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ABSTRACT

Subspace clustering is a classical unsupervised learning task, built on a basic
assumption that high-dimensional data can be approximated by a union of sub-
spaces (UoS). Nevertheless, the real-world data are often deviating from the UoS
assumption. To address this challenge, state-of-the-art deep subspace clustering
algorithms attempt to jointly learn UoS representations and self-expressive coef-
ficients. However, the general framework of the existing algorithms suffers from
a catastrophic feature collapse and lacks a theoretical guarantee to learn desired
UoS representation. In this paper, we present a Principled fRamewOrk for Deep
Subspace Clustering (PRO-DSC), which is designed to learn structured represen-
tations and self-expressive coefficients in a unified manner. Specifically, in PRO-
DSC, we incorporate an effective regularization on the learned representations into
the self-expressive model, and prove that the regularized self-expressive model
is able to prevent feature space collapse and the learned optimal representations
under certain condition lie on a union of orthogonal subspaces. Moreover, we
provide a scalable and efficient approach to implement our PRO-DSC and con-
duct extensive experiments to verify our theoretical findings and demonstrate the
superior performance of our proposed deep subspace clustering approach.

1 INTRODUCTION

Subspace clustering is an unsupervised learning task, aiming to partition high dimensional data that
are approximately lying on a union of subspaces (UoS), and finds wide-ranging applications, such as
motion segmentation (Costeira & Kanade, 1998; Vidal et al., 2008; Rao et al., 2010), hybrid system
identification (Vidal, 2004; Bako & Vidal, 2008), image representation and clustering (Hong et al.,
2006; Lu et al., 2012), genes expression clustering (McWilliams & Montana, 2014) and so on.

Existing subspace clustering algorithms can be roughly divided into four categories: iterative meth-
ods (Tseng, 2000; Ho et al., 2003; Zhang et al., 2009), algebraic geometry based methods (Vidal
et al., 2005; Tsakiris & Vidal, 2017), statistical methods (Fischler & Bolles, 1981), and spectral
clustering-based methods (Chen & Lerman, 2009; Elhamifar & Vidal, 2009; Liu et al., 2010; Lu
et al., 2012; You et al., 2016a; Zhang et al., 2021). Among them, spectral clustering based methods
gain the most popularity due to the broad theoretical guarantee and superior performance.

The vital component in spectral clustering based methods is a so-called self-expressive model (El-
hamifar & Vidal, 2009; 2013). Formally, given a dataset X := {x1, · · · ,xN} where xj ∈ RD,
self-expressive model expresses each data point xj by a linear combination of other points, i.e.,

xj =
∑
i ̸=j

cijxi, (1)

where cij is the corresponding self-expressive coefficient. The most intriguing merit of the self-
expressive model is that the solution of the self-expressive model under proper regularizer on the
coefficients cij is guaranteed to satisfy a subspace-preserving property, namely, cij ̸= 0 only if
xi and xj are in the same subspace (Elhamifar & Vidal, 2013; Soltanolkotabi & Candes, 2012).
Having had the optimal self-expressive coefficients {cij}Ni,j=1, the data affinity can be induced by
|cij |+ |cji| for which spectral clustering is applied to yield the partition of the data.

Despite the broad theoretical guarantee, the vanilla self-expressive model still faces great challenges
when applied to the complex real-world data that may not well align with the UoS assumption.

1
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Earlier works devote to address this deficiency by learning a linear transform of the data (Patel
et al., 2013; 2015) or introducing a nonlinear kernel mapping (Patel & Vidal, 2014) under which the
representations of the data are supposed to be aligned with the UoS assumption. However, there is
a lack of principled mechanism to guide the learning of the linear transforms or the design of the
nonlinear kernels to guarantee the representations of the data to form a UoS structure.

To handle complex real-world data, in the past few years, there is a surge of interests in designing
deep subspace clustering frameworks, e.g., (Peng et al., 2016; 2018; Ji et al., 2017; Zhou et al., 2018;
Zhang et al., 2019a; Dang et al., 2020; Peng et al., 2020; Lv et al., 2021; Wang et al., 2023b). In
these works, usually a deep neural network-based representation learning module is integrated to the
self-expressive model, to learn the representations Z ∈ Rd×N and the self-expressive coefficients
C = {cij}Ni,j=1 in a joint optimization framework. However, as analyzed in (Haeffele et al., 2021)
that, the optimal representations Z of these methods tend to catastrophically collapse into subspaces
with dimensions much lower than the ambient space, which is detrimental to subspace clustering
and there is no evidence that the learned representations form a UoS structure.

In this paper, we attempt to propose a Principled fRamewOrk for Deep Subspace Clustering (PRO-
DSC), which is able to simultaneously learn structured representations and self-expressive coeffi-
cients. Specifically, in PRO-DSC, we incorporate an effective regularization on the learned rep-
resentations into the self-expressive model and prove that our PRO-DSC can effectively prevent
feature collapse. Moreover, we demonstrate that our PRO-DSC under certain condition can yield
structured representations forming a UoS structure and provide a scalable and efficient approach to
implement PRO-DSC. We conduct extensive experiments on the synthetic data and six benchmark
datasets to verify our theoretical results and evaluate the performance of the proposed approach.

Contributions. The contributions of the paper are highlighted as follows.

1. We propose a Principled fRamewOrk for Deep Subspace Clustering (PRO-DSC) that learns both
structured representations and self-expressive coefficients simultaneously, in which an effective
regularization on the learned representations is incorporated to prevent feature space collapse.

2. We provide a rigorous analysis for the optimal solution of our PRO-DSC, derive a sufficient
condition that guarantees the learned representations to escape from feature collapse, and further
demonstrate that our PRO-DSC under certain condition can yield structured representations of a
UoS structure.

3. We conduct extensive experiments to verify our theoretical findings and to demonstrate the supe-
rior performance of the proposed approach.

To the best of our knowledge, this is the first principled framework for deep subspace clustering that
is guaranteed to yield the desired UoS representations.

2 DEEP SUBSPACE CLUSTERING: A PRINCIPLED FRAMEWORK,
JUSTIFICATION, AND IMPLEMENTATION

In this section, we review the deficiency that was suffering in the existing Self-Expressive Deep
Subspace Clustering (SEDSC) frameworks at first, then present our principled framework for deep
subspace clustering and provide a rigorous characterization of the optimal solution and the property
of the learned structured representations. Finally we describe a scalable implementation based on
differential programming for the proposed framework. Please refer to Appendix A for the detailed
proofs of our theoretical results.

2.1 PREREQUISITE

To apply subspace clustering to complex real-world data that may not well align with the UoS
assumption, there has been a surge of interests in exploiting deep neural networks to learn represen-
tations and then apply self-expressive model to the learned representations, e.g., (Peng et al., 2016;
2018; Ji et al., 2017; Zhou et al., 2018; Zhang et al., 2019a; Dang et al., 2020; Peng et al., 2020; Lv
et al., 2021; Wang et al., 2023b).

2
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Formally, the optimization problem of these SEDSC models can be formulated as:1

min
Z,C

1

2
∥Z −ZC∥2F + β · r(C) s.t. ∥Z∥2F = N, (2)

where Z ∈ Rd×N denotes the learned representation, C ∈ RN×N denotes the self-expressive
coefficient matrix, and β > 0 is a hyper-parameter. The following lemma characterizes the property
of the optimal solution Z for problem (2).
Lemma 1 (Haeffele et al., 2021). The rows of the optimal solution Z for problem (2) are the eigen-
vectors that associate with the smallest eigenvalues of (I −C)(I −C)⊤.

In other words, the optimal representation Z in SEDSC is restricted to an extremely “narrow” sub-
space whose dimension is much smaller than d, leading to an undesirable collapsed solution. 2

2.2 OUR PRINCIPLED FRAMEWORK FOR DEEP SUBSPACE CLUSTERING

In this paper, we attempt to propose a principled framework for deep subspace clustering that prov-
ably learns structured representations with maximal intrinsic dimensions.

To be specific, we try to optimize the self-expressive model (2) while preserving the intrinsic di-
mension of the representation space. Other than using the rank, which is a common measure of the
dimension, inspired by (Fazel et al., 2003; Ma et al., 2007; Yu et al., 2020; Liu et al., 2022), we pro-
pose to prevent the space collapse by incorporating the log det(·)-based concave smooth surrogate
which is defined as follows:

R(Z;α) := log det(I + αZ⊤Z) s.t. Z ∈ Sd−1, (3)

where α > 0 is a hyper-parameter. Unlike the commonly used nuclear norm, which is a convex
surrogate of the rank, the log det(·)-based function is concave, differentiable, and offers a tighter
approximation and encourages learning subspaces with maximal intrinsic dimensions. 3

By incorporating the maximization of R(Z;α) as a regularizer into the formulation of SEDSC in
(2), we have a Principled fRamewOrk for Deep Subspace Clustering (PRO-DSC):

min
Z,C

−1

2
log det

(
I + αZ⊤Z

)
+

γ

2
∥Z −ZC∥2F + β · r(C) s.t. ∥Z∥2F = N, (4)

where γ > 0 is a balancing hyper-parameter. Now, we will give our theoretical findings about the
optimal solution for problem (4). Note that the Lagrangian of problem (4) is:

L(Z,C, ν) := −1

2
log det

(
I + αZ⊤Z

)
+

γ

2
∥Z −ZC∥2F + βr(C) + ν(∥Z∥2F −N), (5)

where ν ∈ R is the Lagrange multiplier. By analyzing the gradient flow dynamics of problem (5),
we show that the eigenspaces of Z⊤Z and (I −C)(I −C)⊤ align progressively, which is crucial
for the subsequent analysis. Precisely, we have a theorem as follows.
Theorem 1 (Informal Statement). Denote G := Z⊤Z, M := (I−C)(I−C)⊤. Under mild condi-
tion, then G and M will converge to have eigenspaces aligned, i.e., G and M can be diagonalized
simultaneously by U ∈ ON×N where ON×N is an N ×N orthogonal matrix group.

Next, we will analyze problem (4) from the perspective of alternating optimization. When Z is
fixed, the optimization problem with respect to (w.r.t.) C reduces to a standard self-expressive
model, which has been extensively studied in (Soltanolkotabi & Candes, 2012; Pimentel-Alarcon &
Nowak, 2016; Wang & Xu, 2016; Tsakiris & Vidal, 2018). On the other hand, when C is fixed, the
optimization problem w.r.t. Z becomes:

min
Z

−1

2
log det

(
I + αZ⊤Z

)
+

γ

2
∥Z −ZC∥2F s.t. ∥Z∥2F = N, (6)

which is a non-convex optimization problem, whose optimal solution remains under-explored.

1Without loss of generality, we omit the constraint Diag(C) = 0 throughout the analysis.
2The dimension equals to the multiplicity of the smallest eigenvalues of (I −C)(I −C)⊤.
3Please refer to (Ma et al., 2007) for packing-ball interpretation.
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Figure 1: Empirical validation to Theorem 2. We train PRO-DSC on CIFAR-10 and CIFAR-100,
and report the clustering accuracy (ACC%) and subspace-preserving representation error (SRE%)
with varying α and γ. A clear linear phase transition phenomenon can be observed, which is con-
sistent with the condition to avoid collapse: γ < (α− ν⋆)/λmax(M).
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Figure 2: Empirical validations to Theorem 1 and 2. We train PRO-DSC on CIFAR-100. (a)
Eigenvalues of G. (b) Eigenvalues of M . (c) For each eigenvector uj of M , we compute
⟨uj ,

Guj

∥Guj∥2
⟩ to measure the eigenspace alignment of G and M . (d) We compute ∥L∥F to measure

the eigenspace alignment of G and M .

