distribution mismatch prevents the model from generalizing to these “tail” or out-of-distribution classes during zero-shot inference.

Evidence. While the exact composition of MedGemma’s training data is not public, we can investigate this hypothesis by analyzing the model’s prediction bias. The confusion matrix in Fig. 2 clearly demonstrates this bias: the model shows a strong tendency to over-predict certain common conditions, such as basal cell carcinoma (BCC). For instance, nearly all cases of lupus erythematosus (LE) are misclassified as BCC. This raises a critical question: is this error due to a bias in the visual pre-training data (a vision branch issue) or from an incomplete conceptual understanding in the language model (a language branch issue)? By leveraging the model’s reasoning capabilities, we can

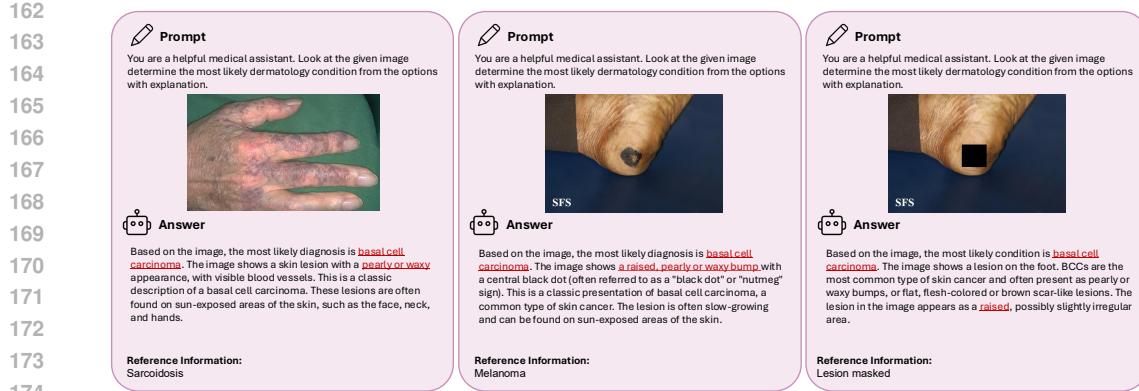


Figure 3: Examples of incorrect answers and hallucinated explanations from MedGemma-4B. The model incorrectly diagnoses sarcoidosis (left) and melanoma (middle) as basal cell carcinoma, providing descriptions of features that are not present in the images. In the third example (right), the lesion is manually masked, yet the model generates the same incorrect diagnosis and explanation, indicating it may generate a prediction first and rationalize it with a post-hoc explanation.

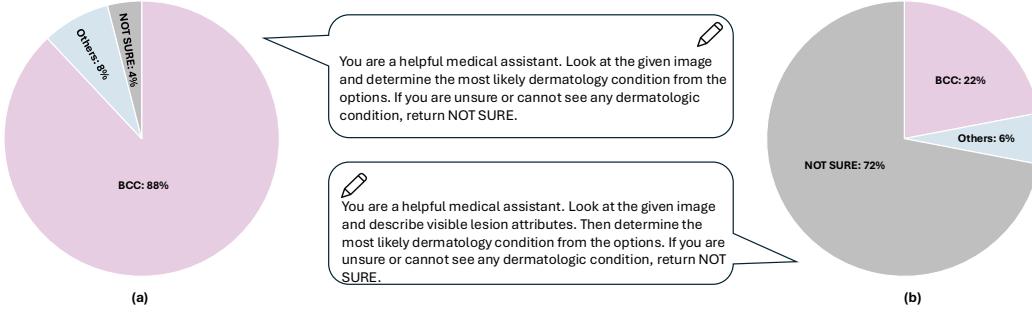


Figure 4: Abstention Test. The model is tested on 200 images with masked lesions. In (a), we present the images and prompt the model to **diagnose** based on visible signals. In (b), we present the same images and prompt the model to first **describe** the visible lesion before diagnosing. **Note that the "NOT SURE" option was exclusively used for this abstention test, and was not included in the options list of the standard forced-choice classification task.**

probe its conceptual knowledge. We prompted the model to describe the characteristics of diseases it consistently fails to diagnose (i.e., those with 0% zero-shot accuracy). As shown in Appendix 14 and Appendix 15, the model is able to generate equally detailed and accurate descriptions for BCC and LE, suggesting its language-based understanding of these rare diseases is intact. This evidence indicates the problem most likely arises from an imbalanced visual training distribution.

Solution. Although the model may lack sufficient visual examples of rare diseases, it possesses a foundational knowledge of general dermatological terms (e.g., “papules”, “inflammation,” “red-dish,”). We can leverage this by re-framing the task from recognizing a disease name to matching visual evidence with a clinical description. Following the methodology of (Wang et al., 2025b), our solution provides the model with contextual information in the prompt. Alongside each potential disease name in the list of options, we include a description of its key visual characteristics using a set of generic dermatological vocabularies. Instead of forcing the model to map visual cues to a potentially unfamiliar disease label, this approach encourages it to map visual cues to a provided description. As shown in the improved confusion matrix in Fig. 2 (b), this strategy effectively guides the model toward more accurate and diverse predictions. See visual descriptions in Appendix 13.

3.2 HYPOTHESIS 2: UNDER-RELIANCE ON THE VISION BRANCH

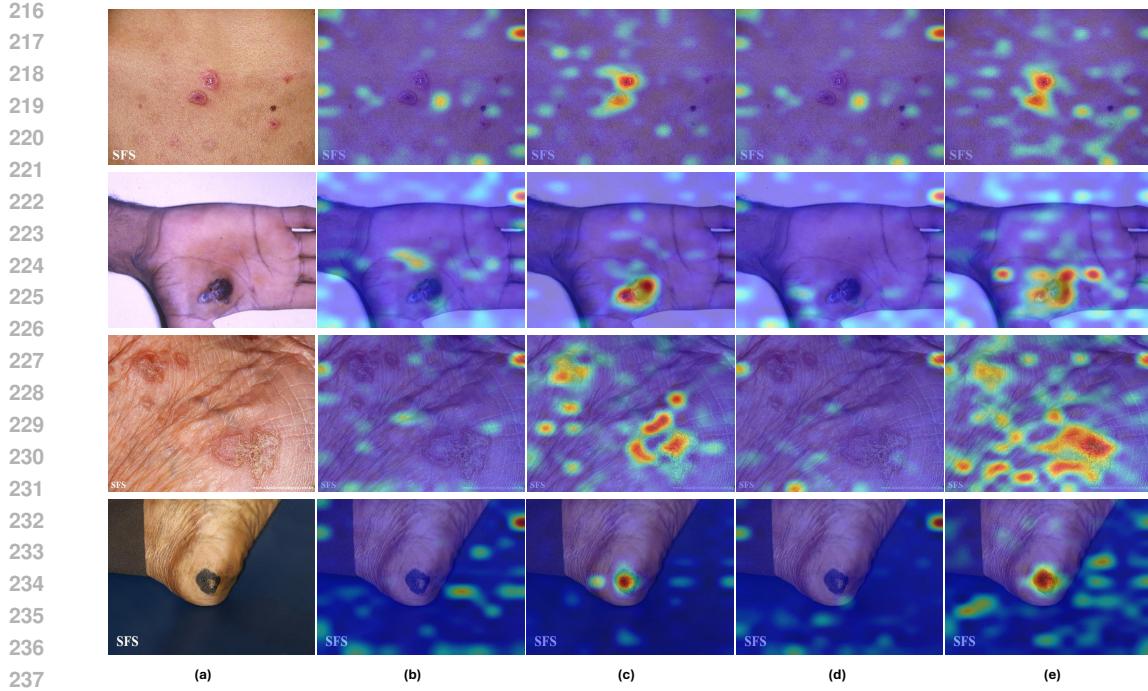


Figure 5: Attention heatmaps. Columns show (a) the original image, (b, d) attention from the prompt querying direct answer (baseline), and (c, e) attention from our “describe-then-decide” strategy. We visualize attention for the final diagnosis tokens (b, c) and for the entire response (d, e). The ‘describe-then-decide’ prompt yields attention maps that are more accurately concentrated on the lesion area, both during the final decision (c) and across the full response (e), confirming improved visual grounding.

