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Abstract

Phase retrieval (PR) concerns the recovery of complex phases from complex1

magnitudes. We identify the connection between the difficulty level and the2

number and variety of symmetries in PR problems. We focus on the most difficult3

far-field PR (FFPR), and propose a novel method using double deep image priors.4

In realistic evaluation, our method outperforms all competing methods by large5

margins. As a single-instance method, our method requires no training data and6

minimal hyperparameter tuning, and hence enjoys good practicality.7

1 Introduction8

In scientific imaging, observable physical quantities about the object of interest are often complex-9

valued, e.g., when diffraction happens [1]. However, practical detectors can only record complex10

magnitudes, but not phases, resulting in phaseless observations. Phase retrieval (PR), broadly defined,11

is the nonlinear inverse problem of estimating the object of interest from the phaseless observations.12

PR is central to coherent diffraction imaging ((B)CDI) [2, 3], image-based wavefront sensing [4],13

radar and sonar sensing [5]; see the recent survey [6].14

Which phase retrieval (PR)? Consider a 2D object of interest X ∈ Cm×n, and a physical15

observation model A that leads to an ideal complex-valued observation A(X) ∈ Cm′×n′
. However,16

the detector can only record Y = |A(X)|2, where |·|2 denotes the elementwise squared magnitudes.17

In far-field (Fraunhofer) PR (FFPR) that stems from far-field propagation and is also the focus18

of this paper, A is the oversampled 2D Fourier transform F with m′ ≥ 2m− 1 and n′ ≥ 2n− 119

to ensure recoverability. Numerous other A’s have been studied in the literature, notable ones20

including: (1) Generalized PR (GPR): A(X) = {⟨Ai,X⟩}ki=1 where Ai’s are iid Gaussian21

or randomly-masked Fourier basis matrices [7, 8]. These elegant mathematical models do not22

correspond to physically feasible imaging systems so far; (2) Near-Field (Fresnel) PR (NFPR):23

A(X) = F(X ⊙ [eiπβ(i
2+j2)]i,j) [9, 10], where the constant β > 0 depends on the sampling24

intervals, wavelength, and imaging distance [11], comes from near field propagation. Note that FFPR25

corresponds to β → 0, and PR problems solved in image-based wavefront sensing for astronomical26

applications correspond to multi-plane near-field propagation with sequential optical aberrations [12];27

(3) Holographical PR (HPR): A(X) = F([X,R]), where R is a known reference that is put28

side-by-side with the object of interest X [13]; depending on the propagation distance, near-field29

versions are also possible [1, Chapter 11]; (4) Ptychography (PTY): X is raster scanned by a sharp30

illumination pattern W that is focused over a local patch of X each time. Now Y is the set of31

magnitude measurements Yi = |F(W ⊙X(pi))|2, where pi indexes the raster grid [14, 15].32

Symmetry matters Identifiability in PR is often up to intrinsic symmetries. For example, any33

global phase factor eiθ added to X leaves Y unchanged for FFPR, NFPR, GPR, and PTY, i.e.,34

global phase symmetry. While this is the only symmetry for NFPR, GPR, and PTY, FFPR has35

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



Figure 1: Illustration of the three
intrinsic symmetries in FFPR on
simulated complex-valued crys-
tal data (see Section 4 for de-
tails). Any composition of 2D
conjugate flipping, translation,
and global phase, when applied
to X , leads to the same set of
magnitudes Y .

Table 1: Comparison of GPR, NFPR, and FFPR in terms of their symmetries and numerical solvability
with the least-squares (LS) formulation combined with gradient descent.

PR model GPR NFPR FFPR

Symmetry global phase global phase
global phase, trans-
lation, 2D conjugate
flipping

Final loss of solv-
ing LS using gra-
dient descent from
100 random initial-
izations

two other symmetries: translation and 2D conjugate flipping, as shown in Fig. 1 [16]. A crucial36

empirical observation is that the difficulty level of a PR problem is proportional to the number37

of its symmetries. To see the point, consider a natural least-squares (LS) formulation of PR:38

minX∈Cm×n
1

m′n′ ∥
√
Y − |A(X)|∥2F , with the groundtruth complex-valued 2D crystal sample in39

