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Abstract

Extending process reward models (PRMs) to multimodal LLMs is hindered by
broad domain coverage, train–test distribution shift, and severe dataset quality
imbalance. We propose DreamPRM, a bi-level, domain-reweighted framework:
lower-level fine-tuning learns with per-domain weights to prioritize high-quality
reasoning signals, while upper-level evaluation on a meta set updates these weights
via an aggregation loss. Across diverse math reasoning benchmarks, DreamPRM
consistently enhances state-of-the-art MLLMs and outperforms strong baselines in
data selection and test-time scaling.

1 Introduction

Reasoning [47] has advanced LLMs [1, 7, 50, 41] in math problem solving, with Process Reward
Models (PRMs) [25, 23] offering step-level supervision and guiding models toward the most valid
reasoning trajectories. Given these successes, extending PRMs to multimodal LLMs (MLLMs) [60,
24] for visual math problem-solving is a natural next step. However, multimodal inputs combine
high-dimensional visual signals with discrete language tokens, broadening the input space and
worsening distribution shifts [48]. Moreover, multimodal reasoning datasets suffer from severe quality
imbalance [66, 29], where noisy or trivial samples dilute effective training (Figure 1). As a result,
naively transferring text-based PRM strategies [58, 33] underperforms due to poor generalization [9].

To address these challenges, we propose DreamPRM, a domain-reweighted bi-level optimization
framework inspired by domain reweighting methods [45, 10, 49]. At the lower level, PRMs are fine-
tuned across multiple datasets with learnable domain weights that emphasize high-quality domains
and suppress noisy ones. At the upper level, meta-evaluation on a held-out dataset updates the weights
via an aggregation loss [12, 27], improving robustness and generalization. Experiments on diverse
multimodal reasoning benchmarks, including mathematical and general domains, demonstrate that
DreamPRM consistently improves state-of-the-art MLLMs and outperforms alternative data-selection
and test-time scaling strategies.

Our contributions are summarized as follows:



Dataset difficulty: easy (InternVL-2.5-MPO-8B's accuracy 84.6%)
Unnecessary modality: can answer without image
Requirements for reasoning: does not require complicated reasoning
Domain weight: 0.55  (Determined by DreamPRM)

Question: How many stages are there in a flea's life cycle?
Choices: 
A. 1     B. 2
C. 3     D. 4
Answer: D         Dataset:  AI2D (2016)

Dataset difficulty: hard (InternVL-2.5-MPO-8B's accuracy 62.1%) 
Unnecessary modality: cannot answer without image
Requirements for reasoning ability: require complicated reasoning
Domain weight: 1.49  (Determined by DreamPRM)

Question: Consider the questions provided below.
Is option (A) the accurate response to those
questions?
Choices: 
A. Not sure   B. True   C. False       
Answer: C               Dataset:  M3CoT (2024)

Figure 1: DreamPRM improves multimodal reasoning by mitigating the dataset quality imbal-
ance problem. Left: On five benchmarks, DreamPRM outperforms base model (InternVL-2.5-8B-
MPO [56]) by an average of +4.0%. DreamPRM also consistently surpasses Vanilla PRM trained
without data selection. Right: Easy AI2D [20] questions (weight 0.55) vs. hard M3COT [5] ques-
tions (weight 1.49) shows how DreamPRM prioritizes data that demand deeper reasoning - samples
requiring knowledge from both textual and visual modalities for step-by-step logical deduction.

• We propose DreamPRM, a domain-reweighted multimodal process reward model training
framework that dynamically adjusts the importance of different training domains. We
formulate the training process of DreamPRM as a bi-level optimization (BLO) problem,
where the lower level optimizes the PRM via domain-reweighted fine-tuning, and the upper
level optimizes domain weights with an aggregation function loss.

• We conduct extensive experiments using DreamPRM on a wide range of multimodal math
benchmarks. Results indicate that DreamPRM consistently surpasses PRM baselines with
other data selection strategies, confirming the effectiveness of its bi-level optimization
based domain-reweighting strategy. Carefully designed evaluations further demonstrate that
DreamPRM possesses both scaling capability and generalization ability to stronger models.