We hypothesize that the VLM’s powerful, heavy-weight language model component leads it to over-rely on textual priors when making a diagnosis. This behavior, documented in prior works (Yang et al., 2025; Tong et al., 2024), causes the model to generate a plausible-sounding diagnosis without sufficiently grounding its prediction and reasoning in the visual evidence of the image.

Evidence. We first observe that the model is prone to hallucinated reasoning, generating explanations that are not grounded in the image. As shown in Fig. 3, when presented with an image of “sarcoidosis”, MedGemma incorrectly identifies the condition as BCC and provides a factually incorrect explanation, as there is no visual evidence of a “pearly or waxy” lesion. Similar observations are made for an image of melanoma, even when the lesion is intentionally masked. In these cases, the model tends to provide a generic, post hoc explanation for BCC, indicating that its diagnosis is not derived from the image’s visual features. To quantify this behavior, we masked 200 images and tested whether the model would abstain from making a diagnosis when the primary lesion was hidden. As shown in Fig. 4(a), the model failed to abstain in 88% of cases, instead defaulting to a BCC diagnosis. This provides evidence that the model makes predictions without using its “eyes.”

Solution. To mitigate this over-reliance on language priors, we introduce a “describe-then-decide” prompting strategy. This method forces the model to first articulate the visible features of the lesion

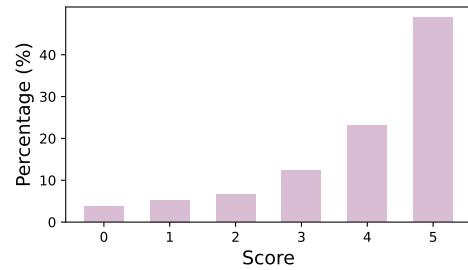


Figure 6: Distribution of quality scores from our human evaluation study. A dermatologist rated 100 generated descriptions, with the score [0-5] indicating the number of clinical criteria correctly described. The results indicate a high level of quality and accuracy.

before making a final diagnosis, thereby compelling it to “look at” the image. The premise is that an accurate diagnosis should be preceded by an accurate visual description. This simple intervention yields improved classification accuracy, as shown in the enhanced confusion matrix in Fig. 2(c) and Table. 4. Additionally, when presented again the 200 masked images, the model’s abstention rate increased from 12% to 72%, evidencing that this prompt encourages visual grounding.

To thoroughly validate that our “describe-then-decide” strategy effectively focuses the model on the lesion area, we generate and analyze attention heatmaps. Here, we define two metrics:

Label-Token Heatmap ($\mathbf{m}_{\text{label}}$): This measures the average attention the model pays to the input image tokens specifically when generating the words of the final diagnosis (e.g., “basal cell carcinoma”). It helps us see what the model attends to at the moment of decision.

All-Tokens Heatmap (\mathbf{m}_{all}): This measures the average attention paid to the image tokens across the entire generated response, including both the description and the diagnosis.

Specifically, let the generated sequence have S tokens. At step t , after averaging head layers, the decoder gives an attention row $\bar{\mathbf{a}}^{(t)} \in \mathbb{R}^{T_t}$. Let the image occupy a contiguous token block $\mathcal{I} = \{s_{\text{img}}, \dots, s_{\text{img}} + L_{\text{img}} - 1\}$. Define the image-restricted vector, the slice of a token’s attention only over the image tokens, with everything else (text tokens) dropped, as

$$\mathbf{r}^{(t)} \in \mathbb{R}^{L_{\text{img}}}, \quad \mathbf{r}^{(t)}[j] = \begin{cases} \bar{a}_{s_{\text{img}}+j}^{(t)}, & s_{\text{img}} + j \leq T_t, \\ 0, & \text{otherwise.} \end{cases} \quad (2)$$

So $\mathbb{R}^{L_{\text{img}}}$ is just a length- L_{img} real vector—one weight per visual token. To check how much the model attends to the final lesion prediction when generating responses (see Fig. 5 (b-c)), the label-token heat vector is

$$\mathbf{m}_{\text{label}} = \frac{1}{|\mathcal{S}_{\text{label}}|} \sum_{t \in \mathcal{S}_{\text{label}}} \mathbf{r}^{(t)} \in \mathbb{R}^{L_{\text{img}}} \quad (3)$$

where $\mathcal{S}_{\text{label}}$ indexes the tokens that spell the predicted diagnosis. Reshape $\mathbf{m}_{\text{label}}$ to the token grid and upsample to the image to render the heatmap. For the entire-response attention maps (see Fig. 5 (d-e)), all-tokens heat vector is

$$\mathbf{m}_{\text{all}} = \frac{1}{S} \sum_{t=1}^S \mathbf{r}^{(t)} \in \mathbb{R}^{L_{\text{img}}} \quad (4)$$

By comparing the heatmaps from a baseline prompt(that queries direct answer, 5 (b,d)) with those from our “describe-then-decide” prompt (Fig. 5 (c,e), we can isolate the effect of our strategy. When the label-token heatmap $\mathbf{m}_{\text{label}}$ is more concentrated on the lesion, it indicates that requiring a description forces the model to re-consult the visual evidence before making its final choice. Similarly, the “describe-then-decide” prompt yields broader yet meaningful attention in the \mathbf{m}_{all} heatmap, as the model must scan the image to enumerate pixel-level attributes for the description.

3.3 HYPOTHESIS 3: MISALIGNMENT BETWEEN THE LANGUAGE AND VISION BRANCHES

While “describe-then-decide” improves visual grounding, it does not fully close the performance gap. This leads to our third hypothesis: a fundamental objective misalignment between the VLM’s components. The vision encoder is optimized for discriminative tasks (distinguishing classes), whereas the large language model is optimized for generative tasks (explaining and reasoning). We hypothesize that the VLM is better suited for explanation and description than for forced-choice classification and that leveraging these distinct strengths is key to maximizing performance.

Evidence. Previous sections have already established that the vision encoder’s discriminative performance surpasses that of the VLM. To complete our evidence, we now evaluate the VLM’s primary strength: its ability to generate high-quality, descriptive text. Following the methodology of (Wang et al., 2025b), we prompted MedGemma-4B to describe lesions using a structured format covering five key clinical criteria:[Location Site, Lesion Type, Shape/Border, Color, Texture]. An example of a generated description is shown in Fig. 7. To quantitatively assess quality, was instructed to

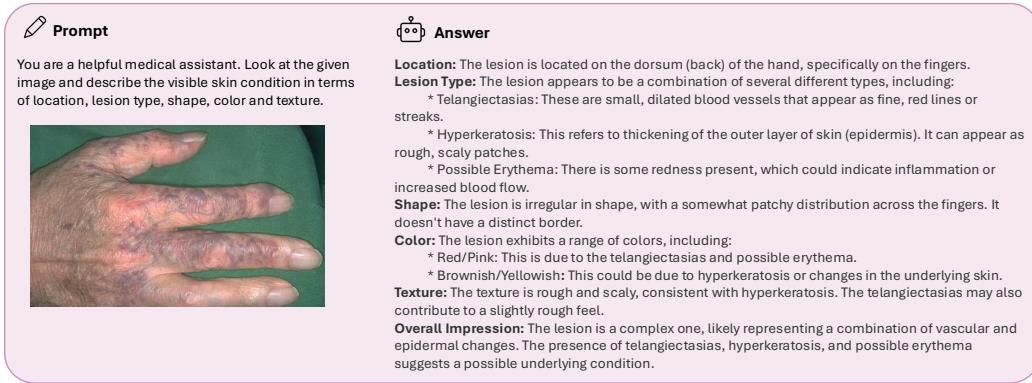
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

Figure 7: An example of a description generated by MedGemma-4B. When prompted to describe the lesion from Fig.3 instead of diagnosing it, the model produces a detailed and clinically relevant analysis of its features. This faithful description contrasts sharply with the hallucinated reasoning.