Fig. 1 as the target X . On GPR with Gaussian, NFPR, and FFPR, we run gradient descent with 10040

random starts respectively and record their final convergent losses. As evident from Table 1, while we41

can consistently find numerically satisfactory solutions for GPR and NFPR, we always find bad local42

solutions for FFPR—which has three symmetries. Similarly, for FFPR, the gold-standard hybrid43

input-output (HIO) algorithm can typically solve the problem when provided with tight support44

specification—translation symmetry is killed, but HIO fails when the support is loose—translation45

symmetry remains; see Appendix A. Moreover, prior works [17–20] also show the learning difficulties46

caused by these symmetries when one develops data-driven methods for solving FFPR.47

Our focus on practical FFPR methods We have stressed that symmetries largely determine48

the difficulty level of PR. However, in previous research, there are often simplifications to FFPR,49

including (1) randomized the model A that only keeps the global phase symmetry, (2) evaluation50

on natural images that removes the translation symmetry and simplifies the global phase symmetry51

into sign symmetry [8, 21, 22]. These simplifications invariably lead to FFPR methods that do not52

work on practical data. The goal of this paper is to develop practical methods for FFPR that53

involve all three symmetries. In particular, we propose a novel FFPR method based on double deep54

image priors (see Section 3), and validate its superiority over state-of-the-art (SOTA) on realistic55

datasets (see Section 4).56

2 FFPR: Formulation and Prior Arts57

FFPR model The object of interest is X ∈ Cm×n, and Y = |F(X)|2 ∈ Rm′×n′

+ . Here, F is the58

oversampled 2D Fourier transform. We always assume that m′ ≥ 2m− 1 and n′ ≥ 2n− 1, which is59

necessary to ensure recoverability.60

Prior arts on FFPR Since we focus on practical FFPR, here we only discuss methods that have61

been tested on FFPR with at least partial success. (I) Classical iterative methods: Due to the failure62

of the LS, most (if not all) classical methods tackle the over-parameterized feasibility reformulation:63

find Z ∈ Cm′×n′
s. t. |F(Z)|2 = Y ,L(Z) = 0, where L restricts Z to the zero-padding locations64

defined by the oversampling. More refined support information can be naturally incorporated65
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into the support constraint L(Z) = 0. These classical methods are all based on generalized66

alternating projection, represented by error-reduction (ER), hybrid input-output (HIO) [23], reflection67

average alternating reflectors (RAAR) [24], difference map (DM) [25], and oversampling smoothness68

(OSS) [26]. They are empirically observed to find good solutions for FFPR, provided that the support69

specification for Z is tight and hyperparameters are properly tuned. Alternative formulations solved70

by second-order methods [27, 28] are less sensitive to hyperparameters. However, all these methods71

require tight support specification to avoid the translation symmetry—failing so leads to spurious72

solutions that look like the superposition of translated copies; see Appendix B. This is addressed73

by the popular shrinkwrap trick [29] in practice, which refines the support by smoothing-and-74

thresholding over iterations. (II) Data-driven methods: The first line of work represents the inverse75

mapping from Y to X by a deep neural network (DNN) gθ , which is trained either over an extensive76

training set {(Yi,Xi)}i, or unpaired {Yi}i and {Xi}i only by observing the cycle consistency77

constraint: |F(gθ(Y ))|2 ≈ Y [30–35, 17–20, 36, 37]. But, as discussed in [17–20], symmetries in78

the problem cause substantial learning difficulties, as any Y maps to a family of equivalent X’s.79

The second line of work [38–40] is tied to specific iterative methods for solving FFPR and replaces80

certain components of these methods with trainable DNNs. A common limitation of this line is the81

reliance on good initialization that is obtained from classical iterative methods. Therefore, this family82

can be viewed as a final refinement of the results from classical methods and does not address the83

essential difficulty of solving FFPR. Both lines suffer in generalization when the training data are not84

sufficiently representative.85

Our method overcomes the limitations of both classical and data-driven methods. (1) No training set:86

it works with a single problem instance each time, with zero extra training data; (2) No shrinkwrap:87

we can specify the size of X directly as ⌊m′/2⌋ × ⌊n′/2⌋, i.e., the information-theoretic recovery88

limit, without worrying about the translation symmetry; (3) Minimal tuning: mostly we only need to89

tune 2 learning rates as hyperparameters, vs. the 5 or 6 hyperparameters used in HIO+ER+Shrinkwrap90