2 The Proposed Domain-reweighting Method

Overview. Training multimodal PRMs is difficult due to (1) dataset quality imbalance and (2)
mismatch between training and inference (See Fig. 2). We propose DreamPRM, which learns
domain importance via a novel aggregation loss that better simulates PRM inference. Under a bi-level
framework, the lower level updates PRM parameters with domain-reweighted training, while the
upper level optimizes domain weights on a meta dataset. An overview is shown in Fig. 3.

Notations. Let I, T , and Y denote the multimodal input space (images), textual instruction space,
and response space, respectively. A multimodal large language model (MLLM) is formalized as a
parametric mapping Mθ : T × I → ∆(Y), where ŷ ∼ Mθ(·|x) represents the stochastic generation
of responses conditioned on input pair x = (t, I) including visual input I ∈ I and textual instruction
t ∈ T , with ∆(Y) denoting the probability simplex over the response space. We use y ∈ Y to denote
the ground truth label from a dataset.

The process reward model (PRM) constitutes a sequence classification function Vϕ : T × I × Y →
[0, 1], parameterized by ϕ, which quantifies the epistemic value of partial reasoning state ŷi through
scalar reward pi = Vϕ(x, ŷi), modeling incremental utility toward solving instruction t under visual
grounding I . Specifically, ŷi represents the first i steps of a complete reasoning trajectory ŷ.
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Figure 2: General flow of training PRM and using PRM for inference. Training phase: Train
PRM with Monte Carlo signals from intermediate steps of Chain-of-Thoughts (CoTs). Inference
phase: Use the trained PRM to verify CoTs step by step and select the best CoT. Conventional
training of PRM has poor generalization capability due to distribution shift between training set and
testing set.

Datasets. We use K+1 datasets, with K domains for training Dtr = {D1, . . . ,DK} and one
high-quality meta dataset Dmeta for validation.

Lower-level optimization: domain-reweighted training of PRM. In lower-level optimization,
we aim to update the weights ϕ of PRM with domain-reweighted training. We first define the typical
PRM training loss Ltr on a single domain Dk, given PRM parameters ϕ, as follows:

Ltr(Dk, ϕ) =
∑

(x,y)∈Dk

n∑
i=1

LMSE(Vϕ(x, ŷi), pi) (1)

where ŷi is the prefix of MLLM generated text ŷ = Mθ(x) given input pair x = (t, I), and pi is the
process supervision signal value obtained by Monte Carlo estimation given input pair x, prefix ŷi
and ground truth label y, detailed in Appendix Equation 5. The PRM is optimized by minimizing
the mean squared error (MSE) between supervision signal and PRM predicted score Vϕ(x, ŷi). With
the PRM training loss on a single domain Dk above, we next define the domain-reweighted training
objective of PRM on multiple training domains D = {Dk}Kk=1. The overall objective is a weighted
sum of the single-domain PRM training losses, allowing the contribution of each domain to be
adjusted during the learning process:

Ltr(Dtr, ϕ, α) =

K∑
k=1

αkLtr(Dk, ϕ) (2)

Here, α = {αk}Kk=1 represents the trainable domain weight parameters, indicating the importance of
each domain. By optimizing this objective, we obtain the optimal value of PRM parameters ϕ∗:

ϕ∗(α) =argmin
ϕ

Ltr(Dtr, ϕ, α) (3)

It is worth mentioning that only ϕ is optimized at this level, while α remains fixed.