In light of the fact that G and M converge to share eigenspaces, we decompose G and M

to U Diag(λ
(1)
G , · · · , λ(N)

G )U⊤ and U Diag(λ
(1)
M , · · · , λ(N)

M )U⊤, respectively. Recall that G :=
Z⊤Z, M := (I −C)(I −C)⊤, by using the eigenvalue decomposition, we have that problem (6)
is transformed to a convex problem (detailed in Appendix A):

min
{λ(i)

G }min{d,N}
i=1

− 1

2

min{d,N}∑
i=1

log(1 + αλ
(i)
G ) +

γ

2
λ
(i)
Mλ

(i)
G

s.t.

min{d,N}∑
i=1

λ
(i)
G = N,λ

(i)
G ≥ 0, for all i = 1, . . . ,min{d,N},

(7)

which is a classical reverse water-filling problem (Yu et al., 2004). By solving problem (7), we have
the following theorem.
Theorem 2. Suppose that G and M have eigenspaces aligned and γ < (α − ν⋆)/λmax(M),
then we have that rank(Z⋆) = min{d,N} and the singular values σ(i)

Z⋆
=

√
1

γλ
(i)
M+ν⋆

− 1
α , for all

i = 1, . . . ,min{d,N}, where Z⋆ and ν⋆ are the primal optimal solution and dual optimal solution.

The above theorem characterizes the optimal solution for problem (6). As shown, the rank of the
minimizers for PRO-DSC satisfies that rank(Z⋆) = min{d,N}. On the contrary, SEDSC yields a
collapsed solution, where rank(Z⋆) ≪ min{d,N}. In Figure 1, we show the subspace clustering
accuracy (ACC) and subspace-representation error4 (SRE) as a function of the parameter α and γ.
The phase transition phenomenon around γ = (α − ν⋆)/λmax(M) well illustrates the sufficient
condition in Theorem 2 to avoid collapse. In Figure 2, we illustrate the curves of the eigenvalues
and the alignment of eigenspaces of G and M , which demonstrate that the learned representation
does no longer collapse and the two eigenspaces are approximately to be aligned.

4For each row c(j) in C, SRE is computed by 100
N

∑
j(1−

∑
i wij · |cij |)/∥c(j)∥1, where wij ∈ {0, 1} is

the ground-truth affinity.

4
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Figure 3: Empirical validation to Theorem 3. We visualize the Gram matrices and the dimension
reduction results via PCA for CLIP features X and the learned representations Z on CIFAR-10. For
the clarity of visualization, we apply PCA to the samples from three categories X(3) and Z(3).

Furthermore, from the perspective of joint optimizing Z and C, the following theorem demonstrates
that PRO-DSC yields union-of-orthogonal-subspaces representations Z and block-diagonal self-
expressive matrix C under certain condition.

Theorem 3. Suppose that the sufficient conditions to prevent catastrophic feature collapse are sat-
isfied. Without loss of generality, we further assume that the columns in matrix Z are arranged into
k blocks according to a certain N × N permutation matrix Γ, i.e., Z = [Z1,Z2, · · · ,Zk]. Then
the condition for that PRO-DSC promotes the optimal solution (Z⋆,C⋆) to have desired structure,
i.e., Z⊤

⋆ Z⋆ and C⋆ are both block-diagonal, is that ⟨(I − C)(I − C)⊤,G − G∗⟩ → 0, where
G∗ := Diag

(
G11,G22, · · · ,Gkk

)
and Gjj is the block Gram matrix corresponding to Zj .
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Figure 4: Empirical validation to The-
orem 3 on CIFAR-10.

Remark 1. Theorem 3 suggests that our PRO-DSC is
able to learn representations and self-expressive matrix
with desired structures, i.e., the representations form a
union of orthogonal subspaces and accordingly the self-
expressive matrix is block-diagonal, when the condition
⟨(I −C) (I −C)

⊤
,G − G∗⟩ → 0 is met. We call

this condition a compatibly structured coherence (CSC),
which relates to the properties of the distribution of the
representations in Z and the self-coefficients in C. While
it is not possible for us to give a theoretical justifica-
tion when the CSC condition will be satisfied in general,
we do have the empirical evidence that our implemen-
tation for PRO-DSC with careful designs does approxi-
mately satisfy such a condition and thus yields represen-
tations and self-expressive matrix with desired structure
(See Figures 3 and 4).5

2.3 SCALABLE IMPLEMENTATION

Existing SEDSC models typically use autoencoders to learn the representations, and learn the self-
expressive matrix C through an N × N fully-connected layer (Peng et al., 2016; 2018; Ji et al.,
2017; Zhou et al., 2018; Zhang et al., 2019a). While such implementation is straightforward, there
is two major drawbacks: a) since that the number of self-expressive coefficients is quadratic to the
number of data points, solving these coefficients suffers from expensive computation burden; b) the
learning process is transductive, i.e., the network parameters cannot be generalized to unseen data.

To address these issues, similar to (Zhang et al., 2021), we reparameterize the self-expressive co-
efficients cij by a neural network. Specifically, the input data xi is fed into a neural network
h(·;Ψ) : RD → Rd to yield normalized representations, i.e.,

yi := h(xi;Ψ)/∥h(xi;Ψ)∥2, (8)

5Please refer to Appendix B.2 for more details about Figures 1–4.
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where Ψ denotes all the parameters in h(·). Then, the parameterized self-expressive matrix CΨ is
generated by:

CΨ := P(Y ⊤Y ), (9)

where Y := [y1, . . . ,yN ] ∈ Rd×N and P(·) is the sinkhorn projection (Cuturi, 2013), which has
been widely applied in deep clustering (Caron et al., 2020; Ding et al., 2023).6 To enable efficient
representation learning, we introduce another learnable mapping f(·;Θ) : RD → Rd, for which

zj := f(xj ;Θ)/∥f(xj ;Θ)∥2 (10)

is the learned representation for the input xj , where Θ denotes the parameters in f(·) to learn the
structured representation ZΘ := [z1, . . . ,zN ] ∈ Rd×N .

Therefore, our principled framework for deep subspace clustering (PRO-DSC) in (4) can be repa-
rameterized and reformulated as follows:

min
Θ,Ψ

L(Θ,Ψ) := −1

2
log det

(
I + αZ⊤

ΘZΘ

)
+

γ

2
∥ZΘ −ZΘCΨ∥2F + β · r (CΨ) . (11)

To strengthen the block-diagonal structure of self-expressive matrix, we choose the block-diagonal
regularizer (Lu et al., 2018) for r(CΨ). To be specific, given the data affinity AΨ, which is induced
by default as AΨ := 1

2

(
|CΨ|+ |C⊤

Ψ|
)
, the block diagonal regularizer is defined as:

r (CΨ) := ∥AΨ∥ κ , (12)

where ∥AΨ∥ κ is the sum of the k smallest eigenvalues of the Laplacian matrix of the affinity AΨ.7

Consequently, the parameters in Θ and Ψ of reparameterized PRO-DSC can be trained by Stochastic
Gradient Descent (SGD) with the loss function L(Θ,Ψ) defined in (11). For clarity, we summarize
the procedure for training and testing of our PRO-DSC in Algorithm 1.

Remark 2. We note that all the commonly used regularizers with extended block-diagonal property
for self-expressive model as discussed in (Lu et al., 2018) can be used to improve the block-diagonal
structure of self-expressive matrix. More interestingly, the specific type of the regularizers is not
essential owning to the learned structured representation (Please refer to Table 4 for details), and
using a specific regularizer or not is also not essential since that the SGD-based optimization also
induces some implicit regularization, e.g., low-rank (Gunasekar et al., 2017; Arora et al., 2019).

Algorithm 1 Scalable & Efficient Implementation of PRO-DSC via Differential Programming

Input: Dataset X = Xtrain ∪ Xtest, batch size nb, hyper-parameters α, β, γ, number of iterations T ,
learning rate η

Initialization: Random initialize the parameters Ψ,Θ in the networks h(·;Ψ) and f(·;Θ)
Training:

1: for t = 1, . . . , T do
2: Sample a batch Xb ∈ RD×nb from Xtrain

# Forward propagation
3: Compute self-expressive matrix Cb ∈ Rnb×nb by Eqs. (8–9)
4: Compute representations Zb ∈ Rd×nb by Eq. (10)

# Backward propagation
5: Compute ∇Ψ := ∂L

∂Ψ ,∇Θ := ∂L
∂Θ

6: Set Ψ← Ψ− η · ∇Ψ, Θ← Θ− η · ∇Θ

7: end for
Testing:

8: Compute self-expressive matrix Ctest by Eqs. (8–9) for Xtest
9: Apply spectral clustering on the affinity Atest

6In practice, we set diag(CΨ) = 0 to prevent trivial solution CΨ = I .
7Recall that the number of zero eigenvalues of the Laplacian matrix equals to the number of connected

components in the graph (von Luxburg, 2007).
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3 EXPERIMENTS

To validate the effectiveness of theoretical findings and to demonstrate the superior performance of
our proposed framework, we conduct extensive experiments on synthetic data (Sec. 3.1) and real-
world data (Sec. 3.2). Implementation details and more results are provided in Appendices B.1 and
B.3, respectively.

3.1 EXPERIMENTS ON SYNTHETIC DATA

To validate that PRO-DSC addresses the collapse issue in SEDSC and learns representations with a
UoS structure, we conduct experiments on synthetic data and visualize the results.

We first follow the procedure in (Ding et al., 2023) to generate synthetic data, as shown in the first
row of Figure 5a. To conduct experiments on more complicated scenarios, we randomly select half
of the points from the “Arctic” and place them near the “Antarctic” (Figure 5a, second row).

As shown in Figure 5b, the SEDSC models overly compress all the representations to a closed curve
on the hypersphere. With increased weights (i.e., γ ↑) of the self-expressive term, the representations
collapse to a few points (Figure 5c). The manifold linearizing and clustering method, MLC (Ding
et al., 2023) approximately compresses the representations to the orthogonal subspaces. In contrast,
our PRO-DSC learns linearized representations lying on orthogonal subspaces in both scenarios,
confirming the validity of our theoretical analysis.

(a) Input Data (b) SEDSC (c) SEDSC (γ ↑) (d) MLC (e) PRO-DSC

Figure 5: Visualization of the input data and learned representations with different algorithms.

3.2 EXPERIMENTS ON REAL-WORLD DATA

To evaluate the performance of our proposed approach, we conduct experiments on six real-world
image datasets: CIFAR-10, CIFAR-20, CIFAR-100, ImageNet-Dogs-15, Tiny-ImageNet-200, and
ImageNet-1k. We measure clustering performance using clustering accuracy (ACC) and normalized
mutual information (NMI). The results of our PRO-DSC in Tables 1 and 2 are averaged over 10
trials (with ±std) and other results of PRO-DSC are averaged over 3 trials.

