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Abstract

Despite the recent advances in personalized text-to-image (P-T2I) generative models, it re-
mains challenging to perform finetuning-free multi-subject-driven T2I in a resource-efficient
manner. Predominantly, contemporary approaches, involving the training of hypernetworks
and Multimodal Large Language Models (MLLMs), require heavy computing resources that
range from 600 to 12300 GPU hours of training. These subject-driven T2I methods hinge
on Latent Diffusion Models (LDMs), which facilitate T2I mapping through cross-attention
layers. While LDMs offer distinct advantages, P-T2I methods’ reliance on the latent space
of these diffusion models significantly escalates resource demands, leading to inconsistent
results and necessitating numerous iterations for a single desired image.
Through empirical evidences we find that CLIP (vision) latent space is already expres-
sive enough to preserve the fine-grained details. Building upon this insight, in this paper,
we present λ-ECLIPSE , a diffusion-agnostic prior-training strategy that operates in the la-
tent space of a pre-trained CLIP model without relying on the diffusion UNet models.
λ-ECLIPSE leverages the image-text interleaved pre-training for fast and effective multi-
subject-driven P-T2I. Through extensive experiments, we establish that λ-ECLIPSE sur-
passes existing baselines in composition alignment while preserving concept alignment per-
formance, even with significantly lower resource utilization. λ-ECLIPSE performs multi-
subject driven P-T2I with just 34M parameters and is trained on a mere 74 GPU hours.
Additionally, λ-ECLIPSE demonstrates the unique ability to perform multi-concept interpo-
lations. Project page: https://eclipse-t2i.github.io/Lambda-ECLIPSE/

1 Introduction

The field of text-to-image (T2I) diffusion models has recently witnessed remarkable advancements, achiev-
ing greater photorealism and enhanced adherence to textual prompts. This has catalyzed the emergence
of diverse applications, notably subject-driven personalized T2I (P-T2I) models. In particular, this encom-
passes the intricate task of learning and reproducing novel visual concepts or subjects in varied contexts
requiring high concept and compositional alignment. The complexity escalates further when multi-subject
personalization is desired.

∗Equal contribution
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Figure 1: λ-ECLIPSE can estimate subject-specific latent image embeddings while maintaining the balance
between concept and composition alignment in the CLIP latent space itself.

Early works employed concept-specific optimization strategies involving fine-tuning certain parameters within
T2I diffusion models Gal et al. (2022); Ruiz et al. (2023a); Kumari et al. (2023); Tumanyan et al. (2023);
Gal et al. (2023). Although these methods achieve state-of-the-art (SOTA) performance, they struggle with
generalization and are time-intensive. Contemporary research is pivoting towards fast personalization tech-
niques. Within this paradigm, there are two types of popular approaches: 1) Methods that involve training
hypernetworks and integrating new layers or parameters within pre-trained diffusion UNet models Wei et al.
(2023); Ye et al. (2023); Tewel et al. (2023); Shah et al. (2023); Ruiz et al. (2023b), and 2) MLLM-based
learning of prior models that focuses on leveraging text-latent space of frozen diffusion UNet model Pan
et al. (2023); Sun et al. (2023).

The hypernetwork-based strategy achieves single-concept customization but has not been extended to multi-
concepts. Moreover, when combined with additional control (i.e. Canny edge map), they struggle to maintain
the concept alignment (∼30% drop in performance; Section 4) and strongly favor the edge map. At the same
time, MLLM-based approaches can perform fast multi-concept customization but require heavy computing
resources. In Table 1, we provide the overview of various single and multi-concept customization method-
ologies in terms of total parameters, iterations, and GPU hours required to train the models. It can be
observed that multi-concept customization methodologies further increase the resource requirements. For
instance, Kosmos-G Pan et al. (2023) consumes 18x more resources than IP-Adapter Ye et al. (2023). And
Emu2 Sun et al. (2023) requires training of 19x more parameters compared to Kosmos-G. Hence, despite
MLLMs’ seemingly useful scenarios, it is not viable to blindly train them.

Upon further investigation, we find that most subject-driven T2I approaches build upon variants of the
Latent Diffusion Model (LDM) Rombach et al. (2022), specifically Stable Diffusion models. These LDMs
employ cross-attention layers to condition diffusion models with text embeddings, necessitating a mapping of
target subject images to latent spaces compatible with the diffusion models at the prior training stage. This
is also known as score distillation instruction tuning for MLLMs Pan et al. (2023). As there is no choice but
to learn this text-to-image diffusion latent space, it involves backpropagation through the entire diffusion
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Table 1: A quick overview of previous works on P-T2I. Our method is the first to offer multi-
concept-driven generation without depending on diffusion UNet models (except for inference). We provide
the extended overview table in the appendix.