Upper-level optimization: learning domain reweighting parameters. In upper-level optimiza-
tion, we optimize the domain reweighting parameter α on meta dataset Dmeta given optimal PRM
weights ϕ∗(α) obtained from the lower level. To make the meta learning target more closely reflect
the actual PRM-based inference process, we propose a novel meta loss function Lmeta, different
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Figure 3: DreamPRM framework. Lower-level: PRM parameters are updated with domain weights.
Upper-level: Domain weights are optimized on a meta dataset via an aggregation loss. This addresses
dataset imbalance and improves generalization.

from the training loss Ltr. Specifically, we first obtain an aggregated score A(p) for each generated
solution ŷ from the MLLM given input pair x = (t, I). We then create a ground truth signal r(ŷ, y)
by assigning it a value of 1 if the generated ŷ contains ground truth y, and 0 otherwise. The meta loss
is defined as the mean squared error between aggregated score and ground truth signal:

Lmeta(Dmeta, ϕ
∗(α)) =

∑
(x,y)∈Dmeta

LMSE(σ(A(Vϕ∗(α)(x, ŷ))), r(ŷ, y)) (4)

where A represents the aggregation function (detailed in Appendix Equation 6), and σ denotes the
sigmoid function to map the aggregated score to a probability.

3 Main Results

In this section, we apply DreamPRM to enhance math problem solving in MLLMs. We evaluate its
performance with Best-of-N selection, sampling 8 reasoning chains per question, letting PRM select
the best, and reporting gains over pass@1. Detailed experiment setting can be found at Appendix D

3.1 Benchmark evaluation

Tab. 1 summarizes the main results. (1) DreamPRM consistently outperforms other PRM-based
methods, achieving 2%–3% gains over vanilla PRM and surpassing heuristic-based methods (s1-
PRM, CaR-PRM), showing that handcrafted data selection is suboptimal while our automatic domain
reweighting is more effective. (2) DreamPRM also outperforms much larger closed-source
MLLMs, surpassing GPT-4v and Gemini-1.5-Pro on 4 of 5 datasets, and improving InternVL-2.5-
8B-MPO by +4% on average. (3) DreamPRM outperforms other test-time scaling methods, since
a high-quality PRM provides finer step-level supervision, leading to stronger gains.

3.2 Scaling and generalization analysis of DreamPRM

Scaling with more CoT candidates. Fig. 4 (left) shows that DreamPRM accuracy steadily improves
on all five benchmarks as k increases from 2 to 8, expanding the radar plot outward. This indicates
DreamPRM can robustly rank CoTs even under larger, more complex candidate pools.

Transfer to stronger base MLLMs. Fig. 4 (right) reports MATHVISTA accuracy with GPT-4.1-
mini [39] and o4-mini [38]. For o4-mini, pass@1 improves from 80.6% to 85.2% at k=8, surpassing
prior SOTA. Similar best-of-N trends on both models confirm DreamPRM’s strong generalization.
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Table 1: Comparative evaluation of DreamPRM and baselines on multimodal math benchmarks.
Bold numbers indicate the best performance, while underlined numbers indicate the second best.
The table reports accuracy (%) on WEMATH, MATHVISTA, MATHVISION, MMVET, and MMSTAR.

WEMATH MATHVISTA MATHVISION MMVET MMSTAR

(loose) (testmini) (test) (v1) (test)

Zero-shot Methods

Gemini-1.5-Pro [42] 46.0 63.9 19.2 64.0 59.1
GPT-4v [39] 51.4 49.9 21.7 67.7 62.0
LLaVA-OneVision-7B [22] 44.8 63.2 18.4 57.5 61.7
Qwen2-VL-7B [55] 42.9 58.2 16.3 62.0 60.7
InternVL-2.5-8B-MPO [56] 51.7 65.4 20.4 55.9 58.9

Test-time Scaling Methods (InternVL-2.5-8B-MPO based)

Self-consistency [57] 56.4 67.1 20.7 57.4 59.6
Self-correction [15] 54.0 63.8 21.6 54.9 59.7
ORM [44] 56.9 65.3 20.5 55.9 60.1

Vanilla PRM [25] 54.2 67.2 20.6 58.9 60.8
CaR-PRM [14] 54.7 67.5 21.0 60.6 61.1
s1-PRM [37] 57.1 65.8 20.2 60.1 60.4
DreamPRM (ours) 57.4 68.9 22.1 61.4 62.3
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Figure 4: (a) Radar chart on five benchmarks: DreamPRM shows monotonic accuracy gains as
selected CoTs increase (@2, @4, @8) over pass@1. (b) Best-of-N curves on MATHVISTA for
InternVL-2.5-8B-MPO (blue), GPT-4.1-mini (red), and o4-mini (green) show DreamPRM-ranked
CoTs generalize across models, surpassing pass@1 (dashed) as k grows.