(HES) for practical CDI [41].91

3 Our method: FFPR using double DIPs92

Deep image prior (DIP) for visual inverse problems DIP and variants [42] parameterize visual93

objects as outputs of DNNs—typically structured convolutional networks to favor spatially smooth94

structures, i.e., x = Gθ(z), where z is normally a random but fixed seed, and Gθ is a trainable DNN95

paramaterized by θ. For a visual inverse problem of the form y ≈ f(x) where y is the observation96

and f is the observation model, the classical regularized data-fitting formulation minx ℓ(y, f(x)) +97

λΩ(x) can now be empowered by DIP and turned into minθ ℓ(y, f ◦Gθ(z)) + λΩ ◦Gθ(z). This98

simple idea has recently claimed numerous successes in computer vision and imaging; see, e.g.,99

[43–46]. A salient feature of DIP is the strong structured prior it imposes through DNNs, with100

zero extra data! Although the theoretical understanding of DIP is still far from complete, current101

theories attribute its success to two aspects: (1) structured priors imposed by convolutional and102

upsampling operations, and (2) global optimization due to significant overparameterization and103

first-order methods [47, 48].104

Applying DIP to FFPR As shown in Table 1, solving the LS formulation using gradient descent105

always gets trapped in bad local minimizers. It is then tempting to try DIP, as (1) the objects we try to106

recover in scientific imaging are visual objects and probably can be blessed by the structured priors107

enforced by DIP, and (2) more importantly, the issue we encounter in solving the LS is exactly about108

global optimization, which could be eliminated by overparameterization in DIP. In fact, systematic109

evaluation of solving minθ ∥
√
Y − |F ◦Gθ(z)|∥2F where Gθ(z) ∈ Cm×n in Figs. 2 and 3 shows110

that it is already competitive compared to the gold-standard HES, although it struggles to reconstruct111

complicated complex phases.112

Double DIPs boost the performance For FFPR applications such as CDI, X as a complex-valued113

object can often be naturally split into two parts with disparate complexity levels. For example, in114

Bragg CDI on crystals, the magnitude part on the support is known to have uniform values, but115

the phase part can have complex spatial patterns due to strains [49–51]; in CDI on live cells, the116

nonnegative real part contains useful information, and the imaginary part acts like small-magnitude117

noise [52]. In these cases, due to the apparent asymmetry in complexity, it makes sense to parameterize118
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X as two separate DIPs [53, 46] instead of one:119

X = G1
θ1
(z1)e

iG2
θ2

(z2), or X = G1
θ1
(z1) + iG2

θ2
(z2). (1)

This can be justified as balancing the learning paces: with a single DIP, “simple" part is learned120

much faster than the “complex” part; with double DIPs, we can balance the learning paces by making121

the learning rate for the “simple" part relatively small compared to that for the “complex" part. We122

observe a substantial performance boost in Figs. 2 and 3 due to the double-DIP parametrization.123

Figure 2: Visual comparison of reconstruction results by different methods on 2D crystal data

4 Experiments Results124

Figure 3: Quantitative comparison of reconstruc-
tion results by different methods on 2D simulated
crystal data by symmetry-adjusted MSE

We first compare our Double-DIP method125

with multiple SOTA methods for FFPR, in-126

cluding Naive [36], CGAN [54], Passive [32],127

prDeep [38], HIO+ER, HIO+ER+Shrinkwrap128

(HES), and (single-)DIP on simulated 2D data129

for Bragg CDI on crystals. The final form of our130

learning objective for this task is:131

min
θ1,θ2

∥
√
Y − |F ◦G1

θ1
(z1)e

iG2
θ2

(z2)|∥2F . (2)

To ensure that the evaluation data reflect real-132

world complexity, we simulate 2D complex-133

valued crystal data in Bragg CDI applica-134

tions [3]. The dataset is generated by first creating 2D convex and nonconvex shapes based on135

random scattering points in a 110× 110 grid on a 128× 128 background. The complex magnitudes136

are uniformly 1, and the complex phases are determined by projecting the simulated 2D displacement137

fields (due to crystal defects) onto the corresponding momentum transfer vectors. To maximize138

the diversity, the dataset contains diverse shapes and different numbers and densities of crystal139

defects that directly determine the complexity of the phases. Although our double-DIP method is a140

single-instance method that requires no training data, the dataset is large enough to support141

data-driven methods, such as Passive and prDeep. For methods that require a training set, we142

provide 8000 samples. All methods are tested on 50 samples. From both visual (Fig. 2) and quantita-143

