
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CONFORMAL REGRESSION UNDER DISTRIBUTION
SHIFT: A REINFORCEMENT LEARNING METHOD FOR
ADAPTIVE UNCERTAINTY QUANTIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Conformal prediction (CP) offers distribution-free uncertainty quantification with
formal coverage guarantees, and has been widely applied to regression tasks, includ-
ing time-series forecasting. However, in time-series settings, the exchangeability
assumption underlying CP is often violated due to temporal dependencies. To ad-
dress this, recent adaptive CP methods mitigate distributional shifts by dynamically
calibrating intervals based on recent residuals and adaptive weighting strategies.
However, these methods remain limited by their sensitivity to outliers, inability to
detect systematic prediction bias, and the decoupling of calibration from model
learning. In this work, we introduce CORE that establishes a mutual feedback
loop between reinforcement learning (RL) and conformal prediction for adaptive
uncertainty quantification. The method leverages RL’s exploration capability to
better cover uncertain or outlier regions, adapts calibration through exploration
feedback, and designs uncertainty-guided rewards, enabling dynamically improved
prediction and interval quality through policy interaction and feedback. We conduct
extensive experiments to validate its effectiveness across 8 time-series standard
datasets. The results demonstrate that our approach achieves superior accuracy and
calibration, consistently outperforming 6 state-of-the-art baselines, with an average
improvement of 1.36% in coverage rate and 5.03% in interval length.

1 INTRODUCTION

Conformal prediction (CP) is a model-agnostic framework for distribution-free uncertainty quan-
tification that provides rigorous finite-sample coverage guarantees under the assumption of data
exchangeability (De Finetti, 1937; Shafer & Vovk, 2008). In regression task, let (X,Y ) ∈ Rd × R
denote the covariate-response pair. Given exchangeable samples {(Xi, Yi)}ni=1 and a target miscover-
age level α ∈ (0, 1), conformal regression constructs a prediction interval Ĉ(Xn+1) ∈ R that attains
marginal coverage at least 1−α: Pr(Yn+1 ∈ Ĉ(Xn+1)) ≥ 1−α (Vovk et al., 2005; Lei et al., 2018).
However, in sequential time-series forecasting task, temporal dependencies break the exchangeability
assumption, since the joint distribution of the process is not invariant under reordering (Gibbs &
Candes, 2021). It makes the reliability of classical conformal regression methods be suboptimal (Lei
et al., 2018; Romano et al., 2019; Xu & Xie, 2021).

Recent advances have introduced adaptive or online CP methods (Gibbs & Candes, 2021; Zaffran
et al., 2022), which rely on approximate independence assumptions and update intervals through
sliding or weighted calibration, often with dynamic adjustments of conformity scores, thereby
enabling responsive uncertainty quantification under distribution shifts (Xu & Xie, 2021; Gibbs &
Candes, 2021). However, despite the flexibility of adaptive CP methods, they face some fundamental
limitations in dynamic environments, as depicted in Figure 1(a). Firstly, they are sensitive to outliers
and might fail to capture prediction bias under evolving patterns, leading to inefficient or distorted
coverage (Cheung et al., 2024). Secondly, the post-hoc calibration adjustment (Huang et al., 2024)
operates independently from model training, limiting feedback that could correct bias or improve
uncertainty estimation, and thus reducing robustness under shifts. These challenges motivate a new
approach that robustly provides accurate predictions, and integrates calibration with model training
to jointly improve coverage and uncertainty estimation.
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Figure 1: Challenges of adaptive CP methods and our proposed CORE architecture.

To this end, we propose CORE, standing for COnformal regression with REinforcement learning
(RL), which addresses conformal regression under distribution shifts by integrating RL and CP into a
dynamic feedback loop for adaptive uncertainty quantification. Instead of treating calibration as a
post-hoc correction, our proposed method, as shown in Figure 1 (b), establishes a dynamic feedback
loop between the agent, environment, and calibration mechanism, adapting intervals to historical
predictions. Concretely, CORE formulates conformal time-series prediction as a sequential decision-
making problem, where the agent adopts a quantile-guided actor–critic framework to generate
prediction intervals. An adaptation-aware calibration module then dynamically updates conformity
scores and confidence levels using a sliding calibration buffer, ensuring validity under temporal
drift. Finally, uncertainty-guided rewards couple prediction accuracy, coverage validity, and interval
efficiency into the RL objective, enabling the policy to improve both prediction and calibration
through interaction.

We conduct empirical experiments along 3 complementary tasks, as summarized in Table 1. We
evaluate CORE on 8 standard time-series datasets for both uncertainty quantification and point
prediction, aiming to assess coverage validity, interval efficiency and prediction accuracy. We also
extend CORE to an anomaly detection variant CORE-AD to assess detection performance. Beyond
empirical results, we provide theoretical analysis establishing a coverage guarantee for CORE. The
coverage guarantee is supt≤T

∣∣∣Pr{Yt ∈ Ĉ
(w,t)
1−α }− (1−α)

∣∣∣ = O
(
(logwc/wc)

1/3 + T−p/3 + γ1/2
)
,

where T is the training set, wc is the calibration window size, and p ∈ [1, 2], γ ∈ [0, 1] are constants.
This theoretical result ensures CORE maintains validity at the confidence level 1−α even under weak
dependence and distributional drift.

The main contributions of this work are summarized as follows:
• We propose a mutual feedback loop between RL and CP, enabling the agent to learn uncertainty-

aware policies while simultaneously improving calibration through interaction.
• Our empirical results show that CORE achieves strong performance across all tasks, with an

average improvement of 1.36% in coverage rate and 5.03% in interval length.
• Our theoretical analysis establishes both validity and efficiency of interval lengths in dynamic

environments.

2 PRELIMINARY

2.1 CONFORMAL REGRESSION

Let (X,Y ) ∈ Rd × R with Y = f(X) + ϵ, where ϵ is independent of X . Here f denotes a generic
predictive model, and conformal prediction is model-agnostic, independent of the specific form of f .
Given samples (xi, yi)

n
i=1, a conformity score is introduced to measure how well a candidate pair

(x, y) aligns with the predictive model. A common choice in regression is the absolute residual, i.e.,
S(x, y) = |f̂(x) − y|. Regardless of the specific form of the conformity score, the key issue is to
determine how small the score must be for f̃(x) to be accepted as a reasonable prediction (Gibbs &
Candes, 2021). For a specified index set Ical, a held-out calibration set Dcal = {(xi, yi)}i∈Ical disjoint
from the data is used to fit the regression model (Romano et al., 2019), establishes empirical quantile
thresholds on conformity scores for acceptance. Under exchangeability, conformal regression then
constructs a valid (1−α) coverage interval via the calibration set, and computes the predicted interval
according to the quantiles:

Ĉ1−α(x) := f̂(x)± (1− α) quantile of {S(xi, yi)}i∈Ical . (1)
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However, in non-stationary settings such as time-series forecasting, the exchangeability assumption
fails. A common remedy is a sliding calibration window using recent residuals for threshold
estimation, resembling local exchangeability (Campbell et al., 2019). While theoretical coverage
guarantees are more difficult to establish, these adaptive methods (Xu & Xie, 2021; Gibbs & Candes,
2021; Xu & Xie, 2023b) have been shown to maintain approximate validity under mild assumptions.
Formally, at each time t, given a stream of observations {(xi, yi)}ti=t−w+1 with xt ∈ Rd×w, we
construct a sliding calibration window of size wc (≤ t), and estimates conformity threshold q̂

(wc,t)
1−α

from the calibration window and form the interval Ĉ(wc,t)
1−α .

3 METHOD

Uncertainty quantification is essential for developing robust and trustworthy machine learning systems.
CP offers rigorous finite-sample coverage guarantees, but struggles in non-stationary settings due to
static calibration (Gibbs & Candes, 2021). RL enables dynamic exploration and online learning, yet
lacks uncertainty estimation and may exhibit overconfident or unstable behavior (Fox et al., 2015). In
this work, we propose CORE, a unified framework that integrates CP and RL via feedback-driven
calibration to ensure validity and enable uncertainty-aware learning in dynamic environments.

We begin by formulating problem in the standard RL framework, casting conformal regression as
a sequential decision-making process. Building on this formulation, we organize the framework
around three functional aspects: conformal exploration, where the agent samples quantile-distributed
actions to guide exploration under uncertainty; adaptation-aware calibration, which dynamically
adjusts conformity scores based on exploration results; and uncertainty-guided rewards, which jointly
regulate both exploration and calibration to enhance predictive reliability.

3.1 RL FORMULATION

We cast adaptive conformal regression as a reinforcement learning (RL) problem, where the agent
learns to construct valid and efficient prediction intervals through interaction with the data-generating
environment. Formally, we model this process as a Markov Decision Process (MDP), represented
by a 5-tuple (S,A, T ,R, β). State S: at time t, the state st encodes a temporal feature window
xt ∈ Rd×w, where w is the window size. Action A: the agent outputs quantile-based predictions
at, which specify a prediction interval Ĉ(wc,t)

1−αt
⊆ R for the next response yt. Reward R: feedback is

provided through conformity scores computed from recent samples. The reward balances calibration
validity (whether yt ∈ Ĉ

(wc,t)
1−α ) with efficiency (interval width). Transition T : the next state st+1

naturally arises from the temporal evolution of the sequence, reflecting potential distribution shifts in
the data. The agent thus learns a policy πθ : S → A that maximizes the expected discounted return
Rt = E

[∑∞
k=0 β

krt+k

]
, where calibration feedback is integrated into the reward signal. We adopt

Proximal Policy Optimization (PPO) (Schulman et al., 2017) to enable stable and efficient learning in
the continuous action space.

3.2 CONFORMAL EXPLORATION

We consider the usual setting of a Markov Decision Process (MDP), in which an agent interacts with
the environment E . At each time step t, the observation st is defined as a temporal window of the past
features, i.e., st = xt−w+1:t ∈ Rd×w, where w is the window size and d is the feature dimension.