Method Multi Finetuning Diffusion Total opt. Training Dataset GPU
Concepts Free Free params Steps Size Hours

Textual Inversion Gal et al. (2022) ✗ ✗ ✗ 768 5000 - 1
DreamBooth Ruiz et al. (2023a) ✗ ✗ ✗ 0.9B 800 - 0.2
ELITE Wei et al. (2023) ✗ ✓ ✗ 77M 135K 125K 336
BLIP-Diffusion Li et al. (2023a) ✗ ✓ ✗ 1.5B 500K 129M 2304
IP-Adapter Ye et al. (2023) ✗ ✓ ✗ 22M 1M - 672
Custom Diffusion Kumari et al. (2023) ✓ ✗ ✗ 57M 500 - 0.1
Subject-Diffusion Ma et al. (2023a) ✓ ✓ ✗ 252M 300K 76M -
Kosmos-G Pan et al. (2023) ✓ ✓ ✗ 1.9B 800K 200M 12300
Emu-2 Sun et al. (2023) ✓ ✓ ✗ 37B 70K 162M -
λ-ECLIPSE (ours) ✓ ✓ ✓ 34M 100K 2M 74

model often comprising over a billion parameters, contributing to the inefficiency of existing P-T2I methods.
Therefore, in this work, we focus on answering one question: Do we really need diffusion models to
train the customization models?

To answer this question and improve the resource efficiency for multi-concept image generation, we present
λ-ECLIPSE 1, which leverages the properties of UnCLIP T2I models (e.g. DALL-E 2 Ramesh et al. (2022)
and Kandinsky v2.2 Razzhigaev et al. (2023)) and performs P-T2I in the compressed latent space of frozen
CLIP model. Specifically, unlike previous MLLM-based methodologies, λ-ECLIPSE aligns the output space
of priors with CLIP vision space instead of the CLIP text space. λ-ECLIPSE takes multiple images and
text instructions as input and estimates the respective vision embeddings, which can be used by the frozen
diffusion UNet model from the UnCLIP stack to generate the resulting image. This elevates the training time
dependencies on diffusion models for P-T2I; significantly contributing to the resource efficiency. Additionally,
as diffusion or MLLM-based priors are still compute heavy due to a huge number of parameters and slower
convergence, we build upon ECLIPSE Patel et al. (2023b) and SEED Ge et al. (2023), which shows that text-
to-image mapping can be optimized through contrastive pre-training. Here, we select ECLIPSE as preferred
choice of prior architecture for best efficiency. At last, we propose a subject-driven instruction tuning task
based on the image-text interleaved data as a pre-training strategy. This involves creating 2 million high-
quality image-text pairs, where text embeddings linked to subjects are substituted with the respective image
embeddings, which in return are considered as input to the λ-ECLIPSE . While λ-ECLIPSE can be plugged
with these pre-trained methods, we explore the possibility of λ-ECLIPSE to incorporate Canny edge as an
additional coarse-level control to synergetically work with subject-driven image generation tasks. Figure 1
provides the overview of λ-ECLIPSE capabilities.

Overall, we propose λ-ECLIPSE as an initial attempt to motivate future works on designing resource-efficient
solutions for MLLM-based approaches. We summarize our main contributions as follows:

• We show that P-T2I mapping can be learned in CLIP latent space without training-time dependency on
the diffusion models; enabling efficient training and fast multi-subject customization.

• Extensive experiments on Dreambench, Multibench, and ConceptBed reveal that λ-ECLIPSE (34M pa-
rameter model) trained on a mere 74 GPU hours can achieve competitive performance to that of big
counterparts (having 2B-37B parameters) and improve text-composition alignment.

• At last, λ-ECLIPSE inherits the smooth CLIP latent space. This allows us to perform the seamless
transition between multi-concept generated images.

1The designation λ-ECLIPSE is inspired by its conceptual alignment with the λ-calculus. In this context, the λ-ECLIPSE model
functions similarly to a functional abstraction within λ-calculus, where it effectively binds variables. These variables, in our case,
represent novel visual concepts that are integrated through composition prompts. Here, ECLIPSE indicates our architecture
design choice.
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2 Related Works

Text-to-Image Generative Models. Pioneering efforts in image generation, notably DALL-E Ramesh
et al. (2021) and CogView Ding et al. (2021), leveraged autoregressive models to achieve significant results.
Recent advancements predominantly feature diffusion models, acclaimed for their high image fidelity and
diversity in text-to-image (T2I) generation. A notable example is Stable Diffusion, which builds upon the
Latent Diffusion Model (LDM) Rombach et al. (2022) and excels in semantic and conceptual understanding
by transitioning training to latent space. Imagen Saharia et al. (2022), Pixart-α Chen et al. (2023b), and
DALL-E 3 Betker et al. (2023) propose using a large T5 language model to improve language understanding.
DALL-E 2 Ramesh et al. (2022) along with its UnCLIP variation models such as Kandinsky Razzhigaev
et al. (2023) and Karlo Lee et al. (2022), uses a diffusion prior and diffusion UNet modules to generate
images using the pre-trained CLIP Radford et al. (2021) model.

Personalized T2I Methods. Approaches like Textual Inversion Gal et al. (2022), DreamBooth Ruiz et al.
(2023a), and Custom Diffusion Kumari et al. (2023) focus on training specific parameters to encapsulate
visual concepts. LoRA Hu et al. (2021) and Perfusion Tewel et al. (2023) target efficient fine-tuning adjust-
ments, particularly rank 1 modifications. However, these methods are constrained by their requirement for
concept-specific tuning. ELITE Wei et al. (2023) was the first approach addressing fast customized gener-
ation for single-subject T2I. BLIP-Diffusion Li et al. (2023a) adapts the BLIP2 encoder Li et al. (2023b),
training approximately 1.5B parameters to enable zero-shot, subject-driven image generation. IP-Adapter
introduces a decoupled cross-attention mechanism, negating the need to train the foundational UNet model
by permitting fine-tuning of a reduced number of 22M parameters.