Table 2: Effectiveness of the proposed two-stage inference pipeline. Comparison of the **Baseline VLM** (MedGemma zero-shot), the standalone **Linear Probe** (MedSigLIP), and **Our Pipeline** which uses the Linear Probe to filter candidates (Top-5) for the VLM (Top-1). All accuracy values are Top-1 (%). Ablation study on different number of shots can be found in Appendix C.3

Dataset	Baseline VLM Zero-Shot		Linear Probe (Vision Encoder Only)		Our Pipeline (LP Top-5 → VLM Top-1)	
	0-shot		1-shot	8-shot	1-shot	8-shot
Derm7pt	16.46 (± 0.01)	12.96 (± 1.75)	28.66 (± 1.38)	20.02 (± 2.39)	35.56 (± 0.99)	
eSkinHealth	13.35 (± 0.23)	23.51 (± 1.91)	38.80 (± 1.06)	30.98 (± 2.85)	42.05 (± 1.48)	
Fitzpatrick17k	16.73 (± 0.19)	17.63 (± 3.13)	38.43 (± 1.03)	25.35 (± 2.41)	37.82 (± 1.37)	
SD-260	10.81 (± 0.13)	11.48 (± 2.27)	37.12 (± 1.46)	22.31 (± 1.95)	42.33 (± 0.92)	
PAD-UFES-20	46.91 (± 0.20)	34.85 (± 1.83)	53.33 (± 1.34)	58.33 (± 2.24)	80.31 (± 1.23)	

review the generated text against the original image and verify the accuracy of each of the five requested criteria. The resulting quality score (0-5) strictly reflects the number of criteria correctly described. As shown in Fig. 6, the model consistently achieves high scores (predominantly 4 or 5), confirming that it can accurately perceive and articulate visual features. This performance stands in stark contrast to the hallucinated and visually ungrounded explanations observed during the standard zero-shot diagnosis (see Fig. 3), providing strong evidence that the model possesses the necessary visual information but fails to effectively utilize it for the specific task of classification.

Solution. Our solution is a two-stage pipeline that leverages the complementary strengths of the vision and language components. Instead of forcing the VLM to perform a task it is not optimized for, we delegate the initial discriminative work to the vision encoder. First, we use the powerful vision encoder with a few-shot linear probe to identify the top-5 most likely diagnosis candidates for a given image. This narrows the field to a small set of high-probability candidates. Then, we feed these top-5 candidates to the full VLM and prompt it to make the final diagnosis from only that reduced set. We term this strategy as “Top-5 to Top-1”.

As shown in Table. 2, this approach is highly effective, especially in low-data regimes. With 1 to 8 shots, the two-stage pipeline’s accuracy is significantly higher than that of a linear probe alone. The benefit diminishes as the number of shots increases (e.g., 16 or more), as the linear probe becomes powerful enough on its own (see Appendix C.3). This makes our approach particularly valuable for real-world medical applications where labeled data is scarce.

This strategy offers three additional benefits. First, by providing the VLM with only 5 options instead of 20 or more, it reduces the prompt length, saving token space for more context. Second, the vision encoder is a plug-and-play component; practitioners can substitute MedSigLIP with any

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

Table 3: Zero-shot prompts.

Type	Prompt
direct answer (baseline)	<p>You are a helpful medical assistant. Look at the given image and determine the most likely dermatology condition from the options:</p> <p>(A) Granuloma annulare</p> <p>(B) Lupus erythematosus</p> <p>(C) Vitiligo.</p> <p>.....</p>
in-context	<p>You are a helpful medical assistant. Look at the given image and determine the most likely dermatology condition from the options:</p> <p>(A) Granuloma annulare, characterized by smooth skin-colored or pink papules arranged in an annular ring with firm ridge.</p> <p>(B) Lupus erythematosus, characterized by scaly plaques with follicular plugging and central scarring on sun-exposed skin; acute malar rash appears as flat red butterfly across cheeks sparing folds.</p> <p>(C) Vitiligo, characterized by sharply bordered milky white macules on face, hands, or genital skin with normal texture and pigment loss.</p> <p>.....</p>
describe-then-decide	<p>You are a helpful medical assistant. Look at the given image and describe visible lesion attributes (location, lesion type, shape/border, color, texture). Then determine the most likely diagnosis from the options:</p> <p>(A) Granuloma annulare</p> <p>(B) Lupus erythematosus</p> <p>(C) Vitiligo.</p> <p>.....</p>

other powerful, domain-specific vision encoder to potentially boost performance further. Third, and perhaps most importantly, we still have the model’s reasoning capabilities at our disposal.

3.4 ABLATION STUDY AND COMBINED PERFORMANCE

Having investigated the root causes of the performance gap and proposed a corresponding remedy for each, we now conduct an ablation study to evaluate the individual and combined effects of our strategies. We compare the following five zero-shot prompting configurations, with the results presented in Table. 4. For the “Top-5 to Top-1” and “all combined” configurations, we use a 8-shot linear probe to generate the initial candidates. We choose 8 shots because, as shown in Table 10, it represents a point of high efficacy in the low-data regime before performance gains begin to saturate. For the SD-260 dataset, providing expert-verified clinical descriptions for all 260 classes was infeasible. Therefore, for this study, we use a subset of SD-260 containing only the classes that overlap with the other datasets. Example of the prompts are shown in Table. 3.

The results of the ablation study provides evidence for the effectiveness of the proposed fine-tuning-free pipeline. We observe that each of the three strategies (in-context, “describe-then-decide”, and “top-5 to top-1”) independently yields a significant improvement in Top-1 accuracy over the direct answer baseline across all five datasets. This validates our three-part analysis, confirming that each hypothesis addresses a distinct limitation of the VLM. Most importantly, the “all combined” design consistently achieves the highest performance, substantially outperforming any single strategy. This demonstrates that the benefits of each strategy are not only independent but also cumulative, working together to progressively close the performance gap and enhance diagnostic accuracy.

3.5 GENERALIZATION TO OTHER VLMs FOR DERMATOLOGY

To demonstrate that the identified challenges and proposed solutions are not specific to the MedGemma architecture, we extended our evaluation to SkinVL (Zeng et al., 2025). As a LLaVA-based model, SkinVL represents a distinct architectural lineage from MedGemma. First, we confirmed that the performance gap is a pervasive issue: consistent with MedGemma, a simple linear probe on SkinVL’s vision encoder significantly outperforms its zero-shot VLM accuracy (see Ap-

Table 4: Ablation study on the effectiveness of each proposed strategy. This table presents the zero-shot Top-1 accuracy for five different configurations. The “direct answer” column serves as the baseline, using a standard classification prompt. The “in-context” strategy augments the prompt with clinical descriptions; “describe-first” requires the model to describe visual features before diagnosis; and “top-5 to top-1” is our two-stage strategy where the VLM reranks candidates from a 8-shot linear probe. The final “all combined” column integrates all proposed strategies.

Dataset	direct answer	in-context	describe-first	top-5 to top-1	all combined
Derm7pt	16.46 (± 0.17)	26.72 (± 0.82)	30.98 (± 1.37)	35.10 (± 1.95)	38.27 (± 0.81)
eSkinHealth	13.35 (± 0.23)	30.07 (± 1.51)	29.77 (± 0.92)	43.94 (± 1.03)	48.00 (± 0.86)
Fitzpatrick17k	16.73 (± 0.25)	24.01 (± 2.01)	24.75 (± 1.53)	28.32 (± 1.67)	40.97 (± 1.41)
SD-260 (subset)	24.31 (± 0.15)	34.29 (± 1.06)	33.80 (± 1.37)	40.01 (± 2.18)	44.90 (± 0.91)
PAD-UFES-20	46.22 (± 0.17)	52.23 (± 1.26)	62.33 (± 1.58)	75.23 (± 2.07)	84.68 (± 1.80)

pendix D for full comparison). Second, we evaluated our training-free pipeline on SkinVL. Due to its stricter context window, we adapted the pipeline to perform “Top-5 to Top-1” filtering first. As shown in Table 5, our strategies yield consistent performance gains across multiple datasets, even improving upon the high baselines of Fitzpatrick17k (a dataset included in SkinVL’s pre-training). This confirms that our approach generalizes effectively to LLaVA-based architectures.

Table 5: Generalizability on SkinVL (LLaVA-based). Top-1 Accuracy (%) comparison. Our proposed inference pipeline consistently improves performance over the direct answer baseline, demonstrating robustness across different VLM architectures.