tive (Fig. 3) results, it is evident that: (1) all data-driven methods, including Naive, CGAN, Passive,144

prDeep, perform poorly. We believe that this is due to either the learning difficulty caused by the three145

symmetries [17–20] or the bad initialization given by HIO (i.e., for prDeep); (2) HES, DIP, and our146

double-DIP are the top three methods. HES deals with translation symmetry by explicitly iterative147

refining the support, whereas DIP and ours do not need tight support estimation at all, substantially148

reducing parameter tuning; (3) Our method wins HES and DIP by a large margin. Although the latter149

two perform reasonably well in magnitude estimation, their phase estimations are typically off for150

complicated instances. Appendix C contains evaluation on 3D simulated Bragg CDI data.151
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A Failure of HIO when the support specification is loose285

The result is presented in Fig. 4.286

B Failure patterns of classical iterative methods on FFPR287

The result is presented in Fig. 5.288
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Figure 4: HIO to solve FFPR with vs without precise support. We plot the final least-squares losses
over 100 random starts. X is the groundtruth in Fig. 1.

Figure 5: Two failure examples when solving FFPR using classical iterative methods without precise
support specification and without shrinkwrap.

C Evaluation on 3D simulated Bragg CDI crystal data289

We will not continue considering data-driven methods, due to their clear performance deficiency on290

2D data and the considerable cost to obtain sufficiently representative training sets for 3D. We only291

compare HES, which is the gold-standard used in Bragg CDI practice, with our double-DIP method.292

Since both methods can work with single instances and need no training data, here we quickly293

compare their performance qualitatively on a single 3D simulated crystal instance (the simulation294

process is similar to the 2D case), as shown in Fig. 6. It is obvious that even with Shrinkwrap295

iteratively refining support, HES still struggles to get the support right. By contrast, our double-DIP296

method obtains sharp support recovery and good phase estimation.

Figure 6: Visual comparison of reconstruction results by HIO+ER+Shrinkwrap and our method on a
3D simulated crystal instance
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D Fresnel and Fraunhofer approximations to the diffraction formula297

Figure 7: A schematic diffraction imaging system with parallel aperture and imaging planes (plot
adapted from https://commons.wikimedia.org/wiki/File:Diffraction_geometry.svg
under the Creative Commons Attribution-Share Alike 3.0 Unported license.)

In this section, we clarify the difference between the near-field and far-field models for phase retrieval,298

following [1, 55]. Consider the propagation of a monochromatic wave (with wavelength λ) from299

an aperture plane z = 0 to a parallel imaging plane z = z0 with z0 ≫ λ; see Fig. 7. Let U(x, y, z)300

denote the wave field. The celebrated Rayleigh-Sommerfeld diffraction formula dictates that301

U(x, y, z0) =
1

2π

∫∫
U(ξ, η, 0)

(
1

r(ξ, η)
− ik

)
z0

r2(ξ, η)
eikr(ξ,η) dξdη , (3)

where r(ξ, η)
.
=
√
z20 + (x− ξ)2 + (y − η)2, k .

= 2π
λ is the wavenumber, and the effective domain302

of the double integral is the aperture Ω. Moreover, write the domain of the image plane as Σ ⊂ R2.303

Eq. (3) has an equivalent form:304

U(x, y, z0) =

∫∫
Û(fX , fY , 0)e

ikz0
√

1−(λfX)2−(λfY )2ei2π(fXx+fY y) dfXdfY , (4)

where Û(fX , fY , 0) =
∫∫

U(x, y, 0)e−i2π(fXx+fY y) dfXdfY is the 2D Fourier transform of the305

planar field U(x, y, 0). The equivalence is due to the convolution theorem: write r◦(x, y)
.
=306 √

z20 + x2 + y2 and h(x, y, z0)
.
= 1

2π (
1

r◦(x,y) − ik) z0
[r◦(x,y)]2 e

ikr◦(x,y). Then Eq. (3) can be writ-307

ten as U(x, y, z0) = U(x, y, 0) ∗ h(x, y, z0). The equivalence is clear once we recognize that308

r̂◦(fX , fY , z0)
.
=
∫∫

h(x, y, z0)e
−i2π(fXx+fY y) dfXdfY = eikz0

√
1−(λfX)2−(λfY )2 .309

For Eq. (3), 1
r(ξ,η)−ik = 1

r(ξ,η)−
i2π
λ ≈ 2π

iλ as r(ξ, η) ≫ λ in practice. Hence we have the simplified310

form called the Huygens-Fresnel principle:311

U(x, y, z0) =
z0
iλ

∫∫
U(ξ, η, 0)