Mix-of-Show Gu et al. (2023) and Zip-LoRA Shah et al. (2023) train individual concepts and then combine
them to generate multiple subjects. Break-A-Scene Avrahami et al. (2023) shows multi-concept capability but
requires single images containing diverse objects. Subject Diffusion Ma et al. (2023a) creates a high-quality
dataset and presents the precision control for fast personalized multi-subject image generation. Kosmos-
G and Emu2 Sun et al. (2023), akin to Subject-Diffusion Ma et al. (2023a), employs a Multimodal Large
Language Model (MLLM) for text-image embedding alignment, though it necessitates extensive parameter
optimization (1.9B-37B). These multi-subject P-T2I methods are not only demanding in terms of parameters
but also depend on a massive number of frozen parameters of the diffusion UNet model, increasing training
computational loads. In contrast, our model, λ-ECLIPSE , forgoes test-time fine-tuning and training-time
reliance on the diffusion UNet model for single and multi-concept, control-guided P-T2I, positioning it as a
resource-efficient solution.

At last, methods like GLIGEN Li et al. (2023c), ControlNet Zhang et al. (2023a), and UniControl Qin
et al. (2023) incorporate additional controls (i.e., edge map, depth, segmentations) into the diffusion model
to generate the desired images. BLIP-Diffusion, IP-Adapter, and Kosmos-G can leverage such pre-trained
controls. However, in many scenarios, these controls are too strong, making generated images lose subject-
specific details. We show that λ-ECLIPSE learns to balance the edge map, subjects, and composition. We
offer a more comprehensive review of related works in the appendix.

3 Method

In this section, we introduce λ-ECLIPSE , our approach to multi-subject personalized text-to-image genera-
tion. Our method combines the contrastive text-to-image strategy from ECLIPSE with the novel image-text
interleaved pretraining strategy, notably omitting the need for explicit diffusion modeling. Our approach
mainly capitalizes on the efficient utilization of the CLIP latent space. Figure 2 outlines the end-to-end
framework.

The primary objective of λ-ECLIPSE is to facilitate single and multi-subject P-T2I generation processes,
accommodating edge maps as conditional guidance. Initially, we detail the problem formulation and elaborate
on the UnCLIP stack design of the λ-ECLIPSE . Subsequently, we delve into the image-text interleaved
training methodology. This fine-tuning process enables the λ-ECLIPSE to harness semantic correlations
between CLIP image and text latent spaces while preserving subject-specific visual features.
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Figure 2: Three stages of the λ-ECLIPSE pipeline. 1) Create the image-text interleaved features using
frozen CLIP. 2) Pre-train the λ-ECLIPSE (34M parameters) using Eq. 1, which ensures the mapping to the
desired latent space given the image-text interleaved data. 3) During inference, the frozen Kandinsky v2.2
diffusion UNet model takes the output from the λ-ECLIPSE and generates the image.

Input Re-generated Input Re-generated Input Re-generated Input Re-generated

Figure 3: CLIP(vision) features capture the semantics and fine-grained visual details. Each input
is given as input to the Kandinsky v2.2 and re-generated from the decoder. (Top: Real-images, Bottom:
Canny edge)

3.1 Text-to-Image Prior Mapping

In the UnCLIP T2I models, the objective of the text-to-image prior model (fθ) is to establish a proficient
text-to-image embedding mapping. This model is designed to adeptly map textual representations to their
corresponding visual embeddings, denoted as (fθ : zy → zx), where zx/y represent the embeddings for images
and text, respectively. The visual embedding predictions (ẑx = fθ(zy)) are then effectively utilized by the
diffusion image generators (hϕ), which are inherently conditioned on these vision embeddings (hϕ : zx → x).
In our experiments, we utilize the Kandinsky v2.2 diffusion UNet model as hϕ.

As shown in Figure 3, the CLIP vision encoder is very expressive and preserves the finegrained details in
zx that is required to reconstruct the input image. CLIP image embedding itself achieves the high concept
alignment score (DINO: 0.66) similar to the finetuning-based DreamBooth method Ruiz et al. (2023a).

Our goal is to accurately estimate the image embedding ẑx, incorporating the subject representations, thereby
eliminating reliance on hϕ during training. Existing LDM-based P-T2I methods are limited by the LDM’s
singular module approach (hϕ : zy → x). Consequently, mastering the latent space of hϕ becomes essential
for effective P-T2I for the baseline methodologies, which limits the previous methodologies.

We propose a new mapping function, fθ, which processes text representations (zy) alongside subject (xk)
specific visual representations (zxk

), to derive an image embedding that encapsulates both text prompts
and subject visuals (ẑx). The challenge lies in harmonizing zxk

and zy within fθ : (zy, zxk
) → ẑx, ensuring

alignment while preventing overemphasis on either aspect, as this could compromise composition alignment.
To address this, we employ the contrastive pre-training strategy after Patel et al. (2023b):
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Lprior = E
ϵ∼N (0,I)

zy,zxk

[
||zx − fθ(ϵ, zy, zxk

)||22
]

− λ

N

N∑
i=0

log
exp(⟨ẑi

x, zi
y⟩/τ)∑

j∈[N ] exp(⟨ẑi
x, zj

y⟩/τ)
. (1)

Here, λ serves as the hyperparameter. i and j represent the index of the given input batch with the size N .
⟨·⟩ represents the inner-product and τ is the temperature parameter. The first loss term (projection loss)
measures the mean-squared error between the estimated and actual image embeddings, primarily ensuring
concept alignment. However, our preliminary studies reveal that exclusive reliance on this term diminishes
composition alignment. Therefore, we stick with the contrastive loss component (the second loss term) to
bolster compositional generalization, with λ balancing concept and composition alignment.

