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Abstract

Social networks are becoming the preferred001
channel to report and discuss events happening002
around the world. The information stream such003
channels contain can be used to detect and de-004
scribe the ongoing events to take informed de-005
cisions in numerous domains. A typical frame-006
work for event detection is to first cluster the007
stream of tweets, and then analyze the clusters008
to decide which deal with real-world events.009
In this context, content representation models010
and clustering approaches are critical. Classi-011
cal approaches are usually based on TF-IDF012
for the representation of the text content and013
on dynamic clustering for the clustering part.014
In this paper, we propose to compare TF-IDF015
with recent text representation models and we016
propose an event detection method based on017
conventional clustering. We show that, contrary018
to previous results, language models based on019
Transformer architectures are competitive with020
TF-IDF. We also show that our approach outper-021
forms the most used approach of the literature.022

1 Introduction023

Social networks are some of the main contem-024

porary information sources, used by people but025

also by professionals such as the journalists, busi-026

ness managers, politicians and so on. They can027

deliver information about numerous domains and028

can be used to predict the stock market (Bollen029

et al., 2011), (Oliveira et al., 2017), (Ruiz et al.,030

2012), (O’Connor et al., 2010), they can help au-031

thorities to react in emergency situations (Imran032

et al., 2015), (Kim and Hastak, 2018), (Sakaki et al.,033

2010), (Basu et al., 2017) and can be used in gen-034

eral to detect events happening around the world035

(Hasan et al., 2018), (Atefeh and Khreich, 2015),036

(Elsafoury, 2020).037

Due to the abundance of information and noise038

on social networks, tools are necessary to keep039

track of important events. A classical task of in-040

formation retrieval is to detect event on social me-041

dia (Allan, 2012). In previous work by McMinn 042

(McMinn et al., 2013), an event is a "significant 043

thing that happens at some specific time and place". 044

They identify an event by a group of entities (e.g. 045

people, location) that is discussed in the messages 046

from the social network. We borrow this definition 047

for this work and apply it to the problem of event 048

detection on Twitter. 049

A major challenge of this task is to group docu- 050

ments dealing with the same event together. The 051

text content of each document usually contains un- 052

structured language, slang words or abbreviation 053

but also limited context about the topic, making its 054

representation difficult. The other major factor is 055

the clustering algorithm employed. The most clas- 056

sical approach in the literature is to use dynamic 057

clustering and particularly the First Story Detection 058

algorithm (FSD). 059

In this paper, we propose a new event detection 060

method based on conventional clustering, called 061

Conventional Clustering Event Detection Method 062

(CCEDM) and compare the performances of our 063

method with the FSD algorithm, a method com- 064

monly used in the literature and considered as the 065

state-of-the-art (Hasan et al., 2019), (Mazoyer et al., 066

2020). We also propose to use Transformer-based 067

language model for the representation of the tex- 068

tual content. These models currently achieves state- 069

of-the-art results in Natural Language Processing 070

(NLP) (Vaswani et al., 2017). In previous work, 071

they showed that these models are outperformed 072

by TF-IDF, the most classical text representation 073

in information retrieval (Baeza-Yates and Ribeiro- 074

Neto, 1999), in the context of the FSD algorithm 075

(Mazoyer et al., 2020). We explore whether these 076

results are confirmed in our context. We believe 077

that proposing an event detection method in which 078

Transformer-based language models perform cor- 079

rectly is an interesting goal considering the current 080

path followed by the research in deep learning. 081

The rest of this paper is organized as follows: 082
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Section 2 presents the related work. Section 3083