3.2.1 QUANTILE-GUIDED ACTOR-CRITIC

In regression, predicting yt can be viewed as selecting an action in a continuous space. Instead
of a point estimate, we model the predictive process as a distributional policy πθ, which samples
quantile-based predictions at = {a(q)t }q∈Q where Q := {q(1), . . . , q(K)} denotes K fixed quantiles.
For example, with Q = {0.05, 0.5, 0.95}, the actor samples three actions of 5th percentile, median,
and 95th percentile, where quantile regression captures local heteroscedasticity and yields adaptive
prediction intervals that reflect varying uncertainty (Takeuchi et al., 2006; Romano et al., 2019).

The actor-critic architecture strengthens this formulation: the actor generates quantile predictions to
represent uncertainty, while the critic provides value-based feedback to stabilize training and improve

3
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efficiency under noisy targets (Haarnoja et al., 2018). Thus, the task becomes a sequential decision
process where the agent refines predictions through exploration and policy updates.

3.2.2 TRAINING OBJECTIVES

To enable uncertainty-aware prediction, outputs must not only be diverse but also reflect the underlying
distribution structure (Meinshausen & Ridgeway, 2006). We therefore adopt a dual-objective scheme
enforcing both quantile correctness and pointwise accuracy.

Quantile Regression Loss. Each output a(q)t is optimized to approximate the true conditional quantile
at level q by minimizing the tilted (pinball) loss:

Lquantile =
∑
q∈Q

ρq

(
yt − a

(q)
t

)
with ρq(u) = u (q − I[u < 0]) , (2)

This asymmetric loss penalizes over-estimation and under-estimation differently, guiding the model
to align each quantile prediction with its statistical meaning. As a result, the agent learns to represent
the spread and skewness of the conditional outcome distribution.

Behavior Cloning Loss. Quantile regression enforces distributional consistency, but it does not
explicitly ensure that the central prediction aligns with the ground-truth value. We therefore introduce
a behavior cloning loss between the median prediction a

(0.5)
t and the observed target yt, anchoring

the distribution to reduce variance and accelerate early convergence.

3.3 ADAPTIVE-AWARE CALIBRATION

We adopt a trajectory-level calibration strategy that adaptively adjusts the conformal confidence to
handle non-stationary dynamics. Unlike a fixed confidence level case 1− α„ αt is updated online
based on recent calibration error, maintaining both validity and tightness of prediction intervals.

At each timestep t, we compute a conformity score S(xt, yt) = |f̂(a(0.5))− yt|, and append it to a
sliding window buffer St of size wc. To capture temporal dynamics, we use the trajectory of median
actions Tt−wc+1:t := {aτ}tτ=t−wc+1 together with their conformity scores, estimate the (1 − αt)

quantile q̂
(wc,t)
1−αt

, and form prediction intervals. At each timestep t, the actor outputs quantile-based

actions, with the smallest and largest denoted by a
(low)
t := a

(q(1))
t and a

(up)
t := a

(q(K))
t , respectively.

The prediction interval is therefore given by:

Ĉ
(wc,t)
1−αt

(xt) = [a
(low)
t − q̂

(wc,t)
1−αt

, a
(up)
t + q̂

(wc,t)
1−αt

]. (3)

Let the calibration index set be It, so that St = {S(xi, yi) : i ∈ It}. Using the sliding window
calibration set, we then estimate the empirical miscoverage and update the confidence level via
exponential smoothing under the law:

êt =
1

|It|
∑
i∈It

1
{
yi /∈ Ĉ

(wc,i)
1−αt

}
, αt+1 = αt + γ(α− êt), (4)

where γ ∈ R+ controls the update rate and α is the target miscoverage. Calibrating over recent
trajectories ensures that validity reflects cumulative performance rather than isolated steps, providing
trajectory-aware uncertainty quantification that adapts to temporal patterns and avoids both under-
confident and overly conservative intervals.

3.4 UNCERTAINTY REWARDS

To guide the learning of an uncertainty-aware policy, we design a composite reward that encourages
predictive accuracy, calibrated coverage, and the construction of compact and informative prediction
intervals. The overall reward at time t is defined as rt = λacc · racc + λlen · rlen + λcov · rcov, where
each term reflects a different aspect of performance under uncertainty.

Accuracy-driven Signal. To encourage accurate point predictions, we introduce a reward signal
based on the absolute deviation between the predicted median and the true target:

racc = σ
(
1− residual(a(0.5)t , yt)

)
. (5)
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Algorithm 1: CORE, Adaptive Conformal Regression via Reinforcement Learning
Input: Data {(xt, yt)}Tt=1; PPO policy πθ , critic Vψ , learning rate η; Significance level α, quantile levels

Q = {q(1), . . . , q(K)}; Conformity score function S(·, ·), observation window size w, calibration
window size wc, adjustment rate γ

Output: Calibrated policy πθ∗ with uncertainty-aware policy; Prediction intervals Ĉ(wc,t)
1−αt

(xt)

1 Initialize conformity score buffer S ← ∅, prediction interval buffer C ← ∅, ground-truth buffer Y ← ∅;
2 for each training iteration do
3 Initialize environment E and receive initial window x1:w;
4 for t = w to T do
5 Observe state st = xt−w+1:t;
6 Draw actions {a(q)

t }q∈Q ∼ πθ(st) and let āt = a
(0.5)
t ;

7 Update S ← S ∪ {S(a0.5
t , yt)};

8 if |S| > wc then Remove oldest score from S to maintain |S| = wc;
9 Update buffers C ← C ∪ {a0.5

t }, Y ← Y ∪ {yt}, then compute error rate êt using (C,Y);
10 αt+1 ← αt + γ(α− êt); // adaptive confidence level

11 if |S| < wc then Set q̂(wc,t)
1−αt

← 0;
12 else q̂

(wc,t)
1−αt

← Quantile1−αt
(S);

13 Ĉ
(wc,t)
1−αt

(xt)← [a
(low)
t − q̂

(wc,t)
1−αt

, a
(up)
t + q̂

(wc,t)
1−αt

];
14 Compute reward rt = λacc · racc + λlen · rlen + λcov · rcov; // refer to Eq.5,6 and 7

15 Observe yt and next state st+1;
16 Store transition (st, āt, rt, st+1) in PPO buffer T ;

17 Update Critic Vψ with trajectory T using generalized advantage estimation (GAE) loss;
18 Update Actor policy πθ with trajectory T using quantile loss Lquantile and behavior cloning loss LBC;

The ℓ1 residual provides robustness to outliers and naturally soft-clips rewards by bounding gradient
growth compared to quadratic loss (Haarnoja et al., 2018) To further stabilize training, we apply a
σ(·) activation to clip extreme values and maintain a consistent reward scale. The reward design is
task-adaptive: residuals are used for regression, while cross-entropy or margin-based terms apply for
classification. Specifically, for classification task like anomaly detection, with label yt ∈ {0, 1} and
predicted probability pt, we define racc = 1− ℓBCE(yt, pt) = 1−

(
yt log pt + (1− yt) log(1− yt)

)
.

Compactness-aware Interval Penalty. To balance coverage rate and interval length, we note that
overly wide bands diminish the practical value of uncertainty estimates (Romano et al., 2019). We
therefore design the following penalty:

rlen = 1−

∣∣∣Ĉ(wc,t)
1−αt

(xt)
∣∣∣

ỹ + δ
with ỹ = Median({yi}ti=t−wc+1), (6)

where the numerator is the interval length and the denominator normalizes it by the recent target
magnitude (using the local median as a robust reference); and a small δ avoids division-by-zero. This
discourages intervals excessively wide relative to local scale, while αt controls under-coverage.

Coverage-consistency Reward. To ensure that predictions remain consistent with the calibrated
interval, we design a reward encouraging the true response and predicted median to be contained and
lie inside the interval, respectively:

rcov =


1 if yt ∈ Ĉ ∧ āt ∈ Ĉ

−β if yt /∈ Ĉ ∧ āt ∈ Ĉ or yt ∈ Ĉ ∧ āt /∈ Ĉ

−1 if yt /∈ Ĉ ∧ āt /∈ Ĉ

, (7)

where Ĉ is the surrogate for Ĉwc,t
1−α(xt), and β ∈ [0, 1], applying graded penalties depending on

whether the true value and/or the predicted median fall outside the interval. The asymmetric factor
β reflects our preference for penalizing under-coverage more heavily, while being more tolerant to
over-coverage. Notably, in practice, we fix β = 1, and λacc = λlen = λcov = 1.0 across all datasets,
without any dataset-specific tuning. This choice follows the heuristic practice of shaping rewards
with task knowledge rather than extensive tuning (Cheng et al., 2021; Gupta et al., 2022). Further
implementation details are provided in Appendix B.4.
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4 THEORETICAL ANALYSIS

4.1 DATA ASSUMPTIONS

The theoretical results rely on several mild assumptions on the data-generating process, which ensure
that the learning dynamics remain well-behaved over time.

Weak dependence. The sequence (Xt, Yt)t≥1 is allowed to be dependent across time.
To control this dependence, we adopt a β-mixing assumption as in (Xu & Xie, 2023a):
β(k) = supt≥1 supA∈F1:t

supB∈Ft+k:∞

∣∣Pr(A ∩ B) − Pr(A) Pr(B)
∣∣. The summable-β condition∑∞

k=1 β(k) < ∞ ensures that temporal correlations decay sufficiently fast, yielding concentra-
tion bounds comparable to the i.i.d. case while accommodating the dependence structure of RL
trajectories.

Local regularity of residual CDF. For each t, let Ft(z) = Pr(εt ≤ z) denote the conditional CDF
of the residuals. We assume that Ft is locally Lipschitz, i.e., there exists a constant L > 0 such that
for all u, v ∈ R: |Ft(u)− Ft(v)| ≤ L|u− v|.
Bounded drift. We allow the regression function ft(x) = E[Yt | Xt = x] to evolve over time, but
require its temporal change to be uniformly bounded: ξt := supx∈Rd |ft+1(x)− ft(x)|,

∑
t ξt <

∞. We denote by ξs:t :=
∑t

k=s ξk the cumulative drift over the interval [s, t].

4.2 MAIN RESULTS

We establish concentration bounds for the empirical residual distribution, link policy optimization to
prediction error decay, and ensure stability via adaptive calibration. Together, these yield a uniform
validity and efficiency theorem. A complete proof is provided in Appendix D.