Additional Coarse-level Control-based T2I Prior Mapping. Acknowledging the limitations in ex-
isting methods, which necessitate learning the diffusion latent space even for additional control inputs, we
endeavor to achieve a more nuanced balance between subject, text, and supplementary conditions. Con-
sequently, we have augmented λ-ECLIPSE to accommodate an additional modality, a Canny edge map,
providing more refined control over subject-driven image generation. This entails modifying the prior model
to accept additional conditions (f ′

θ : (zy, zxi
, zc) → ẑx, here zc is the additional modality embedding).

Additionally, during training, we drop zc for 1% to improve the image generations without relying on the edge
map. This enhances the stability and broadens the generalization capabilities of λ-ECLIPSE , yielding benefits
even in the absence of these controls during inference. Our results demonstrate that λ-ECLIPSE learns a
unified mapping function, accurately estimating target image representations through the effective integration
of text, image, and edge maps – leading to learning coarse-level controls instead of hard constraints.

3.2 Image-text Interleaved Training

Our approach targets developing a versatile prior model capable of processing diverse inputs to estimate
target visual outputs. Drawing from earlier methodologies, a straightforward solution involves concatenating
different inputs, like combining text (“a dog wearing sunglasses”) with respective concept-specific images.
Preliminary experiments indicated that this method does not effectively capture the intricate relationships
between target text tokens (e.g. “dog”) and the corresponding concept images, especially when multiple
concepts are present.

To address this, we adopt the interleaved pre-training strategy used in Kosmos-G, but with a notable
modification to enhance resource efficiency. We incorporate pretrained frozen CLIP text and vision encoders
for extracting modality-specific embeddings—separating text-only from subject-specific images. The key
refinement in our process is the substitution of subject token-specific text embeddings with corresponding
vision embeddings instead of introducing additional trainable tokens to handle the image embeddings via
resampler Alayrac et al. (2022). First, we extract reference concept visual features (zxk

∈ R1x1280) from
the CLIP vision encoder. Similarly, we also extract the text prompt features (zy ∈ R77x1280) from the last
layer of the CLIP text encoder. Here, 1280 is the CLIP-specific feature dimension. At last, we replace the
concept noun corresponding latent features from zy with zxk

; resulting in image-text interleaved features
while preserving the contextual information of the text features. This alteration allows us to bypass the need
to train the big priors models (e.g. MLLMs), significantly improving the model’s proficiency in handling
interleaved data.

For the generation of high-quality training datasets, we carefully selected 2 million high-quality images from
the LAION dataset Schuhmann et al. (2022), each with a resolution of 1024x1024. Utilizing BLIP2, we
generate captions for these images and employ SAM Kirillov et al. (2023) for extracting noun or subject-
specific segmentation masks. Given the CLIP model’s requirement for 224x224 resolution images, we avoid
resizing the masks within their original resolutions. Instead, we opt for cropping the area of interest using
Grounding DINO Liu et al. (2023a), followed by resizing the masked object while preserving its aspect ratio.
This technique is crucial in retaining maximum visual information for each subject during the training phase.
We provide more details about the filters used in the appendix.
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Figure 4: This figure illustrates a qualitative comparison of λ-ECLIPSE with contemporary ap-
proaches for single-subject T2I generations, utilizing concepts and prompts from the Dream-
bench dataset. For each method, concept, and prompt, we generate four images and select the one that
most accurately represents the queried concept and composition.

3.3 Additional Concept-Specific Finetuning

Due to the nature of UnCLIP models, even if λ-ECLIPSE is very accurate, the diffusion UNet model (hϕ)
may not be effective in generating very unique visual representations. In Figure 3, we can observe that
generated images do not always precisely follow the reference image (e.g. hair style of the person). However,
such behavior is common across the fast P-T2I methods and they lack in terms of maintaining performance
compared to the finetuning-based methods (as outlined in Table 2). Therefore, we extend the λ-ECLIPSE and
perform concept-specific finetuning.

Compared to the traditional finetuning methodologies (e.g. DreamBooth), λ-ECLIPSE provides very unique
advantages. As λ-ECLIPSE prior model (fθ) is pre-trained for personalization, there is no need for further
finetuning the fθ and we need to only finetune diffusion UNet model. Importantly, the fine-tuning of the
hϕ does not depend on the text embeddings (zy). Hence, this leads to stable fine-tuning of the hϕ; unlike
DreamBooth on stable diffusion that observes catastrophic forgetting. The new fine-tuning objective is:
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Table 2: Quantitative comparisons of different methodologies on Dreambench. The Bold and
underline represent the metric-specific first and second-ranked methods, respectively. * represents that we
re-benchmark the performance from open-source weights.

