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ABSTRACT

Knowledge distillation has emerged as a pivotal technique for transferring knowl-
edge from stronger large language models (LLMs) to smaller, more efficient mod-
els. However, traditional distillation approaches face challenges related to knowl-
edge conflicts and high resource demands, particularly when leveraging multiple
teacher models. In this paper, we introduce the concept of Knowledge Purifica-
tion, which consolidates the rationales from multiple teacher LLMs into a single
rationale, thereby mitigating conflicts and enhancing efficiency. To investigate the
effectiveness of knowledge purification, we further propose five purification meth-
ods from various perspectives. Our experiments demonstrate that these methods
not only improve the performance of the distilled model but also effectively al-
leviate knowledge conflicts. Moreover, router-based methods exhibit robust gen-
eralization capabilities, underscoring the potential of innovative purification tech-
niques in optimizing multi-teacher distillation and facilitating the practical de-
ployment of powerful yet lightweight models.

1 INTRODUCTION

The rapid advancement of LLM has revolutionized various domains, including question answering
(Yue, 2025) and reasoning (Plaat et al., 2024). The scaling law (Kaplan et al., 2020) unveils the cor-
relation between the model size and generation capability, yet the practical deployment of colossal
LLMs is often constrained by computational cost and resource demands, emphasizing the need for
building efficient and lightweight models that preserve their power.

As the extension of model compression (Buciluǎ et al., 2006), knowledge distillation (Hinton et al.,
2015) has emerged as a prominent solution to this challenge, which enables student models to inherit
the capability of larger teacher models. Knowledge distillation is widely applied across various
fields of machine learning (Kim & Rush, 2016; Park et al., 2019; Tang et al., 2019). To enhance
knowledge diversity and specialized domain competencies, transferring knowledge from a multi-
teacher ensemble to the student model attracts significant academic interest. This focus leads to
the development of multi-teacher knowledge distillation approaches, such as TinyLLM (Tian et al.,
2025) and TwT (Xu et al., 2025).

However, existing multi-teacher knowledge distillation frameworks suffer from two significant
drawbacks: (1) Knowledge Conflict: Conflicting rationales among teacher LLMs are inevitable due
to hallucinations, inconsistent reasoning paths or difference in expertise domains, impeding the ef-
fectiveness of knowledge transfer to the student model. This problem may become more pronounced
as the number of teacher models increases. (2) High Resource Demands: Incorporating knowledge
from multiple teachers inherently escalates resource requirements, necessitating complex sampling
procedures and intricate training pipelines, which subsequently raises computational cost.

To investigate the adaptability of existing multi-teacher knowledge distillation frameworks toward
more teacher LLMs, we perform extended experiments with TinyLLM (Tian et al., 2025), incre-
mentally introducing a series of teacher LLMs for distillation training(detailed in Appendix D.1).
As illustrated in Fig. 1, contrary to our expectation that enlarging the teacher LLM ensemble would
enhance the capabilities of student models, the distillation performance actually declines as the
number of teacher models further increases. This decline indicates the detrimental impact of the
knowledge conflict among teacher LLMs.
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Figure 1: Effects of increasing teacher LLMs on the performance of the TinyLLM framework.

In this paper, we introduce the concept of Knowledge Purification in multi-teacher knowledge
distillation. The core idea is to condense the knowledge of multiple teacher models from the ratio-
nale perspective. The knowledge purification integrates the rationales generated by multiple teacher
LLMs into one single, consolidated rationale, which is subsequently employed during the distilla-
tion. Hence, the student model is provided with the rationale that encapsulates the collective insights
of the teachers, enabling more efficient and effective distillation training. By purifying the knowl-
edge, we mitigate the hallucinations and divergent reasoning paths among the teacher LLMs, thereby
alleviating inter-teacher knowledge conflicts.

We further propose five methods to facilitate knowledge purification from distinct perspectives in-
cluding aggregation, routing, and reinforcement learning (RL)-based selection. To thoroughly evalu-
ate these approaches, we conduct extensive experiments on commonsense and biomedical reasoning
tasks. Our results show that knowledge purification methods significantly enhance knowledge dis-
tillation performance across different student models and datasets. The effectiveness in alleviating
knowledge conflicts is further verified. Furthermore, methods based on LLM routing demonstrate
outstanding performance on out-of-domain datasets, underscoring the potential of utilizing knowl-
edge purification to guide multi-teacher distillation across a broader spectrum.

Our contributions are summarized as follows:

• We identify the limitations of existing multi-teacher knowledge distillation frameworks,
highlighting knowledge conflicts and high resource demands that hinder effective knowl-
edge transfer.

• We introduce the concept of knowledge purification, which mitigates knowledge conflicts
and enhances training efficiency by consolidating the rationales from multiple teachers into
one coherent rationale. Five knowledge purification methods from different perspectives of
aggregation, routing, and RL-based selection.

• Extensive experiments verify improvements of proposed methods in distillation perfor-
mance and conflict mitigation. Further experiments on out-of-domain datasets illustrate
the potential of knowledge purification in facilitating the generalization of multi-teacher
knowledge distillation.

2 RELATED WORK

Multi-Teacher Knowledge Distillation Compared to utilizing single teacher, multi-teacher
knowledge distillation harnesses broad knowledge diversity and rich reasoning paths, thereby en-
hancing the capabilities and generalization performance of student models (Liu et al., 2020; Zhang
et al., 2024). TinyLLM (Tian et al., 2025) proposes a distillation paradigm that facilitates small
student LLM to learn from rationales generated by two teacher LLMs. (Xu et al., 2025) incorpo-
rates rejection sampling and habitual reasoning in distillation to effectively balance computational
cost and performance. These methods are constrained by knowledge conflicts among teacher LLMs,
underscoring effective strategies for resolving these conflicts during distillation.

LLM Routing In alignment with Mixture-of-Expert (MoE) (Jacobs et al., 1991; Collobert et al.,
2003; Jiang et al., 2024), LLM routing aims to select the optimal LLM from diver candidates for
a given question, enabling efficient activation of LLM ensembles. HybridLLM (Ding et al., 2024)
leverages a hybrid approach to optimize both cost and quality for LLM pairs. Similarly, Router-
LLM (Ong et al., 2024) explores effective methods for dynamic routing between a strong and a
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weak LLM. RouterDC (Chen et al., 2024) introduces dual contrastive learning and improves the
routing performance. Recent innovations further explore the structured router (Jin et al., 2025) and
the employment of reinforcement learning(Yue et al., 2025). Within the multi-teacher knowledge
distillation framework, LLM routing presents a promising approach for effective knowledge purifi-
cation.

3 FORMULATION

3.1 PRELIMINARIES

Generally, knowledge distillation uses the soft outputs/labels generated by the strong teacher model
T to transfer knowledge to a weak student model S. In this paper, we focus primarily on multiple
choice question answering problems in NLP, utilizing LLMs as the main subjects of our study.

Multiple Choice Question Answering In the k-multiple choice question answering task, given a
question q ∈ Q and a corresponding candidate options set O = {o1, o2, . . . , ok}, the objective of
LLMs is to select the correct option fromO that aligns with the ground truth option o∗ ∈ O. Besides,
LLMs are encouraged to generate rationales, which have been shown to significantly enhance their
performance (Wei et al., 2022). The answering process of an LLM M (either the teacher T or the
student S) is formulated as:

o = M(q,O, po), r = M(q,O, pr), (1)

where po and pr denote the prompt for predicting options and generating rationales, respectively.

Multi-Teacher Knowledge Distillation We consider the rationale generated by the teacher LLM
to be an embodiment of knowledge. We sample this rationale as rT = T (q,O, pr) from the teacher
T and construct the training set D = {(q,O, o∗, rT )} with |D| samples. The knowledge distillation
for LLM leveraging rationales (Hsieh et al., 2023) can be formulated as:

LKD = LPR + λLDL, (2)

where λ is a hyper-parameter balance between the prediction loss LPR and the distillation loss LDL.
The prediction loss LPR guides the student to learn directly from ground truth options and the distil-
lation loss LDL supervises the student to inherit knowledge from the teacher’s rationale. Details of
the knowledge distillation for LLM are introduced in Appendix A.