describes our event detection approach. Section084

4 describes the experiments and the results.085

2 Related work086

2.1 Text representation models087

Text content representation models are one of the088

major issues in information retrieval. The current089

reference model is TF-IDF (Jones, 1972) which090

is an improvement of the Bag Of Words (Harris,091

1954). TF-IDF allows to take into account the im-092

portance of the words in the representation of the093

document by weighting each word in inverse pro-094

portion to the number of documents in which the095

words appear. Thus, a word appearing frequently096

in a document while it appears rarely in the cor-097

pus is considered as carrying a lot of information098

about this document. This word will be highly099

weighted in the TF-IDF representation of the docu-100

ment. TF-IDF vectors are sparse in the context of101

Twitter due to the large vocabulary and short size102

of the documents. This representation is widely103

used, even nowadays, in information retrieval and104

obtains very good performances, particularly on105

short texts extracted from social networks.106

These statistical representations are currently107

complemented by dense vector representations,108

called word embeddings, based on deep learning109

approaches. The authors of (Mikolov et al., 2013)110

introduce the Word2vec model which corresponds111

to a neural approach allowing to associate to a word112

a vector, which is computed depending the con-113

text in which the word appears in the training set.114

Thus, the vector representing a word contains in-115

formation about it. The assumption made for the116

constitution of these vectors is that words whose117

contextual use is close will carry a similar mean-118

ing and thus will be represented by a close vector.119

The most recent models based on neural networks120

are based on Transformers architectures (Vaswani121

et al., 2017). The most notable implementation122

of the Transformer architecture in NLP is BERT123

(Devlin et al., 2018). BERT is a language model124

based on the principle of Transfer Learning (Pan125

and Yang, 2010). The idea is that learning some126

general task and then apply this knowledge to a127

more specific task can be improve the performances128

on the downstream task.129

Most of the presented models allow to represent130

words but do not necessarily allow to represent sen-131

tences, which could be interesting in the context of132

short text documents such as tweets. The most re- 133

cent are also based on Transformers. Universal Sen- 134

tence Encoder (USE) (Cer et al., 2018) is trained 135

on two types of tasks, a supervised one, based 136

on the SNLI dataset (Bowman et al., 2015) in the 137

same way as Infersent (Conneau et al., 2017), and 138

on unsupervised tasks, like Skip-Thought (Kiros 139

et al., 2015), which notably include social network 140

documents. Transformers architectures can also 141

be used in the form of Siamese networks (Brom- 142

ley et al., 1994) i.e. two neural networks in par- 143

allel, having the same architecture and the same 144

weights, but which will not take the same input. 145

The vanilla BERT architecture performs poorly on 146

short documents of the size similar to a sentence 147

and performs better with longer documents so an- 148

other approach is needed. The authors of (Reimers 149

and Gurevych, 2019) propose S-BERT (Sentence 150

BERT) which consists in creating a Siamese net- 151

work of two BERT models which will be trained 152

with the objective of producing similar vectors for 153

sentences whose meaning is close and dissimilar 154

vectors for sentences whose meaning is distant. 155

Then, a last layer of neurons is added, so that it 156

can be fine-tuned on specific tasks. 157

2.2 Event detection methods 158

We focus on the task of open-domain event detec- 159

tion on Twitter which consists in detecting events 160

that are not known beforehand (Atefeh and Khre- 161

ich, 2015). Event detection methods usually falls 162

between two categories : feature pivot or document 163

pivot (Atefeh and Khreich, 2015). We choose a doc- 164

ument pivot approach because it allows to take into 165

account more context and metadata, and present 166

some of these methods hereafter. 167

One of the most common approach for event 168

detection is the FSD (First Story Detection) algo- 169

rithm, which was first introduced by Allan et al. 170

in (Allan et al., 2000). The principle is to find 171

the first document discussing an event and then 172

group together new documents discussing the same 173

event. To do so, the task is considered as a dy- 174

namic clustering task, using nearest neighbors al- 175

gorithm to group the documents. Several papers 176

improved this algorithm to speed it up (Petrović 177

et al., 2010; Repp and Ramampiaro, 2018; Hasan 178

et al., 2019), improvements being mostly focused 179

on the nearest neighbor search. In all these pa- 180

pers, the tweets are represented using TF-IDF. In 181

(Mazoyer et al., 2020), the authors compare the 182
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Figure 1: A high level representation of a typical Event Detection Framework.