Main results. Table 1 compares the clustering performance of our PRO-DSC on CLIP features (Rad-
ford et al., 2021) with various baseline methods, including classical clustering algorithms, e.g.,
k-means (MacQueen, 1967), spectral clustering (Shi & Malik, 2000), subspace clustering algo-
rithm, e.g., EnSC (You et al., 2016a), SENet (Zhang et al., 2021), deep clustering algorithms, e.g.,
SCAN (Van Gansbeke et al., 2020), TEMI (Adaloglou et al., 2023), CPP (Chu et al., 2024), and deep
subspace clustering algorithms, e.g., EDESC (Cai et al., 2022), DSCNet (Ji et al., 2017).8 Since that
the clustering performance with the CLIP feature is not reported for most baselines, we conduct
experiments using the implementations provided by the authors. As shown in Table 1, PRO-DSC
significantly outperforms the vanilla subspace clustering algorithms, achieving a 10% improvement
on both datasets CIFAR-20 and CIFAR-100. In contrast, the previous deep subspace clustering al-
gorithms perform less competitively, primarily because they do not learn structured representations
forming a UoS. Compared to state-of-the-art deep clustering algorithms, our PRO-DSC improves

8Please refer to Appendix B.3 for the results on other pre-trained models.
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Table 1: Clustering results of our PRO-DSC on the CLIP features. The best results are in bold
font and the second best results are underlined. “OOM” means out of GPU memory.

Method CIFAR-10 CIFAR-20 CIFAR-100 TinyImgNet-200 ImgNetDogs-15 ImageNet-1k
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

k-means 83.5 84.1 46.9 49.4 52.8 66.8 54.1 73.4 52.7 53.6 53.9 79.8
SC 79.8 84.8 53.3 61.6 66.4 77.0 62.8 77.0 48.3 45.7 56.0 81.2
SSCOMP 85.5 83.0 61.4 63.4 55.6 69.7 56.7 72.7 25.6 15.9 44.1 74.4
EnSC 95.4 90.3 61.0 68.7 67.0 77.1 64.5 77.7 57.9 56.0 59.7 83.7
SENet 91.2 82.5 65.3 68.6 67.0 74.7 63.9 76.6 58.7 55.3 53.2 78.1

SCAN 95.1 90.3 60.8 61.8 64.1 70.8 56.5 72.7 70.5 68.2 54.4 76.8
TEMI 96.9 92.6 61.8 64.5 73.7 79.9 - - - - 64.0 -

CPP 96.8 92.3 67.7 70.5 75.4 82.0 63.4 75.5 83.0 81.5 62.0 82.1
EDESC 84.2 79.3 48.7 49.1 53.1 68.6 51.3 68.8 53.3 47.9 46.5 75.5
DSCNet 78.5 73.6 38.6 45.7 39.2 53.4 62.3 68.3 40.5 30.1 OOM OOM
Our PRO-DSC 97.2±0.2 92.8±0.4 71.6±1.2 73.2±0.5 77.3±1.0 82.4±0.5 69.8±1.1 80.5±0.7 84.0±0.6 81.2±0.8 65.0±1.2 83.4±0.6

Table 2: Clustering results of our PRO-DSC when training from scratch. The best results are in
bold font and the second best results are underlined. Performance marked with “*” is based on our
re-implementation.

Method CIFAR-10 CIFAR-20 CIFAR-100 TinyImgNet-200 ImgNetDogs-15
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

k-means 22.9 8.7 13.0 8.4 9.2 23.0 2.5 6.5 10.5 5.5
SC 24.7 10.3 13.6 9.0 7.0 17.0 2.2 6.3 11.1 3.8
CC 79.0 70.5 42.9 43.1 26.9* 48.1* 14.0 34.0 42.9 44.5
GCC 85.6 76.4 47.2 47.2 28.2* 49.9* 13.8 34.7 52.6 49.0
NNM 84.3 74.8 47.7 48.4 41.2 55.1 - - 31.1* 34.3*
SCAN 88.3 79.7 50.7 48.6 34.3 55.7 - - 29.6* 30.3*
NMCE 89.1 81.2 53.1 52.4 40.0* 53.9* 21.6* 40.0* 39.8 39.3
IMC-SwAV 89.7 81.8 51.9 52.7 45.1 67.5 28.2 52.6 - -
MLC 92.2 85.5 58.3 59.6 49.4 68.3 28.7* 52.2* 71.0* 68.3*
Our PRO-DSC 93.0±0.6 86.5±0.2 58.3±0.9 60.1±0.6 56.3±0.6 66.7.0±1.0 31.1±0.3 46.0±1.0 74.1±0.5 69.5±0.6

the accuracy by nearly 4% and 6% on datasets CIFAR-20 and TinyImageNet, respectively, further
validating its effectiveness.

To validate the effectiveness of our PRO-DSC without using CLIP features, we conduct a fair com-
parison with existing deep clustering approaches and report the clustering results with training from
scratch in Table 2. By stacking the f(·) and h(·) on a learnable backbone, PRO-DSC can learn rep-
resentations and self-expressive coefficients directly from raw images. As illustrated in Table 2, our
PRO-DSC outperforms all the deep clustering baselines, including CC (Li et al., 2021), GCC (Zhong
et al., 2021), NNM (Dang et al., 2021), SCAN (Van Gansbeke et al., 2020), NMCE (Li et al., 2022),
IMC-SwAV (Ntelemis et al., 2022), and MLC (Ding et al., 2023).

Evaluation on learned representations. To quantitatively evaluate the effectiveness of the learned
representations, we conduct experiments to compare the clustering performance with the CLIP fea-
tures and the representations learned from CPP and our PRO-DSC (additional SEDSC results can
be found in Table B.6). Specifically, we use k-means (MacQueen, 1967), spectral clustering (Shi &
Malik, 2000), and EnSC (You et al., 2016a) to yield the clustering results.

Experimental result are shown in Figure 6. We see that the representations learned by our PRO-DSC
outperform the CLIP features and the CPP representations in most cases across different clustering
algorithms and datasets. Notably, the clustering accuracy with the representations learned by our
PRO-DSC exceeds 90% on CIFAR-10 and 75% on CIFAR-100, whichever clustering algorithm is
used. We note that the clustering performance is further improved by the learnable mapping h(·;Ψ),
suggesting its superior generalization ability.

Sensitivity of hyper-parameters. In Figure 1, we verify that our PRO-DSC yields satisfactory
results when the sufficient conditions in Theorem 2 to avoid collapse are met. Moreover, we evaluate
the performance sensitivity to hyper-parameters γ and β by experiments on the CLIP features of
CIFAR-10, CIFAR-100 and TinyImageNet-200 with varying γ and β. In Figure 7, we observe that
the clustering performance maintains satisfactory under a broad range of γ and β.

Time and memory cost. The most time-consuming operations in our PRO-DSC are computing the
term involving log det(·) and the term ∥A∥ κ involving eigenvalue decomposition, respectively. For
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Figure 6: Clustering accuracy with CLIP features and learned representations.
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Figure 7: Evaluation on sensitivity to hyper-parameters γ and β on three datasets.

the former, the Gram matrix has a shape of nb × nb, getting a time complexity of O(n3
b). For the

latter, the Laplacian matrix has a shape of nb × nb, also resulting in a time complexity of O(n3
b).

Therefore, the overall time complexity of our PRO-DSC is O(n3
b). TEMI (Adaloglou et al., 2023)

employs H = 50 cluster heads during training, adding further time and memory costs. CPP (Chu
et al., 2024) involves computing log det(·) for nb + 1 times, leading to complexity O(nbd

3). As
shown in Table 3, our PRO-DSC significantly reduces the time consumption, particularly for datasets
with a large number of clusters. All the experiments are conducted on a single NVIDIA RTX 3090
GPU and Intel Xeon Platinum 8255C CPU.

Table 3: Comparison on time (s) and memory cost (MiB). “OOM” means out of GPU memory.

Methods Complexity CIFAR-10 CIFAR-100 ImageNet-1k
Time Memory Time Memory Time Memory

SEDSC O(N2d) - OOM - OOM - OOM
TEMI O(Hnbd

2) 6.9 1,766 5.1 2,394 262.1 2,858
CPP O(nbd

3) 3.5 3,802 7.1 10,374 1441.2 22,433
PRO-DSC O(n3

b) 4.5 2,158 4.0 2,328 90.0 2,335

Ablation study. To verify the effectiveness of the loss function in PRO-DSC, we conduct ablation
studies on the CLIP features of CIFAR-10, CIFAR-100, and ImageNetDogs-15, and report the re-
sults in Table 4, where L1 := − 1

2 log det
(
I + αZ⊤

ΘZΘ

)
and L2 := 1

2∥ZΘ − ZΘCΨ∥2F . The
absence of the term L1 leads to catastrophic feature collapse (as demonstrated in Sec. 2.1); whereas
without the self-expressive L2, the model lacks a loss function for learning the self-expressive co-
efficients. In both cases, clustering performance drops significantly. More interestingly, when we
replace the block diagonal regularizer ∥A∥ κ with ∥C∥1, ∥C∥∗, and ∥C∥2F or even drop the explicit
regularizer r(·), the clustering performance still maintains satisfactory. This confirms that the choice
of the regularizer is not essential owning to the structured representations learned by our PRO-DSC.

4 RELATED WORK

Deep subspace clustering. To tackle with complex real world data, a number of Self-Expressive
Deep Subspace Clustering (SEDSC) methods have been developed in the past few years, e.g., (Peng
et al., 2016; 2018; Ji et al., 2017; Zhou et al., 2018; Zhang et al., 2019a;b; Dang et al., 2020; Peng
et al., 2020; Lv et al., 2021; Cai et al., 2022; Wang et al., 2023b). The key step in SEDSC is to
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Table 4: Ablation studies on different loss functions and regularizers.

Loss Term CIFAR-10 CIFAR-100 ImgNetDogs-15
L1 L2 ∥A∥ κ ∥C∥1 ∥C∥2F ∥C∥∗ ACC NMI ACC NMI ACC NMI

A
bl

at
io

n √ √
56.9 47.7 54.6 60.9 46.7 37.1√ √
69.6 56.4 64.7 71.7 10.5 1.7√ √
97.0 93.0 74.6 80.9 80.9 78.8

R
eg

ul
ar

iz
er

√ √ √
97.0 92.6 75.2 81.1 81.3 79.1√ √ √
97.0 92.6 75.2 80.9 80.9 78.8√ √ √
96.7 91.9 76.4 81.8 81.0 78.8√ √ √
97.2 92.8 77.3 82.4 84.0 81.2

adopt a deep learning module to embed the input data into feature space. For example, deep au-
toencoder network is adopted in (Peng et al., 2016; 2018), deep convolutional autoencoder network
is used in (Ji et al., 2017; Zhou et al., 2018; Zhang et al., 2019a). Unfortunately, as pointed out
in (Haeffele et al., 2021), SEDSC suffers from a catastrophic feature collapse, which is detrimental
to subspace clustering. To date, however, a principled deep subspace clustering framework has not
been proposed.

Deep clustering. Recently, most of state-of-the-art deep clustering methods adopt a two-step proce-
dure: at the first step, self-supervised learning based pre-training, e.g., SimCLR (Chen et al., 2020),
MoCo (He et al., 2020), BYOL (Grill et al., 2020) and SwAV (Caron et al., 2020) is adopted to learn
the representations; and then deep clustering methods are incorporated to refine the representations,
via, e.g., pseudo-labeling (Caron et al., 2018; Van Gansbeke et al., 2020; Park et al., 2021; Niu
et al., 2022), cluster-level contrastive learning (Li et al., 2021), local and global neighbor match-
ing (Dang et al., 2021), graph contrastive learning (Zhong et al., 2021), self-distillation (Adaloglou
et al., 2023). Though the clustering performance has been improved remarkably, the underlying
geometry structure of the learned representations is unclear and ignored.