Compared to the single-teacher approach, multi-teacher knowledge distillation leverages an ensem-
ble of n teacher LLMs T = {T1, T2, . . . , Tn} to equip the student model with a broader spectrum
of knowledge, leading to stronger generalization capabilities. In this context, we expand the train-
ing set to D = {(q,O, o∗,R)}, where R = {rT1 , rT2 , . . . , rTn} denotes the rationales generated
by each teacher LLM for the question q and corresponding answer options O. (Tian et al., 2025)
extends the knowledge distillation framework to incorporate multiple teachers as:

LMTKD = LPR +

n∑
j=1

λjLDLj , (3)

where LDLj is the distillation loss with respect to the j-th teacher’s rationale and λj denotes the
importance weight for Tj .

3.2 MOTIVATION ANALYSIS

Although most frameworks are originally designed to incorporate a fixed number of teacher LLMs
for knowledge distillation, practically, we expect to enhance the capability and expertise of the stu-
dent model by enlarging the teacher ensemble. We consider TinyLLM as a representative method
and conduct experiments to explore its adaptability to more teacher LLMs, as detailed in Appendix
D.1. Results in Fig. 1 exhibit that, in these scenarios, the performance of TinyLLM significantly
declines as the number of teacher LLMs further increases, which indicates the detrimental impact
of knowledge conflicts among teacher LLMs. Furthermore, increasing the number of teachers can
impose additional challenges related to computational resources and hyperparameter tuning. There-
fore, there is an urgent need to develop a new framework to address these issues.

3
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Figure 2: An illustration of five knowledge purification methods proposed in our work.

3.3 KNOWLEDGE PURIFICATION

In this section, we introduce the concept of Knowledge Purification in multi-teacher knowledge dis-
tillation. The knowledge purification process integrates the rationales generated by multiple teacher
LLMs into one single, consolidated rationale, which is subsequently employed during the distilla-
tion. Specifically, given the rationales generated by each teacher LLM as R = {rT1 , rT2 , . . . , rTn},
the process of knowledge purification can be expressed as:

rP = f(R) = f(rT1
, rT2

, . . . , rTn
), (4)

where f(·) denotes the purification process and rP denotes the consolidated rationale. Through
knowledge purification, we aim to mitigate knowledge conflicts among the teacher LLMs and en-
hance distillation efficiency. Our study investigates the impact of different purification methods on
the performance of knowledge distillation.

Incorporating knowledge purification within the multi-teacher knowledge distillation framework al-
ters the training objective, formulated as:

LMTKD-KP = LPR + λLDL-KP, (5)
where LDL-KP denotes the distillation loss calculated using the consolidated rationale rP:

LDL-KP = − 1

|D|
∑

(q,O,R)∈D

|rP|∑
i=1

log p(rPi|r<i, q,O, pr). (6)

4 METHODOLOGY

As shown in Fig. 2, we propose five methods to perform knowledge purification defined by Eq. 4.

Knowledge Aggregation We first consider performing knowledge purification by employing an
aggregator, which is a global LLM that accepts all the rationales generated by teacher LLMs
and combines the instructions to generate a consolidated rationale. We use an instruction-tuning
paradigm (Wei et al., 2021) to provide instruction prompts containing in-context example as input
and perform aggregation in a generation fashion.

LLM Routing Build upon a pool of candidate LLMs, an LLM router is designed to allocate
an input question to the most appropriate LLM. Unlike aggregation, the key aspect of routing is
selecting one rationale based on the probabilities predicted by the router as:

rP = argmax
rTi

Pθ(rTi |q). (7)

In this paper, we design three representative LLM routing methods for knowledge purification:

• Plackett-Luce ranking We use a Plackett-Luce (PL) model (Luce et al., 1959; Plackett,
1975) for ranking multiple teacher LLMs. In the Plackett-Luce model, the probability of
selecting a candidate rationale is modeled in a softmax relationship:

Pθ(rTi
|q) = eξi∑n

j=1 e
ξj
, i = 1, . . . n, (8)

4
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We learn the PL coefficients ξ = {ξi : i = 1, . . . n} by solving:

argmin
ξ

∑
q′,ygt

[ω′ · ℓ(ygt,
eξ∑n

j=1 e
ξj
)], (9)

where ℓ denotes the cross-entropy loss, and ygt denotes the ground truth label for the opti-
mal selection. Inspired by (Ong et al., 2024), we use the weight ω′ to measure the similarity

between the input question q and a question q′ in the database as ω′ = γ
1+ ϵ·ϵ′

∥ϵ∥·∥ϵ′∥ , where
γ is a hyper-parameter, and ϵ and ϵ′ denote text embeddings for q and q′, respectively.

• PLM classifier We adopt a pre-trained language model (PLM) to extract textual features
for standard text classification. Specifically, we employ a PLM encode the input question q
into a semantic embedding hCLS which is derived from the final hidden state corresponding
to the special classification token (CLS). Subsequently, we use a two-layer perceptron to
predict the probabilities of routing to each rationales rTi ∈ R as:

Pθ(rTi
|q) = eWi2(Wi1hCLS+bi1)+bi2∑n

j=1 e
Wj2(Wj1hCLS+bj1)+bj2

, i = 1, . . . n, (10)

where Wi and bi denote the parameters of the MLP corresponding to Ti.
• Similarity-based router We follow RouterDC (Chen et al., 2024) to perform similarity-

based LLM routing. We construct n trainable LLM embeddings {ki : i ∈ 1, . . . , n} and
calculate the cosine similarities between the question embedding and LLM embeddings for
routing:

Pθ(rTi
|q) = esim⟨E(q),ki⟩∑n

j=1 e
sim⟨E(q),kj⟩

, i = 1, . . . n, (11)

where E denotes a language encoder, and sim⟨·, ·⟩ denotes the cosine similarity. The router
is trained with two contrastive losses.

Details of all LLM routing methods are introduced in Appendix B.2.

RL-based Teacher Selection Inspired by (Yuan et al., 2021), we adopt a reinforcement learning
(RL) framework to dynamically select teacher LLMs for knowledge purification. We define the state
si to encapsulate characteristics of the question q and the rationales of the i-th teacher LLMs rTi

as:

si = [E(q), E(rTi
) · I(Ti(q,O, po) = o∗)] ∈ R2d, (12)

where E is a language encoder, and I(Ti(q,O, po) = o∗) indicates whether the teacher Ti answers
correctly. We design the policy function πθ as:

πθ(si, ai) = aiσ(Wisi + bi) + (1− ai)(1− σ(Wisi + bi)), (13)

where σ denotes the sigmoid function, and the action ai ∈ {0, 1} indicates whether to select the
teacher Ti. Consider the definition of knowledge purification, we adopt the teacher LLM that re-
ceives the highest prediction score σ(Wisi + bi) and use it to guide the distillation process.

The trainable parameter of the teacher selector θ = {W ∈ Rn×2d,b ∈ Rn×1} is optimized using
the standard policy gradient method:

θ ← θ + β
∑
i

r
∑
q∈Q
∇θπθ(si, ai), (14)

where β denotes the learning rate. The reward r = −LPR − LDL is computed based on the perfor-
mance of the student model. During training, we alternately perform the knowledge distillation and
the RL training. Detailed training algorithm is represented in Appendix B.3.

5 EXPERIMENTS

Models We consider a multi-teacher ensemble of four LLMs: FLAN-T5 xlarge (2.85B), Llama
2-chat (Touvron et al., 2023)(7B), BioMistral-7B (Labrak et al., 2024), and Llama-3.1-8B-Instruct
(Dubey et al., 2024). We conduct experiments using FLAN-T5 (Chung et al., 2024) small (77M),
base (248M), and large (783M) as student models, respectively.