1

r2(ξ, η)
eikr(ξ,η) dξdη . (5)

We can derive two approximations to Eq. (5), i.e., the Fresnel (i.e., near-field) and Fraunhofer (i.e.,312

far-field) approximations. Noting that
√
1 + ε = 1 + ε/2 − ε2/8 + O(ε3) for |ε| ≪ 1, we can313

approximate314

r(ξ, η)
.
=
√
z20 + (x− ξ)2 + (y − η)2 = z0

√
1 +

(
x− ξ

z0

)2

+

(
y − η

z0

)2

(6)

9

https://commons.wikimedia.org/wiki/File:Diffraction_geometry.svg


by its low-order Taylor expansions, provided that (x− ξ)
2
+ (y − η)

2 ≪ z20 for all (ξ, η) ∈ Ω. First,315

we have r2(ξ, η) ≈ z20 using only the 0-th order expansion. For the exponential term, since k is316

normally large, we use the 1-st order expansion:317

exp (ikr(ξ, η)) ≈ exp

[
ik

(
z0 +

(x− ξ)2

2z0
+

(y − η)2

2z0

)]
= eikz0 exp

[
ik

2z0

(
(x− ξ)2 + (y − η)2

)]
,

(7)

which is acceptable when318

z0k

8

((
x− ξ

z0

)2

+

(
y − η

z0

)2
)2

≪ 1 ⇐⇒ z30 ≫ k

8

[
(x− ξ)

2
+ (y − η)

2
]2

∀ (ξ, η) ∈ Ω, (x, y) ∈ Σ.

(8)

So we arrive at the famous Fresnel approximation319

U(x, y, z0) ≈
eikz0

iλz0

∫∫
U(ξ, η, 0) exp

[
ik

2z0

(
(x− ξ)2 + (y − η)2

)]
dξdη

=
eikz0

iλz0
e

ik
2z0

(x2+y2)
∫∫ [

U(ξ, η, 0)e
ik
2z0

(ξ2+η2)
]
e−

ik
z0

(xξ+yη) dξdη

Fresnel approximation—forward

.

If moreover ik
2z0

(
ξ2 + η2

)
≪ 1 ⇐⇒ z0 ≫ k

2

(
ξ2 + η2

)
∀ (ξ, η) ∈ Ω, then e

ik
2z0

(ξ2+η2) ≈ 1 and320

hence we obtain:321

U(x, y, z0) ≈
eikz0

iλz0
e

ik
2z0

(x2+y2)
∫∫

U(ξ, η, 0)e−
ik
z0

(xξ+yη) dξdη

Fraunhofer approximation—forward
.

By assuming (λfX)
2
+(λfY )

2 ≪ 1 and so
√
1− (λfX)

2 − (λfY )
2 ≈ 1− (λfX)

2
/2− (λfY )

2
/2,322

we can approximate Eq. (4) as323

U(x, y, z0) ≈ eikz0
∫∫

Û(fX , fY , 0)e
−iπz0λ(f

2
X+f2

Y )ei2π(fXx+fY y) dfXdfY

Fresnel approximation—backward
.

This is equivalent to the forward form of Fresnel approximation, due to324

F
(

1

iλz0
e

ik
2z0

(x2+y2)
)

= e−iπλz0(f
2
X+f2

Y ), (9)

and the convolution theorem again.325

So when we measure the field intensity on the image plane,326

|U(x, y, z0)|2 ∝
∣∣∣∣∫∫ [U(ξ, η, 0)e

ik
2z0

(ξ2+η2)
]
e−

ik
z0

(xξ+yη) dξdη

∣∣∣∣2 (10)

∝
∣∣∣∣∫∫ Û(fX , fY , 0)e

−iπz0λ(f
2
X+f2

Y )ei2π(fXx+fY y) dfXdfY

∣∣∣∣2 (11)

according to the Fresnel (near-field) approximation, and327

|U(x, y, z0)|2 ∝
∣∣∣∣∫∫ U(ξ, η, 0)e−

ik
z0

(xξ+yη) dξdη

∣∣∣∣2 (12)

by the Fraunhofer (far-field) approximation. Detailed discussion of discretization and computation328

can be found in [1, Chapter 5].329
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