performances of different text representations for183

the tweets in the context of FSD. They compare TF-184

IDF and neural-based representation models such185

as Word2vec (Mikolov et al., 2013), ELMO (Peters186

et al., 2017), BERT (Devlin et al., 2019), S-BERT187

(Reimers and Gurevych, 2019) and Universal Sen-188

tence encoder (Cer et al., 2018). They evaluate189

individual models and try to use TF-IDF weights190

to weight neural-based representations. They con-191

clude that representation models based on recent192

architectures such as Transformers perform worse193

than TF-IDF in the context of FSD, which is inter-194

esting considering that Transformers architectures195

are achieving state-of-the-art results in most NLP196

tasks.197

Concerning the approaches that are not based198

on the FSD algorithm, TF-IDF is also the most199

common text representation model. The authors of200

(Becker et al., 2011) use it as well and then cluster201

topically similar tweets using an online incremental202

clustering algorithm. In (McMinn and Jose, 2015),203

the authors combine TF-IDF and named entities204

(NE) to cluster the tweets, based on similarity cri-205

teria but also the length of the tweets. In (Boom206

et al., 2016), the authors propose the first method207

combining TF-IDF and semantic representation.208

They learn a representation for the words in the209

documents and then weight them based on their210

TF-IDF score, creating weighted semantic repre-211

sentations. They consider that two tweets are se-212

mantically related if they are generated by the same213

event. The authors of (Zhou et al., 2017) extract214

events from Twitter using non-parametric Bayesian215

Mixture Model with Word Embeddings. They cre-216

ate event clusters from tweets and the events are217

modeled as a 4-tuple < y, l, k, d >, modeling non-218

location NE, location NE, event keywords and date.219

The components of the quadruple are generated220

using a multinomial distribution computed with221

Dirichlet process. Following the same idea of rep-222

resenting events using structured representation,223

the authors of (Li et al., 2017) include semantic by224

splitting tweets terms reflecting one or more event225

aspects. The semantic classes include NE, mention,226

location, hashtag, verb, noun and embedded link.227

They group tweets into clusters using class-wise 228

similarity. 229

Thus, the majority of the work relies on TF-IDF 230

as a representation model and the FSD algorithm is 231

one of the most represented in the literature. In the 232

rest of this paper, we challenge the FSD with our 233

approach CCEDM and study the performances of 234

Transformer-based language models in the context 235

of CCEDMk. The objective is to explore whether 236

they perform better than classical representation 237

models, contrary to the context of FSD. 238

3 Conventional Clustering Event 239

Detection Method 240

We propose to treat the problem of event detection 241

in textual data stream as a clustering task (Allan, 242

2012). This allows us to get out of the constraint 243

imposed by dynamic clustering, i.e. we can con- 244

sider all the documents published at the time of 245

partitioning, and not have to work with fragmen- 246

tary information over the flow of documents. We 247

designed the method to be flexible, so any vectorial 248

text representation model and any classical clus- 249

tering algorithm can be used. This flexibility is 250

particularly interesting because it is important to be 251

able to modify the representation model/clustering 252

algorithm pair, to adapt to the quickly evolving 253

state-of-the-art of these domains. To be in a clas- 254

sical clustering context, we split the data stream 255

using windows, i.e. fixed size windows (fixed num- 256

ber of documents). This approach ensures that the 257

documents clustered together have a similar pub- 258

lication date, which improves the chances that the 259

documents actually discuss the same event. 260

In this paper, we are interested in evaluating 261

the performances of different representation mod- 262

els/clustering algorithms pairs. To properly do that, 263

we focus on the beginning of the framework pre- 264

sented in Figure 1, which is a typical event detec- 265

tion framework. We stop after the “Documents 266

clustering” step. Thus, we make the following hy- 267

pothesis : (1) all the documents are event related, 268

(2) each document is associated with exactly one 269

event, (3), there is an unknown number of docu- 270

ments. Under these assumptions, we can reduce 271
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Figure 2: The framework on which CCEDM is based.