4 Conclusions

We introduce DreamPRM, the first domain-reweighted PRM for multimodal math problem solving.
Using bi-level optimization to learn domain weights, DreamPRM alleviates dataset quality imbalance
and improves generalization. Experiments on five benchmarks show consistent gains over vanilla and
heuristic PRMs.
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Appendix

A Related Works

Multimodal Reasoning Recent studies have demonstrated that incorporating Chain-of-Thought
(CoT) reasoning [59, 21, 68] into LLMs encourages a step-by-step approach, thereby significantly
enhancing question-answering performance. However, it has been reported that CoT prompting can’t
be easily extended to MLLMs, mainly due to hallucinated outputs during the reasoning process [56, 69,
16]. Therefore, some post-training methods have been proposed for enhancing reasoning capability
of MLLMs. InternVL-MPO [56] proposes a mixed preference optimization that jointly optimizes
preference ranking, response quality, and response generation loss to improve the reasoning abilities.
Llava-CoT [62] creates a structured thinking fine-tuning dataset to make MLLM to perform systematic
step-by-step reasoning. Some efforts have also been made for inference time scaling. RLAIF-
V [65] proposes a novel self-feedback guidance for inference-time scaling and devises a simple
length-normalization strategy tackling the bias towards shorter responses. AR-MCTS [9] combines
Monte-Carlo Tree Search (MCTS) and Retrival Augmented Generation (RAG) to guide MLLM
search step by step and explore the answer space.

Process Reward Model Process Reward Model (PRM) [25, 23, 34, 51] provides a more finer-
grained verification than Outcome Reward Model (ORM) [8, 44], scoring each step of the reasoning
trajectory. However, a central challenge in designing PRMs is obtaining process supervision signals,
which require supervised labels for each reasoning step. Current approaches typically depend on
costly, labor-intensive human annotation [25], highlighting the need for automated methods to
improve scalability and efficiency. Math-Shepherd [53] proposes a method utilizing Monte-Carlo
estimation to provide hard labels and soft labels for automatic process supervision. OmegaPRM [33]
proposes a Monte Carlo Tree Search (MCTS) for finer-grained exploration for automatical labeling.
MiPS [58] further explores the Monte Carlo estimation method and studies the aggregation of PRM
signals.

Domain Reweighting Domain reweighting methodologies are developed to modulate the influence
of individual data domains, thereby enabling models to achieve robust generalization. Recently,
domain reweighting has emerged as a key component in large language model pre-training, where
corpora are drawn from heterogeneous sources. DoReMi [61] trains a lightweight proxy model
with group distributionally robust optimization to assign domain weights that maximize excess loss
relative to a reference model. DOGE [11] proposes a first-order bi-level optimization framework,
using gradient alignment between source and target domains to update mixture weights online during
training. Complementary to these optimization-based approaches, Data Mixing Laws [64] derives
scaling laws that could predict performance under different domain mixtures, enabling low-cost
searches for near-optimal weights without proxy models. In this paper, we extend these ideas to
process supervision and introduce a novel bi-level domain-reweighting framework.

B Problem Setting and Preliminaries

PRM training with Monte Carlo signals. Due to the lack of ground truth epistemic value for each
partial reasoning state ŷi, training of PRM requires automatic generation of approximated supervision
signals. An effective approach to obtain these signals is to use the Monte Carlo method [58, 54]. We
first feed the input question-image pair x = (t, I) and the prefix solution ŷi into the MLLM, and
let it complete the remaining steps until reaching the final answer. We randomly sample multiple
completions, compare their final answers to the gold answer y, and thereby obtain multiple correctness
labels. PRM is trained as a sequence classification task to predict these correctness labels. The ratio
of correct completions at the i-th step estimates the “correctness level” up to step i, which is used as
the approximated supervision signals pi to train the PRM. Formally,
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pi = MonteCarlo(x, ŷi, y) =
num(correct completions from ŷi)

num(total completions from ŷi)
(5)