5
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Table 1: Overall performance of multi-teacher knowledge distillation on four datasets. The best
results across different datasets are highlighted in bold, with the second-best results are underlined.
Average denotes average accuracy.

Setting Method OBQA ARC Riddle PQA Average

Teacher

FLAN-T5 xlarge 69.20 68.24 53.73 71.50 65.67
Llama 2-chat 54.60 43.35 43.73 54.50 49.05
BioMistral-7B 51.80 51.59 23.14 73.25 49.95
Llama-3.1-8B-Instruct 65.60 71.67 60.98 75.00 68.31

FL
A

N
-T

5
sm

al
l(

77
M

)
as

St
ud

en
t

Inference 16.60 19.31 13.33 28.00 19.31
Fine-tuning 45.60 31.76 49.22 47.50 43.52
Distilling-Step-by-Step 41.00 30.73 44.90 49.25 41.47
TinyLLM 40.60 30.56 44.12 54.25 42.38

Knowledge Aggregation 40.40 30.47 43.92 53.25 42.01
Plackett-Luce Ranking 42.00 31.76 45.69 50.50 42.49
PLM Classifier 44.20 30.64 49.22 53.75 44.45
Similarity-based Router 48.60 32.19 49.61 52.25 45.66
Teacher Selection 46.80 30.39 48.82 52.50 44.63

FL
A

N
-T

5
ba

se
(2

48
M

)
as

St
ud

en
t

Inference 31.00 23.00 30.78 46.00 32.70
Fine-tuning 61.00 43.61 56.86 51.00 53.12
Distilling-Step-by-Step 59.00 46.01 59.41 52.50 54.23
TinyLLM 58.80 46.18 58.82 47.25 52.76

Knowledge Aggregation 58.00 45.75 58.43 51.50 53.42
Plackett-Luce Ranking 62.40 46.27 58.63 54.75 55.51
PLM Classifier 63.60 46.35 59.22 55.00 56.04
Similarity-based Router 65.60 46.35 60.78 53.50 56.56
Teacher Selection 65.00 46.70 61.76 53.25 56.68

FL
A

N
-T

5
la

rg
e

(7
83

M
)

as
St

ud
en

t

Inference 50.40 51.07 39.80 45.50 46.69
Fine-tuning 72.00 60.26 67.45 53.00 63.18
Distilling-Step-by-Step 71.60 60.00 68.43 51.00 62.76
TinyLLM 68.80 59.83 67.25 54.25 62.53

Knowledge Aggregation 71.40 59.74 68.63 53.50 63.32
Plackett-Luce Ranking 72.60 59.48 69.41 56.50 64.50
PLM Classifier 74.20 59.66 68.24 62.50 66.40
Similarity-based Router 76.60 60.60 70.59 61.00 67.20
Teacher Selection 75.20 61.12 70.39 63.50 67.55

Datasets We conduct experiments on four multiple choice question answering datasets in com-
monsense reasoning and biomedical reasoning. For commonsense reasoning, we consider Open-
BookQA (OBQA) (Mihaylov et al., 2018), AI2 Reasoning Challenge (ARC) (Clark et al., 2018),
and RiddleSense (Riddle) (Lin et al., 2021). For biomedical reasoning, we consider PubMedQA
(PQA) (Jin et al., 2019). To ensure a fair comparison among knowledge purification methods, we
randomly retain 80% of the training set samples for distillation training, and the remaining 20%
serve as the public set. A joint dataset, composed of the public set of each dataset, is utilized for
training LLM routers. Details of dataset construction is provided in Appendix C.2.

Metrics We calculate the accuracy of the distilled student model in multiple choice question an-
swering tasks as the primary performance metric:

ACC =
1

|Q|
∑
q∈Q

I(S(q,O, po) = o∗). (15)

Furthermore, we assess the effectiveness of knowledge purification methods in mitigating knowl-
edge conflicts among teacher LLMs by calculating the Conflict Mitigation Value (CMV). We define
CMV as the average accuracy improvement achieved through knowledge purification in distillation
training with a series of incremental teacher LLMs, compared to the baseline TinyLLM framework:

CMV =
1

n− 1

n∑
i=2

(ACCKP,|T |=i − ACCTinyLLM,|T |=i). (16)

6
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Table 2: Comparison of knowledge purification methods from a practical perspective. Each method
is analyzed in: Prior, Parameters, Training Necessity, Transferability, and Latency.

Method Prior Parameters Training Necessity Transferability Latency

Knowledge Aggregation q,R >10B ✗ ✓ s
Plackett-Luce Ranking q ∼278M ✗ ✓ s
PLM Classifier q ∼278M ✓ ✓ ms
Similarity-based Router q ∼278M ✓ ✓ ms
Teacher Selection q,R ∼278M ✓ ✗ min

Implementation details For knowledge distillation, we use the AdamW (Loshchilov & Hutter,
2019) optimizer and set the learning rate to 5 × 10−5, the batch size to 8, and the maximum input
length to 512. We find that λ = 4 works best for balanced training. We employ GPT-4 (Achiam et al.,
2023) as the knowledge aggregator. mDeBERTaV3-base (He et al., 2021) is adopted as the language
encoder for the PLM classifier, the similarity-based router and the RL-based teacher selector. Details
of applying knowledge purification approaches are included in Appendix B. All experiments are
conducted on four NVIDIA A100 80GB GPUs.

5.1 RESULTS

We conduct comprehensive experiments to evaluate the performance of multi-teacher knowledge
distillation employing knowledge purification methods. Our comparison includes the proposed
methods against the original teacher LLMs and four baseline approaches. These baselines consist
of direct inference, fully fine-tuning the student model, Distilling-Step-by-Step (Hsieh et al., 2023)
which leverages teacher’s rationale as additional supervision, and TinyLLM (Tian et al., 2025) which
integrates all rationales generated by all teacher LLMs. Details of baseline approaches are included
in Appendix C.3. The overall experimental results are presented in Tab. 1.

From a performance perspective, no single method demonstrates a significant advantage over the
others. Overall, the similarity-based router and the RL-based teacher selection consistently achieve
the highest average accuracies, ranking either first or second across the distillation experiments
involving all three student models. For distilling the FLAN-T5 small model, the similarity-based
router attains the highest average accuracy of 45.66%, exceeding baselines by at least 4.9%. For
distilling the FLAN-T5 base and FLAN-T5 large models, the RL-based teacher selection exhibits
superior performance, surpassing the best baseline by 4.5% and 6.9%, respectively.

Generally, the implementation of the knowledge purification method demonstrates advantages over
the baseline, underscoring its positive impact on knowledge distillation. The performance of LLM
routing is exemplary, while the PL ranking shows slightly weaker results compared to the other two
LLM routers. In contrast, the overall performance of the knowledge aggregation method remains
relatively inferior, with no significant improvement observed. This suggests that, despite the strong
capacity of the aggregator (e.g., GPT-4), the enhancing effect of the consolidated rationale through
aggregation on knowledge distillation remains uncertain.

Compared to the teacher LLMs, the distilled 783M student model exceeds the average accuracy
of three teachers and ranks second only to Llama-3.1-8B-Instruct, illustrating the effectiveness of
knowledge purification. Additionally, we observe that knowledge purification yields more substan-
tial improvements in larger student models. This can be attributed to the stronger capacity of larger
models to learn from the generated rationales, leading to the notable outcomes achieved through our
targeted purification approaches. In contrast, smaller models tend to focus primarily on fitting the
final option, which limits the enhancements gained from knowledge purification.