the framework and limit the steps that can affect the272

performances, which is commonly done in the lit-273

erature (Becker et al., 2010; Boom et al., 2016; Ma-274

zoyer et al., 2020). No filtering will be performed275

on the documents as they are all event-related. In276

a more real-world setup, filtering steps are applied277

to filter spam and uninteresting documents. After278

the "Documents clustering" step, clusters are usu-279

ally evaluated to determine whether they discuss280

an event or just a mundane conversation and then281

are summarized to be presented to humans. These282

steps are independent from the clustering phase in283

such framework and thus are out of the scope of284

this paper. Considering these modifications, we285

present the adapted framework in Figure 2. Both286

the FSD algorithm and CCEDM follow this frame-287

work. In the next section, we detail the steps of288

CCEDM in more formal way.289

3.1 Formal description of the clustering290

process291

First, we receive a stream of event-related in-292

put documents annotated as D = {d1, ..., dN}.293

We define a document as a ∀i ∈ [1..N ], di =294

(txti, dtei, tagi, urli, srci) where txti refers to the295

text content, dtei to the publication date, tagi refers296

to the tags and urli refers to the urls shared and297

srci to the source which posted the ith document.298

We perform different cleaning steps described in299

Section 4.1 to obtain a set of cleaned documents.300

Then, we discretize the stream using windows301

which is classical in the literature (McMinn and302

Jose, 2015; Naaman et al., 2011; Guille and Favre,303

2014) because it is important to ensure that doc-304

uments clustered together have a similar publica-305

tion date, since documents dealing with the same306

events are usually posted during a similar period of307

time. They are annotated as W = {W 1, ...,Wm}308

where ∀k ∈ [1..m],W k = {dk1, ..., dkτ}, where k309

refers to the kth window and τ to the number of310

documents in each window. The windows are con-311

sidered as independent from each others; i.e., ∀k ∈312

[1..m], ∀l ∈ [1..m], l ̸= k,W k ∩ W l = ∅. Each313

window is partitioned in groups of similar docu-314

ments known as clusters. The documents in W k315

are then clustered according to similarity metrics 316

(e.g. text similarity) to obtain a set of clusters such 317

as ∀i ∈ [1..n], ∀j ∈ [1..n], i ̸= j, Ck
i ∩ Ck

j = ∅ 318

and
⋃n

j=1C
k
j = W k. Thus, our event detection 319

framework is a succession of clustering process 320

as a result of the discritization of the stream us- 321

ing fixed size windows. This process is illustrated 322

in Figure 3. This differs from the FSD algorithm 323

which treats the problem of event detection as a 324

dynamic clustering problem. We now present the 325

different algorithms and models used for each step 326

of the framework. 327

3.1.1 Representation models 328

We compare two types of text document represen- 329

tations : statistical approaches, also called lexical 330

approaches and Transformer-based language mod- 331

els, also called semantic approaches. 332

Lexical approaches - We use TF-IDF, which 333

is the most common text document representa- 334

tion model in information retrieval (Baeza-Yates 335

et al., 1999). We use an IDF calculated on the 336

whole dataset Event2012 (McMinn et al., 2013), 337

presented in section 4.1, provided by (Mazoyer 338

et al., 2020) and do not take into account term- 339

frequency (TF) because most of the word appears 340

only once in short documents. 341

Semantic approaches - Semantic representa- 342

tions of text documents are currently the state- 343

of-the-art in NLP, particularly using Transformer- 344

based language models (Vaswani et al., 2017). In 345

particular, we will compare two languages models 346

: S-BERT (Reimers and Gurevych, 2019) and Uni- 347

versal Sentence Encoder (USE) (Cer et al., 2018). 348

3.1.2 Clustering 349

For each pair of documents and for each document 350

representation model, we compute its similarity 351

to constitute a similarity matrix Smodel,Wk
used to 352

compute the clusters. We chose Cosine Similar- 353

ity as it is the most common similarity measure in 354

NLP (Aggarwal and Zhai, 2012). It is important to 355

note that the performances of the clustering are di- 356

rectly affected by the similarity measures making it 357

a critical step of the event detection process. Using 358
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these similarities, clusters are computed using the359