Method Base Model Params GPU Hours DINO (↑) CLIP-I (↑) CLIP-T (↑)
Textual Inversion SDv1.5 768 1 0.569 0.780 0.255
DreamBooth SDv1.5 0.9B 0.2 0.668 0.803 0.305
Custom Diffusion SDv1.5 57M 0.2 0.643 0.790 0.305
BLIP-Diffusion SDv1.5 0.9B 0.1 0.670 0.805 0.302

Fi
ne

tu
ni

ng

λ-ECLIPSE* Kv2.2 0.9B 0.2 0.682 0.796 0.304
Re-Imagen Imagen - - 0.600 0.740 0.270
ELITE SDv1.4 77M 336 0.621 0.771 0.293
Subject-Diffusion SDv1.5 252M - 0.711 0.787 0.293
BLIP-Diffusion* SDv1.5 1.5B 2304 0.603 0.793 0.291
IP-Adapter* SDv1.5 22M 672 0.629 0.827 0.264
IP-Adapter* SDXL 22M 672 0.613 0.810 0.292
Kosmos-G* SDv1.5 1.9B 12300 0.618 0.822 0.250
Emu2* SDXL 37B - 0.563 0.765 0.273

Fi
ne

tu
ni

ng
-fr

ee

λ-ECLIPSE* Kv2.2 34M 74 0.613 0.783 0.307

Ldecoder = E
ϵ∼N(0,I)

t∼[0,T ],(zx)

[
||ϵ − hϕ(x(t), t, zx)||22

]
. (2)

Here, zx is the visual feature of the reference concept image x. Notably, we do not need to use regularization
from the DreamBooth as text alignment is already ensured during the pretraining stage of λ-ECLIPSE .
Moreover, this finetuning can be performed across the set of given visual concepts altogether in a single
model without degrading performance.

In summary, the prior model, trained with our image-text interleaved data and supplementary condition,
presents an efficient pathway for resource-efficient multi-subject-driven image generations.

4 Experiments

In this section, we first introduce the experimental and evaluation setups. Later, we delve into the qualitative
and quantitative results.

Training and inference details. We initialize our model, λ-ECLIPSE , equipped with 34M parameters.
We train our model on an image-text interleaved dataset of 2M instances, partitioned into 1.6M for training
and 0.4M for validation. The model is specifically tuned for the Kandinsky v2.2 diffusion image decoder.
Therefore, we use pre-trained OpenCLIP-ViT-G/142 as the text and vision encoders, ensuring alignment
with Kandinsky v2.2 image embeddings. Training is executed on 2 x A100 GPUs, leveraging a per-GPU
batch size of 512 and a peak learning rate of 0.00005, across approximately 100,000 iterations, summing up
to 74 GPU hours. During inference, the model employs 50 DDIM steps and 7.5 classifier-free guidance for
the Kandinsky v2.2 diffusion image generator. Adhering to baseline methodologies, we perform the P-T2I
following the baseline papers’ protocols. For λ-ECLIPSE , target subject pixel regions in reference images are
segmented before embedding extraction via the CLIP(vision) encoder. We drop the Canny edge map during
inference unless specified explicitly. Unless specified all results (quantitative and qualitative) are without
concept-specific additional fine-tuning.

Evaluation setup. We primarily utilize Dreambench (encompassing 30 unique concepts with 25 prompts
per concept) for qualitative and quantitative evaluations using DINO and CLIP-based metrics Ruiz et al.

2https://huggingface.co/laion/CLIP-ViT-g-14-laion2B-s12B-b42K
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Table 3: Quantitative comparisons of different methodologies on ConceptBed. We present results
on CCD (↓) across three evaluation categories. The Bold and underline represent the metric-specific first
and second-ranked methods, respectively. * represents our benchmarking.

Method Base Concept Concept Composition Average (↓)Model Replication (↓) Alignment (↓) Alignment (↓)
Textual Inversion SDv1.4 0.0662 0.1163 0.1436 0.1087
Dreambooth SDv1.4 0.0880 0.3551 0.0360 0.1597
Custom Diffusion SDv1.4 0.2309 0.4882 0.0204 0.2465
ELITE* SDv1.4 0.3195 0.4666 0.1832 0.3231
BLIP-DIffusion* SDv1.5 0.3510 0.3245 0.1589 0.2781
IP-Adapter* SDXL 0.3665 0.3571 0.0641 0.2626
λ-ECLIPSE* Kv2.2 0.2853 0.3619 -0.0200 0.2091

Table 4: Quantitative comparisons of different methodologies on Multibench. The Bold and
underline represent the metric-specific first and second-ranked methods on each metric, respectively.

Two Subjects Three Subjects
Kosmos-G Emu2 λ-ECLIPSE Emu2 λ-ECLIPSE

DINO (↑) 0.4549 0.4451 0.4478 0.3168 0.3420
CLIP-I (↑) 0.7759 0.7397 0.7409 0.6231 0.6463
CLIP-T (↑) 0.2493 0.2673 0.3327 0.2819 0.3469

Table 5: Quantitative results of Canny edge controlled P-T2I of different methodologies on
Dreambench. The Bold and underline represent the metric-specific first and second-ranked methods,
respectively. Red highlighted numbers indicate the relative percentage drop for concept alignment compared
to Table 2.

Method DINO (↑) CLIP-I (↑) CLIP-T (↑)
BLIP-Diffusion* 0.423429.7% 0.7119 0.3152
IP-Adapter* 0.428131.9% 0.7315 0.3034
λ-ECLIPSE* 0.517314.3% 0.7437 0.3158

(2023a). Due to their limitations, we extend our evaluations on the ConceptBed Patel et al. (2023a) bench-
mark (covering 80 diverse imagenet concepts and a total of 33K composite prompts), where we report
performance on concept replication, concept, and composition alignment using the Concept Confidence De-
viation (CCD) metric Patel et al. (2023a). We extend Dreambench for multi-subject customization and
present the Multibench dataset. Multibench contains about 24 unique concepts and 15 diverse prompts
that result in 904 two-subject specific prompts and 1476 three-subject specific prompts. We provide further
details about the Multibench in the appendix.