Inference Strategy	Derm7pt	eSkinHealth	Fitzpatrick17k
Direct Answer (Baseline)	12.77 (\pm 0.12)	23.76 (\pm 0.21)	10.05 (\pm 0.08)
+ Top-5 Filtering	29.66 (\pm 1.45)	40.25 (\pm 1.82)	58.37 (\pm 1.15)
+ In-Context Description	31.19 (\pm 1.33)	44.03 (\pm 2.01)	62.97 (\pm 1.28)
+ Describe-then-Decide (Ours)	32.56 (\pm 0.95)	44.89 (\pm 1.67)	63.91 (\pm 1.05)

4 RELATED WORKS

4.1 FOUNDATION MEDICAL VISION-LANGUAGE MODELS FOR DERMATOLOGY

Recent advancements in dermatology have been driven by a series of specialized VLMs (Zhang et al., 2024; Lin et al., 2023). DermLIP, for instance, was trained on Derm1M, a large-scale dataset of over one million image-text pairs, to enable zero-shot classification and concept identification (Yan et al., 2025a). Similarly, MONET was developed by fine-tuning a CLIP model on over 100,000 image-caption pairs from medical literature to achieve transparent, concept-based diagnoses (Kim et al., 2024). Such strategies of designing specialized curricula have also proven effective in other medical domains, such as retinal image analysis, to ensure robust feature learning for medical VLMs (Holland et al., 2025). Other models like SkinVL (Zeng et al., 2025) and SkinGPT-4 (Zhou et al., 2024) have integrated large language models to facilitate more nuanced disease interpretation and visual question answering. SkinVL was trained on nearly 10,000 specialized image-captions and 27,000 QA pairs derived from professional textbooks, while SkinGPT-4 was aligned with Llama-2 (Touvron et al., 2023) using over 52,000 skin disease images. While these models have demonstrated strong performance on specific dermatological tasks, our work focuses on MedGemma (Team et al., 2025; Sellergren et al., 2025), a generalist medical foundation model. We selected MedGemma because its architecture, featuring a powerful, medically-tuned vision encoder (MedSigLIP) combined with an advanced language model (Gemma 3), represents the state-of-the-art in transparent medical reasoning. This makes it an ideal testbed for investigating the fundamental vision-language alignment challenges that are broadly relevant to the next generation of medical AI.

486
487

4.2 MISALIGNMENT OF VLMS AND OVER-RELIANCE ON LANGUAGE PRIOR

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503

A central challenge in current VLM is the misalignment between their powerful vision encoders and the end-to-end multimodal system (Xing et al., 2025). This often manifests as an over-reliance on the language model’s priors, where the VLM fails to properly integrate visual information during reasoning. Studies have shown that as a VLM generates a response, its attention to visual input can gradually diminish, sometimes having a negligible influence on the final output (Yang et al., 2025). This tendency to “look away” from the image leads to models producing plausible-sounding but visually ungrounded responses and hallucinations. (Tong et al., 2024) investigated this issue, demonstrating that even advanced models like GPT-4V exhibit elementary visual shortcomings that can be traced back to weaknesses in the underlying CLIP vision encoder. They found that models struggle with basic visual patterns related to orientation, counting, and object attributes, suggesting the visual representations are not fully utilized. This misalignment is further exacerbated during instruction tuning, which can cause catastrophic forgetting; (Zhai et al., 2023b) found that fine-tuning often degrades the model’s core visual perception, causing it to lose the robust classification abilities of its original vision encoder. **To mitigate such inconsistencies, recent works have proposed automated structured reporting to standardize model outputs and reduce hallucination (Delbrouck et al., 2025)**. Taking together, these challenges underscore the critical need for strategies that enforce strong visual grounding in the final reasoning process of vision language models.

504
505
506

5 CONLUSION AND DICUSSION

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

In this work, we investigated a critical paradox in medical foundation models: the significant performance gap between a VLM’s powerful vision encoder and its end-to-end zero-shot diagnostic accuracy. Focusing on MedGemma-4B in the context of dermatology, we systematically identified and validated three root causes for this discrepancy: a train-test distribution mismatch, an over-reliance on language priors, and a fundamental objective misalignment between the vision and language components. To address these challenges, we introduced a fine-tuning-free inference pipeline composed of three distinct strategies: providing in-context clinical descriptions, enforcing a “describe-then-decide” reasoning process, and leveraging the vision encoder for candidate selection in a “Top-5 to Top-1” framework. Our experiments demonstrate that these interventions, both individually and combined, significantly improve zero-shot classification accuracy, reduce diagnostic bias, and enhance the model’s visual grounding, all without requiring any costly fine-tuning that could compromise its valuable reasoning abilities. While our analysis centered on a single model in dermatology, the issues of modality misalignment and language-prior dominance are endemic to the broader field of vision-language research. Therefore, our proposed strategies offer a model-agnostic and data-efficient blueprint for improving the faithfulness and reliability of VLMs in any safety-critical domain where decisions must be grounded in tangible evidence. Future work should explore the application of these principles to other medical specialties and foundation models, paving the way for more robust and trustworthy AI in clinical practice.

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 ETHICS STATEMENT
541542 We adhere to the ICLR Code of Ethics. All data are public and de-identified, and no protected health
543 information is included. We do not expect our approach to introduce direct ethical risks or harmful
544 societal outcomes.545
546 REPRODUCIBILITY STATEMENT
547548 We have taken care to make our results reproducible. The paper and appendix specify all datasets,
549 the exact prompts and prompting variants used in every experiment (Table 3 and Appendix tables),
550 the evaluation protocols and metrics, ablations, and analysis procedures (Section 3 and Table 4).
551552 REFERENCES
553

554 Titus Brinker, Achim Hekler, Alexander Enk, Joachim Klode, Axel Hauschild, Carola Berking, Bas-
555 tian Schilling, Sebastian Haferkamp, Jochen Utikal, Christof Kalle, Stefan Fröhling, and Michael
556 Weichenthal. A convolutional neural network trained with dermoscopic images performed on par
557 with 145 dermatologists in a clinical melanoma image classification task. *European Journal of
558 Cancer*, 111:148–154, 03 2019. doi: 10.1016/j.ejca.2019.02.005.

559 Jean-Benoit Delbrouck, Justin Xu, Johannes Moll, Alois Thomas, Zhihong Chen, Sophie Ostmeier,
560 Asfandyar Azhar, Kelvin Zhenghao Li, Andrew Johnston, Christian Bluethgen, et al. Automated
561 structured radiology report generation. In *Proceedings of the 63rd Annual Meeting of the Association
562 for Computational Linguistics (Volume 1: Long Papers)*, pp. 26813–26829, 2025.

563 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
564 of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023.

565 Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin M. Ko, Susan M. Swetter, Helen M. Blau,
566 and Sebastian Thrun. Dermatologist-level classification of skin cancer with deep neural networks.
567 *Nature*, 542:115–118, 2017.

568 Matthew Groh, Caleb Harris, Luis Soenksen, Felix Lau, Rachel Han, Aerin Kim, Arash Koochek,
569 and Omar Badri. Evaluating deep neural networks trained on clinical images in dermatology with
570 the Fitzpatrick 17k dataset. In *Proceedings of the IEEE/CVF conference on computer vision and
571 pattern recognition*, pp. 1820–1828, 2021.

572 Robbie Holland, Thomas RP Taylor, Christopher Holmes, Sophie Riedl, Julia Mai, Maria Patsia-
573 manidi, Dimitra Mitsopoulou, Paul Hager, Philip Müller, Johannes C Paetzold, et al. Specialized
574 curricula for training vision language models in retinal image analysis. *NPJ Digital Medicine*, 8
575 (1):532, 2025.

576 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
577 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

578 Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith, and
579 Ranjay Krishna. Visual sketchpad: Sketching as a visual chain of thought for multimodal lan-
580 guage models. *Advances in Neural Information Processing Systems*, 37:139348–139379, 2024.

581 Jeremy Kawahara, Sara Daneshvar, Giuseppe Argenziano, and Ghassan Hamarneh. Seven-point
582 checklist and skin lesion classification using multitask multimodal neural nets. *IEEE Journal of
583 Biomedical and Health Informatics*, 23(2):538–546, mar 2019. ISSN 2168-2194. doi: 10.1109/
584 JBHI.2018.2824327.

585 Chanwoo Kim, Soham U Gadgil, Alex J DeGrave, Jesutofunmi A Omiye, Zhuso Ran Cai, Roxana
586 Daneshjou, and Su-In Lee. Transparent medical image ai via an image–text foundation model
587 grounded in medical literature. *Nature medicine*, 30(4):1154–1165, 2024.

588 Weixiong Lin, Ziheng Zhao, Xiaoman Zhang, Chaoyi Wu, Ya Zhang, Yanfeng Wang, and Weidi
589 Xie. Pmc-clip: Contrastive language-image pre-training using biomedical documents. In *In-
590 ternational Conference on Medical Image Computing and Computer-Assisted Intervention*, pp.
591 525–536. Springer, 2023.