Louvain algorithm (Blondel et al., 2008), a well-360

known community detection algorithm which auto-361

matically computes the optimal number of clusters.362

This aspect is especially important in our context363

of open-domain event detection, in which the num-364

ber of event is not known beforehand. The only365

parameter that this algorithm need is a similarity366

threshold, which will be different for each repre-367

sentation model.368

Now that we have presented the different algo-369

rithms used for CCEDM, we present the different370

experiments we conducted and the results obtained.371

4 CCEDM and FSD : experiments and372

results373

In this section, we present two experiments, con-374

ducted to evaluate different aspects. The goal of the375

first experiment is to validate that CCEDM, based376

on classical clustering, has better performances377

than the FSD. The goal of second experiments is378

to evaluate the performances of Transformer-based379

language models compared to TF-IDF in the con-380

text of CCEDM.381

For each of these experiments, we first present382

the experimental protocol and then the results. We383

include significance tests, using α = 0, 05. We384

use the "Wilcoxon signed-rank test", which is the385

method which fits the best our context (Yeh, 2000).386

Indeed, we use non parametric test methods due to387

the characteristics of our data.388

4.1 Experimental configuration389

4.1.1 Evaluation measures390

We use the B-cubed measure for the evaluation of391

the clusters produced. B-cubed is a generalization392

of Precision, Recall, F1-score for clustering and393

is the most complete cluster evaluation measure394

(Amigó et al., 2009). Precision P is defined as the395

proportion of documents in the document’s clus-396

ter that correspond to the same event. Recall R is397

defined as the proportion of documents that cor-398

respond to the same event, which are also in the399

document’s cluster. To obtain the F1 Score, we use400

the following formula: F1 = 2∗P∗R
P+R .401

4.2 Dataset402

We use Event2012 (McMinn et al., 2013), a cor-403

pus of 120 millions tweets, collected from the 10th404

of October to the 7th of November 2012 from the405

Twitter streaming API. 159,952 tweets are labeled406

as event-related, distributed into 506 events, which 407

are distributed into 8 categories. We only work on 408

the annotated part of the dataset in order to be able 409

to evaluate properly our results. Due to the TREC 410

policy, only tweet ids can be shared and the actual 411

content of the tweets have to be retrieved using the 412

Twitter API. Some tweets are not available any- 413

more, due to deletion of the tweet, of the account 414

which posted the tweet, or because the account is 415

not public anymore. Thus, we collected 69,875 la- 416

beled tweets, which are distributed into 504 events. 417

To simulate a stream of data as it would be in a 418

real-world context, we sorted the dataset according 419

the date of publication of each tweet. We divide the 420

dataset into two equal sets : the train set and the test 421

set. We use windows of τ = 2000 tweets to have a 422

representative number of documents while keeping 423

the windows short in terms of time. We used the 424

whole annotated dataset for the first experiment, 425

and the test set for the second experiment. 426

4.2.1 Representation models 427

We use two variations of TF-IDF and S-BERT, and 428

we use the model USE-LARGE1, called USE in 429

the rest of this paper. Concerning TF-IDF, we use 430

the implementation proposed by (Mazoyer et al., 431

2020). The first one, named TF-IDF dataset, cal- 432

culated IDF on the labeled tweets of the dataset. 433

The second, TF-IDF all tweets, calculated IDF 434

on the whole dataset. Concerning S-BERT, the 435

first version, named S-BERT nli is the pretrained 436

version on the NLI dataset, available using the im- 437

plentations proposed by the authors of (Reimers 438

and Gurevych, 2019)2. We chose this model be- 439

cause the NLI dataset is known to improve the 440

performances of the models for clustering tasks 441

(Bowman et al., 2015). The second version of S- 442

BERT is S-BERT fine-tuned. It is a fine-tuned 443

version of S-BERT on the training set, which is the 444

first half of the labeled dataset. The events are used 445

as the target labels. The particularity of this train- 446

ing set is it is ordered according to the publication 447

date of the documents, thus, the major part of the 448

event in the training set are not in the test set. The 449

fine-tuning is done on 36 000 tweets, to fit with 450

the size of the windows we chose. We assigned 451

to each tweet a pair of tweets, a tweet from the 452

same label, and a tweet from a different label, as 453

it is usually done to train siamese neural networks. 454

1https://tfhub.dev/google/universal-sentence-encoder-
large/5

2https://github.com/UKPLab/sentence-transformers
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Figure 3: Data treatment process performed by CCEDM for each window. (a) Documents representations in vector
space. Each document is represented by a point. (b) A graph is created using the similarity matrix. Each document
is a vertex and each edge is weighted using the similarity between documents. (c) Creation of the clusters, by
deleting edges with a low weight.

Table 1: Clustering quality according to the metric B-Cubed for each textual representation, according to the
clustering algorithm. In nearly every case, CCEDM performs better than FSD.

Model Approach Precision Recall F1 Score

TF-IDF dataset
FSD 0.727± 0.128 0.523± 0.184 0.573± 0.150
CCEDM 0.930 ± 0.048 0.702 ± 0.276 0.756 ± 0.240

TF-IDF all tweets
FSD 0.781± 0.107 0.552± 0.199 0.613± 0.161
CCEDM 0.929 ± 0.039 0.751 ± 0.272 0.805 ± 0.245

USE
FSD 0.919 ± 0.001 0.379± 0.01 0.500± 0.01
CCEDM 0.918± 0.01 0.664 ± 0.01 0.729 ± 0.01

S-BERT-nli
FSD 0.968 ± 0.023 0.323± 0.159 0.460± 0.195
CCEDM 0.880± 0.075 0.611 ± 0.244 0.680 ± 0.207
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Each of these two tweets is randomly chosen in the455

training set, using the rules defined about the labels.456

S-BERT nli was used during the first experiment,457

and S-BERT fine-tuned during the second.458

4.2.2 Preprocessing459

To clean the tweets, we remove from the text the460

user and retweet mentions and the URLs.461

4.3 First Experiment462

4.3.1 Experimental protocol463

This first experiment is the comparison of four text464

representation models, TF-IDF dataset, TF-IDF465

all tweets, S-BERT nli and USE, in two different466

contexts, i.e. in the context of FSD or in the con-467

text of CCEDM. For the FSD implementation, we468

use the one proposed by (Mazoyer et al., 2020)3469

and adapt this solution. Indeed, we chose to apply470

this algorithm to windows of 2000 tweets and use471

B-Cubed as a performance measure. Thus, we for-472

mulate the following H0 hypothesis : "There is no473

statistically significant difference between the per-474

formance of FSD and CCEDM". To validate this475

hypothesis, we use the "Wilcoxon signed-rank test".476

Concerning the threshold values used for the FSD477

algorithm, we used the same as the one presented478

in (Mazoyer et al., 2020), i.e. t=0.65 for TF-IDF479

dataset, t=0.75 for TF-IDF all tweets, t=0.39 for480

S-BERT and t=022 for USE. The threshold val-481

ues used for CCEDM are the following: t=0.39482

for models based on TF-IDF, t=0.79 for S-BERT,483

t=0.59 for USE. As a reminder, these similarity val-484

ues are computed using Cosine Similarity. These485

threshold values were determined empirically.486

4.3.2 Results487

Table 1 show the results of this experiment. The488

number presented are the mean of each metric for489

each window and the standard deviation. In most490

cases, CCEDM performs better than FSD. The491

results of the significance tests are presented in492

Table 2. The test is done between the values of493

all metrics, for each method, for each window for494

tweets. In every case, we can see that the p-value495

is always less than α.496

4.4 Second experiment497

4.4.1 Experimental protocol498

The second experiment goal is to compare TF-IDF499

dataset, TF-IDF all tweets, S-BERT fine-tuned500

3https://github.com/ina-foss/twembeddings

Table 2: P-value for the Wilcoxon signed-rank "FSD vs
CCEDM". In every case, P-value<α.