PRM-based inference with aggregation function. After training a PRM, a typical way of conduct-
ing PRM-based MLLM inference is to use aggregation function [58]. Specifically, for each candidate
solution ŷ from the MLLM, PRM will generate a list of predicted probabilities p = {p1, p2, ..., pn}
accordingly, one for each step ŷi in the solution. The list of predicted probabilities are then aggregated
using the following function:

A(p) =

n∑
i=1

log
pi

1− pi
. (6)

The aggregated value corresponds to the score of a specific prediction ŷ, and the final PRM-based
solution is the one with the highest aggregated score.

Bi-level optimization. Bi-level optimization (BLO) has been widely used in meta-learning [12],
neural architecture search [27], and data reweighting [46]. A BLO problem is usually formulated as:

min
α

U(α, ϕ∗(α)) (7)

s.t.ϕ∗(α) = argmin
ϕ

L(ϕ, α) (8)

where U is the upper-level optimization problem (OP) with parameter α, and L is the lower-level
OP with parameter ϕ. The lower-level OP is nested within the upper-level one, and the two OPs are
mutually dependent.

C Additional Method Details

Optimization algorithm Directly solving the bi-level optimization problem can be computational
prohibitive due to its nested structure. Following previous work [6], we use approximated algorithm
with a few unrolling steps. For example, under one-step unrolling, the updating of PRM’s weights
can be expressed as:

ϕ(t+1) = ϕ(t) − β1∇ϕLtr(Dtr, ϕ, α) (9)

where β1 is the learning rate in lower level optimization. After obtaining the updated PRM parameter
ϕ(t+1) from Equation 9, the domain-reweighting parameter α is then updated as follows:

α(t+1) = α(t) − β2∇αLmeta(Dmeta, ϕ
∗(α)) (10)

where β2 is the learning rate for upper level optimization. The two optimization steps in Equation
9 and Equation 10 are conducted iteratively until convergence to get optimal PRM weights ϕ∗ and
optimal domain reweighting parameter α∗.

D Additional Results and Ablations

D.1 Dataset Details

To enhance the robustness of DreamPRM, we collect a diverse set of datasets in lower-level opti-
mization, spanning multiple domains to ensure a comprehensive coverage of multimodal reasoning
tasks, as reported in Tab. 2. The selected 15 multimodal datasets covers 4 major categories including
science, chart, geometry and commonsense, with a wide range of task types (QA, OCR, spatial
understanding). Additionally, we observe that for some questions, given the current structural thinking
prompts, MLLMs consistently produce either correct or incorrect answers. Continuing to sample
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Table 2: Multimodal datasets involved in the fine-tuning of DreamPRM, organized by task category.
Task Dataset
Science AI2D [20], ScienceQA [31], M3CoT [5]
Chart ChartQA [35], DVQA [17], MapQA [2], FigureQA [18]
Geometry Geo170k [13], Geometry3K [30], UniGeo [3], GeomVerse [19],

GeoS [43]
Commonsense IconQA [32], InfographicsVQA [36], CLEVR-Math [26]

such questions is a waste of computational resources. Inspired by the dynamic sampling strategy
in DAPO [66], we propose a similar dynamic sampling technique for Monte Carlo estimation that
focuses on prompts with varied outcomes to improve efficiency. After processing and sampling, the
training datasets in lower-level Dtr have around 15k examples (1k per each of the 15 domains), while
the meta dataset in the upper-level Dmeta has around 1k validation examples from the MMMU [67]
dataset.

D.2 Benchmark details

At evaluation time, we use five multimodal reasoning benchmarks for testing the capability of
DreamPRM. WEMATH [40], MATHVISTA [29], and MATHVISION [52] focus more on math-related
reasoning tasks and logic and critical thinking, while MMVET [66] and MMSTAR [4] focus more on
real-life tasks that require common knowledge and general reasoning abilities.