5.2 QUALITATIVE ANALYSIS ON KNOWLEDGE PURIFICATION METHODS

In this section, we perform a systematic analysis on the proposed knowledge purification methods
from a practical perspective. We consider the following metrics to evaluate each methods: Prior
refers to the input of each model; Parameters refers to additional amount of parameters introduced
for purification; Training Necessity refers to whether training is required; Transferability refers
to whether the method can be applied to a new dataset without requiring additional training; and
Latency refers to the time scale required for processing a single instance of knowledge purification.
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Figure 3: Evaluation of knowledge purification methods with an increasing number of teacher
LLMs. We visualize the CMV of knowledge aggregation as an example, represented by the signed
area of the shaded region (positive when above TinyLLM and negative when below).

Table 3: Adaptability of knowledge purification methods toward multiple teacher LLMs, evaluated
in Conflict Mitigation Value (CMV).

Method CMV77M student CMV248M student CMV783M student

Knowledge Aggregation −0.003 −0.007 −0.004
Plackett-Luce Ranking +0.001 +0.012 +0.010
PLM Classifier +0.018 +0.014 +0.021
Similarity-based Router +0.025 +0.020 +0.032
Teacher Selection +0.020 +0.019 +0.029

We present our analysis in Tab. 2. For priors, LLM routing methods require only the question as
input and do not necessitate pre-sampling rationales from the teacher LLM. This enables us to lever-
age pretrained LLM routers to guide rationale sampling in multi-teacher knowledge distillation as
further demonstrated in Section 5.4. Aside from knowledge aggregation, which employs a strong
LLM (e.g., GPT-4) for synthesis, other methods only introduce additional parameters on the size of
the PLM. The training process of the teacher selector is closely coupled with rewards from knowl-
edge distillation, necessitating retraining when applied to new datasets. This training also introduces
a significant delay in the implementation of RL-based teacher selection, considerably exceeding the
millisecond-level delay of the PLM classifier and the similarity-based router.

5.3 ADAPTABILITY TOWARD MULTIPLE TEACHER LLMS

We further evaluate the adaptability of knowledge purification methods in distillation training with
a series of incremental teacher LLMs. We adopt the same experimental setup we used when re-
vealing the knowledge conflict of TinyLLM. The evaluation result is visualized in Fig. 3 (detailed
in Appendix D.2). Tab. 3 demonstrates the Conflict Mitigation Value of each method in mitigating
knowledge conflicts.

We observe that applying knowledge aggregation reports negative CMV for all three student models,
suggesting that it fails to effectively mitigate knowledge conflicts. In contrast, all LLM routing
methods and RL-based teacher selection report positive CMV, indicating their potential in alleviating
knowledge conflicts. Notably, the similarity-based router achieves the highest CMV across all three
student models, demonstrating its superior adaptability to an incremental multi-teacher ensemble.

5.4 ROUTER-GUIDED OUT-OF-DOMAIN KNOWLEDGE DISTILLATION

Grounded in knowledge purification, we perform out-of-domain knowledge distillation. We exclude
the knowledge aggregation which does not involve training and RL-based teacher selection with
limited transferability. Instead, we focus on the proposed LLM routing approaches, as the gener-
alization ability for out-of-domain data is a crucial metric for assessing the effectiveness of LLM
routers. Physical Interaction Question Answering (PIQA)(Bisk et al., 2020) and BioASQ (Tsatsa-
ronis et al., 2015) serve as two out-of-domain datasets, which represent commonsense reasoning
and biomedical reasoning, respectively. As illustrated in Tab. 4, utilizing LLM routers to guide
knowledge distillation yields strong generalization ability. The similarity-based router achieves the

8
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Table 4: Experimental results on out-of-domain datasets. We verify the potential of utilizing LLM
routing methods to guide multi-teacher knowledge distillation on out-of-domain data. The best
results are highlighted in bold, with the second-best results are underlined.

Setting Method PIQA BioASQ

Teacher

FLAN-T5 xlarge 58.43 65.85
Llama 2-chat 60.50 69.92
BioMistral-7B 67.46 90.24
Llama-3.1-8B-Instruct 70.84 88.62

FLAN-T5 small (77M)
as Student

Inference 20.78 47.97
Fine-tuning 42.33 78.86
Distilling-Step-by-Step 49.29 81.30
TinyLLM 49.84 75.61

Plackett-Luce Ranking 52.77 80.47
PLM Classifier 50.05 82.11
Similarity-based Router 53.97 82.11

FLAN-T5 base (248M)
as Student

Inference 30.47 57.72
Fine-tuning 47.55 89.43
Distilling-Step-by-Step 55.93 86.18
TinyLLM 56.80 78.05

Plackett-Luce Ranking 63.98 86.99
PLM Classifier 59.63 85.37
Similarity-based Router 63.33 90.24

FLAN-T5 large (783M)
as Student

Inference 51.90 63.41
Fine-tuning 58.43 90.24
Distilling-Step-by-Step 60.72 86.99
TinyLLM 68.88 82.93

Plackett-Luce Ranking 68.77 87.80
PLM Classifier 67.90 83.74
Similarity-based Router 69.53 91.87

highest accuracy across most settings, significantly exceeding baselines. Besides, the PL ranking
outperforms the PLM classifier in overall performance and demonstrates robust generalization.

It is worthy noting that LLM routing approaches only require the question as input, eliminating
the need for pre-sampling responses from teacher LLMs. When applied to a broader spectrum of
out-of-domain data, high-performing LLM routers can effectively direct the sampling process of a
multi-teacher ensemble, thereby facilitating subsequent knowledge distillation. This approach sig-
nificantly reduces computational costs and resource consumption during the sampling phase while
effectively alleviating knowledge conflicts and enhancing the performance of the distilled model.
This presents a promising framework for the rapid and flexible implementation of multi-teacher
knowledge distillation and the deployment of powerful yet lightweight models.

6 CONCLUSION

In this paper, we tackle the challenges inherent in multi-teacher knowledge distillation frameworks,
specifically addressing knowledge conflicts and high resource demands that hinder effective knowl-
edge transfer to student models. We introduce the concept of Knowledge Purification, aimed at
reducing divergent reasoning paths among teachers and enhancing distillation efficiency by consoli-
dating the rationales from multiple teacher LLMs. We propose five methods to facilitate knowledge
purification from distinct perspectives. Extensive experiments across commonsense and biomed-
ical reasoning tasks demonstrate that proposed methods significantly enhance the performance of
distilled models while effectively mitigating knowledge conflicts. Notably, the approach based on
LLM routers showed exceptional performance on out-of-domain datasets, underscoring its broad
applicability and practical value. In summary, our findings contribute to the advancement of multi-
teacher knowledge distillation frameworks, paving the way for the practical deployment of efficient
and powerful lightweight models.
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soning with large language models, a survey. CoRR, 2024.

Robin L Plackett. The analysis of permutations. Journal of the Royal Statistical Society Series C:
Applied Statistics, 24(2):193–202, 1975.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy Lin. Distilling task-
specific knowledge from bert into simple neural networks. arXiv preprint arXiv:1903.12136,
2019.

11

https://aclanthology.org/D19-1259/
https://aclanthology.org/2021.findings-acl.131/
https://aclanthology.org/D18-1260/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yijun Tian, Yikun Han, Xiusi Chen, Wei Wang, and Nitesh V Chawla. Beyond answers: Trans-
ferring reasoning capabilities to smaller llms using multi-teacher knowledge distillation. In Pro-
ceedings of the Eighteenth ACM International Conference on Web Search and Data Mining, pp.
251–260, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

George Tsatsaronis, Georgios Balikas, Prodromos Malakasiotis, Ioannis Partalas, Matthias
Zschunke, Michael R Alvers, Dirk Weissenborn, Anastasia Krithara, Sergios Petridis, Dimitris
Polychronopoulos, et al. An overview of the bioasq large-scale biomedical semantic indexing and
question answering competition. BMC bioinformatics, 16(1):138, 2015.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Jingxian Xu, Mengyu Zhou, Weichang Liu, Hanbing Liu, Shi Han, and Dongmei Zhang. Twt:
Thinking without tokens by habitual reasoning distillation with multi-teachers’ guidance. arXiv
preprint arXiv:2503.24198, 2025.