Lemma 1 (Rio-type DKW inequality). Let F̃ denote the empirical CDF of the true residuals within
[t − wc + 1, t] over a calibration window of size wc, and let F denote the true CDF. Under the
summable-β weak dependence condition,

sup
x

∣∣F̃ (x)− F (x)
∣∣ ≤ C1(logwc/wc)

1/3.

Lemma 2 (Quantile-error transfer). Let δ2T = 1
T

∑T
t=1(ε̂t − εt)

2. If Ft is L-Lipschitz, then

sup
x

∣∣F̂ (x)− F̃ (x)
∣∣ ≤ C2δ

2/3
T + 2 sup

x

∣∣F̃ (x)− F (x)
∣∣,

where C2 := L+ 1, with the additive constant serving as a technical slack.

To obtain sharper guarantees, it remains to show that these quantities diminish under the policy
optimization dynamics of PPO.
Proposition 1 (Prediction-error decay under PPO). Suppose the policy is updated by PPO with step
sizes satisfying

∑
k ηk = ∞ and

∑
k η

2
k < ∞, then the median prediction error decays as

δ2T :=
1

T

T∑
t=1

E
[
(Yt − ft(Xt))

2
]
= Op(T

−p/2), for some p > 0.

In addition, the adaptive update of the miscoverage level stabilizes empirical coverage.

Proposition 2 (Adaptive α stability). Let αt+1 = αt + γ(α − ϵ̂t), where ϵ̂t = 1{Yt /∈ Ĉt}. Then
the gap between the running level αt and the true miscoverage ϵt satisfies

|αt − ϵt| = O(γ1/2).

Finally, putting these results together yields the main guarantee.
Theorem 1 (Master Theorem: validity and efficiency). Combining Lemmas 1 and 2, Proposition 1,
and 2, the CORE intervals satisfy:

(Validity) For any horizon T ,
supt≤T

∣∣∣Pr{Yt ∈ Ĉ
(w,t)
1−α } − (1− α)

∣∣∣ = O
(
(logwc/wc)

1/3 + T−p/3 + γ1/2
)
.

(Efficiency) Let C∗
t denote the oracle shortest valid interval. Then∑T

t=1

(
|Ĉt| − |C∗

t |
)
= Õ(T 1−p/3).

6
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4.3 DISCUSSION

(1) Adaptive calibration stabilizes miscoverage. Proposition 2 shows that adaptively updating αt

bounds its deviation from true miscoverage et by O(γ1/2), ensuring calibration error remains small
and responsive to violations without accumulating long-term bias.

(2) Prediction error drives coverage accuracy. Proposition 1 shows that under PPO training with
diminishing step sizes, the prediction error δ2T vanishes at a polynomial rate. Lemma 2 links this to
quantile error, directly tightening coverage bounds.

(3) The coverage theorem guarantees validity and efficiency. The Master Theorem 1 shows that
CORE achieves near-nominal coverage with intervals approaching the shortest valid level at rate
Õ(T 1−p/3), reflecting adaptive self-correction under decreasing prediction error and mild drift.

5 EXPERIMENT

In this section, we evaluate the predictive performance, reliability, and adaptability of CORE. Specifi-
cally, we have following experiments: We evaluate CORE on standard time-series forecasting datasets
to show that it produces valid uncertainty intervals and accurate predictions under distribution shifts.
Results on the mean performance are reported in Section 5.2, while the complete results including
both mean and variance are provided in Appendix C.1. Section 5.3analyzes hyperparameter sensitiv-
ity with respect to the adjustment rate γ, calibration window size wc, and quantile set Q, highlighting
trade-offs between validity and efficiency. Finally, Section 5.4 extends CORE to an anomaly detection
variant CORE-AD, showing superior AUC and generalization beyond regression.

5.1 EXPERIMENTAL SETUP

Table 1: Experimental setup: tasks, datasets, metrics, and baselines. Detailed configurations of
hardware and hyperparameters are in Appendix B.4.

Task Datasets Metrics Baselines

Uncertainty
Quantification

Weather (Zhou et al., 2021)
Traffic (Lai et al., 2017)
Electricity (Lai et al., 2017)
Illness (Lai et al., 2017)
ETT (Zhou et al., 2021)

Coverage Rate (CVG)
Interval Length (LEN)

SPCI (Xu & Xie, 2023b)
ACI (Gibbs & Candes, 2021)
EnbPI (Xu & Xie, 2021)

Point Prediction Same as above Mean Squared Error (MSE)
Mean Absolute Error (MAE)

TimeXer (Wang et al., 2024)
iTransformer (Liu et al., 2023)
DLinear (Zeng et al., 2023)

Anomaly Detection
SMD (Xu et al., 2022)
SMAP (Hundman et al., 2018)
SWaT (Mathur & Tippenhauer, 2016)

Receiver Operating Characteristic (ROC)
Area Under the Curve (AUC)

LSTM (Hundman et al., 2018)
IForest (Liu et al., 2008)
DeepSVDD (Ruff et al., 2018)

5.2 INTERVAL VALIDITY AND PREDICTION ACCURACY

We study eight time-series datasets: Table 2 shows mean results on four representative datasets, while
the appendix (Tables B.2, B.3) reports full results with mean and standard deviation across all eight.
These confirm CORE’s consistently strong performance.

For uncertainty quantification, CORE consistently outperforms conformal baselines across datasets.
As shown in Figure 2 (a), it achieves the highest coverage with narrow prediction intervals. Compared
to the best-performing baselines, it reduces LEN by an average of 5.03% without compromising
coverage, indicating tighter yet reliable prediction intervals. Figure 2 (b) shows that CORE effectively
capture temporal shifts and extreme values by selectively adjusting interval width, closely tracking
the ground truth while avoiding the uniform widening seen in EnbPI and others.

For point prediction accuracy, CORE also ranks among the top models in terms of predictive accuracy,
attaining the lower MSE and competitive MAE performance. Its advantage becomes more pronounced
in long-horizon settings (T = 336, 720), where it achieves an average improvement of 3.16% in MSE
and 5.16% in MAE, compared to the best-performing baseline method. These results confirm that
CORE delivers both precise forecasts and calibrated uncertainty under a unified evaluation framework,
and remains robust under increased error accumulation and temporal drift.
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Figure 2: Prediction Interval Comparison Between CORE and Baselines.

5.3 HYPERPARAMETER SENSITIVITY

To evaluate the robustness of CORE under non-stationary conditions, we conduct a hyperparameter
sensitivity study focusing on three key components: the adjustment rate γ for confidence adaptation,
the calibration window size wc, and the quantile set Q, whose granularity is controlled by varying
the number of quantile levels used in prediction. These parameters govern the dynamic calibration
process and directly shape the trade-off between predictive validity and efficiency.

In the experiments, we vary each hyperparameter individually while keeping the others fixed, and
evaluate performance using CVG and LEN. As shown in Figure 3, increasing the adjustment rate
γ accelerates correction of under-coverage but widens intervals. For the calibration window size
wc, small windows adapt quickly but produce noisy estimates, leading to unstable coverage. Larger
windows stabilize calibration and reduce LEN, but overly large values reduce adaptability to regime
shifts. Empirically, wc between 40 and 60 achieves stable coverage on Electricity dataset. Expanding
the quantile set Q improves calibration initially by capturing more uncertainty structure, but excessive
granularity can introduce redundancy and inflate intervals. We observe that varying the number
of quantiles does not cause drastic performance changes, suggesting robustness of CORE. Overall,
moderate values for all three hyperparameters tend to yield the best balance between validity and
efficiency across diverse settings.

Table 2: Performance comparison for uncertainty quantification and prediction accuracy.
Models CORE SPCI ACI EnbPI CORE TimeXer iTransformer DLinear
Metric LEN CVG LEN CVG LEN CVG LEN CVG MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 961 3.6352 0.934 4.0353 0.899 4.042 0.900 4.059 0.904 0.178 0.199 0.172 0.228 0.194 0.241 0.196 0.248

192 4.065 0.922 4.225 0.899 4.278 0.899 4.238 0.909 0.225 0.241 0.231 0.253 0.248 0.286 0.241 0.293
336 4.744 0.920 5.221 0.901 5.437 0.901 6.842 0.884 0.272 0.261 0.277 0.316 0.292 0.346 0.278 0.325
720 5.721 0.929 7.056 0.900 7.072 0.901 8.133 0.870 0.341 0.304 0.324 0.352 0.332 0.369 0.342 0.376

Tr
af

fic

96 2.868 0.919 3.159 0.895 3.182 0.897 3.184 0.899 0.410 0.507 0.412 0.456 0.402 0.452 0.421 0.478
192 2.991 0.920 3.147 0.899 3.170 0.899 3.255 0.908 0.414 0.536 0.435 0.494 0.427 0.495 0.434 0.494
336 3.088 0.925 3.170 0.903 3.140 0.902 3.194 0.898 0.418 0.512 0.458 0.523 0.442 0.517 0.458 0.512
720 3.037 0.919 3.152 0.899 3.159 0.898 3.621 0.870 0.427 0.523 0.482 0.554 0.453 0.525 0.478 0.539

E
le

ct
ri

ci
ty 96 3.380 0.928 3.545 0.897 3.649 0.897 4.366 0.898 0.135 0.250 0.136 0.251 0.144 0.253 0.151 0.273

192 3.457 0.916 3.558 0.904 3.768 0.903 4.534 0.895 0.153 0.261 0.160 0.263 0.167 0.267 0.159 0.275
336 3.901 0.928 3.952 0.904 3.953 0.905 4.725 0.886 0.173 0.280 0.182 0.278 0.193 0.282 0.172 0.293
720 4.466 0.930 4.547 0.896 4.555 0.895 5.167 0.882 0.189 0.301 0.203 0.301 0.211 0.326 0.218 0.319

Il
ln

es
s 24 4.003 0.908 4.140 0.887 4.364 0.908 4.738 0.908 1.749 1.160 1.482 1.034 1.757 1.123 2.231 1.383

36 3.476 0.903 4.118 0.884 4.460 0.910 4.681 0.908 1.512 1.070 1.326 1.184 1.723 1.116 2.243 1.321
48 4.077 0.906 4.335 0.888 4.760 0.907 4.981 0.905 1.674 1.138 1.642 1.258 1.802 1.197 2.318 1.382
60 3.916 0.901 4.409 0.886 4.805 0.891 5.658 0.893 1.585 1.108 1.569 1.245 1.852 1.342 2.412 1.435