D.3 Experimental settings

Multistage reasoning. To elicit consistent steady reasoning responses from current MLLMs, we
draw on the Llava-CoT approach [63], which fosters structured thinking prior to answer generation.
Specifically, we prompt MLLMs to follow five reasoning steps: (1) Restate the question.
(2) Gather evidence from the image. (3) Identify any background knowledge
needed. (4) Reason with the current evidence. (5) Summarize and conclude
with all the information. We also explore zero-shot prompting settings in conjunction with
structural reasoning, which can be found in Appendix D.3. We use 8 different chain-of-thought
reasoning trajectories for all test-time scaling methods, unless otherwise stated.

Structural Thinking Prompt The detailed structural thinking prompt applied in our experiments
is reported in Fig. 5. We carefully design 5 reasoning steps to boost the reasoning capabilities of the
MLLMs and enable process supervision.

Figure 5: Zero-shot prompting for structural thinking.
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Figure 6: Comparative evaluation of DreamPRM on multimodal reasoning benchmarks. Radar
charts report accuracy (%) on five datasets (WEMATH, MATHVISTA, MATHVISION, MMVET, and
MMSTAR). (a) Impact of different data selection strategies. (b) Comparison with existing test-time
scaling methods. (c) Ablation study of three key components, i.e. w/o aggregation function loss
(AFL), w/o bi-level optimization (BLO), and w/o structural thinking (ST).

Base models. For inference, we use InternVL-2.5-8B-MPO [56] as the base MLLM, which has
undergone post-training to enhance its reasoning abilities and is well-suited for our experiment. For
fine-tuning PRM, we adopt Qwen2-VL-2B-Instruct [55]. Qwen2-VL is a state-of-the-art multimodal
model pretrained for general vision-language understanding tasks. This pretrained model serves as
the initialization for our fine-tuning process.

Training hyperparameters. In the lower-level optimization, we perform 5 inner gradient steps per
outer update (unroll steps = 5) using the AdamW [28] optimizer with learning rate set to 5× 10−7. In
the upper-level optimization, we use the AdamW optimizer (lr = 0.01, weight decay = 10−3) and a
StepLR scheduler (step size = 5000, γ = 0.5). In total, DreamPRM is fine-tuned for 10000 iterations.
Our method is implemented with Betty [6], and the fine-tuning process takes approximately 10 hours
on two NVIDIA A100 GPUs.

Baselines. We use three major categories of baselines: (1) State-of-the-art models on public
leaderboards, including Gemini-1.5-Pro [42], GPT-4V [39], LLaVA-OneVision-7B [22], Qwen2-
VL-7B [55]. We also carefully reproduce the results of InternVL-2.5-8B-MPO with structural
thinking. (2) Test-time scaling methods (excluding PRM) based on the InternVL-2.5-8B-MPO model,
including: (i) Self-consistency [57], which selects the most consistent reasoning chain via majority
voting over multiple responses; (ii) Self-correction [15], which prompts the model to critically reflect
on and revise its initial answers; and (iii) Outcome Reward Model (ORM) [44], which evaluates
and scores the final response to select the most promising one. (3) PRM-based methods, including:
(i) Vanilla PRM trained without any data selection, as commonly used in LLM settings [25]; (ii)
s1-PRM, which selects high-quality reasoning responses based on three criteria - difficulty, quality,
and diversity - following the s1 strategy [37]; and (iii) CaR-PRM, which filters high-quality visual
questions using clustering and ranking techniques, as proposed in CaR [14].