Representations learning with a UoS structure. The methods for representation learning that fa-
vor a UoS structure are pioneered in supervised setting, e.g., (Lezama et al., 2018; Yu et al., 2020).
In (Lezama et al., 2018), a nuclear norm based geometric loss is proposed to learn representations
that lie on a union of orthogonal subspaces. In (Yu et al., 2020), a principled framework called Max-
imal Coding Rate Reduction (MCR2) is proposed to learn representations that favor the structure
of a union of orthogonal subspaces (Wang et al., 2024). More recently, the MCR2 framework is
modified to develop deep manifold clustering methods, e.g., NMCE (Li et al., 2022), MLC (Ding
et al., 2023) and CPP (Chu et al., 2024). In (Li et al., 2022), the MCR2 framework combines with
constrastive learning to perform manifold clustering and representation learning; in (Ding et al.,
2023), the MCR2 framework combines with doubly stochastic affinity learning to perform mani-
fold linearizing and clustering; and in (Chu et al., 2024), the performance of (Ding et al., 2023) on
large pre-trained model (e.g., CLIP) has been investigated. While the modified MCR2 framework
has been incorporated into these methods for manifold clustering, none of them provide theoretical
justification to yield structured representations. Though our PRO-DSC shares the same regularizer
defined in Eq. (3) with MLC (Ding et al., 2023), we are for the first time to adopt it into the SEDSC
framework to attack the catastrophic feature collapse issue with theoretical analysis.

5 CONCLUSION

We presented a Principled fRamewOrk for Deep Subspace Clustering (PRO-DSC), which jointly
learn structured representations and self-expressive coefficients. Specifically, PRO-DSC incorpo-
rates an effective regularization into self-expressive model to prevent the catastrophic representation
collapse with theoretical justification. Moreover, we demonstrated that our PRO-DSC is able to
learn structured representations that form a desirable UoS structure, and also developed an efficient
implementation based on reparameterization and differential programming. We conducted exten-
sive experiments on synthetic data and six benchmark datasets to verify the effectiveness of the
theoretical findings and the superior performance of the proposed approach.
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Sungwon Park, Sungwon Han, Sundong Kim, Danu Kim, Sungkyu Park, Seunghoon Hong, and
Meeyoung Cha. Improving unsupervised image clustering with robust learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12278–12287,
2021.
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SUPPLEMENTARY MATERIAL FOR “EXPLORING A PRINCIPLED
DEEP SUBSPACE CLUSTERING NETWORK”

The supplementary materials are divided into two parts. In Section A, we present the proofs of our
theoretical results. In Section B, we present the supplementary materials for experiments, including
experimental details (Sec. B.1), empirical validation on our theoretical results (Sec. B.2), and more
experimental results (Sec. B.3).

A PROOFS OF MAIN RESULTS

Lemma 1 (Haeffele et al., 2021). The rows of optimal solution Z for problem (2) are eigenvectors
that associate with the smallest eigenvalues of (I −C)(I −C)⊤.

Proof. We note that:

∥Z −ZC∥2F = Tr
(
Z (I −C) (I −C)

⊤
Z⊤

)
=

d∑
i=1

z(i)(I −C)(I −C)⊤z(i)⊤,

where z(i) is the ith row of Z, thus problem (2) is equivalent to:

min
{z(i)}d

i=1,C

1

2

d∑
i=1

z(i)(I −C)(I −C)⊤z(i)⊤ + β · r(C)

s.t. ∥Z∥2F = N.

(13)

Without loss of generality, we fix the magnitude of each row of Z to ∥z(i)∥22 = τi, i = 1, . . . , d,
where

∑d
i=1 τi = N . Then, the optimization problem becomes:

min
{z(i)}d

i=1,C

1

2

d∑
i=1

z(i)(I −C)(I −C)⊤z(i)⊤ + β · r(C)

s.t. ∥z(i)∥22 = τi, i = 1, . . . , d.

(14)

The Lagrangian of problem (14) is:

L({z(i)}di=1,C, {νi}di=1) :=
1

2

d∑
i=1

z(i)(I −C)(I −C)⊤z(i)⊤ + β · r(C) +
1

2

d∑
i=1

νi(∥z(i)∥22 − τi),

(15)

where {νi}di=1 are the Lagrangian multipliers. The necessary conditions for optimal solution are:{∇z(i)L = z(i)(I −C)(I −C)⊤ + νiz
(i) = 0,

∥z(i)∥22 = τi, i = 1, . . . , d,
(16)

which implies that the optimal solutions z(i) are eigenvectors of (I −C)(I −C)⊤.

By further considering the objective functions, the optimal z(i) should be eigenvectors w.r.t. the
smallest eigenvalues of (I −C)(I −C)⊤ for all i ∈ {1, . . . , d}. The corresponding optimal value
is 1

2λmin((I −C)(I −C)⊤)
∑d

i=1 τi+β · r(C) = N
2 λmin((I −C)(I −C)⊤)+β · r(C), which

is irrelevant to {τi}di=1.

Therefore, we conclude that the rows of optimal solution Z to problem (2) are eigenvectors that
associate with the smallest eigenvalues of (I −C)(I −C)⊤.

We first present two lemmas, which will be used for the proof of Theorem 1.
Lemma A1. Suppose that A,B ∈ Rn×n are symmetric matrices, then AB = BA if and only if
A and B can be diagonalized simultaneously by U ∈ On×n.
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Lemma A2 (Tian et al., 2021). Let H(t) ≻ 0 be a time-varying positive definite matrix whose min-
imal eigenvalue is bounded away from 0, i.e., inft≥0 λmin (H(t)) ≥ λ0 > 0. Then, the following
dynamics

dw(t)

dt
= −H(t)w(t)

satisfies that ∥w(t)∥2 ≤ e−λ0t∥w(0)∥2, i.e., w(t)→ 0.
Theorem 1. Consider the objective function (5) where Z and C are optimized by gradient de-
scent with a learning rate η → 0, denote G := Z⊤Z,M := (I − C)(I − C)⊤,F :=

α(I + αG)−1,M̂ := γM + ν⋆I . If λmax(F
2 − FM̂) < 0, and 8α2

27 < γ < α−ν⋆

λmax(M) , then
G and M will converge to have eigenspaces aligned, i.e., G and M can be diagonalized simulta-
neously by U ∈ ON×N where ON×N is an N ×N orthogonal matrix group.

Proof. As F := α(I + αG)−1,M̂ := γM + ν⋆I , we have G = Z⊤Z = F−1 − 1
αI and

M = M̂−ν⋆I
γ . For simplicity, we denote H := F − M̂ = −γM + F − ν⋆I .

As Z and C are optimized by gradient descent with a learning rate η → 0, we have the learning
dynamic:

Ż =
dZ

dt
= −∇ZL = −γZM + αZ(I + αG)−1 − ν⋆Z = ZH, (17)

Ċ =
dC

dt
= −∇CL = γG(I −C) = γ(F−1 − 1

α
I)(I −C). (18)

As F and M̂ are functions of Z and C, respectively, they are updated by:

Ḟ =
dF

dt
=

d

dt

[
α(I + αZ⊤Z)−1

]
= −α(I + αG)−1 d

dt

(
Z⊤Z

)
α(I + αG)−1

= −F
(
Ż⊤Z +Z⊤Ż

)
F

= −F
(
HG+GH

)
F

= −F
(
HF−1 + F−1H − 2

α
H

)
F

=
(
FM̂ + M̂F

)
− 2

(
F 2 +

1

α
FM̂F − 1

α
F 3

)
, (19)

˙̂
M =

d(γM + ν⋆I)

dt
= γ

dM

dt
= γ(−Ċ)(I −C)⊤ + γ(I −C)(−Ċ)⊤

= −γ2
[
(F−1 − 1

α
I)M +M(F−1 − 1

α
I)
]

= −γ2
(
F−1M +MF−1 − 2

α
M

)
= −γ

[
(F−1M̂ + M̂F−1)− 2(ν⋆F

−1 +
M̂

α
− ν⋆

α
I)
]
. (20)

Next, we denote L as the commutator [F ,M̂ ]

L := [F ,M̂ ] = FM̂ − M̂F , (21)

and we notice that:

FM̂2 − M̂2F = M̂L+LM̂ ,

F 2M̂ − M̂F 2 = FL+LF ,

F 3M̂ − M̂F 3 + M̂FM̂F − FM̂FM̂ = (F 2 − M̂F )L+L(F 2 − FM̂) + FLF ,

FM̂F−1 − F−1M̂F = F−1L+LF−1.
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We compute the dynamic of L as:

L̇ =
dL

dt
=

(
Ḟ M̂ − M̂Ḟ

)
︸ ︷︷ ︸

L1

+
(
F

˙̂
M − ˙̂

MF
)

︸ ︷︷ ︸
L2

, where (22)

L1 = (FM̂ + M̂F )M̂ − 2(F 2 +
1

α
FM̂F − 1

α
F 3)M̂

− M̂(FM̂ + M̂F ) + 2M̂(F 2 +
1

α
FM̂F − 1

α
F 3)

= (FM̂2 − M̂2F )− 2(F 2M̂ − M̂F 2) +
2

α

[
(F 3M̂ − M̂F 3)− (FM̂FM̂ − M̂FM̂F )

]
= (M̂L+LM̂)− 2(FL+LF ) +

2

α

[
(F 2 − M̂F )L+L(F 2 − FM̂) + FLF

]
, (23)

L2 = −γF
[
(F−1M̂ + M̂F−1)− 2(ν⋆F

−1 +
M̂

α
− ν⋆

α
I)
]

+ γ
[
(F−1M̂ + M̂F−1)− 2(ν⋆F

−1 +
M̂

α
− ν⋆

α
I)
]
F

= γ(F−1M̂F − FM̂F−1) +
2γ

α
(FM̂ − M̂F )

= −γ(F−1L+LF−1) +
2γ

α
L. (24)

Therefore, we vectorize L̇ by Kronecker product:

Vec(L̇) = Vec(L1) + Vec(L2) = −(K1 +K2)Vec(L), (25)

where K1 := −M̂ ⊕ M̂ + 2F ⊕ F − 2

α

[
(F 2 − M̂F )⊕ (F 2 − M̂F ) + F ⊗ F

]
, (26)

K2 := γF−1 ⊕ F−1 − 2γ

α
I, and denote W1 ⊕W2 := W1 ⊗ I + I ⊗W2. (27)

The smallest eigenvalue of K := K1 +K2 satisfies:

λmin(K) ≥ −2λmax(M̂) + 4λmin(F −
1

2α
F 2 +

γ

2
F−1)− 4

α
λmax(F

2 − FM̂)− 2γ

α
. (28)

Given that λ(F ) = λ(α(I + αG)−1) = α
1+αλ(G) ∈ (0, α], we denote f(λ) := λ − λ2

2α + γ
2λ , λ ∈

(0, α], and its derivative f ′(λ) = 1
λ2 (2λ

2− 2
αλ

3− γ). We notice that when γ > 8α2

27 , f ′(λ) < 0 for
all λ and α, which means f(λ) is monotonically decreasing in λ ∈ [0, α]. Therefore,

λmin(K) ≥ 2
[
− λmax(M̂) + 2λmax(F )− 1

α
λ2
max(F ) +

γ

λmax(F )
− 2

α
λmax(F

2 − FM̂)− γ

α

]
.

(29)

Given that λmax(M̂) = λmax(γM + ν⋆I) = γλmax(M) + ν⋆ , we have:

λmin(K) ≥ 2
[
− λmax(M̂) + 2λmax(F )− 1

α
λ2
max(F ) +

γ

λmax(F )
− 2

α
λmax(F

2 − FM̂)− γ

α

]
= 2

[
− γλmax(M)− ν⋆ + 2α− α+

γ

α
− γ

α
− 2

α
λmax(F

2 − FM̂)
]

= 2
[
− γλmax(M)− ν⋆ + α− 2

α
λmax(F

2 − FM̂)
]
. (30)

Given that ν⋆ < α− γλmax(M), λmax(F
2 − FM̂) < 0, we have λmin(K) > 0.