E
T

T
h1

96 4.837 0.925 4.868 0.899 4.880 0.899 5.481 0.901 0.386 0.438 0.412 0.419 0.398 0.423 0.392 0.413
192 4.577 0.916 4.970 0.905 5.076 0.905 6.531 0.895 0.413 0.431 0.418 0.421 0.417 0.428 0.428 0.437
336 5.083 0.913 5.294 0.904 5.307 0.905 7.224 0.909 0.414 0.465 0.429 0.438 0.433 0.445 0.437 0.469
720 5.288 0.910 5.731 0.899 5.851 0.900 7.371 0.879 0.445 0.457 0.437 0.441 0.447 0.472 0.454 0.482

E
T

T
h2

96 4.509 0.915 5.104 0.898 5.113 0.899 5.294 0.900 0.291 0.303 0.294 0.295 0.316 0.356 0.437 0.455
192 4.860 0.923 5.112 0.896 5.126 0.896 5.366 0.901 0.296 0.323 0.323 0.338 0.362 0.382 0.484 0.492
336 5.229 0.917 5.356 0.901 5.460 0.905 4.741 0.876 0.298 0.347 0.374 0.384 0.412 0.398 0.553 0.528
720 5.352 0.914 5.676 0.902 5.729 0.901 9.112 0.892 0.391 0.390 0.408 0.442 0.463 0.437 0.592 0.537

E
T

T
m

1 96 4.425 0.901 4.697 0.899 4.700 0.899 6.437 0.901 0.327 0.332 0.328 0.351 0.336 0.357 0.343 0.368
192 4.368 0.906 4.685 0.895 4.711 0.895 7.040 0.899 0.339 0.348 0.346 0.348 0.361 0.397 0.351 0.384
336 5.061 0.909 4.716 0.899 4.728 0.900 8.183 0.890 0.361 0.343 0.377 0.392 0.403 0.435 0.382 0.407
720 5.131 0.911 4.812 0.901 4.815 0.901 8.402 0.892 0.411 0.394 0.439 0.453 0.450 0.466 0.442 0.451

E
T

T
m

2 96 4.203 0.898 4.437 0.896 4.445 0.895 5.265 0.903 0.228 0.293 0.234 0.283 0.253 0.302 0.275 0.328
192 4.460 0.898 4.459 0.903 4.466 0.901 6.100 0.892 0.265 0.304 0.268 0.315 0.275 0.313 0.308 0.358
336 4.598 0.906 4.653 0.903 4.665 0.902 6.937 0.902 0.287 0.343 0.297 0.342 0.311 0.349 0.314 0.372
720 4.947 0.917 5.149 0.898 5.251 0.901 7.236 0.875 0.333 0.372 0.331 0.376 0.334 0.374 0.356 0.394

1 Prediction lengths are T ∈ {24, 36, 48, 60} for Illness and T ∈ {96, 192, 336, 720} for others.
2 Bold indicates CORE outperforms all baselines.
3 Underlined marks the best baseline.
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Figure 3: Hyperparameter sensitivity analysis for our proposed method on Electricity dataset

5.4 EXTENSION TO ANOMALY DETECTION

To evaluate whether CORE can be generalized to other conformal inference tasks beyond regression,
we adopt the ECAD (Xu & Xie, 2021) setup and introduce a variant, CORE-AD, which wraps around
the original framework to enable unsupervised anomaly detection. Specifically, it leverages calibrated
prediction intervals as decision signals by first computing anomaly scores in a sliding calibration
window, where at each τ , sτ = max{a(low)

τ −yτ , yτ −a
(up)
τ , 0}. Then calculate p-value for the current

test point as pt = 1
wc

∑wc

i=1 1(st−i ≥ st), which quantifies how atypical the current observation is
compared to the calibration set. A point is flagged as anomalous if pt ≤ α, ensuring control of the
false positive rate. We compare CORE-AD against a set of unsupervised and supervised anomaly
detectors (Han et al., 2022) on standard time-series anomaly detection datasets (SMD (Xu et al., 2022),
SMAP (Hundman et al., 2018), and SWaT (Mathur & Tippenhauer, 2016)). In this task, we evaluate
the model’s ability to distinguish abnormal from normal time points using ROC curves and the area
under the curve (AUC) as the performance metric. We compare the proposed variant CORE-AD
against representative unsupervised and semi-supervised baselines, including LSTM (Hundman et al.,
2018), IForest (Liu et al., 2008), and DeepSVDD (Ruff et al., 2018).

We visualize the ROC curves of four methods across three datasets to assess anomaly detection
performance. As shown in Figure 4, CORE-AD exhibits clear separation from competing methods
across nearly the entire ROC curve, indicating stronger robustness under different false-positive
rate thresholds. These improvements highlight the advantage of leveraging calibrated prediction
intervals as decision signals, providing principled uncertainty quantification while preserving high
detection accuracy. Overall, the results confirm that CORE-AD is not only effective for anomaly
detection but also demonstrates its ability to generalize beyond standard regression tasks as a reliable,
uncertainty-aware alternative to traditional detectors.

Figure 4: ROC curves (horizontal-axis: false-positive rate; vertical-axis: true-positive rate)

6 LIMITATIONS AND CONCLUSION

Our proposed method CORE introduces a unified framework that integrates reinforcement learning
with conformal prediction through a mutual feedback loop, enabling effective adaptation to distri-
bution shifts. Extensive empirical experiments across eight time-series datasets and state-of-the-art
baselines demonstrate CORE achieves superior calibrated coverage, interval efficiency, and predictive
accuracy. In addition, our theoretical analysis establishes formal guarantees of validity and efficiency
under distribution shifts. Despite these advantages, CORE also faces several limitations that warrant
further study: (i) Cold-Start Instability, where early calibration on limited data leads to unstable
rewards and unreliable uncertainty estimates; and (ii) Application Sensitivity, since practical de-
ployment may depend critically on calibration reliability, requiring additional safeguards for system
stability. Addressing these challenges represents an important direction for future research.
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REPRODUCIBILITY STATEMENT

We have taken concrete steps to ensure the reproducibility of our work. The complete source code
is provided in the supplementary materials. Detailed implementation settings, including model
architectures, hyperparameters, and training procedures, are documented in Appendix B.4, while the
full proofs of our theoretical results are presented in Appendix D. Together, these materials allow
independent researchers to replicate both our empirical results and theoretical analysis.

THE USE OF LLM

The authors confirm that large language models (LLMs), such as ChatGPT, were only used during
the writing stage of this paper for editorial assistance, including grammar correction, spelling checks,
and refinement of phrasing. No LLMs were employed in the design of the methodology, execution of
experiments, analysis of data, or interpretation of results. All scientific and technical content was
solely conceived and produced by the authors.
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Appendices
A RELATED WORK

A.1 CONFORMAL PREDICTION

Conformal Prediction (CP) is a distribution-free framework for constructing prediction intervals
with formal coverage guarantees under minimal assumptions Romano et al. (2019); Shafer & Vovk
(2008); Xu & Xie (2021). By leveraging a nonconformity score function and calibration on held-out
data Romano et al. (2019), CP methods can produce reliable uncertainty estimates. Over time, CP
has evolved from inductive variants to stratified methods like Mondrian CP, and further to adaptive
extensions for dynamic, non-stationary environments.

Inductive CP (ICP) forms prediction intervals by splitting data into training and calibration sets Vovk
et al. (2005); Lei et al. (2018). Extensions including importance-weighted calibration Tibshirani
et al. (2019); Cauchois et al. (2020), ensemble resampling Gupta et al. (2021); Kim et al. (2020),
and quantile-based regression Romano et al. (2019); Triebe et al. (2021) improve its robustness.
Mondrian CP (MCP) Boström et al. (2021) further improves calibration by conditioning on predefined
categories (e.g., class labels or tree leaves), providing group-conditional guarantees Boström et al.
(2021); Toccaceli & Gammerman (2019). However, both ICP and MCP rely on fixed calibration sets
and assume data exchangeability Xu & Xie (2023b), making them prone to miscalibration and poor
adaptability in dynamic scenarios.

Unlike ICP or MCP, online and adaptive CP methods dynamically update prediction intervals using
recent residuals to adapt Xu & Xie (2021); Gibbs & Candes (2021). Techniques such as sliding-
window residual regression Xu & Xie (2023b), importance weighting Barber et al. (2022), and
adaptive significance tuning Gibbs & Candes (2021); Zaffran et al. (2022) help enhance calibration.
Among them, EnbPI Xu & Xie (2021) and SPCI Xu & Xie (2023b) maintain validity and efficient
intervals under temporal dependence and distribution shifts commonly observed in time-series
scenarios. Our work continues focusing on adaptive CP with the goal of providing valid coverage
guarantees under non-exchangeable data.

A.2 CONFORMAL REINFORCEMENT LEARNING

Reinforcement learning (RL) optimizes decision-making through interaction with environments and
is widely used to learn policies under uncertainty and delayed feedback. Its ability to model dynamics
and explore makes it well-suited for adaptive systems in non-stationary settings.

Despite its strengths, RL often suffers from training instability, policy divergence, and sensitivity to
distributional shifts. To mitigate these limitations, recent work has explored integrating CP into RL.
For instance, PlanCP Sun et al. (2023) employs CP for calibrated offline planning, while SoNIC Yao
et al. (2024) and Egocentric CP Shin et al. (2025) improve inference and safety in navigation. In
multi-agent and safety-critical scenarios, CP-based confidence sets and safety filters Gupta et al.
(2023); Strawn et al. (2023) support risk-aware coordination. Despite their effectiveness, these
methods typically treat CP as an external or post-hoc module, limiting the impact of uncertainty
feedback on policy learning.