D.4 Benchmark evaluation of DreamPRM

Tab. 1 presents the primary experimental results. We observe that: (1) DreamPRM outperforms
other PRM-based methods, highlighting the effectiveness of our domain reweighting strategy.
Compared to the vanilla PRM trained without any data selection, DreamPRM achieves a consistent
performance gain of 2%-3% across all five datasets, suggesting that effective data selection is crucial
for training high-quality multimodal PRMs. Moreover, DreamPRM also outperforms s1-PRM and
CaR-PRM, which rely on manually designed heuristic rules for data selection. These results indicate
that selecting suitable reasoning datasets for PRM training is a complex task, and handcrafted
rules are often suboptimal. In contrast, our automatic domain-reweighting approach enables the
model to adaptively optimize its learning process, illustrating how data-driven optimization offers a
scalable solution to dataset selection challenges. (2) DreamPRM outperforms SOTA MLLMs with
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much fewer parameters, highlighting the effectiveness of DreamPRM. For example, DreamPRM
significantly surpasses two trillion-scale closed-source LLMs (GPT-4v and Gemini-1.5-Pro) on 4 out
of 5 datasets. In addition, it consistently improves the performance of the base model, InternVL-2.5-
8B-MPO, achieving an average gain of 4% on the five datasets. These results confirm that DreamPRM
effectively yields a high-quality PRM, which is capable of enhancing multimodal reasoning across
a wide range of benchmarks. (3) DreamPRM outperforms other test-time scaling methods,
primarily because it enables the training of a high-quality PRM that conducts fine-grained, step-level
evaluation. While most test-time scaling methods yield moderate improvements, DreamPRM leads
to the most substantial gains, suggesting that the quality of the reward model is critical for effective
test-time scaling.

D.5 Ablation study

In this section, we investigate the importance of three components in DreamPRM: (1) bi-level
optimization, (2) aggregation function loss in upper-level, and (3) structural thinking prompt (detailed
in Section D.3). As shown in the rightmost panel of Fig. 6, the complete DreamPRM achieves the
best results compared to three ablation baselines across all five benchmarks. Eliminating bi-level
optimization causes large performance drop (e.g., -3.5% on MATHVISTA and -3.4% on MMSTAR).
Removing aggregation function loss leads to a consistent 1%-2% decline (e.g., 57.4% → 56.3% on
WEMATH). Excluding structural thinking also degrades performance (e.g., -1.8% on MATHVISION).
These results indicate that all three components are critical for DreamPRM to achieve the best
performance. More detailed results are shown in Appendix Tab. 4.

Table 3: Accuracy on MATHVISTA using DreamPRM with varying numbers k of CoTs.

Model Name pass@1 DreamPRM (select k CoTs)
k=1 k=2 k=4 k=6 k=8

InternVL-2.5-8B-MPO [56] 65.4 65.3 66.5 67.8 68.9
GPT-4.1-mini (4-14-25) [39] 71.5 71.8 72.5 73.2 74.4
o4-mini (4-16-25) [38] 80.6 81.6 82.5 84.2 85.2

Table 4: Ablation study evaluating the impact of individual components of DreamPRM
Ablation / Dataset WeMath MathVista MathVision MMVet MMStar
DreamPRM (original) 57.4 68.9 22.1 61.4 62.3

w/o aggregation function loss 56.3 (-1.1) 66.1 (-2.8) 20.1 (-2.0) 60.0 (-1.4) 59.6 (-2.7)
w/o bi-level optimization 55.0 (-2.4) 65.4 (-3.5) 19.9 (-2.2) 61.2 (-0.2) 58.9 (-3.4)
w/o structural thinking 54.6 (-2.8) 65.7 (-3.2) 20.3 (-1.8) 57.5 (-3.9) 61.6 (-0.7)

D.6 Best-of-N results.

Tab. 3 reports the accuracy of two state-of-the-art models on MathVista dataset using DreamPRM
with varying numbers k of CoTs. The results indicate that the performance scales well with the
number of CoTs.

D.7 Analysis of learned domain weights

As shown in Fig. 7, final domain weights range from 0.55 to 1.49: M3COT [5] and FIGUREQA [18]
have the highest values (∼1.5), while AI2D [20] and ICONQA [32] are below 0.8. This pattern
confirms that quality imbalance across datasets matters and is mitigated by DreamPRM.

D.8 Loss curves and domain weights.

The loss curves and domain weights during the fine-tuning of DreamPRM are illustrated in Fig. 8.
It can be observed that the learnt distribution emphasizes informative mathematical figure domains
while attenuating less relevant sources. Additionally, domain weights start at 1.0 and quickly diverge,
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Figure 7: Learned domain weights after the convergence of the DreamPRM training process.

stabilizing after roughly half the training, and the inner and outer losses decrease steadily and plateau,
indicating stable convergence of the bi-level training procedure.