Therefore, we have:

Vec(L̇) =
dVec(L)

dt
= −KVec(L), where K ≻ 0. (31)
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According to Lemma A2, this implies:

lim
t→∞

L = lim
t→∞

FM̂ − M̂F = 0. (32)

By Lemma A1, we find that F = α(I + αG)−1 and M̂ = γM + ν⋆I can be diagonalized
simultaneously by U ∈ ON×N . At the same time, F with G, M̂ with M share an eigenspace,
which means that G = Z⊤Z and M = (I −C)(I −C)⊤ can be diagonalized simultaneously by
U ∈ ON×N .

To justify the fact that actually we can ensure that ν⋆ satisfies the condition γ < 1
λmax(M⋆)

(α− ν⋆)

by adjusting the hyper-parameters α and γ, we will derive the optimal Lagrangian multiplier ν⋆ from
the optimality condition of the problem in Eq.(5).

We begin with analyzing the KKT condition of the problem in Eq.(5):
∇ZL(Z⋆,C⋆, ν⋆) = γZ⋆M⋆ − αZ⋆(I + αG⋆)

−1 + ν⋆Z⋆ = 0, (33)
∇CL(Z⋆,C⋆, ν⋆) = −γG⋆(I −C⋆) = 0, (34)

∇νL(Z⋆,C⋆, ν⋆) = ∥Z⋆∥2F −N = Tr(G⋆)−N = 0, (35)

where G⋆ = Z⋆
⊤Z⋆ and M⋆ = (I −C⋆)(I −C⋆)

⊤. The condition can be rewritten as:
γG⋆M⋆ − αG⋆(I + αG⋆)

−1 + ν⋆G⋆ = 0 (36)
γG⋆M⋆ = 0 (37)
Tr(G⋆) = N (38)

Then, we add the trace operator to (36) and simplify the formula by (37) as:

Tr
(
νG⋆ − αG⋆(I + αG⋆)

−1
)
= 0 (39)

Since αG⋆(I + αG⋆)
−1 = I − (I + αG⋆)

−1 and Z ∈ Rd×N , we discuss two cases between N
and d.
For case 1. Suppose N > d, then (39) will be rewritten as:

Nν⋆ = Tr
(
I − (I + αG⋆)

−1
)

(40)

⇐⇒ Nν⋆ = N − (N − d)−
d∑

i=1

1

1 + αλ
(i)
G⋆

⇐⇒ ν⋆ =
d

N
− 1

N

d∑
i=1

1

1 + αλ
(i)
G⋆

, (41)

where λ
(i)
G⋆
≥ 0, i = 1, · · · , d, λ(i)

G⋆
= 0, i = d+ 1, · · · , N and

∑d
i=1 λ

(i)
G⋆

= N . To ensure that ν⋆
satisfies the condition of Theorem 1, i.e., ν⋆ < α− γλmax(M) for any {λ(i)

G⋆
}Ni=1, we have:

ν⋆ =
d

N
− 1

N

d∑
i=1

1

1 + αλ
(i)
G⋆

≤ α

1 + α · Nd
< α− γλmax(M), (42)

where the equality holds when α > 0, λ
(1)
G⋆

= · · · = λ
(d)
G⋆

= N
d . Therefore, ν⋆ will satisfy the

condition in Theorem 1 if the last inequality holds, which is equivalent to:

γλmax(M) < α− α

1 + α · Nd
=

α2

d
N + α

. (43)

For case 2. Suppose d ≥ N , then with the similar process, we estimate the upper bound of ν⋆ as:

ν⋆ = 1− 1

N

N∑
i=1

1

1 + αλ
(i)
G⋆

≤ α

1 + α
< α− γλmax(M) (44)
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where the equality holds when α > 0, λ
(1)
G⋆

= · · · = λ
(N)
G⋆

= 1. Therefore, ν⋆ will satisfy the
condition in Theorem 2 if the last inequality holds, which is equivalent to:

γλmax(M) < α− α

1 + α
=

α2

1 + α
. (45)

This means that when γ and α satisfy Eq. (43) or (45) in each cases, the optimal ν⋆ will satisfy
Theorem 2’s condition. Therefore, we may not need to concern whether ν⋆ satisfies the condition,
but focus on the hyper-parameters γ and α.
Theorem 2. Suppose that G and M have eigenspaces aligned and γ < (α − ν⋆)/λmax(M),
then for the optimal solution Z⋆, we have that rank(Z) = min{d,N} and the singular values
σ
(i)
Z⋆

=
√

1

γλ
(i)
M+ν⋆

− 1
α , for all i = 1, . . . ,min{d,N}, where ν⋆ is the dual optimal solution.

Proof. Since ∥Z−ZC∥2F = Tr
(
Z⊤Z (I −C) (I −C)

⊤
)

and ∥Z∥2F = Tr(Z⊤Z), problem (6)
is equivalent to:

min
G

− 1

2
log det (I + αG) +

γ

2
Tr(GM)

s.t. Tr(G) = N,G ⪰ 0,
(46)

where G := Z⊤Z, M := (I −C)(I −C)⊤.

Since that G and M have eigenspaces aligned, we have G = UΛGU⊤,M = UΛMU⊤. There-
fore, problem (46) is transformed into:

min
ΛG

− 1

2
Tr log(I + αΛG) +

γ

2
Tr(ΛGΛM )

s.t. Tr(ΛG) = N,ΛG ⪰ 0,

(47)

which is further equivalent to the eigenvalue optimization problem below:

min
{λ(i)

G }min{d,N}
i=1

− 1

2

min{d,N}∑
i=1

log(1 + αλ
(i)
G ) +

γ

2
λ
(i)
Mλ

(i)
G

s.t.

min{d,N}∑
i=1

λ
(i)
G = N,

λ
(i)
G ≥ 0, for all i = 1, . . . ,min{d,N}.

(48)

It is noteworthy that problem (48) is a convex problem. Thus, the KKT condition is the sufficient
and necessary condition for the minimizer.

The Lagrangian of problem (48) is:

L
(
{λ(i)

G }
min{d,N}
i=1 , {µi}min{d,N}

i=1 , ν
)
:=

− 1

2

min{d,N}∑
i=1

log(1 + αλ
(i)
G ) +

γ

2
λ
(i)
Mλ

(i)
G − µiλ

(i)
G +

ν

2

(min{d,N}∑
i=1

λ
(i)
G −N

)
, (49)

where µi ≥ 0, i = 1, . . . ,min{d,N} and ν are the Lagrangian multipliers. The KKT conditions are
as follows: 

∇
λ
(i)
G⋆

L = 0, ∀i = 1, . . . ,min{d,N}, (50)

λ
(i)
G⋆
≥ 0, ∀i = 1, . . . ,min{d,N}, (51)

min{d,N}∑
i=1

λ
(i)
G⋆

= N, (52)

µi⋆ ≥ 0, ∀i = 1, . . . ,min{d,N}, (53)

µi⋆λ
(i)
G⋆

= 0, ∀i = 1, . . . ,min{d,N}. (54)
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Then, (50) is equivalent to:

µi⋆ =
1

2

(
ν⋆ + γλ

(i)
M −

α

1 + αλ
(i)
G⋆

)
. (55)

By Eqs. (51) and (53-54)(55), we come up with the following two cases:
µi⋆ > 0⇒ λ

(i)
G⋆

= 0,
1

ν⋆ + γλ
(i)
M

− 1

α
<0, (56)

µi⋆ = 0⇒ λ
(i)
G⋆

> 0, λ
(i)
G⋆

=
1

ν⋆ + γλ
(i)
M

− 1

α
>0. (57)

From the above two cases, we conclude that:

λ
(i)
G⋆

= max
{
0,

1

ν⋆ + γλ
(i)
M

− 1

α

}
, (58)

where ν⋆ satisfies:
min{d,N}∑

i=1

max
{
0,

1

ν⋆ + γλ
(i)
M

− 1

α

}
= N. (59)

Given that γ < (α − ν⋆)/λmax(M), we have 1

ν⋆+γλ
(i)
M

− 1
α > 0 for all i = 1, . . . ,min{d,N}.

Therefore, for the optimal Z⋆ in problem (6), we have rank(Z⋆) = min{d,N} and the singular
values σ(i)

Z⋆
=

√
1

γλ
(i)
M+ν⋆

− 1
α , for all i = 1, . . . ,min{d,N}.

Remark 3. We notice that (48) is a reverse water-filling problem, where the water level is
controlled by 1/α, as shown in Figure A.1. When G and M have eigenspaces aligned and
γ < (α − ν⋆)/λmax(M), we have rank(Z⋆) = min{d,N} and λ

(i)
G⋆
̸= 0 for all i ≤ min{d,N}.

When γ ≥ (α− ν⋆)/λmax(M), non-zero λ
(i)
G first disappears for the larger λ(i)

M .

0 1 2 3 4 5 6

1/α

i

1

γλ
(i)
M+ν

λ
(2)
G

λ
(1)
G

λ
(3)
G

λ
(0)
G

Figure A.1: Illustration of the optimal solution for problem (6). The primal problem can be
transformed into a classical reverse water-filling problem.

Theorem 3. Suppose that the sufficient conditions to prevent catastrophic feature collapse are sat-
isfied. Without loss of generality, we further assume that the columns in matrix Z are arranged into
k blocks according to a certain N × N permutation matrix Γ, i.e., Z = [Z1,Z2, · · · ,Zk]. Then
the condition for that PRO-DSC promotes the optimal solution (Z⋆,C⋆) to be desired structure, i.e.,
Z⊤

⋆ Z⋆ and C⋆ are block-diagonal, is that ⟨(I −C)(I −C)⊤,G−G∗⟩ → 0, where

G∗ := Diag
(
G11,G22, · · · ,Gkk

)
=

G11

. . .
Gkk

 ,

and Gjj is the block Gram matrix corresponding to Zj .
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Proof. We begin with the analysis to the first two terms of the loss function L̃ := L1 + γL2, where

L1 := −1

2
log det

(
I + α(ZΓ)⊤(ZΓ)

)
= −1

2
log det(I + αG),

L2 :=
1

2
∥ZΓ−ZΓΓ⊤CΓ∥2F =

1

2
∥Z −ZC∥2F =

1

2
Tr

(
G (I −C) (I −C)

⊤
)
,

since that Γ⊤Γ = ΓΓ⊤ = I . Thus, we have:

L̃(G,C) =
γ

2
Tr

(
G (I −C) (I −C)

⊤
)
− 1

2
log det(I + αG), (60)

which is a convex function with respect to (w.r.t) G and C, separately. By the property of convex
function w.r.t. G, we have:

L̃(G,C) ≥ L̃(G∗,C) +
〈
∇GL̃ |[G∗,C],G−G∗

〉
= L̃(G∗,C) +

〈γ
2
(I −C) (I −C)

⊤ − α

2
(I + αG∗)−1,G−G∗

〉
= L̃(G∗,C) +

〈γ
2
(I −C) (I −C)

⊤
,G−G∗

〉
−

〈α
2
(I + αG∗)−1,G−G∗

〉
.

Since that
〈
(I + αG∗)−1,G−G∗

〉
= 0, we have:

L̃(G,C) ≥ L̃(G∗,C) +
〈γ
2
(I −C) (I −C)

⊤
,G−G∗

〉
.