Model Precision Recall F1 Score
TF-IDF
dataset

2.47 e-07 1.14 e-06 8.21e-05

TF-IDF all
tweets

2.47e-07 1.31e-07 2.21e-05

S-BERT
nli

3.65e-07 2.47e-07 2.47e-07

and USE in the context of CCEDM, on the test 501

dataset. The performances are evaluated using B- 502

cubed. We formulate the following H0 hypothe- 503

sis: "None of the approach is significantly better 504

than the others". The threshold values used for 505

this experiment as the same as before, i.e. t=0.39 506

for TF-IDF based models, t=0.79 for S-BERT, and 507

t=0.59 for USE. This experiment is useful to com- 508

pare these representation methods to each other, 509

to determine which is the most efficient method. 510

In particular, we want to investigate the relative 511

performances of the Transformer-based language 512

models compared to the models based on TF-IDF. 513

As a reminder, in (Mazoyer et al., 2020), the au- 514

thors showed that the Transformer-based language 515

models were poorly performing on this dataset in 516

the context of the FSD algorithm and that the mod- 517

els based on TF-IDF performed the best. We did 518

not fine-tune USE because it cannot be easily done, 519

and this issue was raised multiple times on the offi- 520

cial Github repository of USE. Anyway, BERT is 521

currently the most standard language model, so it is 522

logical to focus on this particular language model. 523

4.4.2 Results 524

Results are presented in Table 3 and the results of 525

the significance tests in Table 4. 526

Thus, the performances are better for the ap- 527

proach based on TF-IDF in terms of Precision but 528

in terms of recall and F1 score, the Transformer 529

models perform better. The significance tests show 530

that TF-IDF methods performs significantly better 531

in terms of Precision, Transformers in terms of Re- 532

call. USE performs significantly better in terms of 533

F1 score, but S-BERT not. 534

4.5 Discussion of the results 535

The first experiment showed that CCEDM 536

performs better than the FSD algorithm in most 537

of the presented cases. This finding is especially 538
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Table 3: Clustering quality according to the metric B-Cubed for each textual representation, in a supervised context,
on the test dataset.

Précision Rappel F1 Score
TF-IDF dataset 0.904± 0.044 0.769± 0.216 0.805± 0.170

TF-IDF all tweets 0.929 ± 0.035 0.750± 0.215 0.805± 0.184

S-BERT fine tuned 0.851± 0.067 0.837± 0.170 0.828± 0.106

USE 0.875± 0.061 0.855 ± 0.211 0.839 ± 0.158

Table 4: P-value for the Wilcoxon signed-rank test. Not all the results are significant.

Précision Rappel F1 Score
S-BERT nli fine-tuned / TF-IDF dataset 8.39e-04 6.65e-03 0.963
S-BERT nli fine-tuned / TF-IDF all tweets 7.62e-05 7.62e-05 0.889
USE / TF-IDF dataset 1.49e-02 1.34e-02 6.38e-02
USE / TF-IDF all tweets 3.81e-04 4.57e-05 2.32e-02