594 Yuan Liu, Ayush Jain, Clara Eng, David H Way, Kang Lee, Peggy Bui, Kimberly Kanada, Guilherme
 595 de Oliveira Marinho, Jessica Gallegos, Sara Gabriele, et al. A deep learning system for differential
 596 diagnosis of skin diseases. *Nature medicine*, 26(6):900–908, 2020.

597 Andre GC Pacheco, Gustavo R Lima, Amanda S Salomao, Breno Krohling, Igor P Biral, Gabriel G
 598 De Angelo, Fábio CR Alves Jr, José GM Esgario, Alana C Simora, Pedro BC Castro, et al.
 599 Pad-ufes-20: A skin lesion dataset composed of patient data and clinical images collected from
 600 smartphones. *Data in brief*, 32:106221, 2020.

601 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 602 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 603 models from natural language supervision. In *International conference on machine learning*, pp.
 604 8748–8763. PMLR, 2021.

605 Andrew Sellergren, Sahar Kazemzadeh, Tiam Jaroensri, Atilla Kiraly, Madeleine Traverse, Timo
 606 Kohlberger, Shawn Xu, Fayaz Jamil, Cian Hughes, Charles Lau, et al. Medgemma technical
 607 report. *arXiv preprint arXiv:2507.05201*, 2025.

608 Luis R Soenksen, Timothy Kassis, Susan T Conover, Berta Marti-Fuster, Judith S Birkenfeld, Jason
 609 Tucker-Schwartz, Asif Naseem, Robert R Stavert, Caroline C Kim, Maryanne M Senna, et al.
 610 Using deep learning for dermatologist-level detection of suspicious pigmented skin lesions from
 611 wide-field images. *Science Translational Medicine*, 13(581):eabb3652, 2021.

612 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 613 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 614 report. *arXiv preprint arXiv:2503.19786*, 2025.

615 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
 616 shut? exploring the visual shortcomings of multimodal llms. In *Proceedings of the IEEE/CVF
 617 Conference on Computer Vision and Pattern Recognition*, pp. 9568–9578, 2024.

618 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 619 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 620 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

621 Janet Wang, Yunbei Zhang, Zhengming Ding, and Jihun Hamm. Achieving reliable and fair skin le-
 622 sion diagnosis via unsupervised domain adaptation. In *Proceedings of the IEEE/CVF Conference
 623 on Computer Vision and Pattern Recognition*, pp. 5157–5166, 2024.

624 Janet Wang, Xin Hu, Yunbei Zhang, Diabate Almamy, Vagamon Bamba, Konan Amos Sébastien
 625 Koffi, Yao Koffi Aubin, Zhengming Ding, Jihun Hamm, and Rie R Yotsu. eskinhealth: A multi-
 626 modal dataset for neglected tropical skin diseases. *arXiv preprint arXiv:2508.18608*, 2025a.

627 Janet Wang, Yunbei Zhang, Zhengming Ding, and Jihun Hamm. Doctor approved: Generating med-
 628 ically accurate skin disease images through ai-expert feedback. *arXiv preprint arXiv:2506.12323*,
 629 2025b.

630 Shuo Xing, Yuping Wang, Peiran Li, Ruizheng Bai, Yueqi Wang, Chan-wei Hu, Chengxuan Qian,
 631 Huaxiu Yao, and Zhengzhong Tu. Re-align: Aligning vision language models via retrieval-
 632 augmented direct preference optimization. *arXiv preprint arXiv:2502.13146*, 2025.

633 Siyuan Yan, Ming Hu, Yiwen Jiang, Xieji Li, Hao Fei, Philipp Tschandl, Harald Kittler, and
 634 Zongyuan Ge. Derm1m: A million-scale vision-language dataset aligned with clinical ontology
 635 knowledge for dermatology. *arXiv preprint arXiv:2503.14911*, 2025a.

636 Siyuan Yan, Zhen Yu, Clare Primiero, Cristina Vico-Alonso, Zhonghua Wang, Litao Yang, Philipp
 637 Tschandl, Ming Hu, Lie Ju, Gin Tan, et al. A multimodal vision foundation model for clinical
 638 dermatology. *Nature Medicine*, pp. 1–12, 2025b.

639 Jufeng Yang, Xiaoping Wu, Jie Liang, Xiaoxiao Sun, Ming-Ming Cheng, Paul L Rosin, and Liang
 640 Wang. Self-paced balance learning for clinical skin disease recognition. *IEEE transactions on
 641 neural networks and learning systems*, 31(8):2832–2846, 2019.

648 Shuo Yang, Yuwei Niu, Yuyang Liu, Yang Ye, Bin Lin, and Li Yuan. Look-back: Implicit visual
649 re-focusing in mllm reasoning. *arXiv preprint arXiv:2507.03019*, 2025.
650

651 Wenqi Zeng, Yuqi Sun, Chenxi Ma, Weimin Tan, and Bo Yan. Mm-skin: Enhancing dermatol-
652 ogy vision-language model with an image-text dataset derived from textbooks. *arXiv preprint*
653 *arXiv:2505.06152*, 2025.

654 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
655 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
656 pp. 11975–11986, 2023a.

657

658 Yuexiang Zhai, Shengbang Tong, Xiao Li, Mu Cai, Qing Qu, Yong Jae Lee, and Yi Ma. In-
659 vestigating the catastrophic forgetting in multimodal large language models. *arXiv preprint*
660 *arXiv:2309.10313*, 2023b.

661 Kai Zhang, Rong Zhou, Eashan Adhikarla, Zhiling Yan, Yixin Liu, Jun Yu, Zhengliang Liu, Xun
662 Chen, Brian D Davison, Hui Ren, et al. A generalist vision–language foundation model for diverse
663 biomedical tasks. *Nature Medicine*, 30(11):3129–3141, 2024.

664

665 Juexiao Zhou, Xiaonan He, Liyuan Sun, Jiannan Xu, Xiuying Chen, Yuetan Chu, Longxi Zhou,
666 Xingyu Liao, Bin Zhang, Shawn Afvari, et al. Pre-trained multimodal large language model
667 enhances dermatological diagnosis using skingpt-4. *Nature Communications*, 15(1):5649, 2024.

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 703 704 705 Appendix

706 A USE OF LARGE LANGUAGE MODELS

707 We used a large language model (LLM) solely for language polishing—e.g., editing grammar, im-
708 proving clarity and flow, and standardizing tone. The LLM did not contribute to research ideation,
709 experimental design, analysis, or result generation. The LLM is not an author or contributor, and its
710 use complies with ICLR’s policy on LLM usage.

712 B LIMITATIONS

714 While our work provides valuable insights and effective remedies for the performance gap in med-
715 ical VLMs, we acknowledge its limitations. The proposed fine-tuning-free strategies are designed
716 to mitigate the identified issues and significantly improve zero-shot performance, but they do not
717 represent a complete solution to the underlying architectural challenges of modality misalignment
718 in foundation models. Therefore, future work should focus on extending this analysis to a broader
719 range of models and medical domains. Validating these strategies on other modalities, such as radi-
720 ology (X-rays), pathology, and ophthalmology, would be a critical next step to confirm their gener-
721 alizability. Furthermore, exploring how these principles could inform the development of new VLM
722 architectures, designed from the ground up to ensure better vision-language alignment, presents an
723 exciting avenue for future research.

724 While we recognize that a full clinical utility study involving multiple experts and inter-rater reli-
725 ability analysis is critical for real-world deployment, such an extensive study is beyond the scope
726 of this technical analysis. A comprehensive clinical decision-making evaluation is a necessary and
727 immediate priority for future work.

729 C IMPLEMENTATION DETAILS

731 C.1 LoRA FINE-TUNING

733 To ensure a rigorous evaluation of the model’s adaptability, we fine-tuned MedGemma-4B-it using
734 Low-Rank Adaptation (LoRA). Given the high memory requirements of 4B parameter models, we
735 employed QLoRA (Dettmers et al., 2023), loading the base model in 4-bit precision with bfloat16
736 compute dtype. We applied LoRA adapters to all linear layers to maximize model expressivity while
737 keeping the number of trainable parameters low. We also explicitly set the embed_tokens module
738 to be trainable. The optimization was performed using the fused AdamW optimizer with a linear
739 learning rate scheduler and a warmup ratio of 0.03. To determine the optimal configuration, we
740 conducted a grid search over the LoRA rank (r), scaling factor (α), and learning rate. The search
741 space and selected hyperparameters are detailed in Table C1. We trained for 10 epochs with a batch
742 size of 4 and gradient accumulation steps of 4. The final selected configuration (Rank 8, Alpha
743 16, LR $1e^{-4}$) was chosen based on validation set performance and used for all reported fine-tuning
744 results. Details can be found in Table. 6.