By the property of convex function w.r.t. C, we have:

L̃(G,C) ≥ L̃(G∗,C∗) +
〈
∇CL̃ |[G∗,C∗],C −C∗

〉
+

〈γ
2
(I −C) (I −C)

⊤
,G−G∗

〉
= L̃(G∗,C∗) +

〈
− γG∗(I −C∗),C −C∗

〉
+

〈γ
2
(I −C) (I −C)

⊤
,G−G∗

〉
.

Since that
〈
G∗(I −C∗),C −C∗

〉
= 0, we have:

L̃(G,C) ≥ L̃(G∗,C∗) +
〈γ
2
(I −C) (I −C)

⊤
,G−G∗

〉
.

It is easy to see that if
〈
(I −C) (I −C)

⊤
,G−G∗

〉
→ 0, then we will have:

L̃(G,C) ≥ L̃(G∗,C∗), (61)

where the equality holds only when G = G∗,C = C∗, in which C∗ =

Diag
(
C11,C22, · · · ,Ckk

)
=

C11

. . .
Ckk

 . Furthermore, if the regularizer r(·) satisfies the

extended block diagonal condition as defined in (Lu et al., 2018), then we have that r(C) ≥ r(C∗),
where the equality holds if and only if C = C∗. Therefore, we have:

L(G,C) = L̃(G,C) + β · r(C) ≥ L̃(G∗,C∗) + β · r(C∗) = L(G∗,C∗). (62)

Thus we conclude that minimizing the loss function L(G,C) = L̃(G,C) + β · r(C) promotes the
optimal solution (G⋆,C⋆) to have block diagonal structure.

We note that the Gram matrix being block-diagonal, i.e., G⋆ = G∗, implies that Z⊤
⋆,j1

Z⋆,j2 = 0 for
all 1 ≤ j1 < j2 ≤ k, which is corresponding to the subspaces associated to the blocks Z⋆,j’s are
orthogonal to each other.
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B EXPERIMENTAL SUPPLEMENTARY MATERIAL

B.1 EXPERIMENTAL DETAILS

B.1.1 SYNTHETIC DATA

As shown in Figure 5a (line 1), the data points are generated from two manifolds. The first manifold
(colored in purple) is generated by sampling 100 data points from

x =

cos ( 1
5 sin (5φ)

)
cosφ

cos
(
1
5 sin (5φ)

)
sinφ

sin
(
1
5 sin (5φ)

)
+ ϵ, (63)

where φ is taken uniformly from [0, 2π] and ϵ ∼ N (0, 0.05I3) is the additive noise. The second
manifold (colored in blue) is generated by sampling 100 data points from a Gaussian distribution
N

(
[0, 0, 1]

⊤
, 0.05I3

)
. To further test more complicated cases, we remove 50 data points from the

second manifold and replace them with 50 data points sampled from another Gaussian distribution
N

(
[0, 0,−1]⊤ , 0.05I3

)
(Figure 5a line 2).

In PRO-DSC, the learnable mappings h(·;Ψ) and f(·;Θ) are implemented with two MLPs with
Rectified Linear Units (ReLU) (Nair & Hinton, 2010) as the activation function. The hidden dimen-
sion and output dimension of the MLP is set to 100 and 3, respectively. We train PRO-DSC with
batch-size nb = 200, learning rate η = 5 × 10−3 for 1000 epochs. We set γ = 0.5, β = 1000, and
α = 3/0.1 · 200.

For SEDSC methods, we use DSCNet (Ji et al., 2017) as the representative. In Figure 5b, we set
γ = 1 for both cases, whereas in Figure 5c, γ is set to 5 and 100 for the two cases, respectively. The
encoder and decoder of DSCNet are MLPs with two hidden layers, with the hidden dimensions set
to 100 and 3. We train DSCNet with batch-size nb = 200, learning rate η = 1 × 10−4 for 1000
epochs.

B.1.2 REAL-WORLD DATASETS

Datasets description. CIFAR-10 and CIFAR-100 are classic image datasets consisting of 50,000
images for training and 10,000 images for testing. They are split into 10 and 100 classes, respec-
tively. CIFAR-20 shares the same images with CIFAR-100 while taking 20 super-classes as labels.
ImageNet-Dogs consists of 19,500 images of 15 different dog species and Tiny-ImageNet consists
of 100,000 images from 200 different classes. ImageNet-1k is the superset of the two datasets, con-
taining more than 1,280,000 real world images from 1000 classes. For all the datasets except for
ImageNet-Dogs, we train the network to implement PRO-DSC on the train set and test it on the test
set to validate the generalization of the learned model. For ImageNet-Dogs dataset which does not
have a test set, we train the network to implement PRO-DSC on the train set and report the clustering
performance on the training set. For a direct comparison, we conclude the basic information of these
datasets in Table B.1.

To leverage the CLIP pre-trained features for training, the input images are first resized to 224 with
respect to the smaller edge, then center-cropped to 224×224 and fed into the CLIP pre-trained image
encoder to obtain fixed features.9 The subsequent training of PRO-DSC takes the fixed extracted
features as input, instead of loading the entire CLIP pre-trained model.

Network architecture and hyper-parameters. The learnable mappings h(·;Ψ) and f(·;Θ) are
two fully-connected layers with the same output dimension d. Following (Chu et al., 2024), for the
experiments on real-world data, we stack a pre-feature layer before the learnable mappings, which
is composed of two fully-connected layers with ReLU and batch-norm (Ioffe & Szegedy, 2015).

We train the network by SGD optimizer with the learning rate set to η = 10−4, and the weight
decay parameters of f(·;Θ) and h(·;Ψ) are set to 10−4 and 5×10−3, respectively. Following (Chu
et al., 2024), we warm up training f(·;Θ) by diversifying the features with L1 = − log det(I +

9We use the ViT L/14 pre-trained model provided by https://github.com/openai/CLIP for 768-
dimensional features.
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Table B.1: Basic statistical information of datasets. We summarize the information in terms of
the data with both the train and test split, as well as the number of classes involved.

Datasets # Train # Test # Classes

CIFAR-10 50,000 10,000 10
CIFAR-20 50,000 10,000 20
CIFAR-100 50,000 10,000 100
ImageNet-Dogs 19,500 N/A 15
TinyImageNet 100,000 10,000 200
ImageNet 1,281,167 50,000 1000

αZ⊤
ΘZΘ) for a few iterations and duplicate the weights to h(·;Ψ). We set α = d/0.1 ·nb for all the

experiments. We summarize the hyper-parameters for training the network to implement PRO-DSC
in Table B.2.

Table B.2: Hyper-parameters configuration for training the network to implement PRO-DSC
with CLIP pre-trained features, where η is the learning rate, dpre is the hidden and output dimen-
sion of pre-feature layer, m is the output dimension of h and f , nb is the batch size for training, and
“# warm-up” is the number of iterations of warm-up stage.

η dpre d #epochs nb #warm-up γ β

CIFAR-10 1×10−4 4096 128 10 1024 200 300/nb 600
CIFAR-20 1×10−4 4096 256 50 1500 0 600/nb 300
CIFAR-100 1×10−4 4096 128 100 1500 200 150/nb 500
ImageNet-Dogs 1×10−4 4096 128 200 1024 0 300/nb 400
TinyImageNet 1×10−4 4096 256 100 1500 0 200/nb 400
ImageNet 1×10−4 4096 1024 100 2048 2000 800/nb 400
MNIST 1×10−4 4096 128 100 1024 200 700/nb 400
F-MNIST 1×10−4 1024 128 200 1024 400 50/nb 100
Flowers 1×10−4 1024 256 200 1024 200 400/nb 200

Running other algorithms. Since k-means (MacQueen, 1967), spectral clustering (Shi & Malik,
2000), EnSC (You et al., 2016a), SSCOMP (You et al., 2016b), and DSCNet (Ji et al., 2017) are
based on transductive learning, we train and test these models directly on the test set for all the
experiments.

(1) For EnSC, we tune the hyper-parameter in front of the self-expressive term γ ∈
{1, 2, 5, 10, 20, 50, 100, 200, 400, 800, 1600, 3200} and tune the hyper-parameter to balance the ℓ1
and ℓ2 norms τ ∈ {0.9, 0.95, 1} to report the best clustering result.

(2) For SSCOMP, we tune the hyper-parameter to control the sparsity kmax ∈
{1, 2, 5, 10, 20, 50, 100, 200} and the residual ϵ ∈ {10−4, 10−5, 10−6, 10−7} to report the
best clustering result.

(3) To apply DSCNet to the CLIP features, we substitute MLPs with two hidden layers for the
convolutional encoder and decoder. The hidden dimension of the MLPs are 128. We tune the
balancing hyper-parameters γ ∈ {1, 2, 3, 4} and β ∈ {1, 5, 25, 50, 75, 100} and train the model for
100 epochs with learning rate η = 1× 10−4 and batch-size nb equivalent to number of test data set.

(4) As the performance of CPP is evaluated by averaging the ACC and NMI metrics tested on
each batch, we reproduce the results by their open-source implementation and report the results
on the entire test set. The authors provide two implementations (see https://github.com/
LeslieTrue/CPP/blob/main/main.py and https://github.com/LeslieTrue/
CPP/blob/main/main_efficient.py), where one optimizes the cluster head and the fea-
ture head separately and the other shares weights between the two heads. In this paper, we test both
cases and report the better results.

(5) For k-means and spectral clustering (including when spectral clustering is used as the final step
in subspace clustering), we repeat the clustering 10 times with different random initializations (by
setting n init=10 in scikit-learn) and report the best results.
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(6) For SENet, SCAN and EDESC, we adjust the hyper-parameters and repeat experiments for three
times, with only the best results are reported.

(7) For TEMI, we directly cited the results from the paper Adaloglou et al. (2023).

Training from scratch. Similar to most deep clustering algorithms, we divide the training process
into two steps. We begin with pre-training the parameters of the backbone with BYOL (Grill et al.,
2020). Then, leveraging the parameters pre-trained in the first stage, we fine-tune the model by the
proposed PRO-DSC loss function. Specifically, we set the learning rate η = 0.05 and the batch
size nb = 256. The output feature dimension d is consistent with the setting for training with the
CLIP features. We use ResNet-18 as the backbone for the experiments on CIFAR-10 and CIFAR-
20, and use ResNet-34 as the backbone for the experiments on other datasets, following (Li et al.,
2021; Huang et al., 2023). We use a convolution filter of size 3 × 3 and stride 1 to replace the first
convolution filter, following (Huang et al., 2023; Li et al., 2020). The data augmentation strategy is
as follows:

Augmentation 1 Augmentation for training from scratch

1: transforms.RandomResizedCrop(size=img size, scale=(0.08, 1)),
2: transforms.RandomHorizontalFlip(),
3: transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.2,

0.1)], p=0.8),
4: transforms.RandomGrayscale(p=0.2),
5: transforms.RandomApply([transforms.GaussianBlur(kernel size=23,

sigma=(0.1, 2.0))], p=1.0).

When re-implementing other baselines, we use the code provided by the respective authors and
report the best performance after fine-tuning the hyper-parameters.

B.2 EMPIRICAL VALIDATION ON THEORETICAL RESULTS

Empirical Validation on Theorem 1. To measure the eigenspace alignment of G and M (Theo-
rem 1), we plot ⟨uj ,Guj/∥Guj∥2⟩ in Figure 2c, where uj is the jth eigenvector of M . When the
eigenspace alignment holds, one can verify that:

⟨uj ,
Guj

∥Guj∥2
⟩ =

{
1, λ

(j)
G ̸= 0

0, λ
(j)
G = 0

for all j = 1, 2, . . . , N. (64)

As shown in Figure 2c, the first d = 128 normalized correlation values converge to 1, while the
rest converge to 0, implying the progressively alignment between G and M . In addition, we plot
the Frobenius norm of the commutator L during training in Figure 2d. The commutator decreases
monotonically during the network training, implying the eigenspace alignment by Lemma A1.