true for the recall measure. Concerning precision,539

and particularly for Transformer-based language540

models, the values of FSD and CCEDM are close.541

We believe that the FSD algorithm allow in these542

cases to obtain coherent clusters (high precision).543

However, the FSD seems to have a tendency to544

segment documents of a same label in different545

clusters, resulting in a drop in recall. This is546

probably due to the fact that the FSD algorithm can547

create a new cluster when a new document arrives,548

without taking into account all of the documents549

of the window. This segmentation is less frequent550

with CCEDM, explaining the better recall values.551

552

We also showed that the Transformer-based lan-553

guage models, especially USE, can be competitive554

with classical methods (TF-IDF). We can note that555

in a unsupervised context (experiment 1), S-BERT556

performs worse than USE. We believe this is due to557

the dataset used for the pre-training of the different558

language models. Indeed, the S-BERT model that559

we used is based on BERT NLI, which is trained560

on the English Wikipedia Corpus, on BookCor-561

pus and fine-tuned on SNLI. USE is, for its part,562

trained on a more diverse dataset, including data563

from discussion forums, and question-answer web-564

sites. These data are closer to the one we encounter565

in the dataset Event2012, which are extracted from566

Twitter. Thus, data extracted from social network,567

for which the syntax is very specific because of the568

destructuration of the language, are a problem for569

the vanilla S-BERT because it is trained on data570

written in a more conventional English. Once S-571

BERT is fine-tuned on social network data, the per-572

formances rise and they become similar to the per- 573

formances of other models. Thus, the fine-tuning 574

phase is particularly important and it shows that 575

fine-tuning S-BERT on data extracted from social 576

network allows us to obtain better results in our 577

context. It is an interesting result considering that 578

most of the events of the training set, the targets, 579

are not present in the test set. Thus, the training is 580

useful, even in a context where some concept drift 581

happens. 582

4.6 Conclusion 583

In this article, we showed that considering the 584

problem of event detection as a clustering prob- 585

lem (CCEDM) rather than a dynamic clustering 586

problem (FSD) allows to achieve better perfor- 587

mances. We also showed that in certain context, 588

Transformer-based language models can have per- 589

formances similar to classical models (TF-IDF). 590

Finally, we showed that the fine-tuning of these 591

language models is particularly interesting to adapt 592

to the specific data extracted from the social net- 593

works. In future work, we plan to apply our method 594

to a more realistic context by including non-event 595

related documents. A major issue in this context is 596

to be able to evaluate the methods while most of 597

the documents are not annotated. We plan to pro- 598

pose new evaluation metrics in order to facilitate 599

the evaluation of the models and the reproducibility 600

of the experiments. We also plan to investigate the 601

other building blocks of the classical event detec- 602

tion framework, namely the event detection phase, 603

exploiting graph neural networks. 604

8



References605

Charu C Aggarwal and ChengXiang Zhai. 2012. A606
survey of text clustering algorithms. In Mining text607
data, pages 77–128. Springer.608

James Allan. 2012. Topic detection and tracking: event-609
based information organization, volume 12. Springer610
Science & Business Media.611

James Allan, Victor Lavrenko, Daniella Malin, and Rus-612
sell Swan. 2000. Detections, bounds, and timelines:613
Umass and tdt-3. Proceedings of Topic Detection614
and Tracking Workshop.615

Enrique Amigó, Julio Gonzalo, Javier Artiles, and Fe-616
lisa Verdejo. 2009. A comparison of extrinsic clus-617
tering evaluation metrics based on formal constraints.618
Information retrieval, 12(4):461–486.619

Farzindar Atefeh and Wael Khreich. 2015. A survey of620
techniques for event detection in twitter. Computa-621
tional Intelligence, 31(1):132–164.622

Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. 1999.623
Modern information retrieval, volume 463. ACM624
press New York.625

Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto.626
1999. Modern Information Retrieval. ACM Press /627
Addison-Wesley.628

Moumita Basu, Anurag Roy, Kripabandhu Ghosh, Som-629
prakash Bandyopadhyay, and Saptarshi Ghosh. 2017.630
Microblog retrieval in a disaster situation: A new test631
collection for evaluation. In SMERP@ ECIR, pages632
22–31.633

Hila Becker, Mor Naaman, and Luis Gravano. 2010.634
Learning similarity metrics for event identification635
in social media. In Proceedings of the third ACM636
international conference on Web search and data637
mining, pages 291–300.638

Hila Becker, Mor Naaman, and Luis Gravano. 2011. Be-639
yond trending topics: Real-world event identification640
on twitter. volume 11.641

Vincent D. Blondel, Jean-Loup Guillaume, Renaud642
Lambiotte, and Etienne Lefebvre. 2008. Fast un-643
folding of communities in large networks. Journal644
of Statistical Mechanics: Theory and Experiment,645
P10008:1–12.646

Johan Bollen, Huina Mao, and Xiaojun Zeng. 2011.647
Twitter mood predicts the stock market. Journal of648
computational science, 2(1):1–8.649

Cedric De Boom, Steven Van Canneyt, Thomas De-650
meester, and Bart Dhoedt. 2016. Representation651
learning for very short texts using weighted word652
embedding aggregation. CoRR, abs/1607.00570.653

Samuel R Bowman, Gabor Angeli, Christopher Potts,654
and Christopher D Manning. 2015. A large annotated655
corpus for learning natural language inference. arXiv656
preprint arXiv:1508.05326.657

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard 658
Säckinger, and Roopak Shah. 1994. Signature verifi- 659
cation using a" siamese" time delay neural network. 660
Advances in neural information processing systems, 661
pages 737–737. 662

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, 663
Nicole Limtiaco, Rhomni St. John, Noah Con- 664
stant, Mario Guajardo-Cespedes, Steve Yuan, Chris 665
Tar, Yun-Hsuan Sung, Brian Strope, and Ray 666
Kurzweil. 2018. Universal sentence encoder. CoRR, 667
abs/1803.11175. 668

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc 669
Barrault, and Antoine Bordes. 2017. Supervised 670
learning of universal sentence representations from 671
natural language inference data. In Proceedings of 672
the 2017 Conference on Empirical Methods in Nat- 673
ural Language Processing, pages 670–680, Copen- 674
hagen, Denmark. Association for Computational Lin- 675
guistics. 676

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 677
Kristina Toutanova. 2018. Bert: Pre-training of deep 678
bidirectional transformers for language understand- 679
ing. arXiv preprint arXiv:1810.04805. 680