It is worth noting that distribution shift remains a challenge in RL. Although meta-RL Nagabandi
et al. (2018); Xu et al. (2018) and transfer learning Taylor & Stone (2009); Zhu et al. (2023) improve
adaptation through experience sharing, they often lack formal uncertainty quantification. To address
this gap, we propose integrating CP directly into RL learning process, which enables online detection
of unreliable predictions with formal coverage guarantees, thus enhancing the safety and robustness
of policy learning under distributional shifts. Unlike prior approaches, our goal is to promote mutual
adaptation, which not only improves policy reliability in non-stationary environments, but also
dynamically refines the CP calibration process based on the agent’s evolving interaction history.
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B EXPERIMENTAL SETUP

B.1 DATASETS

To assess the effectiveness of our proposed CORE in long-term time-series forecasting, we conduct
experiments on eight diverse, real-world datasets that are widely used across various works:

• Weather Zhou et al. (2021): Collected at 10-minute intervals in 2020, this dataset includes 21
meteorological variables, with Wet Bulb temperature as the prediction target and the others as
auxiliary features.

• Traffic Lai et al. (2017): This dataset contains hourly occupancy rates from 862 freeway sensors
in the San Francisco Bay Area, using the last sensor’s data as the target and the others as
contextual inputs.

• Electricity Lai et al. (2017): This dataset contains hourly electricity consumption data from 321
residential clients (2012–2014). Typically, the last client’s usage is the prediction target, with the
others as exogenous inputs.

• Illness Lai et al. (2017): This dataset contains weekly influenza-like illness rates across multiple
U.S. regions, with the goal of forecasting one region’s trend using its own and others’ historical
data as inputs.

• ETT Zhou et al. (2021): The ETT dataset includes four subsets, ETTh1/ETTh2 (hourly) and
ETTm1/ETTm2 (15-minute), with oil temperature as the target and six power metrics as features,
spanning July 2016 to July 2018 across two Chinese counties.

To assess the ablility of variant model, CORE-AD, we conduct we experiments on some standard
time-series anomaly detection datasets:"

• SMAP Hundman et al. (2018) Soil moisture active passive dataset is collected from NASA’s
Earth observation satellite, containing 25-dimensional data used for anomaly detection in space-
craft systems.

• SMD Xu et al. (2022) Server machine dataset is collected from a large internet company,
consisting of 38-dimensional sensor readings over 5 weeks.

• SWaT Mathur & Tippenhauer (2016) This dataset was collected from a real-world secure water
treatment testbed, containing 51 tagged sensor and actuator signals recorded at 1-second intervals
over 11 days.

B.2 METRICS

For uncertain evaluation, we adopt two standard metrics.

• Coverage Rate (CVG): Measures the proportion of true values covered by the prediction
intervals.

CVG =
1

|Dtest|
∑

t∈Dtest

I[yt ∈ Ĉ
(w,t)
1−α ], (B.8)

where Dtest represents the set of test samples, yt is the ground-truth value, Ĉ(w,t)
1−α is the prediction

interval, and I[·] is the indicator function that returns 1 if the condition holds and 0 otherwise

• Interval Length (LEN): Measures the average length of the prediction intervals.

LEN =
1

|Dtest|
∑

t∈Dtest

(ût − l̂t), (B.9)

where ût and l̂t are the upper and lower bounds of the interval for instance t.

For accuracy, we report Mean Squared Error (MSE) and Mean Absolute Error (MAE), which
measure the average squared and absolute deviation between predicted and ground-truth values,
respectively.
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For anomaly detection task, we evaluate the model’s ability to distinguish abnormal from normal
time points using receiver operating characteristic(ROC) curves, which plot the true positive rate
against the false positive rate at varying thresholds. The area under the curve (AUC) summarizes this
trade-off, with higher values indicating better overall discrimination performance.

• True Positive Rate (TPR): Measures the proportion of actual anomalies that are correctly
detected by the model.

TPR =
TP

TP + FN
, (B.10)

where TP is the number of correctly identified anomalies, and FN is the number of missed
anomalies.

• False Positive Rate (FPR): Measures the proportion of normal points that are incorrectly
classified as anomalies.

FPR =
FP

FP + TN
, (B.11)

where FP is the number of normal points incorrectly flagged as anomalies, and TN is the number
of correctly identified normal points.

By integrating the ROC curve, AUROC summarizes the trade-off between TPR and FPR across all
thresholds, where a higher AUROC value (closer to 1) indicates better overall detection performance.

B.3 BASELINES

We evaluate the following baselines, categorized by tasks:

• uncertainty quantification:
– SPCI Xu & Xie (2023b) constructs prediction intervals by modeling the conditional quantile

of residuals, explicitly accounting for temporal dependence without relying on bootstrap
ensembles.

– EnbPI Xu & Xie (2021) constructs prediction intervals from bootstrap ensembles, achieving
approximate coverage without data exchangeability or retraining.

– ACI Gibbs & Candes (2021) adapts conformal inference to distribution shifts by recalibrat-
ing prediction sets over time to maintain target coverage under non-stationary data.

• point prediction:
– TimeXer Wang et al. (2024) is a Transformer-based model that enhances target prediction

by selectively attending to exogenous inputs through structured self-attention and cross-
variable integration mechanisms.

– iTransformer Liu et al. (2023) applies standard Transformer components on transposed
inputs to better capture inter-variable dependencies without architectural modification.

– DLinear Zeng et al. (2023) models trend and residual components using simple linear
projections, achieving strong forecasting performance with minimal model complexity.

• anomaly detection:
– DeepSVDD Ruff et al. (2018) trains a neural network with an anomaly detection-specific

objective, aiming to enclose normal data within a minimal-volume hypersphere in the
feature space.

– IForest Liu et al. (2008) is a tree-based algorithm that detects anomalies by recursively
partitioning the feature space and measuring the path length needed to isolate each point.

– LSTM Hundman et al. (2018) is an unsupervised method, which leverages the long
short-term memory recurrent neural networks to achieve prediction performance while
maintaining interpretability.

B.4 IMPLEMENTATION DETAILS

We implement our method in PyTorch and train all models on a single NVIDIA A5000 GPU with
24GB memory. All code is available in the supplementary files. Each training sample is organized into
batches with shape (B,W,D), where B = 128 denotes the batch size, W = 50 is the input temporal
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Table B.2: Performance comparison on eight time-series datasets for uncertainty quantification.
Prediction lengths are T ∈ {24, 36, 48, 60} for Illness and T ∈ {96, 192, 336, 720} for others.
Results are reported as mean ± range over 5 runs. Bold indicates CORE outperforms all baselines;
underlined marks the best baseline.

Models CORE SPCI Xu & Xie (2023b) ACI Gibbs & Candes (2021) EnbPI Xu & Xie (2021)
Metric LEN CVG LEN CVG LEN CVG LEN CVG

W
ea

th
er 96 3.635 ± 1.051 0.934 ± 0.012 4.035 ± 0.650 0.899 ± 0.002 4.042 ± 0.286 0.900 ± 0.002 4.059 ± 0.142 0.904 ± 0.001

192 4.065 ± 1.115 0.922 ± 0.016 4.225 ± 0.692 0.899 ± 0.001 4.278 ± 0.208 0.899 ± 0.000 4.238 ± 0.109 0.909 ± 0.001
336 4.744 ± 0.785 0.920 ± 0.033 5.221 ± 0.558 0.901 ± 0.001 5.437 ± 0.901 0.901 ± 0.000 6.842 ± 0.106 0.884 ± 0.009
720 5.721 ± 1.321 0.929 ± 0.032 7.056 ± 0.657 0.900 ± 0.003 7.072 ± 0.729 0.901 ± 0.003 8.133 ± 0.278 0.870 ± 0.012

Tr
af

fic

96 2.868 ± 0.370 0.919 ± 0.050 3.159 ± 0.352 0.895 ± 0.033 3.182 ± 0.052 0.897 ± 0.002 3.184 ± 0.141 0.899 ± 0.001
192 2.991 ± 0.510 0.920 ± 0.056 3.147 ± 0.238 0.899 ± 0.002 3.170 ± 0.070 0.899 ± 0.002 3.255 ± 0.078 0.908 ± 0.000
336 3.088 ± 0.505 0.925 ± 0.075 3.170 ± 0.252 0.903 ± 0.001 3.140 ± 0.006 0.902 ± 0.001 3.194 ± 0.125 0.898 ± 0.003
720 3.037 ± 0.727 0.919 ± 0.050 3.152 ± 0.331 0.899 ± 0.003 3.159 ± 0.052 0.898 ± 0.003 3.621 ± 0.032 0.870 ± 0.001

E
le

ct
ri

ci
ty 96 3.380 ± 0.276 0.928 ± 0.041 3.545 ± 0.273 0.897 ± 0.003 3.649 ± 0.132 0.897 ± 0.004 4.366 ± 0.105 0.898 ± 0.001

192 3.457 ± 0.982 0.916 ± 0.038 3.558 ± 0.124 0.904 ± 0.002 3.768 ± 0.129 0.903 ± 0.001 4.534 ± 0.140 0.895 ± 0.001
336 3.901 ± 0.725 0.928 ± 0.017 3.952 ± 0.221 0.904 ± 0.001 3.953 ± 0.311 0.905 ± 0.003 4.725 ± 0.163 0.886 ± 0.004
720 4.466 ± 0.797 0.930 ± 0.023 4.547 ± 0.341 0.896 ± 0.003 4.555 ± 0.246 0.895 ± 0.004 5.167 ± 0.213 0.882 ± 0.006

Il
ln

es
s 24 4.003 ± 0.848 0.908 ± 0.006 4.140 ± 0.132 0.887 ± 0.003 4.364 ± 0.192 0.908 ± 0.006 4.738 ± 0.121 0.908 ± 0.004

36 3.476 ± 0.744 0.903 ± 0.013 4.118 ± 0.044 0.884 ± 0.003 4.460 ± 0.112 0.910 ± 0.004 4.681 ± 0.159 0.908 ± 0.004
48 4.077 ± 0.627 0.906 ± 0.081 4.335 ± 0.148 0.888 ± 0.004 4.760 ± 0.233 0.907 ± 0.006 4.981 ± 0.087 0.905 ± 0.005
60 3.916 ± 1.483 0.901 ± 0.125 4.409 ± 0.163 0.886 ± 0.005 4.805 ± 0.144 0.891 ± 0.007 5.658 ± 0.160 0.893 ± 0.004