745
746 Table 6: Hyperparameter search space and selected configuration for LoRA fine-tuning.

747 Hyperparameter	748 Search Space	749 Selected Value
748 LoRA Rank (r)	749 $\{4, 8, 16\}$	750 8
750 LoRA Alpha (α)	751 $\{8, 16, 32\}$	752 16
752 Learning Rate	753 $\{5e^{-5}, 1e^{-4}, 2e^{-4}\}$	754 $1e^{-4}$
754 LoRA Dropout	755 -	756 0.05
756 Target Modules	757 -	758 All Linear Layers
758 Precision	759 -	760 4-bit (QLoRA)
760 Optimizer	761 -	762 AdamW (Fused)
762 Training Epochs	763 -	764 10

756
 757 Table 7: Full grid search results for LoRA fine-tuning on the Fitzpatrick17k dataset. The optimal
 758 configuration selected for the final model is highlighted in bold.

Rank (r)	Alpha (α)	Learning Rate	Accuracy (%)
4	8	5×10^{-5}	42.15
4	8	3×10^{-4}	46.12
4	8	4×10^{-4}	45.88
4	16	5×10^{-5}	41.80
4	16	3×10^{-4}	45.05
4	16	4×10^{-4}	44.20
4	32	5×10^{-5}	35.60
4	32	3×10^{-4}	39.40
4	32	4×10^{-4}	37.10
8	8	5×10^{-5}	43.50
8	8	3×10^{-4}	46.45
8	8	4×10^{-4}	46.10
8	16	5×10^{-5}	44.10
8	16	3×10^{-4}	47.32
8	16	4×10^{-4}	46.95
8	32	5×10^{-5}	38.90
8	32	3×10^{-4}	41.25
8	32	4×10^{-4}	40.50
16	8	5×10^{-5}	43.20
16	8	3×10^{-4}	45.90
16	8	4×10^{-4}	45.50
16	16	5×10^{-5}	44.80
16	16	3×10^{-4}	46.98
16	16	4×10^{-4}	46.40
16	32	5×10^{-5}	43.10
16	32	3×10^{-4}	46.15
16	32	4×10^{-4}	45.20

792 C.2 LINEAR PROBE

793
 794 For feature extraction, we utilized the pre-trained medgemma-4b-it vision encoder in bfloat16 pre-
 795 cision. We extracted the global image representation by computing the mean of the last hidden state
 796 tokens rather than using a single [CLS] token. The head was trained using the AdamW optimizer
 797 and CrossEntropyLoss for 100 epochs with a batch size of 128, as shown in Table. 8.
 798

799 Table 8: Implementation details and hyperparameters for Linear Probing experiments.

Hyperparameter	Value
Vision Encoder	MedSigLIP (Frozen)
Feature Pooling	Global Average Pooling
Precision (Backbone)	bfloat16
Precision (Head)	float32
Optimizer	AdamW
Batch Size	128
Epochs	100
Learning Rate	$\{3 \times 10^{-5}, 3 \times 10^{-4}, 3 \times 10^{-3}\}$

810 C.3 ABLATION STUDY ON THE NUMBER OF SHOTS
811812 We selected the 8-shot setting based on the analysis presented in Table 10, where 8-shot maximizes
813 the utility of our pipeline. At 8-shot, the vision encoder is strong enough to capture the correct
814 diagnosis in the Top-5 (high recall), but not yet perfect at Top-1 (low precision), creating the ideal
815 scenario for the VLM to apply its reasoning for re-ranking. Beyond 8 shots, the vision encoder
816 becomes self-sufficient, and the added value of VLM reasoning diminishes.
817818 D PERFORMANCE ANALYSIS ON SKINVL
819820
821 Table 9: Performance Gap Analysis on SkinVL. Comparison of the zero-shot VLM performance
822 against full Fine-Tuning (FT) and a Linear Probe (LP) on the vision encoder. Consistent with
823 MedGemma, the Linear Probe significantly outperforms the zero-shot VLM, confirming the under-
824 utilization of visual features.

825 826 827 Dataset	828 VLM Zero-Shot		829 Fine-Tuning (FT)		830 Linear Probe (LP)	
	831 ACC	832 F1	833 ACC	834 F1	835 ACC	836 F1
Derm7pt	12.77	15.05	44.81	22.98	50.16	26.59
eSkinHealth	13.76	10.33	57.74	39.24	62.77	42.90
Fitzpatrick17k	10.05	8.27	42.84	30.49	58.88	46.22

864
865
866
867
868
869870
871
872
873
874

Table 10: Effectiveness of the “Top-5 to Top-1” reranking strategy. This table compares three methods: the baseline zero-shot VLM, a standard k-shot linear probe (LP Top-1), and our two-stage approach. In our method, a k-shot linear probe selects the Top-5 candidates, which are then used by the VLM to produce a final prediction. The results show that our two-stage strategy consistently outperforms the direct linear probe’s Top-1 accuracy in the low-data regime.

Dataset	0-shot Top-1			1-shot			2-shot			4-shot			8-shot			16-shot		
	Top1	Top5	0-Shot	Top1	Top5	0-Shot	Top1	Top5	0-Shot	Top1	Top5	0-Shot	Top1	Top5	0-Shot	Top1	Top5	0-Shot
Derm7pt	16.46	12.96	52.25	20.02	18.53	58.03	25.73	21.06	61.42	32.80	28.66	72.35	35.56	38.53	82.68	37.95		
eSkinHealth	13.35	23.51	55.75	30.98	27.99	63.84	33.67	35.04	69.70	41.22	38.80	73.96	42.05	43.04	78.41	43.17		
Fitzpatrick17k	16.73	17.63	50.58	25.35	23.08	59.50	27.42	31.01	67.67	33.68	38.43	75.88	37.82	45.05	80.99	38.01		
SD-260	10.81	11.48	26.89	22.31	17.90	38.61	25.02	26.97	51.92	33.50	37.12	63.61	42.33	49.01	76.72	44.72		
PAD-UFES-20	46.91	34.85	93.99	58.33	38.56	96.70	67.60	45.36	98.33	77.85	53.33	98.63	80.31	59.90	98.99	91.11		

880
881
882
883
884
885
886
887
888
889
890
891

Table 11: Skin Condition Distribution for Fitzpatrick17k

Skin Condition	Real Training	Real Test	Synthetic
Acne (ACN)	92	91	93
Actinic Keratosis (AK)	88	87	164
Allergic Contact Dermatitis (ACD)	215	215	181
Basal Cell Carcinoma (BCC)	234	234	154
Eczema (ECZ)	102	102	166
Erythema Multiforme (EM)	118	118	155
Folliculitis (FOL)	171	171	114
Granuloma Annulare (GA)	106	105	148
Keloid (KEL)	78	78	135
Lichen Planus (LP)	246	245	151
Lupus Erythematosus (LE)	205	205	172
Melanoma (MEL)	130	131	155
Mycosis Fungoides (MF)	91	91	165
Pityriasis Rosea (PR)	96	97	156
Prurigo Nodularis (PN)	85	85	152
Psoriasis (PSO)	326	327	165
Sarcoidosis (SAR)	174	175	162
Scabies (SCA)	170	169	176
Squamous Cell Carcinoma (SCC)	290	291	175
Vitiligo (VIT)	83	83	161
Total	3100	3100	3100

913
914
915
916
917

Table 12: Dataset details.