Fei Yuan, Linjun Shou, Jian Pei, Wutao Lin, Ming Gong, Yan Fu, and Daxin Jiang. Reinforced
multi-teacher selection for knowledge distillation. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pp. 14284–14291, 2021.

Murong Yue. A survey of large language model agents for question answering. arXiv preprint
arXiv:2503.19213, 2025.

Yanwei Yue, Guibin Zhang, Boyang Liu, Guancheng Wan, Kun Wang, Dawei Cheng, and Yiyan
Qi. Masrouter: Learning to route llms for multi-agent systems. arXiv preprint arXiv:2502.11133,
2025.

Yuzhe Zhang, Huan Liu, Yang Xiao, Mohammed Amoon, Dalin Zhang, Di Wang, Shusen Yang, and
Chai Quek. Llm-enhanced multi-teacher knowledge distillation for modality-incomplete emotion
recognition in daily healthcare. IEEE Journal of Biomedical and Health Informatics, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DETAILS OF KNOWLEDGE DISTILLATION FOR LLM

Knowledge distillation (Hinton et al., 2015) is designed to facilitate the transfer of knowledge from
the teacher model to the student model. Unlike traditional deep learning, where soft labels can be
obtained from teacher models, LLMs are often treated as black-box models. In this context, we typ-
ically regard the rationales generated by the teacher LLM as the embodiment of knowledge.(Hsieh
et al., 2023) We sample the rationale generated by the teacher LLM T as rT = T (q,O, pr) and
construct the training set D = {(q,O, o∗, rT )} with |D| samples. We expect the student model
to inherit knowledge from the teacher’s rationale and supervise this process using distillation loss,
which is defined in the form of the cross-entropy loss as:

LDL = − 1

|D|
∑

(q,O,rT )∈D

|rT |∑
i=1

log p(rT i|r<i, q,O, pr), (17)

where |rT | denotes the number of tokens in the teacher’s rationale, and p(rT i|r<i, q,O, pr) denotes
the probability of generating token rT i, given the inputs and the already generated tokens. Besides,
a prediction loss is introduced in training the student model as:

LPR = − 1

|D|
∑

(q,O,o∗)∈D

|o∗|∑
i=1

log p(o∗i |o<i, q,O, pr), (18)

where |o∗| denotes the number of tokens in the ground truth option, and p(rT i|r<i, q,O, pr) denotes
the probability of generating token o∗i , given the input and the already generated tokens.

The global knowledge distillation process is formulated as:

LKD = LPR + λLDL, (19)

where λ is a hyper-parameter balance between the prediction loss LPR and the distillation loss LDL.

B DETAILS OF KNOWLEDGE PURIFICATION APPROACHES

B.1 KNOWLEDGE AGGREGATION

We employ the powerful proprietary LLM — GPT-4 (Achiam et al., 2023) as the knowledge aggre-
gator and use an instruction-tuning paradigm (Wei et al., 2021) to guide GPT-4 to perform aggrega-
tion in a generation fashion. Fig. 4 shows the prompt used for knowledge aggregation. In practice,
we pre-label 10 knowledge aggregation samples and randomly select one as the in-context example
during inference.

B.2 LLM ROUTING

Plackett-Luce ranking The Plackett-Luce (PL) model was initially introduced by Plackett (Plack-
ett, 1975) to rank the horses in gambling. It has since been applied to describe the processes of rank-
ing and selecting multiple candidate items in various domains. Notably, when the number of items
is limited to two, the Plackett-Luce model simplifies to the Bradley-Terry (BT) model (Bradley &
Terry, 1952). Chatbot Arena Platform (Chiang et al., 2024) is built based on the ranking of LLMs
by the Bradley-Terry model. The ranking is formulated as estimating the Bradley-Terry coefficient
ξ:

argmin
ξ

E(A,H)[ℓ(H,
1

1 + eξA1
−ξA2

)], (20)

where ℓ denotes the binary cross-entropy loss. A and H denote the LLM pair and the human re-
sponse. In our work, we consider the Plackett-Luce ranking and extend the framework to multi-
teacher routing. We transform the problem into a cross-entropy loss optimization problem weighted
by text similarity. We learn the PL coefficients ξ = {ξi : i = 1, . . . n} by solving Eq. 9, where
ygt denotes the ground truth label for the optimal selection of the rationales and is represented in
an one-hot encoding format. We consider the description generated by the teacher model that pro-
duces the minimum number of tokens while making correct selections as the optimal choice, taking
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# Instruction

As an expert synthesizer of information, you possess the ability to distill complex ideas into clear and concise

insights. Your task is to analyze and summarize a series of reasoning rationales into a single cohesive rationale.

Please ensure that the final summary captures the essential elements and nuances of the original reasoning, while

maintaining clarity and coherence.

# In-Context Example

Here is an example:

Input: Question: An astronomer observes that a planet rotates faster after a meteorite impact. Which is the most

likely effect of this increase in rotation?\nAnswer Choices:\n(a) Planetary density will decrease.\n(b) Planetary

years will become longer.\n(c) Planetary days will become shorter.\n(d) Planetary gravity will become stronger.\n

1. (c) Planetary days will become shorter. After a meteorite impact, the rotation of the Earth is increased.

Planetary days will become shorter after a meteorite impact.

2. Let's think step by step.\nWhat happens to the planetary rotation after the impact?\nRotation of the planet

will increase.\nWhat happens to the planetary days after the impact?\nDays will become shorter.\nWhat happens to

the planetary years after the impact?\nPlanetary years will become longer.\nWhat happens to the planetary gravity

after the impact?\nGravity will become stronger.\nOption (a) is incorrect.\nOption (b) is incorrect.\nOption (d)

3. To solve this question, let's break it down step by step:\n\n1. **Initial Condition**: A planet has a certain

angular momentum due to its rotation.\n2. **Meteorite Impact**: When a meteorite impacts the planet, it transfers

some of its momentum to the planet.\n3. **Transfer of Momentum**: This transferred momentum is in the form of

linear momentum, which also includes an angular component due to the impact's location and angle.\n4.

**Conservation of Angular Momentum**: The total angular momentum of a closed system remains constant. In this

case, the planet's angular momentum increases due to the transferred momentum.\n5. **Effect of Increased Angular

Momentum**: An increase in angular momentum results in a faster rotation period, as the planet's rotation speed

increases.\n6. **Result**: If the planet's rotation period decreases, its days will become

shorter.\n\nConsidering the answer choices:\n\n- (a) Planetary density will decrease: This is unlikely, as the

impact does not necessarily affect the planet's overall density.\n- (b) Planetary years will become longer: This

is incorrect, as a shorter rotation period would result in shorter years, not longer.\n- (c) Planetary days will

become shorter: This is the correct answer, as the increased rotation

4. The most likely effect of this increase in rotation is that (c) planetary days will become shorter. The

reasoning behind this is that the impact of the meteorite would transfer energy to the planet, causing it to

rotate faster. This increase in rotation would result in shorter planetary days.</s>

Create a cohesive rationale that captures the essential points from each model while ensuring clarity and logical

flow. Output: The observed increase in a planet‘s rotation following a meteorite impact leads to the conclusion

that planetary days will become shorter. This occurs due to the transfer of momentum from the meteorite to the

planet, which enhances its angular momentum. According to the principle of conservation of angular momentum, an

increase in rotation speed results in a shorter rotation period.\nTo clarify the implications of this

phenomenon:\n1. **Initial State**: The planet has a defined angular momentum based on its current rotation.\n2.

**Impact Event**: The meteorite impacts the planet, imparting additional momentum.\n3. **Angular Momentum

Conservation**: The total angular momentum remains constant, but the planet's rotation speed increases due to the

added momentum.\n4. **Resulting Effect**: With an increased rotation speed, the duration of a planetary day is

reduced.\n\nTherefore, the correct answer is that planetary days will become shorter (option c). Other options,

such as changes in density, lengthening of years, or strengthening of gravity, do not accurately reflect the

consequences of the increased rotation from the impact.