E
T

T
h1

96 4.837 ± 0.373 0.925 ± 0.036 4.868 ± 0.192 0.899 ± 0.001 4.880 ± 0.221 0.899 ± 0.001 5.481 ± 0.048 0.901 ± 0.001
192 4.577 ± 0.534 0.916 ± 0.038 4.970 ± 0.132 0.905 ± 0.001 5.076 ± 0.267 0.905 ± 0.001 6.531 ± 0.147 0.895 ± 0.001
336 5.083 ± 0.367 0.913 ± 0.040 5.294 ± 0.181 0.904 ± 0.001 5.307 ± 0.111 0.905 ± 0.001 7.224 ± 0.081 0.909 ± 0.002
720 5.288 ± 0.848 0.910 ± 0.043 5.731 ± 0.112 0.899 ± 0.001 5.851 ± 0.212 0.900 ± 0.001 7.371 ± 0.194 0.879 ± 0.003

E
T

T
h2

96 4.509 ± 0.536 0.915 ± 0.012 5.104 ± 0.236 0.898 ± 0.001 5.113 ± 0.243 0.899 ± 0.001 5.294 ± 0.229 0.900 ± 0.000
192 4.860 ± 0.405 0.923 ± 0.015 5.112 ± 0.232 0.896 ± 0.001 5.126 ± 0.357 0.896 ± 0.001 5.366 ± 0.179 0.901 ± 0.001
336 5.229 ± 0.566 0.917 ± 0.044 5.356 ± 0.322 0.901 ± 0.001 5.460 ± 0.281 0.905 ± 0.001 4.741 ± 0.155 0.876 ± 0.003
720 5.352 ± 1.025 0.914 ± 0.024 5.676 ± 0.240 0.902 ± 0.001 5.729 ± 0.152 0.901 ± 0.001 9.112 ± 0.215 0.892 ± 0.000

E
T

T
m

1 96 4.425 ± 0.457 0.901 ± 0.049 4.697 ± 0.212 0.899 ± 0.000 4.700 ± 0.182 0.899 ± 0.000 6.437 ± 0.146 0.901 ± 0.001
192 4.368 ± 1.038 0.906 ± 0.031 4.685 ± 0.216 0.895 ± 0.003 4.711 ± 0.276 0.895 ± 0.003 7.040 ± 0.130 0.899 ± 0.001
336 5.161 ± 0.739 0.909 ± 0.018 4.716 ± 0.137 0.899 ± 0.001 4.728 ± 0.135 0.900 ± 0.000 8.183 ± 0.162 0.890 ± 0.003
720 5.131 ± 0.967 0.911 ± 0.012 4.812 ± 0.140 0.901 ± 0.002 4.815 ± 0.262 0.901 ± 0.001 8.402 ± 0.178 0.892 ± 0.002

E
T

T
m

2 96 4.203 ± 0.706 0.898 ± 0.023 4.437 ± 0.157 0.896 ± 0.003 4.445 ± 0.178 0.895 ± 0.003 5.265 ± 0.150 0.903 ± 0.002
192 4.460 ± 0.325 0.898 ± 0.028 4.459 ± 0.136 0.903 ± 0.002 4.466 ± 0.271 0.901 ± 0.000 6.100 ± 0.233 0.892 ± 0.003
336 4.598 ± 0.782 0.906 ± 0.031 4.653 ± 0.135 0.903 ± 0.000 4.665 ± 0.283 0.902 ± 0.000 6.937 ± 0.262 0.902 ± 0.000
720 4.947 ± 1.028 0.917 ± 0.021 5.149 ± 0.210 0.898 ± 0.000 5.251 ± 0.361 0.901 ± 0.001 7.236 ± 0.132 0.875 ± 0.004

window length, and D is the feature dimension, which varies across datasets. The prediction window
length L is set to {24, 36, 48, 60} for the Illness, and {96, 192, 336, 720} for all other datasets. To
stabilize training, we adopt a single-step prediction setting, and perform multi-step forecasting during
inference to generate outputs of length l ∈ L.

Our method maintains a buffer of conformity scores of fixed size wc = 50 and updates the prediction
interval thresholds online at each step using these scores. The adjustment rate γ for confidence level
αt is set to 0.002, and the initial significance level α is fixed at 0.1. We select K = 5 actions from
the quantile set Q = {q(1), . . . , q(K)} to estimate the median actions. The policy is trained using a
PPO backbone with separate actor and critic networks, both implemented with Transformer-based
architectures. Each network is configured with a depth of 4 layers, 16 attention heads, and a group
size of 4. The encoder and decoder modules are flexible and can also be instantiated with alternative
architectures such as MLPs.

For optimization, we use the two separate Adam optimizers with a learning rate of 5× 10−5, applied
to the policy and value networks respectively. All experiments are run for 1000 training steps per
episode, and the model is evaluated every 50 steps using average return and empirical coverage
metrics.

C EXPERIMENTAL RESULTS

C.1 EXTENDED EVALUATION OF INTERVAL VALIDITY AND PREDICTION ACCURACY

The experimental results for both uncertainty quantification and prediction accuracy are shown in
Table B.2 and Table B.3, respectively, with all values reported as mean ± standard deviation over 5
independent runs.

Across all eight datasets and multiple prediction lengths, CORE consistently achieves high empirical
coverage (CVG) while maintaining competitive or shorter interval lengths (LEN) in nearly all
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Table B.3: Performance comparison on eight time-series datasets for prediction accuracy. Results are
reported as mean ± range over 5 runs. Bold indicates CORE outperforms all baselines; underlined
marks the best baseline.

Models CORE TimeXer Wang et al. (2024) iTransformer Liu et al. (2023) DLinear Zeng et al. (2023)
Metric MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.178 ± 0.023 0.199 ± 0.020 0.172 ± 0.012 0.228 ± 0.043 0.194 ± 0.012 0.241 ± 0.022 0.196 ± 0.033 0.248 ± 0.019

192 0.225 ± 0.087 0.241 ± 0.036 0.231 ± 0.017 0.253 ± 0.018 0.248 ± 0.019 0.286 ± 0.015 0.241 ± 0.017 0.293 ± 0.034
336 0.272 ± 0.095 0.261 ± 0.046 0.277 ± 0.027 0.316 ± 0.026 0.292 ± 0.029 0.346 ± 0.036 0.278 ± 0.024 0.325 ± 0.027
720 0.341 ± 0.116 0.304 ± 0.049 0.324 ± 0.045 0.352 ± 0.02 0.332 ± 0.019 0.369 ± 0.028 0.342 ± 0.020 0.376 ± 0.026

Tr
af

fic

96 0.410 ± 0.013 0.507 ± 0.018 0.412 ± 0.034 0.456 ± 0.013 0.402 ± 0.015 0.452 ± 0.049 0.421 ± 0.024 0.478 ± 0.011
192 0.414 ± 0.011 0.536 ± 0.009 0.435 ± 0.016 0.494 ± 0.018 0.427 ± 0.025 0.495 ± 0.017 0.434 ± 0.034 0.494 ± 0.020
336 0.418 ± 0.055 0.512 ± 0.038 0.458 ± 0.020 0.523 ± 0.045 0.442 ± 0.021 0.517 ± 0.019 0.458 ± 0.036 0.512 ± 0.023
720 0.427 ± 0.072 0.523 ± 0.049 0.482± 0.027 0.554± 0.030 0.453 ± 0.019 0.525± 0.066 0.478± 0.026 0.539± 0.012

E
le

ct
ri

ci
ty 96 0.135 ± 0.006 0.250 ± 0.031 0.136 ± 0.018 0.251 ± 0.009 0.144 ± 0.009 0.253 ± 0.015 0.151 ± 0.019 0.273 ± 0.009

192 0.153 ± 0.007 0.261 ± 0.025 0.160 ± 0.012 0.263 ± 0.020 0.167 ± 0.013 0.267 ± 0.013 0.159 ± 0.010 0.275 ± 0.028
336 0.173 ± 0.015 0.280 ± 0.035 0.182 ± 0.017 0.278 ± 0.016 0.193 ± 0.011 0.282 ± 0.017 0.172 ± 0.02 0.293 ± 0.018
720 0.189 ± 0.043 0.301 ± 0.031 0.203 ± 0.018 0.301 ± 0.019 0.211 ± 0.018 0.326 ± 0.016 0.218 ± 0.019 0.319 ± 0.023

Il
ln

es
s 96 1.749 ± 0.063 1.160 ± 0.023 1.482 ± 0.064 1.034 ± 0.082 1.757 ± 0.117 1.123 ± 0.064 2.231 ± 0.195 1.383 ± 0.046

192 1.512 ± 0.123 1.070 ± 0.110 1.326 ± 0.081 1.184 ± 0.053 1.723 ± 0.022 1.116 ± 0.127 2.243 ± 0.068 1.321 ± 0.040
336 1.674 ± 0.058 1.138 ± 0.032 1.642 ± 0.045 1.258 ± 0.057 1.802 ± 0.049 1.197 ± 0.069 2.318 ± 0.054 1.382 ± 0.024
720 1.585 ± 0.147 1.108 ± 0.037 1.569 ± 0.051 1.245 ± 0.017 1.852 ± 0.027 1.342 ± 0.011 2.412 ± 0.077 1.435 ± 0.049

E
T

T
h1

96 0.386 ± 0.009 0.438 ± 0.025 0.412 ± 0.011 0.419 ± 0.009 0.398 ± 0.011 0.423 ± 0.020 0.392 ± 0.018 0.413 ± 0.011
192 0.413 ± 0.044 0.431 ± 0.030 0.418 ± 0.019 0.421 ± 0.013 0.417 ± 0.013 0.428 ± 0.010 0.428 ± 0.011 0.437 ± 0.021
336 0.414 ± 0.057 0.465 ± 0.053 0.429 ± 0.016 0.438 ± 0.010 0.433 ± 0.012 0.445 ± 0.020 0.437 ± 0.016 0.469 ± 0.016
720 0.445 ± 0.058 0.457 ± 0.038 0.437 ± 0.014 0.441 ± 0.015 0.447 ± 0.020 0.472 ± 0.014 0.454 ± 0.025 0.482 ± 0.013