Empirical Validation on Theorem 2. To verify Theorem 2, we decompose and plot the eigenval-
ues of G,M in Figure 2a and 2b, respectively. As shown, there are min{d,N} = 128 non-zero
eigenvalues of G, approximately being inversely proportional to the smallest 128 eigenvalues of
M . This results empirically demonstrate that rank(Z⋆) = min{d,N} and λ

(i)
G⋆

= 1

γλ
(i)
M+ν⋆

− 1
α

for minimizers. Furthermore, the condition of Theorem 2 is verified in Figure 1, where γ <
(α−ν⋆)/λmax(M) yields satisfactory clustering accuracy (ACC%) and subspace-preserving repre-
sentation error (SRE%). The satisfactory ACC and SRE confirm that PRO-DSC avoids catastrophic
collapse when γ < (α − ν⋆)/λmax(M) holds. When γ ≥ (α − ν⋆)/λmax(M), PRO-DSC yields
significantly worse ACC and SRE. There is a phase transition phenomenon that corresponds to the
sufficient condition to prevent collapse.

Empirical Validation on Theorem 3. To intuitively visualize the structured representations learned
by PRO-DSC, we visualize the Gram matrices |Z⊤Z| for both CLIP features and learned represen-
tations on CIFAR-10. The Gram matrix shows the similarities between representations within the
same class (indicated by block diagonal values) and across different classes (indicated by off-block
diagonal values). Moreover, we display the dimensionality reduction results via Principal Compo-
nent Analysis (PCA) for the CLIP features and the learned representation of samples from three
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categories in CIFAR-10. We use PCA for dimensionality reduction as it performs a linear projec-
tion, well preserving the underlying structure. As shown in Figure 3, the CLIP features from three
classes approximately lie on different subspaces. Despite of the structured nature of the features,
the underlying subspaces are not orthogonal. In the Gram matrix of the CLIP fature, the average
similarity between features from different classes is greater than 0.6, resulting in an unclear block
diagonal structure. After training with PRO-DSC, the spanned subspaces of the learned representa-
tions become orthogonal.10 Additionally, the off-block diagonal values of the Gram matrix decrease
significantly, revealing a clear block diagonal structure. These visualization results qualitatively
verify that PRO-DSC aligns the representations with a union of orthogonal subspaces.11

In Figure 4, we plot the curves for the compatibly structured coherence (CSC) condition and the
average values of |G∗|, |G−G∗|, |C∗|, |C −C∗| during the training of PRO-DSC on CIFAR-10.
As illustrated, the CSC condition progressively satisfies. Consequently, the average off-block values
|G−G∗| and |C−C∗| gradually decrease while the average block values |G∗| and |C∗| gradually
increase, which empirically validates that PRO-DSC promotes block-diagonal structure in G and
C.

B.3 MORE EXPERIMENTAL RESULTS

More results on synthetic data. The synthetic experiments of adding an additional subspace are
presented in Figure B.1.

In case 1, we implement two sets with 100 points in each cluster sampled from Gaussian distribution
x ∼ N ([ 1√

2
, 0,
√
2]⊤, 0.05I3) and x ∼ N ([− 1√

2
, 0,
√
2]⊤, 0.05I3) in the same side of the sphere.

PRO-DSC eliminates the nonlinearity in representations and maximally separates the different sub-
spaces.

In case 2, we add a vertical curve with 100 points sampled by:

x =

cos ( 1
5 sin (5φ)

)
cosφ

sin
(
1
5 cos (5φ)

)
cos

(
1
5 sin (5φ)

)
sinφ

+ ϵ, (65)

where ϵ ∼ N (0, 0.05I3) and use sin( 15 cos(5φ)) to avoid overlap in the intersection of the two
curves. PRO-DSC finds difficulties to learn representations of data which located at the intersection
of subspaces. However, those which are away from the intersection are linearized well.

For the experiments on synthetic data, the learnable mappings h(·;Ψ) and f(·;Θ) are implemented
with two MLPs with Rectified Linear Units (ReLU) (Nair & Hinton, 2010) as the activation function.
The hidden dimension and output dimension of the MLP is set to 100 and 3, respectively. In case
1, we train PRO-DSC with batch-size nb = 300, learning rate η = 5 × 10−3 for 5000 epochs and
set γ = 1.3, β = 500, α = 3/0.1 · 300. In case 2, we train PRO-DSC with batch-size nb = 200,
learning rate η = 5× 10−3 for 8000 epochs and set γ = 0.5, β = 500, α = 3/0.1 · 200.

(a) Case 1: Input data (b) Case 1: Learned Z (c) Case 2: Input data (d) Case 2: Learned Z

Figure B.1: Additional results on synthetic data.

10The dimension of each subspace is much greater than one (see Figure B.3). The 1-dimensional subspaces
observed in the PCA results are a consequence of dimensionality reduction.

11Please refer to Figure B.2 and B.7 for the results on other datasets and the visualization of the bases of
each subspace.
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Experimental Results on Datasets Reuters and UCI HAR. The dataset Reuters-10k consists of
four text classes, containing 10,000 samples of 2,000 dimension. The UCI HAR is a time-series
dataset, consisting of six classes, 10,299 samples of 561 dimension. We take EDESC (Cai et al.,
2022) as the baseline method for deep subspace clustering on Reuters-10k, and take N2D (Mc-
Conville et al., 2021) and FCMI (Zeng et al., 2023) as the baseline methods for UCI HAR, in which
the results are directly cited from the respective papers. We conducted experiments with PRO-DSC
on Reuters and UCI HAR following the same protocol for data processing as the baseline methods.
We train and test PRO-DSC on the entire dataset and report the results over 10 trials. Experimental
results are provided in Table B.4. The hyper-parameters used for PRO-DSC is summarized in Table
B.3.

Table B.3: Hyper-parameter setting for experiments on Reuters, UCI HAR, EYale-B, ORL and
COIL-100.

Dataset η dpre d #epochs nb #warm-up γ β

REUTERS-10k 1e-4 1024 128 100 1024 50 50 200
UCI HAR 1e-4 1024 128 100 2048 20 100 300
EYale-B 1e-4 1080 256 10000 2432 100 200 50
ORL 1e-4 80 64 5000 400 100 75 10
COIL-100 1e-4 12800 100 10000 7200 100 200 100

Table B.4: Experimental Results on Datasets Reuters and UCI HAR with 10 trials. The results of
other methods are cited from the respective papers.

Dataset REUTERS-10k UCI HAR
ACC NMI ACC NMI

k-means (MacQueen, 1967) 52.4 31.2 59.9 58.8
SC (Shi & Malik, 2000) 40.2 37.5 53.8 74.1
AE (Bengio et al., 2006) 59.7 32.3 66.3 60.7

VAE (Kingma & Welling, 2014) 62.5 32.9 - -
JULE (Yang et al., 2016) 62.6 40.5 - -
DEC (Xie et al., 2016) 75.6 68.3 57.1 65.5
DSEC (Chang et al., 2018) 78.3 70.8 - -
EDESC (Cai et al., 2022) 82.5 61.1 - -

DFDC (Zhang & Davidson, 2021) - - 86.2 84.5
N2D (McConville et al., 2021) - - 82.8 71.7
FCMI (Zeng et al., 2023) - - 88.2 80.7

PRO-DSC 85.7 ± 1.3 64.6 ± 1.3 87.1 ± 0.4 80.9 ± 1.2

Comparison to AGCSC and SAGSC. During the rebuttal, we conducted more experiments on two
state-of-the-art subspace clustering methods AGCSC (Wei et al., 2023) and ARSSC (Wang et al.,
2023a). Since that both of the two methods cannot handle the datasets used for evaluating our PRO-
DSC, we conducted experiments on the datasets: Extended Yale B (EYaleB), ORL, and COIL-100.
We set the architecture of pre-feature layer in PRO-DSC as the same to the encoder of DSCNet (Ji
et al., 2017). The hyper-parameters configuration for training PRO-DSC is summarized in Table
B.3. We repeated experiments for 10 trails and report the average with standard deviation in Table
B.5. For the results of other methods in Table B.5, we directly cited the results from DSSC (Lim
et al., 2020).

1) AGCSC. Our method surpasses AGCSC on the Extended Yale B dataset and achieves comparable
results on the ORL dataset. However, AGCSC cannot yield the result on COIL-100 in 24 hours.

2) ARSSC. ARSSC employs three different non-convex regularizers: ℓγ norm Penalty (LP), Log-
Sum Penalty (LSP), and Minimax Concave Penalty (MCP). While ARSSC-MCP performs the best
on Extended Yale B, our PRO-DSC outperforms ARSSC-MCP on ORL. While AGCSC performs
the best on ORL, but it yields inferior results on Extended Yale B and it cannot yield the results on
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COIL-100 in 24 hours. Thus, we did not report the results of AGCSC on COIL-100 and marked it
as Out of Time (OOT). Our PRO-DSC performs the second best results on Extended Yale B, ORL
and the best results on COIL-100. Since that we have not found the open-source code for ARSSC,
we are unable to have their results on COIL-100. This comparison also confirms the scalablity of
our PRO-DSC which is due to the re-parametrization (similar to SENet).

It is noteworthy that the goal of our work is to provide a reasonable (or a principled) framework for
deep subspace clustering based on self-expressive (SE) model. We demonstrate theoretically and
empirically that adding the log det(·) term into the SE model can prevent the catastrophic feature
collapse, and show our PRO-DSC promotes to produce representations that are aligned with a union
of orthogonal subspaces. Therefore, our PRO-DSC provides a general framework for self-expressive
model based deep subspace clustering.

Since that both AGCSC and ARSSC improve the self-expressive model by incorporating GCN mod-
ules and self-adaptive attention mechanisms, respectively. Thus, it will be attempting to employ
them into the deep self-expressive models under our PRO-DSC framework. Note that our PRO-DSC
with a vanilla self-expressive model has already demonstrated highly competitive performance. We
believe that extending PRO-DSC with current SOTA self-expressive models (such as AGCSC and
ARSSC) would be more promising.

As a general framework for self-expressive model based deep subspace clustering, our PRO-DSC is
reasonable, scalable and flexible to miscellaneous extensions.

Table B.5: Experiments on Extended Yale B, ORL and COIL-100. Note that the results of EnSC,
SSCOMP, S3COMP, DSCNet, J-DSSC and ADSDSC are cited from (Lim et al., 2020).

EYale-B ORL COIL-100
ACC NMI ACC NMI ACC NMI

EnSC 65.2 73.4 77.4 90.3 68.0 90.1
SSCOMP 78.0 84.4 66.4 83.2 31.3 58.8
S3COMP 87.4 - - - 78.9 -
DSCNet 69.1 74.6 75.8 87.8 49.3 75.2
J-DSSC (Lim et al., 2020) 92.4 95.2 78.5 90.6 79.6 94.3
A-DSSC (Lim et al., 2020) 91.7 94.7 79.0 91.0 82.4 94.6

AGCSC (Wei et al., 2023) 92.3 94.0 86.3 92.8 OOT OOT
ARSSC-LP (Wang et al., 2023a) 95.7 - 75.5 - - -
ARSSC-LSP (Wang et al., 2023a) 95.9 - 71.3 - - -
ARSSC-MCP (Wang et al., 2023a) 99.3 - 72.0 - - -
PRO-DSC 96.0± 0.3 95.7± 0.8 83.2± 2.2 92.7± 0.6 82.8± 0.9 95.0± 0.6

Gram matrices and PCA visualizations. To qualitatively validate that PRO-DSC learns represen-
tations aligning with a union-of-orthogonal-subspaces distribution, we visualize the Gram matrices
and PCA dimension reduction results of CLIP features and learned representations from PRO-DSC
for each dataset. As shown in Figure B.2, the off-block diagonal values decrease significantly, im-
plying the orthogonality between representations from different classes. The orthogonal between
subspaces can also be observed from the PCA dimension reduction results.