# Query

Input: Question: {QUESTION}

1. {T5_RATIONALE}

2. {LLAMA2_RATIONALE}

3. {LLAMA3_RATIONALE}

4. {BIOMISTRAL_RATIONALE}

Create a cohesive rationale that captures the essential points from each model while ensuring clarity and logical

flow. Output:

Figure 4: Prompt used for GPT-4 to perform knowledge aggregation, consisted of global instruction,
in-context example, and query.

into account the preference for computational efficiency and cost reduction in practical applications.

ω′ = γ
1+ ϵ·ϵ′

∥ϵ∥·∥ϵ′∥ measures the similarity between the input question q and a question q′ in the
database. Following (Ong et al., 2024), we adopt the exponential scale and choose γ = 10.

It is important to note that no training is necessary for the ranking, and all computations are per-
formed during inference. We will elaborate on the specific inference.

Proposition 1. Let ξ satisfy Eq. 9. Then, it satisfies the following condition:

eξi∑n
j=1 e

ξj
=

∑
q′∈Qi

ω′∑
q′ ω

′ , i = 1, . . . n,

s.t. Qi = {q′ : Ti is optimal for q′.}
(21)

Proof. Note:

y(i) =
eξi∑n
j=1 e

ξj
, i = 1, . . . n,

g(y) =
∑
q′,ygt

[ω′ · ℓ(ygt,
eξ∑n

j=1 e
ξj
)] =

∑
q′,ygt

[ω′ · ℓ(ygt,y)],

h(y) = (

n∑
i=1

y(i))− 1.
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To maximize g(y) subject to h(y) = 0, we consider the Lagrangian:

L(y, η) = g(y) + ηh(y),

where η is the Lagrange multiplier. We take the partial derivatives of L with respect to y and η, and
set them to zero:

∂L
∂y(i)

= 0,
∂L
∂η

= 0.

This yields the system of equations:∑
q′∈Qi

ω′ ∂ logy(i)

∂y(i)
− η = 0, i = 1, . . . n,

(

n∑
i=1

y(i))− 1 = 0.

From this, we derive:

eξi∑n
j=1 e

ξj
= y(i) =

∑
q′∈Qi

ω′∑
i

∑
q′∈Qi

ω′ =

∑
q′∈Qi

ω′∑
q′ ω

′ , i = 1, . . . n.

Thus, it satisfies the condition in Eq. 21.

In practical inference, we perform Plackett-Luce ranking based on Eq. 21.

PLM classifier For training the PLM classifier, the definition of the ground truth label ygt we use
is consistent with that in the Plackett-Luce ranking. We utilize mDeBERTaV3-base (He et al., 2021)
as the language encoder and extract the semantic embedding hCLS for the input question. We use a
two-layer MLP with a hidden layer dimension of 128 to predict the routing probabilities based on
hCLS. We perform full-parameter training and train the classifier for 5000 epochs, using the AdamW
(Loshchilov & Hutter, 2019) optimizer with batch size 16 and learning rate 5× 10−5.

Similarity-based router We follow RouterDC (Chen et al., 2024) to perform similarity-based
LLM routing and adopt two contrastive losses to train the router. For each question in training,
we assign a binary score in {0, 1} to the LLM based on correctness, and sample the LLM with the
highest and lowest scores respectively (randomly selecting one in the case of ties) to calculate the
sample-LLM contrastive loss as:

Lsample-LLM =
∑
q

− log
esim⟨E(q),k+⟩

esim⟨E(q),k+⟩ + esim⟨E(q),k−⟩ , (22)

where k+ and k− denote the LLM embedding of the LLM with the highest and lowest scores,
respectively. The sample-sample contrastive loss is introduced to enhance the robustness of the
vector representation, thereby promoting more stable training. We simplify its computation by di-
rectly classifying questions based on their respective datasets, as opposed to the semantic clustering
approach employed in RouterDC:

Lsample-sample =
∑
q

− log
esim⟨E(q),E(q+)⟩

esim⟨E(q),E(q+)⟩ +
∑

q−∈Q− esim⟨E(q),E(q−)⟩ , (23)

where q+ and Q− denote an in-group question and an out-group set of the question q, respectively.

The training objective of the router consists of sample-LLM and sample-sample losses as:

Lsim = Lsample-LLM + Lsample-sample. (24)

We adopt mDeBERTaV3-base (He et al., 2021) as the language encoder to encode the input question.
The dimension of the question embedding and the LLM embedding is 768. We train the model for
5000 epochs, using the AdamW (Loshchilov & Hutter, 2019) optimizer with a batch size of 16 and
a learning rate of 2× 10−5.
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Algorithm 1 Training the RL-based Teacher Selector
Input: Training datasetD, a student model initialized as Θs = Θs

0, and a teacher selector initialized as θ = θ0;
hyper-parameters: λ, epoch number L, mini-batch size b and learning rate β.
1: for epoch l = 1 to L do
2: Shuffle D to obtain a new training sequence.
3: for each mini-batch B ∈ D do
4: Samples actions for each q ∈ B with the teacher selector to determine the selected teacher Ti∗ by:
5: Compute the state si for each teacher Ti by Eq. 12;
6: i∗ ← argmaxi σ(Wisi + bi);
7: Allocate the actions ai based on the selection;
8: Stored (si, ai) to the episode historyH;
9: Update the parameter Θs of the student model under the guidance of Ti∗ by Eq. 5.

10: for each (si, ai) ∈ H do
11: Compute reward r:
12: r ← −LPR − LDL;
13: Compute the policy function πθ(si, ai) by Eq. 13;
14: Update the parameter θ of the teacher selector by:
15: θ ← θ + β

∑
i r

∑
q∈Q∇θπθ(si, ai).

B.3 RL-BASED TEACHER SELECTION

Alg. 1 shows the training procedures of the RL-based teacher selector. During training, we alter-
nately perform knowledge distillation and train the teacher selector. We regard the teacher selector
as a broadly defined LLM router: it must simultaneously receive the question and the rationale, and
it can be optimized within a unified framework together with the knowledge distillation process.

For training the teacher selector, we set the the epoch number L to 2, the mini-batch size b to 8, and
the learning rate β to 5× 10−5.

C MORE EXPERIMENTAL DETAILS

C.1 DETAILS OF MODEL SELECTION

In our experiments, we choose the small (77M), base (248M) and large (783M) model of the FLAN-
T5 (Chung et al., 2024) series as student models. Due to computational resource constraint, we
consider a multi-teacher ensemble comprising four LLMs: FLAN-T5 xlarge (2.85B), Llama 2-chat
(Touvron et al., 2023)(7B), BioMistral-7B (Labrak et al., 2024), and Llama-3.1-8B-Instruct (Dubey
et al., 2024).

We construct the teacher LLM ensemble purposefully: For the student models, FLAN-T5 xlarge
serves as an homogeneous model with a larger number of parameters, while Llama 2-chat operates
as a heterogeneous model, also with a higher parameter size. BioMistral-7B contributes domain-
specific knowledge in biomedical reasoning, and Llama-3.1-8B-Instruct, as an updated version of
Llama 2-chat, offers enhanced performance and establishes a selection tendency that facilitates the
training of knowledge purification methods.

C.2 DETAILS OF DATASET CONSTRUCTION

Our experiments involve six multiple choice question answering datasets, comprising four in-
domain (ID) datasets: OpenBookQA (OBQA) (Mihaylov et al., 2018), AI2 Reasoning Challenge
(ARC) (Clark et al., 2018), RiddleSense (Riddle), PubMedQA (PQA) (Jin et al., 2019) along with
two out-of-domain (OOD) datasets: Physical Interaction Question Answering (PIQA) (Bisk et al.,
2020) and BioASQ (Tsatsaronis et al., 2015).