E
T

T
h2

96 0.291 ± 0.047 0.303 ± 0.028 0.294 ± 0.015 0.295 ± 0.007 0.316 ± 0.016 0.356 ± 0.015 0.437 ± 0.014 0.455 ± 0.012
192 0.296 ± 0.014 0.323 ± 0.014 0.323 ± 0.009 0.338 ± 0.008 0.362 ± 0.010 0.382 ± 0.030 0.484 ± 0.017 0.492 ± 0.016
336 0.298 ± 0.025 0.347 ± 0.048 0.374 ± 0.013 0.384 ± 0.009 0.412 ± 0.014 0.398 ± 0.013 0.553 ± 0.030 0.528 ± 0.014
720 0.391 ± 0.122 0.390 ± 0.039 0.408 ± 0.009 0.442 ± 0.014 0.463 ± 0.026 0.437 ± 0.014 0.592 ± 0.012 0.537 ± 0.008

E
T

T
m

1 96 0.327 ± 0.049 0.332 ± 0.067 0.328 ± 0.014 0.351 ± 0.011 0.336 ± 0.020 0.357 ± 0.018 0.343 ± 0.015 0.368 ± 0.026
192 0.339 ± 0.034 0.348 ± 0.014 0.346 ± 0.016 0.348 ± 0.023 0.361 ± 0.014 0.397 ± 0.010 0.351 ± 0.021 0.384 ± 0.012
336 0.361 ± 0.051 0.343 ± 0.061 0.377 ± 0.025 0.392 ± 0.020 0.403 ± 0.015 0.435 ± 0.010 0.382 ± 0.034 0.407 ± 0.030
720 0.411 ± 0.074 0.394 ± 0.053 0.439 ± 0.022 0.453 ± 0.016 0.450 ± 0.033 0.466 ± 0.015 0.442 ± 0.026 0.451 ± 0.024

E
T

T
m

2 96 0.228 ± 0.062 0.293 ± 0.054 0.234 ± 0.027 0.283 ± 0.013 0.253 ± 0.022 0.302 ± 0.029 0.275 ± 0.014 0.328 ± 0.014
192 0.265 ± 0.039 0.304 ± 0.056 0.268 ± 0.016 0.315 ± 0.028 0.275 ± 0.026 0.313 ± 0.013 0.308 ± 0.023 0.358 ± 0.031
336 0.287 ± 0.027 0.343 ± 0.062 0.297 ± 0.035 0.342 ± 0.014 0.311 ± 0.024 0.349 ± 0.011 0.314 ± 0.018 0.372 ± 0.027
720 0.333 ± 0.055 0.372 ± 0.131 0.331 ± 0.020 0.376 ± 0.029 0.334 ± 0.017 0.374 ± 0.02 0.356 ± 0.030 0.394 ± 0.018

settings. Compared to ACI and EnbPI, which often struggle to meet the nominal coverage level
of 0.9, CORE produces more stable and reliable interval estimates. Visualization of the prediction
intervals with ground-truth values further shows that our method effectively adapts to data fluctuations
and dynamically adjusts interval widths as needed. These findings confirm the robustness of our
uncertainty-aware design across diverse temporal dynamics and forecast horizons.

D THEORETICAL PROOF

We recall the Theorem 1 here.
Theorem 1 (Master Theorem). The CORE intervals satisfy:

(Validity) For any horizon T ,

sup
t≤T

∣∣∣Pr{Yt ∈ Ĉ
(wc,t)
1−α } − (1− α)

∣∣∣ = O
(
(logwc/wc)

1/3 + T−p/3 + γ1/2
)
.

(Efficiency) Let C∗
t denote the oracle shortest valid interval. Then

T∑
t=1

(
|Ĉt| − |C∗

t |
)
= Õ(T 1−p/3).

We first establish an auxiliary proposition which plays a key role in the proof of master theorem.
Proposition 3 (Marginal coverage of CORE). Under weak dependence, local regularity, and bounded
drift, the conformalized predictor satisfies

Pr{Yt ∈ Ĉ
(wc,t)
1−α } ≥ 1− α−O

(
(logwc/wc)

1/3 + δ
2/3
T

)
.

Proposition 3 shows that CORE attains near-nominal coverage, with deviations controlled by the
prediction error δ2T .
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To prove Theorem 1, we establish three propositions:

• Proposition 3: establishes marginal coverage with errors controlled by prediction error and
distributional drift,

• Proposition 1: bounds the optimization error under PPO,

• Proposition 2: guarantees stability of the adaptive update for αt.

Their combination yields the stated validity and efficiency guarantees.

D.1 PROOF OF PROPOSITION 3

Lemma 1 (Rio-type DKW inequality). Let F̃ denote the empirical CDF of the true residuals within
[t − wc + 1, t] over a calibration window of size wc, and let F denote the true CDF. Under the
summable-β weak dependence condition,

sup
x

∣∣F̃ (x)− F (x)
∣∣ ≤ C1(logwc/wc)

1/3.

Lemma 2 (Quantile-error transfer). Let δ2T = 1
T

∑T
t=1(ε̂t − εt)

2. If Ft is L-Lipschitz, then

sup
x

∣∣F̂ (x)− F̃ (x)
∣∣ ≤ C2δ

2/3
T + 2 sup

x

∣∣F̃ (x)− F (x)
∣∣,

where C2 := L+ 1, with the additive constant serving as a technical slack.

Proof. Let Ft be the true residual CDF at time t, F̃t the empirical CDF of true residuals on
[t − wc + 1, t], F̂t the empirical CDF used by the method. We denote the prediction interval
as Ĉ(wc,t)

1−αt
:= [a

(low)
t − q̂

(wc,t)
1−αt

, a
(up)
t + q̂

(wc,t)
1−αt

], where the lower and upper bounds are adjusted by

q̂
(wc,t)
1−αt

. Here q̂
(wc,t)
1−αt

denotes the empirical (1 − αt)-quantile of the residual distribution estimated

from the calibration window size and can be defined as q̂
(wc,t)
1−αt

:= inf{z : F̂t(z) ≥ 1 − αt}. By

construction of the interval, the event {yt ∈ Ĉ
(wc,t)
1−αt

} is equivalent to the event that the absollute

residual at time t is at most q̂(wc,t)
1−αt

. Hence, Pr{yt ∈ Ĉ
(wc,t)
1−αt

} = Ft(q̂
(wc,t)
1−αt

). We start from the
indicator rewriting:∣∣∣Pr{yt ∈ Ĉ

(wc,t)
1−αt

} − (1− αt)
∣∣∣ = ∣∣∣Ft(q̂

(wc,t)
1−αt

)− (1− αt)
∣∣∣

=
∣∣∣Ft(q̂

(wc,t)
1−αt

)− F̂t(q̂
(wc,t)
1−αt

)
∣∣∣+ ∣∣∣F̂t(q̂

(wc,t)
1−αt

)− (1− αt)
∣∣∣

≤ ∥Ft − F̂t∥∞ +
∣∣∣F̂t(q̂

(wc,t)
1−αt

)− (1− αt)
∣∣∣

≤ ∥Ft − F̂t∥∞ +
1

wc

The reason for the second inequality
∣∣∣F̂t(q̂

(wc,t)
1−αt

)− (1− αt)
∣∣∣ ≤ 1

wc
is as follows. Since the empirical

CDF F̂t is a step function with jump size at most 1/wc, as F̂t(q̂
(wc,t)
1−αt

) = 1
wc

∑wc

i=1 1{ϵi ≤ q̂
(wc,t)
1−αt

}.

Next, decompose the CDF error and insert window-wise bounds:

∥F̂t − Ft∥∞ ≤ ∥F̂t − F̃t∥∞ + ∥F̃t − Ft∥∞
≤ (L+ 1)δ2/3 + 2∥F̃t − Ft∥∞ + ∥F̃t − Ft∥∞
≤ (L+ 1)δ2/3 + 3∥F̃t − Ft∥∞

According to Lemma 1 we have supx
∣∣F̃ (x) − F (x)

∣∣ ≤ C1(logwc/wc)
1/3, and substituting this

bound into the above inequality yields ∥F̂t − Ft∥∞ ≤ (L+ 1)δ2/3 + 3C1(logwc/wc)
1/3.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

∣∣∣Pr{yt ∈ Ĉ
(wc,t)
1−αt

} − (1− αt)
∣∣∣ ≤ ∥F̂t − Ft∥∞ +

1

wc

≤ (L+ 1)δ2/3 + 3∥F̃t − Ft∥∞ +
1

wc

≤ (L+ 1)δ2/3 + 3C1

(
logwc/wc

)1/3
+

1

wc

≤ 3C1

(
logwc/wc

)1/3
+ (L+ 1)δ2/3 +

1

wc

Therefore, we can get Pr{Yt ∈ Ĉ
(wc,t)
1−α } ≥ 1− α−O

(
(logwc/wc)

1/3 + δ
2/3
T

)
.

D.2 PROOF OF PROPOSITION 1

Proof. Let ε̂t := yt − ãt, εt := yt − a⋆t , δt := ε̂t − εt = a⋆t − ãt, δ2T := 1
T

∑T
t=1 E[δ2t ].

The learning objective of PPO is written as:

J(θ) = E [λacc(1− |δt|) + λlenrlen + λcovrcov] , λacc ≥ c0 > 0, λlen, λcov ≤ c1.

Let R(θ) := E[δt] (MAE w.r.t. oracle median), R2(θ) := E[δ2t ] = E
[
(a⋆t − ãt)

2
]

(MSE).

Assume R is LR-smooth, then for any step ηk > 0,

R(θk+1) ≤ R(θk) + ⟨∇R(θk), θk+1 − θk⟩ +
LR

2
∥θk+1 − θk∥2, (D.12)

and the PG estimator is unbiased with bounded 2nd moment, and the non-accuracy terms include a
bounded deterministic shift b(θk):

ζk := ∇̂J(θk)−∇J(θk), E[ζk | θk] = 0, E[∥ζk∥2 | θk] ≤ σ2,

∇J(θk) = −λacc∇R(θk) + b(θk), ∥b(θk)∥ ≤ Bgrad.

So that ∇̂J(θk) = −λacc∇R(θk) + b(θk) + ζk. For θk+1 = θk + ηk∇̂J(θk) and taking the
expectation of Eq. D.12 and substituting it into the above equation, we can obtain

E[R(θk+1)|θk] ≤ R(θk) + ηk⟨∇R(θk),E[∇̂J(θk)|θk]⟩ +
LR

2
η2kE[∥∇̂J(θk)∥2|θk].