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 681
Kristina Toutanova. 2019. BERT: Pre-training of 682
deep bidirectional transformers for language under- 683
standing. In Proceedings of the 2019 Conference of 684
the North American Chapter of the Association for 685
Computational Linguistics: Human Language Tech- 686
nologies, Volume 1 (Long and Short Papers), pages 687
4171–4186, Minneapolis, Minnesota. Association for 688
Computational Linguistics. 689

Fatma Elsafoury. 2020. Teargas, water cannons and 690
twitter: A case study on detecting protest repression 691
events in turkey 2013. In Text2Story@ ECIR, pages 692
5–13. 693

Adrien Guille and Cécile Favre. 2014. Mention- 694
anomaly-based event detection and tracking in twit- 695
ter. In 2014 IEEE/ACM International Conference on 696
Advances in Social Networks Analysis and Mining 697
(ASONAM 2014), pages 375–382. IEEE. 698

Zellig S Harris. 1954. Distributional structure. Word, 699
10(2-3):146–162. 700

Mahmud Hasan, Mehmet A Orgun, and Rolf Schwitter. 701
2018. A survey on real-time event detection from the 702
twitter data stream. Journal of Information Science, 703
44(4):443–463. 704

Mahmud Hasan, Mehmet A Orgun, and Rolf Schwitter. 705
2019. Real-time event detection from the twitter data 706
stream using the twitternews+ framework. Informa- 707
tion Processing & Management, 56(3):1146–1165. 708

Muhammad Imran, Carlos Castillo, Fernando Diaz, and 709
Sarah Vieweg. 2015. Processing social media mes- 710
sages in mass emergency: A survey. ACM Comput- 711
ing Surveys (CSUR), 47(4):1–38. 712

9

https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
http://arxiv.org/abs/1607.00570
http://arxiv.org/abs/1607.00570
http://arxiv.org/abs/1607.00570
http://arxiv.org/abs/1607.00570
http://arxiv.org/abs/1607.00570
http://arxiv.org/abs/1803.11175
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


Karen Sparck Jones. 1972. A statistical interpretation713
of term specificity and its application in retrieval.714
Journal of documentation.715

Jooho Kim and Makarand Hastak. 2018. Social network716
analysis: Characteristics of online social networks717
after a disaster. International Journal of Information718
Management, 38(1):86–96.719

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,720
Richard S Zemel, Antonio Torralba, Raquel Urta-721
sun, and Sanja Fidler. 2015. Skip-thought vectors.722
arXiv preprint arXiv:1506.06726.723

Quanzhi Li, Armineh Nourbakhsh, Sameena Shah, and724
Xiaomo Liu. 2017. Real-time novel event detection725
from social media. In 2017 IEEE 33Rd international726
conference on data engineering (ICDE), pages 1129–727
1139. IEEE.728

Béatrice Mazoyer, Julia Cagé, Nicolas Hervé, and Cé-729
line Hudelot. 2020. A french corpus for event detec-730
tion on twitter. In Proceedings of the 12th Language731
Resources and Evaluation Conference, pages 6220–732
6227.733

Andrew J McMinn and Joemon M Jose. 2015. Real-734
time entity-based event detection for twitter. In In-735
ternational conference of the cross-language evalu-736
ation forum for european languages, pages 65–77.737
Springer.738

Andrew J McMinn, Yashar Moshfeghi, and Joemon M739
Jose. 2013. Building a large-scale corpus for evaluat-740
ing event detection on twitter. In Proceedings of the741
22nd ACM international conference on Information742
& Knowledge Management, pages 409–418.743

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-744
frey Dean. 2013. Efficient estimation of word745
representations in vector space. arXiv preprint746
arXiv:1301.3781.747

Mor Naaman, Hila Becker, and Luis Gravano. 2011.748
Hip and trendy: Characterizing emerging trends on749
twitter. JASIST, 62:902–918.750

Brendan O’Connor, Ramnath Balasubramanyan, Bryan751
Routledge, and Noah Smith. 2010. From tweets to752
polls: Linking text sentiment to public opinion time753
series. In Proceedings of the International AAAI754
Conference on Web and Social Media, volume 4.755

Nuno Oliveira, Paulo Cortez, and Nelson Areal. 2017.756
The impact of microblogging data for stock market757
prediction: Using twitter to predict returns, volatility,758
trading volume and survey sentiment indices. Expert759
Systems with Applications, 73:125–144.760

S. J. Pan and Q. Yang. 2010. A survey on transfer761
learning. IEEE Transactions on Knowledge and Data762
Engineering, 22(10):1345–1359.763

Matthew E Peters, Waleed Ammar, Chandra Bhaga-764
vatula, and Russell Power. 2017. Semi-supervised765
sequence tagging with bidirectional language models.766
arXiv preprint arXiv:1705.00108.767
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