For a fair comparison, we divide each in-domain dataset into four subsets: training, testing, eval-
uation, and public sets. The testing and the evaluation set inherit from the original dataset. For
in-domain dataset, the training and the public sets are randomly partitioned from the training set of
the original dataset in a ratio of 4:1. The public sets from each in-domain dataset collectively form a
joint dataset comprising 2018 samples, used for training LLM routers. The remaining three subsets
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Table 5: Statistics of the datasets we used in our experiments. The numbers represent the sample
size of each partitions for each dataset.

Domain Dataset Train Test Valid Public

ID

OBQA 3965 500 500 992
ARC 893 1165 295 224
Riddle 2808 510 511 702
PQA 400 400 100 100

OOD PIQA 16113 919 919 -
BioASQ 976 123 109 -

(training, testing and evaluation) are employed for knowledge distillation. Tab. 5 summarizes the
division of both in-domain and out-of-domain datasets.

C.3 DETAILS OF BASELINES

In our experiments, we compare the proposed methods against four baseline approaches, including
Inference, which directly employs student model for evaluation; Fine-tuning, which fine-tunes the
student model using the ground truth options as labels; Distilling-Step-by-Step (Hsieh et al., 2023),
defined by Eq. 2, which leverages teacher’s rationale as additional supervision; and TinyLLM
(Tian et al., 2025), defined by Eq. 3, which integrates all rationales generated by teachers to train
the student model. For the Distilling-Step-by-Step, we train with four teacher LLMs individually
and report the best results for each dataset.

We do not include the standard knowledge distillation (Hinton et al., 2015) in the baselines because,
when applied to distilling LLMs, it merely replaces the ground truth labels with those generated by
the teacher LLM. This process is functionally similar to fine-tuning, and its theoretical performance
upper limit is lower than that of fine-tuning. Therefore, it is excluded from consideration.

(Xu et al., 2025) proposes a distillation framework TwT consists of two stages: Dual-Criteria Re-
jection Sampling and Habitual Reasoning Distillation. In the first stage, rationales produced by
multi-teacher LLMs are screened. However, TwT is not regarded as a baseline method or as a
knowledge-purification method in our paper, for three principal considerations: (1) The data screen-
ing in TwT can be interpreted as a combined approach that integrates a quality assessment process
using LLMs with a resampling process based on similarity. This approach contrasts with our incli-
nation to develop atomic methods within knowledge purification. In fact, the concept of introducing
additional models for evaluation and performing selection based on similarity in TwT echoes the
knowledge purification methods we propose. (2) TwT retains a pair of rationales from all rationales
generated by multiple teacher LLMs, introducing new requirements for the subsequent distillation
process, which does not align with the knowledge purification framework. (3) The quality evalua-
tion of rationales in TwT relies on the weighting of multiple qualitative factors produced by LLM,
which limits its generalization and real-time sampling capabilities. Nevertheless, the design motiva-
tion underlying TwT exhibits similarities with knowledge purification, and we anticipate to further
exploring knowledge distillation in conjunction with the TwT framework in future work.

D SUPPLEMENTARY RESULTS

D.1 EXTENDED EXPERIMENTS OF THE TINYLLM FRAMEWORK

TinyLLM (Tian et al., 2025) proposes a distillation paradigm that facilitates student model to learn
from rationales generated by two teacher LLMs. Specifically, it adopts the following loss function
when conduction multi-teacher knowledge distillation:

LTinyLLM = LPR +

n∑
j=1

λjLDLj , (25)

where λj is the importance weight for Tj .
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Table 6: Extended experimental results of TinyLLM as the number of teacher LLMs increases
from 1 to 4, where ‘+’ denotes the addition of the specified LLM as a teacher, and |T | denotes the
number of teacher LLMs participating in the distillation. The best results across different datasets
are highlighted in bold.

Student Teacher Setting |T | OBQA ARC Riddle PQA Average

FLAN-T5 small
77M

FLAN-T5 xlarge 1 40.00 30.56 42.75 48.50 40.45
+ Llama 2-chat 2 46.80 30.21 43.92 49.50 42.61
+ BioMistral-7B 3 40.80 30.47 44.31 46.75 40.58
+ Llama-3.1-8B 4 40.60 30.56 44.12 50.50 41.45

FLAN-T5 base
248M

FLAN-T5 xlarge 1 59.00 44.89 58.24 52.25 53.59
+ Llama 2-chat 2 63.40 46.44 60.98 50.50 55.33
+ BioMistral-7B 3 59.00 45.75 58.04 49.75 53.13
+ Llama-3.1-8B 4 58.80 46.18 58.82 47.25 52.76

FLAN-T5 large
783M

FLAN-T5 xlarge 1 71.60 59.48 68.43 50.50 62.50
+ Llama 2-chat 2 73.20 59.91 68.82 52.50 63.61
+ BioMistral-7B 3 69.20 60.26 66.08 54.50 62.51
+ Llama-3.1-8B 4 68.80 59.83 67.25 54.25 62.53

The basic TinyLLM framework relies on merely two teacher LLMs, constraining the practical ap-
plication of knowledge distillation to improve the performance and domain-specific competencies
of lightweight models. To explore the adaptability of TinyLLM to more teacher LLMs, we perform
a series of extended experiments. We begin by using only the FLAN-T5 xlarge model as the teacher
LLM and progressively incorporate additional teacher LLMs. In total, we conduct four groups of
distillation training experiments with varying numbers of participating teachers. For a fair compari-
son, we set each λj as 4, 2, 1.33, and 1 for the cases of 1, 2, 3, and 4 teachers, respectively. Tab. 6
presents the detailed results of these extended experiments.

Our observations indicate that as the number of teacher models further increases, the performance of
the distilled student models actually declines. For all three student models, the best overall perfor-
mance is achieved when two teacher LLMs participate in the distillation process. When the number
of teacher LLMs reaches four, the performance of the distilled FLAN-T5 base model is even inferior
to that achieved with a single teacher. These findings contradict our initial expectation that increas-
ing the number of teachers would enhance knowledge diversity and generalization capabilities. We
attribute this performance degradation to the emergence of knowledge conflicts among the teachers,
emphasizing the critical need for knowledge purification.

D.2 SUPPLEMENTARY RESULTS OF ADAPTABILITY TOWARD MULTIPLE TEACHER LLMS

We adopt the same experimental setup in Appendix D.1 to evaluate the adaptability of knowledge
purification methods in distillation training with a series of incremental teacher LLMs. Tab. 7∼11
exhibit the complete results of the experiment.

D.3 CASE STUDY

We present a detailed case study and visualization of the knowledge purification process on the
OBQA dataset, as illustrated in Fig. 5.

E LIMITATIONS

Due to the limited computational resources, we only construct a teacher ensemble of four LLMs.
Although we deliberately select teacher LLMs — for example, BioMistral-7B —to supply domain-
specific knowledge in biomedical reasoning, it remains challenging to guarantee that the knowledge
represented by the teacher ensemble is comprehensive. In the practical application of multi-teacher
knowledge distillation, a larger number of teacher models would be more conducive to enhancing the
specialized domain capabilities of student models. A limited number of teacher LLMs constrains our
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Table 7: Knowledge distillation results as the number of teacher LLMs increases from 1 to 4, apply-
ing Knowledge Aggregation for knowledge purification. The best results across different datasets
are highlighted in bold.