4.1 Results & Analysis

Quantitative comparison. The quantitative assessments detailed in Table 2 and Table 3 focus on the
single-concept T2I task, while Table 4 shows the results on multi-concept-driven image generation. For
Dreambench and Multibench, we generate and evaluate four images per prompt, reporting average per-
formance on three metrics (DINO, CLIP-I, and CLIP-T). In the case of ConceptBed, we process each of
the 33K prompts to generate a single concept image. The results, as depicted in these tables, highlight
λ-ECLIPSE ’s superior performance in composition alignment while maintaining competitive concept align-
ment. Analysis on ConceptBed (Table 3) indicates that λ-ECLIPSE exhibits a notable proficiency in concept
replication, albeit with a marginal trade-off in concept alignment for enhanced composition fidelity. Com-
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paratively, all baselines prioritize concept alignment, often at the expense of composition alignment. While
λ-ECLIPSE improves the CLIP-T while preserving the DINO; achieved with significantly fewer resources.
Notably, Multibench results (Table 4) indicate that λ-ECLIPSE significantly outperforms the Kosmos-G (2B
params) and Emu2 (37B params) in terms of CLIP-T while maintaining the DINO performance. Therefore,
we can conclude that λ-ECLIPSE is the most resource-efficient compared, especially when compared to the
MLLM-based methods.

100 200 300 400 500 600 700 800
Fine-tuning Steps
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Figure 5: DreamBooth (Stable Diffusion v1.5)
vs. λ-ECLIPSE (with fine-tuning) w.r.t. DINO
and CLIP-T metrics on Dreambench.

Auxiliary finetuning. We further perform
concept-specific fine-tuning (as described in Sec-
tion 3.3 and Section D). After finetuning, as
shown in Table 2, λ-ECLIPSE outperforms the
DreamBooth and BLIP-Diffusion in terms of
concept alignment (DINO) while maintaining the
performance on composition alignment (CLIP-T).
Our findings, illustrated in Figure 5, reveal that
λ-ECLIPSE and DreamBooth exhibit improved
performance with incremental fine-tuning steps.
Notably, the DINO score improved from 0.61 to 0.68
with few optimization steps and outperforms the
baselines (see Table 2). A detailed analysis indicates
that while DreamBooth’s DINO score improves, its
CLIP-T performance diminishes, hinting at concept
overfitting. Conversely, λ-ECLIPSE consistently
improves in DINO scoring without adversely im-
pacting the CLIP-T performance, underscoring the efficacy of our image-text interleaved training approach
at the prior stage. Qualitative comparisons, as shown in Figure 10, further highlight the benefits of
fine-tuning λ-ECLIPSE with minimal steps. We provide detailed experimental setup in Appendix Section D.

Qualitative comparisons. In Figure 4, we present a range of single subject-specific images gener-
ated by various methodologies including BLIP-Diffusion, IP-Adapter, Kosmos-G, Emu2, and λ-ECLIPSE .
λ-ECLIPSE demonstrates exemplary proficiency in composition while ensuring concept alignment. In con-
trast, the baselines often overemphasize reference images or exhibit concept dilution, leading to higher
concept alignment but compromised composition. Interestingly, we find that Emu2 can capture the single-
subjects but it fails to reproduce them with complex text compositions (as shown in Figure 4). Similarly,
Figure 6a exhibits λ-ECLIPSE ’s multi-concept generation prowess, in comparison to ZipLoRA (fine-tuning-
based approach) along with Kosmos-G and Emu2 (Multimodal LLM-based approaches), underscoring its
capability to rival compute-intensive methods. We discuss additional examples and limitations in the ap-
pendix. That said, even though λ-ECLIPSE improves the performance over the baselines, this is still not
enough and it signifies the challenges associated with fast multi-concept personalization.

Canny edge controlled image generation. As shown in Figure 6b, the baseline (BLIP-Diffusion) ad-
heres strictly to the imposed edge maps, often at the cost of concept retention (rows 1, 3, and 4). This
leads to a large number of unwanted artifacts in the generated images. To further ground this behavior, we
first generated images using Stable Diffusion v1.5 for Dreambench prompts without customization then we
extracted the Canny edge map and used this edge map to control the subject-driven image generations. At
last, we report the performance in Table 5. It can be observed that both baselines IP-Adapter and BLIP-
Diffusion drop the DINO score by 30%, which follows the qualitative results. While λ-ECLIPSE do not follow
the Canny edge precisely but preserves the concept alignment and improves the performance relatively by
21%.

Ablations. We extend our study to evaluate the individual contributions of different components in
λ-ECLIPSE . Initially, the model’s performance with solely the projection loss (referenced in Eq.1) is as-
sessed. Subsequent experiments involve training λ-ECLIPSE variants with varying hyperparameters for the
contrastive loss, specifically λ values of 0.2 and 0.5. A comparative analysis of these baselines is conducted
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Input

A dog is wearing a hat.

A cat is wearing sunglasses at the beach.

A backpack at the park.

A dog in the boat.

ZipLora Kosmos-G OursEmu2

(a) Multi-subject P-T2I.