Singular values visualization. To show the intrinsic dimension of CLIP features and the represen-
tations of PRO-DSC, We plot the singular values of CLIP features and PRO-DSC’s representations
in Figure B.3. Specifically, the singular values of features from all the samples are illustrated on
the left and the singular values of features within each class are illustrated on the middle and right.
As can be seen, the singular values of PRO-DSC decrease much slower than that of CLIP, implying
that the features of PRO-DSC enjoy a higher intrinsic dimension and more isotropic structure in the
ambient space.

Learning curves. We plot the learning curves with respect to loss values and performance of PRO-
DSC on CIFAR-100, CIFAR-20 and ImageNet-1k in Figure B.4a, Figure B.4b and Figure B.4c,
respectively. Recall that L1 := − 1

2 log det
(
I + αZ⊤

ΘZΘ

)
, L2 := 1

2∥ZΘ − ZΘCΨ∥2F , and L3 :=
∥AΨ∥ κ . Since L1 is the only loss function used in the warm-up stage, we plot all the curves starting
from the iteration when warm-up ends.

As illustrated, the clustering performance of PRO-DSC steadily increase as the loss values gradually
decrease, which shows the effectiveness of the proposed loss functions in PRO-DSC.
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Clustering on learned representations. To quantitatively validate the effectiveness of the struc-
tured representations learned by PRO-DSC, we illustrate the clustering accuracy of representations
learned by various algorithms in Figure 6. Here, to compared with the representations learned from
SEDSC methods, we additionally conduct experiments on DSCNet (Ji et al., 2017) and report the
performance in Table B.6. To apply DSCNet on CLIP features, we substitute MLPs with two hidden
layers for the stacked convolutional encoder and decoder. As demonstrated in Sec. B.1, we report
the best clustering results after the tuning of hyper-parameters. As analyzed in (Haeffele et al., 2021)
and Section 2.1, SEDSC overly compresses the representations and yields unsatisfactory clustering
results.

Table B.6: Clustering accuracy of CLIP features and learned representations. We apply k-
means, spectral clustering, and EnSC to cluster the representations.

CIFAR-10 CIFAR-100 CIFAR-20 TinyImgNet-200
k-means SC EnSC k-means SC EnSC k-means SC EnSC k-means SC EnSC

CLIP 74.7 70.2 95.4 52.8 66.4 67.0 46.9 49.2 60.8 54.1 62.8 64.5
SEDSC 16.4 18.9 16.9 5.4 4.9 5.3 11.7 10.6 12.8 5.7 3.9 7.2
CPP 71.3 70.3 95.6 75.3 75.0 77.5 55.5 43.6 58.3 62.1 58.0 67.0
PRO-DSC 93.4 92.1 95.5 76.5 75.2 77.6 66.0 59.7 60.0 67.6 67.0 69.5

Clustering on ImageNet-1k with DINO and MAE. To test the performance of PRO-DSC based
on more pre-trained features other than CLIP (Radford et al., 2021), we further conduct experiments
on ImageNet-1k (Deng et al., 2009) pre-trained by DINO (Caron et al., 2021) and MAE (He et al.,
2022) (see Table B.7).

Table B.7: Clustering Performance of PRO-DSC based on DINO and CLIP pre-trained features on
ImageNet-1k.

Method Backbone PRO-DSC k-means
ACC NMI ACC NMI

MAE (He et al., 2022) ViT L/16 9.0 49.1 9.4 49.3
DINO (Caron et al., 2021) ViT B/16 57.3 79.3 52.2 79.2
DINO (Caron et al., 2021) ViT B/8 59.7 80.8 54.6 80.5
CLIP (Radford et al., 2021) ViT L/14 65.1 83.6 52.5 79.7

DINO and MAE are pre-trained on ImageNet-1k without leveraging external training data, thus
their performance on PRO-DSC is lower than CLIP. Similar to the observations in CPP (Chu et al.,
2024), DINO initializes PRO-DSC well, yet MAE fails, which is attributed to the fact that features
from MAE prefer fine-tuning with labels, while they are less suitable for learning inter-cluster dis-
criminative representations (Oquab et al., 2023). We further extract features from the validation
set of ImageNet-1k and visualize through t-SNE (Van der Maaten & Hinton, 2008) to validate the
hypothesis (see Figure B.5).

Out of domain datasets. We evaluate the capability to refine features by training PRO-DSC
with pre-trained CLIP features on out-of-domain datasets, namely, MNIST (Deng, 2012), Fash-
ion MNIST (Xiao et al., 2017) and Oxford flowers (Nilsback & Zisserman, 2008). As shown in
Table B.8, CPP (Chu et al., 2024) refines the CLIP features and yields better clustering performance
comparing with spectral clustering (Shi & Malik, 2000) and EnSC (You et al., 2016a). Our PRO-
DSC further demonstrates the best performance on all benchmarks, validating its effectiveness in
refining input features.

Experiments on block diagonal regularizer with different k. To test the robustness of block diag-
onal regularizer ∥A∥ κ to different k, we vary k and report the clustering performance in Table B.9.
As illustrated, k does not necessarily equal to the number of clusters. There exists an interval within
which the regularizer works effectively.

But if k is significantly smaller than the number of clusters, the effect of block diagonal regularizer
will be subtle. Therefore, the performance of PRO-DSC will be similar to that of PRO-DSC without
a regularizer (see ablation studies in Section 3). In contrary, if k is significantly larger than the
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Table B.8: Experiments on out-of-domain datasets.

Methods MNIST F-MNIST Flowers
ACC NMI ACC NMI ACC NMI

Spectral Clustering (Shi & Malik, 2000) 74.5 67.0 64.3 56.8 85.6 94.6
EnSC (You et al., 2016a) 91.0 85.3 69.1 65.1 90.0 95.9
CPP (Chu et al., 2024) 95.7 90.4 70.9 68.8 91.3 96.4
PRO-DSC 96.1 90.9 71.3 70.3 92.0 97.4

number of clusters, over-segmentation will occur to the affinity matrix, which has negative impact
on the subsequent clustering performance.

Table B.9: Clustering performance with different k in block diagonal regularizer.

k 2 5 10 15 20 25 30

CIFAR-10 ACC 97.2 97.2 97.4 96.3 96.3 95.4 94.0
NMI 93.2 93.2 93.5 92.0 92.0 90.7 88.6

k 25 50 75 100 125 150 200

CIFAR-100 ACC 74.3 76.7 78.1 78.2 78.9 76.4 74.8
NMI 80.9 82.3 83.2 82.9 83.2 82.2 81.5

t-SNE visualization of learned representations. We visualize the CLIP features and cluster repre-
sentations learned by PRO-DSC leveraging t-SNE (Van der Maaten & Hinton, 2008) in Figure B.6.
As illustrated, the learned cluster representations are significantly more compact compared with the
CLIP features, which contributes to the improved clustering performance.

Subspace visualization. We visualize the principal components of subspaces learned by PRO-DSC
in Figure B.7. For each cluster in the dataset, we apply Principal Component Analysis (PCA) to
the learned representations. We select the top eight principal components to represent the learned
subspaces. Then, for each principal component, we display eight images whose representations are
most closely aligned with that principal component.

Interestingly, we can observe specific semantic meanings from the principal components learned by
PRO-DSC. For instance, the third row of Figure B.7a consists of stealth fighters, whereas the fifth
row shows airliners. The second row of Figure B.7c consists of birds standing and resting, while the
sixth row shows flying eagles. While Figure B.7j consists of all kinds of trucks, the first row shows
fire trucks.

C LIMITATIONS AND FAILURE CASES

Limitations: In this paper, we explore an effective framework for deep subspace clustering with
theoretical justification. However, it is not clear how to develop the geometric guarantee for our
PRO-DSC framework to yield subspace-preserving (correct) solution. Moreover, it is an unsuper-
vised learning framework, we left the extension to semi-supervised setting as future work.

Failure Cases: In this paper, we evaluate our PRO-DSC framework on two scenarios of syn-
thetic data (Fig. 5), six benchmark datasets with CLIP features (Table 1), five benchmark datasets
which are for training from scratch (Table 2), three out-of-domain datasets (Table B.8), using four
different regularization terms (Table 4), using different feature extractor (Table B.7) and varing
hyper-parameters (Fig. 7 and Table B.9). During the rebuttal, to reply Reviewer JbyQ, we also con-
duct experiments on two face image datasets (Extended Yale b and ORL), text dataset (REUTERS)
and temporal dataset (UCI HAR). Currently, we did not find significant failure cases. However, as
demonstrated in Fig. 2, our PRO-DSC will fail if the sufficient condition to prevent catastrophic
collapse is not satisfied by using improper hyper-parameters γ and α.

Extensibility: As a general framework for self-expressive model based deep subspace clustering,
our PRO-DSC is scalable and flexible to miscellaneous extensions. For example, AGCSC (Wei et al.,
2023) and ARSSC (Wang et al., 2023a) improve the self-expressive model by incorporating GCN
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modules and self-adaptive attention mechanisms, respectively. Thus, it will be attempting to employ
them into the deep self-expressive models under our PRO-DSC framework. Moreover, rather than
using log det(·), there are other methods to solve the feature collapse issue, e.g., the nuclear norm.
In addition, it is also worthwhile to incorporate the supervision information from the pseudo-label,
e.g., (Huang et al., 2023; Jia et al., 2024; Li et al., 2017), for further improving the performance of
our PRO-DSC.
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(b) CIFAR-100
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(c) TinyImageNet-200
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(d) ImageNet-Dogs-15
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(e) ImageNet-1k

Figure B.2: Visualization of the union-of-orthogonal-subspaces structure of the learned repre-
sentations via Gram matrix and PCA dimension reduction on three categories. Left: |X⊤X|.
Mid-left: |Z⊤Z|. Mid-right: X(3) via PCA. Right: Z(3) via PCA.
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(a) CIFAR-100
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(b) TinyImageNet-200
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(c) ImageNet-1k

Figure B.3: Singular values of features from all samples (left) and features from each class (mid
and right). For the better clarity, we plot the singular values for the first ten classes.
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(c) ImageNet-1k

Figure B.4: The learning curves w.r.t. loss values and evaluation performance of PRO-DSC on
CIFAR-20, CIFAR-100 and ImageNet-1k dataset.
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Figure B.5: The t-SNE visualization of CLIP and MAE features on the validation set of ImageNet-
1k.
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Figure B.6: t-SNE visualization of CLIP features and PRO-DSC’s learned representations. The
experiments are conducted on CIFAR-10 and CIFAR-100 dataset.
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(a) Cluster 1 (b) Cluster 2 (c) Cluster 3

(d) Cluster 4 (e) Cluster 5 (f) Cluster 6

(g) Cluster 7 (h) Cluster 8 (i) Cluster 9

(j) Cluster 10

Figure B.7: Visualization of the principal components in CIFAR-10 dataset. For each cluster,
we display the most similar images to its principal components.
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