D.9 Case study.

A complete case study illustrating DreamPRM’s step-wise evaluation is reported in Fig. 9. DreamPRM
assigns higher scores to high-quality, coherent reasoning steps, while penalizes flawed or unsupported
steps.

Figure 8: Optimization loss curves and dynamic domain weights throughout DreamPRM fine-tuning.

E Limitations & Future Work.

DreamPRM currently assumes a fixed set of domains and requires Monte-Carlo sampling, which
can be computationally heavy. Future work could explore instance-level reweighting, adaptive
sampling strategies, and integration with retrieval-augmented generation to further cut compute
while broadening coverage. We will release code, trained weights, and evaluation scripts to facilitate
reproducibility and community adoption.
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Question: 
The derivative of f(x) at x=2 is ____ that at x=5 
Choices: 
(A) larger than  (B) equal to  (C) smaller than
Ground Truth: B
Benchmark: MathVista

Step 1: Restate the question.
   - The question is asking whether the derivative of the function \( f(x) = |2x - 3| + 1 \) at \( x = 2 \) is larger than, equal to, or
smaller than the derivative at \( x = 5 \).                                                                                                   [DreamPRM: 0.628]

Step 2: Gather evidence from the image.
   - The image shows the graph of the function \( f(x) = |2x - 3| + 1 \).
   - The graph has a V-shape, indicating it is an absolute value function.                                                  [DreamPRM: 0.575]

Step 3: Identify any background knowledge needed.
   - The derivative of an absolute value function changes at the point where the expression inside the absolute value is zero.
   - For \( f(x) = |2x - 3| + 1 \), the expression inside the absolute value is \( 2x - 3 \).
   - The derivative of \( |2x - 3| + 1 \) is \( 2 \) for \( x > 1.5 \) and \( -2 \) for \( x < 1.5 \).                        [DreamPRM: 0.598]

Step 4: Reason with the current evidence.
   - The point where the derivative changes is at \( x = 1.5 \).
   - For \( x = 2 \), the function is in the interval where \( x > 1.5 \), so the derivative is \( 2 \).
   - For \( x = 5 \), the function is also in the interval where \( x > 1.5 \), so the derivative is \( 2 \).          [DreamPRM: 0.748]
  
Step 5: Summarize and conclude with all the information.
   - Both the derivatives at \( x = 2 \) and \( x = 5 \) are \( 2 \), so they are equal.                                      [DreamPRM: 0.812]

Final answer: B     ✓

Step 1: Restate the question.
   - The question is asking how the derivative of \( f(x) \) at \( x = 2 \) compares to the derivative of \( f(x) \) at \( x = 5 \).

[DreamPRM: 0.676]
Step 2: Gather evidence from the image.
   - The image shows the graph of the function \( f(x) = |2x - 3| + 1 \).
   - There are points marked on the graph at \( x = 2 \) and \( x = 5 \).                                                      [DreamPRM: 0.499]

Step 3: Identify any background knowledge needed.
   - For absolute value functions, the derivative involves identifying where the function switches from decreasing to
increasing.
   - The function \( f(x) = |2x - 3| + 1 \) changes slope at the vertex of the absolute value, which is at \( x = \frac{3}{2} \).

[DreamPRM: 0.561]
Step 4: Reason with the current evidence.
   - At \( x = 2 \), the function appears linear with a negative slope (since it's to the left of the vertex).
   - At \( x = 5 \), the function appears linear with a positive slope (since it's to the right of the vertex).
   - The slope at \( x = 2 \) (negative) is steeper/more negative than the slope at \( x = 5 \) (positive).       [DreamPRM: 0.397]

Step 5: Summarize and conclude with all the information.
   - The derivative at \( x = 2 \) is negative and steeper than the derivative at \( x = 5 \), which is positive.
   - Therefore, the derivative at \( x = 2 \) is larger in absolute value than the derivative at \( x = 5 \).       [DreamPRM: 0.396]

Final answer: A     ✗

Figure 9: A case study of DreamPRM’s step-wise evaluation.
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