Dataset	# Classes	Train Size	Test Size	Class Names
Derm7pt	14	413	395	clark nevus, melanoma, reed or spitz nevus, seborrheic keratosis, basal cell carcinoma, vascular lesion, lentigo, blue nevus, dermal nevus, dermatofibroma, combined nevus, congenital nevus, miscellaneous, recurrent nevus
eSkinHealth	24	2,714	2,676	buruli ulcer, scabies, yaws, prurigo nodularis, tinea corporis, erysipelas, tinea capitis, leprosy, impetigo, necrotizing fasciitis, contact dermatitis, lichen planus, tinea versicolor, folliculitis, chickenpox, acne, vitiligo, abscess, keratosis, herpes zoster, atopic dermatitis, eczema, lipome, mycetoma
Fitzpatrick17k	20	3,100	3,100	psoriasis, squamous cell carcinoma, lichen planus, basal cell carcinoma, allergic contact dermatitis, lupus erythematosus, sarcoidosis, folliculitis, scabies, melanoma, erythema multiforme, granuloma annulare, eczema, pityriasis rosea, mycosis fungoides, acne, actinic keratosis, prurigo nodularis, vitiligo, keloid
SD-260	260	10,362	10,238	abrasion, acne excoriata, acne keloidalis nuchae, acne vulgaris, acrokeratosis verruciformis, actinic solar damage, actinex treatment, actinic cheilitis, actinic keratosis, cutis rhomboidalis nuchae, actinic favre-racouchot, pigmentation, actinic solar elastosis, solar purpura, telangiectasia, actinic wrinkles, acute eczema, allergic contact dermatitis, alopecia areata, anagen effluvium, androgenetic alopecia, angiobroma, angiokeratoma, angioma, angular cheilitis, aphthous ulcer, apocrine hidrocystoma, arsenical keratosis, atopic dermatitis, balanitis xerotica obliterans, basal cell carcinoma, "beaus lines", "beckers nevus", "behcets syndrome", benign keratosis, blue nevus, bowenoid papulosis, "bowens disease", cafe au lait macule, callosus, candidiasis, cellulitis, chalazion, cherry angioma, clubbing of fingers, combined nevus, compound nevus, congenital nevus, contact dermatitis, "crowes sign", cutanea larva migrans, cutaneous horn, cutaneous leishmaniasis, cutaneous t-cell lymphoma, cutis marmorata, darier-white disease, dermatofibroma, dermatomyositis, dermatosis papulosa nigra, desquamation, digital fibroma, dilated pore of winer, discoid lupus erythematosus, disseminated actinic porokeratosis, drug eruption, dry skin eczema, dyshidrosiform eczema, dysplastic nevus, eccrine poroma, eczema, epidermal nevus, epidermoid cyst, epithelioma adenoide cysticum, erythema ab igne, erythema annulare centrifigum, erythema craquele, erythema multiforme, exfoliative erythroderma, factitial dermatitis, favre-racouchot, fibroma, fibroma molle, fixed drug eruption, follicular mucinosis, follicular retention cyst, fordys spots, frictional lichenoid dermatitis, ganglion, geographic tongue, granulation tissue, granuloma annulare, green nail, guttate psoriasis, hailey-hailey disease, half and half nail, halo nevus, hand foot mouth disease, herpes gestationis, herpes simplex virus, herpes zoster, hidradenitis suppurativa, hirsutism, histiocytosis x, hyperkeratosis palmaris et plantaris, hypertrichosis, ichthyosis, ichthyosis vulgaris, id reaction, impetigo, infantile atopic dermatitis, insect bite,

972	Dataset	# Classes	Train Size	Test Size	Class Names
973					
974					intradermal nevus, inverse psoriasis, ischemia, junction nevus,
975					keloid, keratoacanthoma, keratolysis exfoliativa of wende, ker-
976					atosis pilaris, kerion, koilonychia, "kyrles disease", leiomyoma,
977					lentigo maligna melanoma, lentigo simplex, leprosy, leukemia
978					cutis, leukocytoclastic vasculitis, leukonychia, lichen planus,
979					lichen sclerosis et atrophicus, lichen simplex chronicus, lichen
980					spinulosis, linear epidermal nevus, lipoma, livedo reticularis,
981					lymphangioma circumscriptum, lymphocytic infiltrate of jess-
982					ner, lymphocytoma cutis, lymphomatoid papulosis, mal per-
983					forans, malignant melanoma, median nail dystrophy, melasma,
984					metastatic carcinoma, milia, molluscum contagiosum, mor-
985					pheo, mucha-habermann disease, mucous membrane psoriasis,
986					myxoid cyst, nail cosmesis, nail dystrophy, nail nevus, nail pso-
987					riasis, nail ridging, nail trauma, neurodermatitis, neurofibroma,
988					neurotic excoriations, nevus cell nevus, nevus comedonicus, ne-
989					vus incipiens, nevus sebaceous of jadassohn, nevus spilus, num-
990					mular eczema, onychogryphosis, onycholysis, onychomycosis,
991					onychoschizia, paronychia, pearly penile papules, pediculosis
992					pubis, pemphigus foliaceus, perioral dermatitis, photodermati-
993					tes, pilomatrixoma, pincer nail syndrome, pitted keratolysis,
994					pityriasis alba, pityriasis rosea, pityriasis rubra pilaris, pityri-
995					asis versicolor, pityrosporum folliculitis, poikiloderma atroph-
996					icans vasculare, pomade acne, porokeratosis of mibelli, port
997					wine stain, pseudofolliculitis barbae, pseudorhinophyma, psori-
998					asis, pterygium inversum unguis, pustular psoriasis, pyoderma
999					gangrenosum, pyogenic granuloma, racquet nail, radiodermati-
1000					tes, rhinophyma, rosacea, scabies, scalp psoriasis, scar, scarring
1001					alopecia, "schamberg's disease", sebaceous gland hyperplasia,
1002					seborrheic dermatitis, seborrheic keratosis, skin tag, solar elas-
1003					tosis, solar lentigo, spindle cell nevus, squamous cell carcinoma
1004					(scc), stasis dermatitis, stasis edema, stasis ulcer, steroid acne,
1005					steroid atrophy, steroid striae, steroid use, stomatitis, straw-
1006					berry hemangioma, striae, subacute cutaneous lupus erythema-
1007					tosus, subungual hematoma, superficial actinic porokeratosis,
1008					syringoma, systemic lupus erythematosus, "terry's nails",
1009					thermal burn, tick bite, tinea capitis, tinea corporis, tinea cruris,
1010	PAD-UFES-20	6	1,134	1,164	tinea faciale, tinea incognito, tinea manus, tinea pedis, tinea
1011					versicolor, toe deformity, traction alopecia, trichilemmal cyst,
1012					trichoepithelioma, trichofolliculoma, trichostasis spinulosa, tri-
1013					chotillomania, tuberous sclerosis, twenty nail dystrophy, ul-
1014					cer, urticaria, uvil burn, varicella, verruca vulgaris, viral exan-
1015					them, virilization, vitiligo, "von recklinghausens disease", wart,
1016					wound infection, xerosis, x-linked ichthyosis
1017					
1018					
1019					
1020					
1021					
1022					
1023					
1024					
1025					

Table 13: Skin condition descriptions used in this study.