According to E[ζk|θk] = 0, E[∇̂J(θk)|θk] = −λacc∇R(θk) + b(θk). Consequently,

ηk⟨∇R(θk),E[∇̂J(θk)|θk]⟩ = ηk⟨∇R(θk),−λacc∇R(θk) + b(θk)⟩
= −ηkλacc∥∇R(θk)∥2 + ηk⟨∇R(θk), b(θk)⟩

= −ηkλacc∥∇R(θk)∥2 +
ηkλacc

2
∥∇R(θk)∥2 +

ηk
2λacc

∥b(θk)∥2

= −ηkλacc∥∇R(θk)∥2 +
ηkλacc

2
∥∇R(θk)∥2 +

ηk
2λacc

B2
grad

By the Cauchy–Schwarz inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we have

E[R(θk+1)|θk] ≤R(θk)−
ηkλacc

2
∥∇R(θk)∥2

+
LR

2
η2k(3λ

2
acc∥∇R(θk)∥2 + 3B2

grad + 3σ2) +
ηk

2λacc
B2

grad

For simplicity, we denote A := 3
2LRλ

2
acc, B := 3

2LR(B
2
grad + σ2), C := 1

2λacc
B2

grad. At this point,
the term C originates from the bias term b(θ) that comes from auxiliary rewards (e.g. length or
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coverage penalties). For analysis, we absborb auxiliar reward terms into the objective and work
with the total reward Rtotal := E[|δt| − λlen

λacc
rlen − λcov

λacc
rcov], so that the update direction satisfies

∇J(θ) = −λRtotal(θ) and the bias disappears, i.e., b(θ) ≡ 0. Thus we obtain:

E[R(θk+1)|θk] ≤ R(θk)− ηk(
λacc

2
−Aηk)∥∇R(θk)∥2 +Bη2k. (D.13)

Make step size small enough ηk ≤ λacc
4A , then λacc

2 −Aηk ≥ λacc
4

.
= c0. Then, we taking the expectation

of Eq. D.13 and summing over k = 1 to T , we obtain
T∑

k=1

c0ηkE[∥∇R(θk)∥2] ≤ E[R(θ1)]− E[R(θT+1)] +B

T∑
k=1

η2k.

T∑
k=1

ηkE[∥∇R(θk)∥2] ≤
R(θ1)−R∗

c0
+

B

c0

T∑
k=1

η2k,

where R∗ represents the optimal value of the objective function R∗ = infθ R(θ). We choose a
diminishing step size ηk = η0/

√
k. The two sums that appear in the bound admit the standard

estimates
T∑

k=1

ηk = η0

T∑
k=1

1√
k

≈ η0

∫ T

1

dx√
x
= 2η0(

√
T − 1) ≍ 2η0

√
T ,

and
T∑

k=1

η2k = η20

T∑
k=1

1

k
≈ η20 (log T + ρ) ≍ η20 log T,

where ρ is a constant and ≍ denotes equality up to absolute constants (i.e., same order). The first sum
scales like

√
T , while the second scales like log T . Dividing both sides of the previous inequality by∑T

k=1 ηk therefore yields an average-gradient bound that decays at rate Õ(T−1/2). So that

1∑T
k=1 ηk

T∑
k=1

ηkE∥∇R(θk)∥2 ≤ O
(

1√
T

)
+O

(
log T√

T

)
= Õ

(
1√
T

)

Having established that the mean absolute error (MAE) decays at rate Õ(T−1/2), we next convert
this guarantee into a bound for the mean squared error (MSE) δ2T . To this end, we consider two
standard conditions under which MAE and squared error can be related: (i) bounded parameter error
|δt| ≤ Berr a.s., or (ii) a squared-loss descent/PL on R2(θ) := E[δ2t ].

Case (i) boundedness: If we assume the individual parameter error is uniformly bounded, i.e.
|δt| ≤ Berr almost surely, then the squared error can be controlled by the absolute error δ2t ≤ Berr|δt|.
Taking expecations and averaging over t, we obtain:

δ2T =
1

T

T∑
t=1

E[δ2t ] ≤ Berr
1

T

T∑
t=1

E|δt| = Berr
1

T

T∑
t=1

R(θt) = O
(
T−1/2

)
.

Case (ii) squared-loss PL (stronger): Alternatively, we assume the squared loss R2(θ) := E[δ2t ],
then can directly analyze its descent under the update. Specifically, suppose for some constants
λ̃, µ̃ > 0,

E [R2(θk+1) | θk] ≤ R2(θk)− λ̃ηk∥∇R2(θk)∥2 + C̃η2k, R2(θ)−R⋆
2 ≤ 1

2µ̃
∥∇R2(θ)∥2,

then with ηk = η0/
√
k,

δ2T = R2(θT ) = O
(
T−1

)
.

Unified rate: there exists p ∈ [1, 2] such that

δ2T = O
(
T−p/2

)
=⇒ δ

2/3
T =

(
δ2T

)1/3
= O

(
T−p/3

)
.
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Therefore, the term entering Proposition 1 is O(T−p/3). Our implementation includes behavior
cloning, so we adopt the square-loss descent/PL condition for R2(θ) = E[δ2t ] (Case (ii)) in our
coverage bound. We also include a weaker, assumption-robust alternative (Case (i) with bounded
or sub-Gaussian errors), which guarantees a valid but slower rate when the square-loss descent/PL
condition may not hold. This provides a portable guarantee for ablations and external reproductions.

D.3 PROOF OF PROPOSITION 2

Proof. The adaptive update in practice is based on an empirical miscoverage estimate ϵ̂t, aggregated
from a sliding window. However, for theoretical analysis it is essential to work with the instantaneous
indicator êt = 1{Yt /∈ Ĉt}. Unlike ϵ̂t, the variable êt admits the decomposition

êt = et + ηt, et := E[êt | Ft−1], ηt := êt − et, E[ηt | Ft−1] = 0,

which ensures that the noise term has zero conditional mean. Hence, the recursion is written as
αt+1 = αt + γt(α− êt).

Let et := E[êt|Ft−1], ηt := êt − et, ∆t := αt − et, dt := et+1 − et, bt := α − et, then
one-step recursion is:

∆t+1 = αt+1 − et+1 = αt + γt(α− êt)− et+1

= (αt − et) + γt(α− êt) + et − et+1

= ∆t + γt(bt − ηt)− dt

To get contraction in ∆t, we linearize the mapping αt 7→ et around equilibrium and assume a
uniformly positive local slope:

bt = α− et = −κt∆t + rt, κt ∈ [κ−, κ+], |rt| ≤ Lb|∆t|2,

where rt is the higher-order remainder.

Then, the above one-step recursion becomes:

∆t+1 = (1− γtκt)∆t − γtηt + γtrt − dt

∆2
t+1 = (1− γtκt)

2∆2
t + γ2

t η
2
t + γ2

t r
2
t + d2t

− 2(1− γtκt)γt∆tηt + 2(1− γtκt)γt∆trt − 2(1− γtκt)∆tdt

− 2γ2
t ηtrt + 2γtηtdt − 2γtrtdt.

Take conditional expectation using E[ηt|Ft−1] = 0, E[η2t |Ft−1] ≤ σ2
η (Bernoulli =⇒ σ2

η ≤ 1
4 ).

Hence all cross terms containing ηt vanish in conditional expectation. The remaining cross terms are
controlled by Young’s inequality 2ab ≤ a2 + b2, and absorbed into constants. For the leading factor:

(1− γtκt)
2∆2

t = 1− 2κ−γt + κ2
tγ

2
t ≤ 1− 2κ−γt + c1γ

2
t

E[∆2
t+1 | Ft−1] ≤ (1− 2κ−γt + c1γ

2
t )∆

2
t + σ2

ηγ
2
t + c2(γ

2
t r

2
t + d2t ),

where c1 and c2 are finite numerical constants.

Denote the mean-square tracking error by Vt := E[∆2
t ] = E[(αt − et)

2]. As we have constant
step size γ. In this case, the leading term (1 − 2κ−γ + c1γ

2) is strictly smaller than 1 when γ is
sufficiently small, ensuring contraction in expectation. All other terms on the right-hand side are of
order γ2, leading to a recursion of the form:

E[∆2
t+1] ≤ (1− cγ)E[∆2

t ] + Cγ2,

for some constants c, C > 0. Solving this recursion yields:

Vt = E[∆2
t ] = O(γ) =⇒ E[|αt − et|] = O(γ1/2).

Thus, the tracking error remains bounded and stable, though it does not vanish asymptotically.
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D.4 PROOF OF THEOREM 1

Proof. According to the above results, we now combine the three propositions. Proposition 3 provides
a marginal coverage guarantee:

Pr{Yt ∈ Ĉ
(wc,t)
1−α } ≥ 1− α−O

(
(logwc/wc)

1/3 + δ
2/3
T

)
.

The bound contains two error sources, the prediction error δ2T and the adaptivity error in αt. Propo-
sition 1 shows that δ2T = O(T−p/2), which converts into a O(T−p/3) contribution in the coverage
bound. Proposition 2 further shows that the adaptive update of αt tracks the true miscoverage within
O(γ1/2). Substituting these results into the bound of Proposition 3 yields the validity guarantee:

sup
t≤T

∣∣∣Pr{Yt ∈ Ĉ
(w,t)
1−α } − (1− α)

∣∣∣ = O
(
(logwc/wc)

1/3 + T−p/3 + γ1/2
)
.

Finally, we establish the efficiency result. Recall that the excess width of the constructed CORE
intervals over the oracle benchmark C∗

t is governed by the prediction error δ2T . In particular, the
deviation in interval width can be bounded by a function of δ2/3T , reflecting the robustness of the
quantile-based construction to estimation errors. Since we have already shown that δ2T = O(T−p/2)

for some p ∈ [1, 2], it follows that each per-round excess width satisfies |Ĉt| − |C∗
t |. Summing over

T rounds then yields

|Ĉt| − |C∗
t | ∼ δ

2/3
t = Õ(T−p/3),

T∑
t=1

(
|Ĉt| − |C∗

t |
)
= Õ(T 1−p/3).
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