Student Teacher Setting |T | OBQA ARC Riddle PQA Average

FLAN-T5 small
77M

FLAN-T5 xlarge 1 40.00 30.56 42.75 48.50 40.45
+ Llama 2-chat 2 39.80 30.21 43.73 51.25 41.25
+ BioMistral-7B 3 40.20 30.47 43.14 49.50 40.83
+ Llama-3.1-8B 4 40.40 30.47 43.92 53.25 42.01

FLAN-T5 base
248M

FLAN-T5 xlarge 1 59.00 44.89 58.24 52.25 53.59
+ Llama 2-chat 2 55.60 45.92 57.06 50.50 52.27
+ BioMistral-7B 3 58.20 46.35 58.63 50.75 53.48
+ Llama-3.1-8B 4 58.00 45.75 58.43 51.50 53.42

FLAN-T5 large
783M

FLAN-T5 xlarge 1 71.60 59.48 68.43 50.50 62.50
+ Llama 2-chat 2 69.60 59.06 66.47 49.50 61.16
+ BioMistral-7B 3 72.00 58.80 69.02 52.50 63.08
+ Llama-3.1-8B 4 71.40 59.74 68.63 53.50 63.32

Table 8: Knowledge distillation results as the number of teacher LLMs increases from 1 to 4, apply-
ing Plackett-Luce Ranking for knowledge purification. The best results across different datasets
are highlighted in bold.

Student Teacher Setting |T | OBQA ARC Riddle PQA Average

FLAN-T5 small
77M

FLAN-T5 xlarge 1 40.00 30.56 42.75 48.50 40.45
+ Llama 2-chat 2 40.20 30.64 43.33 49.75 40.98
+ BioMistral-7B 3 42.20 30.73 44.31 50.25 41.87
+ Llama-3.1-8B 4 42.00 31.76 45.69 50.50 42.49

FLAN-T5 base
248M

FLAN-T5 xlarge 1 59.00 44.89 58.24 52.25 53.59
+ Llama 2-chat 2 60.20 45.41 58.82 52.75 54.30
+ BioMistral-7B 3 63.60 45.58 58.63 52.25 55.02
+ Llama-3.1-8B 4 62.40 46.27 58.63 54.75 55.51

FLAN-T5 large
783M

FLAN-T5 xlarge 1 71.60 59.48 68.43 50.50 62.50
+ Llama 2-chat 2 72.00 59.83 68.82 50.50 62.79
+ BioMistral-7B 3 71.80 59.66 69.02 56.50 64.25
+ Llama-3.1-8B 4 72.60 59.48 69.41 56.50 64.50

ability to further assess the adaptability of knowledge purification methods across multiple teacher
models.

Knowledge distillation is a universal framework for transferring knowledge from powerful models
to weak ones. In this paper, we primarily focus on the NLP field and consider LLMs as the main
subjects of our study. The proposed knowledge purification methods are tailored to the characteris-
tics of LLM. Approaches such as LLM routing and teacher selection have the potential to generalize
to broader machine learning tasks, but specific implementation and evaluation still require further
investigation.

We leave the investigation of such scenarios to future work.

F THE USE OF LLMS

In this section, we clarify that no LLMs were employed in the writing or polishing of this paper. All
content presented herein are the result of original research and critical evaluation by the authors.
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Table 9: Knowledge distillation results as the number of teacher LLMs increases from 1 to 4, ap-
plying PLM Classifier for knowledge purification. The best results across different datasets are
highlighted in bold.

Student Teacher Setting |T | OBQA ARC Riddle PQA Average

FLAN-T5 small
77M

FLAN-T5 xlarge 1 40.00 30.56 42.75 48.50 40.45
+ Llama 2-chat 2 40.80 30.21 45.69 51.75 42.11
+ BioMistral-7B 3 43.60 30.39 48.63 52.50 43.78
+ Llama-3.1-8B 4 44.20 30.64 49.22 53.75 44.45

FLAN-T5 base
248M

FLAN-T5 xlarge 1 59.00 44.89 58.24 52.25 53.59
+ Llama 2-chat 2 61.20 46.27 58.63 52.25 54.59
+ BioMistral-7B 3 61.00 46.44 59.41 52.00 54.71
+ Llama-3.1-8B 4 63.60 46.35 59.22 55.00 56.04

FLAN-T5 large
783M

FLAN-T5 xlarge 1 71.60 59.48 68.43 50.50 62.50
+ Llama 2-chat 2 72.40 59.83 68.82 51.75 63.20
+ BioMistral-7B 3 72.80 59.66 69.02 60.00 65.37
+ Llama-3.1-8B 4 74.20 59.48 69.41 62.50 66.40

Table 10: Knowledge distillation results as the number of teacher LLMs increases from 1 to 4,
applying Similarity-based Router for knowledge purification. The best results across different
datasets are highlighted in bold.

Student Teacher Setting |T | OBQA ARC Riddle PQA Average

FLAN-T5 small
77M

FLAN-T5 xlarge 1 40.00 30.56 42.75 48.50 40.45
+ Llama 2-chat 2 42.00 30.47 46.08 49.75 42.08
+ BioMistral-7B 3 46.00 32.02 49.22 51.25 44.62
+ Llama-3.1-8B 4 48.60 32.19 49.61 52.25 45.66

FLAN-T5 base
248M

FLAN-T5 xlarge 1 59.00 44.89 58.24 52.25 53.59
+ Llama 2-chat 2 60.60 45.75 60.00 52.50 54.71
+ BioMistral-7B 3 63.80 46.35 60.20 53.00 55.84
+ Llama-3.1-8B 4 65.60 46.35 60.78 53.50 56.56

FLAN-T5 large
783M

FLAN-T5 xlarge 1 71.60 59.48 68.43 50.50 62.50
+ Llama 2-chat 2 74.00 59.83 69.41 54.25 64.37
+ BioMistral-7B 3 75.20 59.91 69.80 62.25 66.79
+ Llama-3.1-8B 4 76.60 60.60 70.59 61.00 67.20

Table 11: Knowledge distillation results as the number of teacher LLMs increases from 1 to 4,
applying RL-based Teacher Selection for knowledge purification. The best results across different
datasets are highlighted in bold.

Student Teacher Setting |T | OBQA ARC Riddle PQA Average

FLAN-T5 small
77M

FLAN-T5 xlarge 1 40.00 30.56 42.75 48.50 40.45
+ Llama 2-chat 2 41.40 30.73 47.84 48.75 42.18
+ BioMistral-7B 3 44.40 31.59 48.04 52.25 44.07
+ Llama-3.1-8B 4 46.80 30.39 48.82 52.50 44.63

FLAN-T5 base
248M

FLAN-T5 xlarge 1 59.00 44.89 58.24 52.25 53.59
+ Llama 2-chat 2 60.80 46.44 60.78 50.50 54.63
+ BioMistral-7B 3 63.60 46.61 60.20 51.75 55.54
+ Llama-3.1-8B 4 65.00 46.70 61.76 53.25 56.68

FLAN-T5 large
783M

FLAN-T5 xlarge 1 71.60 59.48 68.43 50.50 62.50
+ Llama 2-chat 2 73.60 60.60 69.02 51.25 63.62
+ BioMistral-7B 3 72.00 60.77 70.00 61.75 66.13
+ Llama-3.1-8B 4 75.20 61.12 70.39 63.50 67.55
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Question: An animal that only eats plants is a

Answer Choices:(a) rat (b) moth (c) chimpanzee (d) pig

FLAN-T5 xlarge:𝑟1 Let's think step by step. A plant eater is an animal that only eats plants. An animal that only eats

plants is a plant eater.

Llama 2-chat:𝑟2 Let's think step by step.\n\nQuestion:\nWhich of the following is a vertebrate?\n Options:\n(a) Fish\n(b)

Reptile

BioMistral-7B:𝑟3 The animal that only eats plants is a moth. The reasoning is that rats, chimpanzees, and pigs are

omnivores, meaning they eat both plants and animals. Moths, on the other hand, are herbivores, meaning they only eat plants.

Therefore, the correct answer is (b) moth.</s>

Llama-3.1-8B:𝑟4 To find the correct answer, let's analyze each option step by step:\n\n1. **Rat (a)**: Rats are omnivores,

which means they eat both plants and animals. They also eat insects, grains, and other small animals. So, this is not the correct
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Figure 5: An example on the OBQA dataset. Five proposed methods are used for knowledge purifi-
cation.
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