Condition	Description
acne	Face/chest/back comedones and inflamed papules/pustules \pm nodules; red or skin-colored with black/white heads; oily, \pm crust.
actinic keratosis	Sun-exposed rough, scaly flat/slightly raised papule \pm 1 cm; pink/red/brown; gritty sandpaper feel.
allergic contact dermatitis	At contact sites, ill-defined pink-red (darker on dark skin) patches/plaques \pm vesicles/edema; weepy/crusty/scaly surface.
basal cell carcinoma	Sun-exposed pearly/waxy papule or thin scaly patch with rolled edge \pm central ulcer; translucent or brown/black; smooth/shiny \pm crust.
eczema	Flexural dry itchy ill-defined patches/plaques \pm tiny vesicles; red/pink or purple/gray on dark skin; flaky \pm lichenified.
erythema multiforme	Acral target lesions—round 1–3 cm with dark center, pale ring, red outer rim—mostly flat \pm blisters.
folliculitis	Hair-bearing sites with clustered 2–5 mm follicle-centered pustules/red papules; red/darker base with white/yellow pus; dome-shaped \pm crust.
granuloma annulare	Hands/feet/wrists/ankles smooth firm non-scaly papules forming annular rings; skin-colored/pink/red (purple on dark skin).
keloid	Over scars on chest/shoulders/earlobes etc., shiny firm hairless raised irregular growth extending beyond wound; pink/red or darker.
lichen planus	Wrists/ankles etc. flat-topped polygonal 2–10 mm violaceous papules/plaques with fine white Wickham striae; shiny \pm scale.
lupus erythematosus	Malar ‘butterfly’ smooth pink rash \pm discoid coin-shaped scaly scarred plaques on scalp/ears; red or hyperpigmented; rough if discoid.
melanoma	Anywhere (palms/soles/nails in dark skin) asymmetric lesion with irregular borders, color variegation, often \gtrsim 6 mm; becomes raised/crusted/ulcerated.
mycosis fungoides	Non-sun areas with dry scaly patches \rightarrow thicker scaly plaques (\pm smooth tumor nodules); pink-red to brown/darker; irregular.
pityriasis rosea	Trunk herald patch then multiple smaller ovals along skin lines; pink/salmon (gray/brown/purple on dark skin) with fine collarette scale.
prurigo nodularis	Reachable areas with multiple very itchy 1–3 cm firm nodules, often crusted/scabbed on top; pink/red/brown/black; thick/rough with excoriations.
psoriasis	Elbows/knees/scalp/lower back well-demarcated plaques with thick silvery/gray scale; pink/red or purple/dark brown; dry/flaky (Auspitz sign).
sarcoidosis	Face/shins/scars with smooth firm plaques/nodules/patches; purplish/red-brown or lighter/darker areas; rubbery; shin nodules are tender.
scabies	Finger webs/wrists/waist/genitals etc. with 5–15 mm wavy burrows plus clustered 1–2 mm itchy papules/vesicles; excoriated/crusted.
squamous cell carcinoma	Sun-exposed or scarred sites with firm scaly/crusted nodule/plaque/ulcer \pm raised border/central depression; pink/red or darker; rough, may bleed.
vitiligo	Sharply bordered depigmented patches (often symmetric) on face/hands/feet/genitals; chalk-white contrast; normal texture without scale.
nevus	Anywhere well-circumscribed round/oval macule/papule/nodule with smooth borders; uniform tan/brown/black or skin-colored; smooth flat or dome-raised.
seborrheic keratosis	Anywhere except palms/soles ‘stuck-on’ waxy papule/plaque with sharp borders; tan to dark brown/black or mixed; warty/greasy with keratin plugs.
buruli ulcer	Limb lesion evolves from painless nodule/plaque/edema to undermined necrotic ulcer; circular/irregular with yellow-white base and violaceous/brown edge; moist \pm slough.
yaws	Leg/foot raspberry-like papilloma \pm ulcer then multiple papules/plaques/shallow ulcers; dome-lobulated; bright red \rightarrow red-brown/yellow; verrucous/granular \pm crust.
tinea capitis	Scalp alopecic scaly ring-like patch with broken hairs/black dots \pm boggy kerion or yellow scutula; gray-white/red-brown; fine scale or boggy crust.
tinea corporis	Exposed skin annular plaques with raised scaly active border and central clearing; polycyclic/serpiginous; rim scaly, center smoother.
erysipelas	Lower legs/face sharply demarcated lobulated cellulitic plaque \pm tense bullae; fiery red/violaceous; smooth tense shiny peau d’orange.
leprosy	Cool sites hypopigmented/coppery patches with sensory loss or plaques/nodules/diffuse infiltration; round/oval with raised rim; dry hairless/anhidrotic or thick shiny.
necrotizing fasciitis	Rapidly enlarging ill-defined limb/trunk plaque with dusky patches, ecchymoses and flaccid bullae \rightarrow black necrotic eschar; tense shiny then leathery.
impetigo	Perioral/exposed erosions with honey-colored crust after vesicles/pustules (bullous form flaccid blisters); round/oval, coalescent; moist \rightarrow sticky crust.

1080

1081

Table 14: Basal Cell Carcinoma (BCC): visual checklist

1082

1083

1084

1085

1086

1087

Section	Details
Location	<ul style="list-style-type: none"> • Sun-exposed areas most commonly: • Face (nose, cheeks, forehead), ears, neck • Scalp (esp. with thinning hair), upper chest/shoulders, back, hands, arms
Lesion type (morphology)	<ul style="list-style-type: none"> • “Pearly”/waxy bump (common presentation) • Papillary: raised, dome-shaped bump • Nodular: firm, raised nodule • Superficial infiltrating: flat, scaly or crusted patch/plaque • Morpheaform: indurated, scar-like plaque • Micropapillary: flat/scaly with small raised papules • Infiltrating BCC: flat, scaly lesion that can mimic other dermatoses
Shape	<ul style="list-style-type: none"> • Often irregular with poorly defined borders • Typically asymmetrical • Evolving in size, shape, or color over time
Color	<ul style="list-style-type: none"> • Pink or red; may be white/waxy • Brown/tan or (less commonly) black • Blue/purple hues if ulcerated
Texture	<ul style="list-style-type: none"> • Smooth or waxy; may be scaly or crusted • Ulcerated surface can occur and is concerning

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

Condition	Description
tinea versicolor	Upper trunk/shoulders/neck flat hypo- or hyperpigmented macules/patches with fine powdery ‘bran’ scale accentuated by scraping; coalescing map-like.
varicella	Face/trunk then scalp/limbs crops of itchy 2–4 mm thin-walled vesicles on pink/dark base → crusted scabs; discrete ±coalescent; glistening then flaky.
abscess	Axillae/buttocks/groin etc. tender dome-shaped red-violaceous nodule that becomes fluctuant with pointing yellow/white center; shiny tense skin; purulent drainage after rupture.
atopic dermatitis	Flexures/hands/eyelids etc. itchy ill-defined papules→plaques with acute weeping/crust or chronic lichenification; pink-red or purple-brown/gray; dry rough.
keratosis pilaris	Outer arms/thighs/cheeks tiny follicular keratin plugs (‘goose-bump’ papules) in indistinct patches; skin-colored to red; rough sandpaper dry feel.
herpes zoster	Single-dermatome band of clustered clear vesicles on pink/purple base not crossing midline → pustules/crusts; 2–4 mm; tense/glossy then adherent crust.
lipoma	Trunk/neck/limbs soft smooth mobile subcutaneous dome/oval nodule with normal overlying color; rubbery/doughy consistency.
mycetoma	Foot/leg/hand firm lobulated subcutaneous mass with multiple draining sinus openings extruding colored grains; overlying skin normal→hyperpigmented; crusted seepage.
lymphatic filariasis	Lower legs/feet (±arms/genitals) chronic lymphedema to elephantiasis with column-like limb, bulbous foot and verrucous corrugated plaques; hyper/hypopigmented; thick ‘mossy’ hyperkeratosis.

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

Table 15: Lupus Erythematosus (LE): visual checklist

Section	Details
Location	<ul style="list-style-type: none"> Sun-exposed areas most common: face (cheeks, nose, forehead), ears, neck, chest, upper arms Mucous membranes: oral cavity (inner cheeks, gums, tongue), nose, eyelids Other sites (less common): scalp, nails, genital area
Lesion type	<ul style="list-style-type: none"> Malar (butterfly) rash: flat/slightly raised erythema across cheeks and nasal bridge Discoid lupus: chronic coin-shaped, raised, scaly, scarring plaques; may leave hypo-/hyperpigmentation Photosensitivity: rash/exacerbation after sun exposure Oral ulcers: shallow ulcers on inner cheeks, gums, or tongue Livedo reticularis: net-like reddish-blue mottling (legs/arms/face) Vasculitis: purpura, petechiae, ulcers Alopecia: diffuse thinning or patchy hair loss Raynaud's phenomenon: digits turn white/blue with cold or stress
Shape	<ul style="list-style-type: none"> Malar rash: butterfly-shaped, may have central clearing Discoid: coin-shaped, raised, scaly plaques Oral ulcers: round/oval Livedo: reticular (net-like) pattern Purpura/petechiae: small pinpoint to macular spots Alopecia: patchy or generalized
Color	<ul style="list-style-type: none"> Malar: red, sometimes with central clearing Discoid: red/erythematous; may heal with hypo- or hyperpigmentation Oral ulcers: red to violaceous Livedo: reddish-blue mottling Purpura/petechiae: red or purple Alopecia: variable (depends on cause and background skin)
Texture	<ul style="list-style-type: none"> Malar: flat or slightly raised Discoid: raised, scaly; may become crusted; can scar Oral ulcers: smooth base, slightly irregular margins Livedo: smooth surface with reticular pattern Purpura/petechiae: flat to slightly raised Alopecia: variable; scalp may be smooth or scaly depending on subtype

1179
1180
1181
1182
1183
1184
1185
1186
1187