Input

A dog surfing in the ocean.

A vase as the lamp.

Two cats on top of the mountain.

A sneaker.

BLIP-Diffusion Ours
Subject-only Controlled Subject-only Controlled

(b) Edge-guided P-T2I.

Figure 6: Qualitative comparison between λ-ECLIPSE and other baselines.

Table 6: Ablation studies w.r.t. to the key components of λ-ECLIPSE design. We report the concept and
composition alignment for single-subject T2I using CCD (↓) on the ConceptBed benchmark.

Method Concept Composition
Alignment (↓) Alignment (↓)

Projection loss (i.e. λ=0.0) 0.394 0.008
w/ contrastive loss (λ=0.5) 0.435 -0.043
w/ contrastive loss (λ=0.2) 0.402 -0.026
w/ edge conditions (λ=0.2) 0.362 -0.020

against the fully equipped λ-ECLIPSE model, which incorporates Lprior (Eq.1) with λ = 0.2 and utilizes
Canny edge maps during training. Relying solely on projection loss results in high concept alignment but
compromises compositions (Table 6). The contrastive loss variant with λ = 0.5 enhances composition align-
ment at the expense of concept alignment, whereas λ = 0.2 achieves a more balanced performance. Crucially,
the integration of Canny edge maps during training optimally balances both alignments and, specifically,
improves the concept alignment. The negative values indicate that the CCD oracle model is highly confident
in the generated images.

Multi-subject interpolation. A key attribute of the CLIP latent space is the ability to perform smooth
interpolation between two sets of embeddings. We conducted experiments to demonstrate λ-ECLIPSE ’s
ability to learn and replicate this smooth latent space transition. We selected two distinct dog breeds
(<dog1>, <dog2>) and two types of hats (<hat1>, <hat2>) as the concepts. λ-ECLIPSE was then used
to estimate image embeddings for all four possible combinations, each corresponding to the input phrase “a
<dog> wearing a <hat>.” Fig. 7 showcases a gradual and seamless transition in the synthesized images
from the top left to the bottom right. Unlike current diffusion models, which often exhibit sensitivity to
input variations requiring numerous iterations of user interactions for desired outcomes, λ-ECLIPSE inherits
CLIP’s smooth latent space. This not only facilitates progressive changes in the conceptual domain but also
extends the model’s utility by enabling personalized multi-subject interpolations.
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Figure 7: Interpolation between four concepts. Here, we estimate the image embedding using
λ-ECLIPSE corresponding to each corner and then interpolate from top to bottom and left to right. At
last, we use the Kandinsky v2.2 diffusion UNet model to generate the images with fixed random seeds from
these sets of image embeddings.

5 Conclusion

In this paper, we have introduced a novel training-time diffusion-agnostic methodology for personalized
text-to-image (P-T2I) applications, utilizing the latent space of the pre-trained CLIP model with high
efficiency. Our λ-ECLIPSE model, trained on an image-text interleaved dataset, achieves the capability
to execute single-concept, multi-concept, and edge-guided controlled P-T2I tasks using a singular model
framework, while simultaneously minimizing resource utilization. Notably, λ-ECLIPSE sets a new benchmark
in achieving competitive performance in terms of concept and composition alignment. Furthermore, our
research illuminates the potential of λ-ECLIPSE in exploring and leveraging the smooth latent space. This
capability unlocks new avenues for interpolating between multiple concepts, thereby generating entirely
novel concepts. Our findings underscore a promising pathway to improve MLLMs to effectively control the
pre-trained diffusion image models without necessitating extra supervision.

Limitations

Primarily, despite its strengths, CLIP’s inability to perfectly capture hierarchical representations adds the
upper bound on performance. Hence, enhancing CLIP’s representations could significantly boost our frame-
work’s efficacy in P-T2I mapping. Even though λ-ECLIPSE model, trained on 34 million parameters and 1.6
million images, presents a substantial foundation, yet, there’s potential for further refinement, as increasing
the quality of data and the number of parameters could yield even better outcomes. However, this is outside
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the scope of this paper. Additionally, we validate the λ-ECLIPSE on only upto three concepts (due to the
real-life usecases) and adding more concepts could be explored in future works.

Broader Impact

The current landscape of text-to-image (T2I) generative models is dominated by approaches that rely on
extensive data and large-scale models to achieve state-of-the-art (SOTA) performance, which demands sig-
nificant computational resources. In contrast, our work with λ-ECLIPSE demonstrates that it is feasible to
attain competitive performance relative to SOTA large models while achieving a tenfold reduction in resource
consumption. This advancement not only makes T2I generative models more accessible and cost-effective
but also promotes sustainable AI practices by significantly lowering the environmental impact associated
with large-scale model training.
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A Preliminaries for T2I Diffusion Models

As evidenced in numerous contemporary studies regarding T2I models, Stable Diffusion (SD) Rombach et al.
(2022) has emerged as a predominant backbone for T2I models. SD involves training diffusion models in
latent space, reversing a forward diffusion process that introduces noise into the image. A notable feature of
SD is its integration of cross-attention, facilitating various conditions like text input. Operating in VQ-VAE
latent space, SD not only achieves exceptional generative performance surpassing that in pixel space but
also significantly reduces the computational demands.

UnCLIP models (such as DALL-E 2) are very similar to the Stable Diffusion. In contrast, the UnCLIP takes
the modular approach. UnCLIP first trains the diffusion text-to-image to the image prior (fθ) to estimate
the image embeddings (zx) from the text embeddings (zy). In parallel, a UNet-like diffusion image generator
(hϕ) is trained to generate images (x) conditioned on ground truth vision embeddings (zx).

Traditionally, T2I prior is modeled to estimate x0-prediction instead of ϵ-prediction. Given the forward
function z

(t)
x ∼ q(t, zx), the goal of fθ is to directly estimate zx for all timesteps t ∼ [0, T ] as:

Lprior = E
t∼[0,T ],

z(t)
x ∼q(t,zx)

[
||zx − fθ(z(t)

x , t, zy)||22
]
. (3)

ECLIPSE proposes the contrastive learning strategy (Eq. 1 – main paper) instead of minimizing Eq. 3. The
diffusion image generator is trained by following standard ϵ-prediction formulation. Here, hϕ will estimate
the ground truth added Gaussian noise ϵ ∼ N(0, I), given the noise image X(t) for all timesteps t ∼ [0, T ]
and input conditions (such as zx, zy).

Ldecoder = E
ϵ∼N(0,I)
t∼[0,T ],
(zx, zy)

[
||ϵ − hϕ(x(t), t, zx, zy)||22

]
. (4)

For models like Kandinsky v2.2, we drop the zy to condition the model on zx. Therefore, λ-ECLIPSE also
only conditions the image generation with zy in the prior stage.

B Image-Text Interleaved Training Details

Dataset Creation In constructing the dataset, we adhered to the data processing pipeline of Subject
Diffusion Ma et al. (2023a). We utilized the LAION-5B High-Res dataset, requiring a minimum image size of
1024x1024 resolution. Original captions were replaced with new captions generated by BLIP-2 (flan-t5-xl)3.
Subjects were extracted using Spacy4. For each subject, we identified bounding boxes employing Grounding
DINO Liu et al. (2023a), setting both box-threshold and text-threshold values to 0.2. We retained images
with 1 to 8 detected bounding boxes, discarding the rest. Additionally, captions with multiple instances of
identical objects were filtered, allowing a maximum of 6 identical objects. Following bounding box detection,
individual subject masks were isolated using Segment-Anything (SAM) Kirillov et al. (2023). To enhance
the efficiency of the training process, we pre-processed the dataset by pre-extracting features from CLIP
vision and text encoders. During this phase, images predominantly featuring a background (white portion)
exceeding 50% of the total area were excluded. We preserved bounding boxes with an area ranging from
0.08 to 0.7 of the total image area and logit scores of at least 0.3. Masks constituting less than 40% of the
bounding box area were discarded. For the selection of subjects in images, we constrained the range to 1-4
subjects per image, excluding those with more than 4 subjects. At last, the interleaved image-text examples
with respective ground truth images are shown in Figure 9.

Dataset Statistics In the final analysis, our dataset comprised a total of 1,990,123 images. The distri-
bution of subjects per image exhibited a range from 1 to 4, with the following breakdown: 1,479,785 images

3https://huggingface.co/Salesforce/blip2-flan-t5-xl
4https://spacy.io
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Figure 8: Qualitative results categorized by generative capabilities.
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A wearing in the park.

A wearing a Santa hat.

A on top of the         near the river.

Figure 9: Examples of image-text interleaved training data. The left column shows the input of the
prior model and the right images shows the ground truth corresponding images. Note: these examples are
generated from λ-ECLIPSE for better interpretability.

featuring one subject, 432,831 images with two subjects, 65,597 images containing three subjects, and 11,910
images showcasing four subjects. The overall count of unique subjects acquired from this dataset amounted
to 30,358. We partitioned our dataset into an 80:20 split between training and validation, reserving the
remaining 1.6 million images for training and the rest for validation.

C Implementation Details

The λ-ECLIPSE transformer prior architecture is significantly more compact compared to other Text-to-
Image (T2I) methodologies. Our model employs a configuration of 16 Attention Heads, each with a dimension
size of 32, alongside a total of 10 layers. Additionally, the embedding dimension size for our model is set at
1280, supplemented by 4 auxiliary embeddings (including, one for canny edge map). As λ-ECLIPSE is not
a diffusion prior model, we do not keep time embedding layers. Overall, the λ-ECLIPSE model comprises
approximately 34 million parameters, establishing it as a streamlined yet effective solution for Personalaized-
T2I. Notably, the standard UnCLIP T2I priors contain 1 billion parameters.

D λ-ECLIPSE with Finetuning

As demonstrated in the main paper (Table 2), the superiority of fine-tuning-based personalization method-
ologies, whether applied to single-subject or multi-subject frameworks, over non-fine-tuning alternatives is
evident. Consequently, we have expanded our analysis through additional fine-tuning of the λ-ECLIPSE .

Experimental Setup. Given that λ-ECLIPSE effectively trains the T2I prior, capturing concept-specific
features to a significant degree, we opted not to further optimize this component. Our focus shifted to
exclusively fine-tuning the diffusion UNet model (hϕ), employing the AdamW optimizer at a learning rate of
1e-5, without warm-up steps. For the DreamBooth application within the Stable Diffusion v1.5 model, we
selected a learning rate of 5e-6, maintaining consistency in other hyperparameters. To simplify, we excluded
the use of a prior preservation regularizer and conducted training on the Dreambench platform using a single
RTX A6000 GPU.

Advantages of fine-tuning λ-ECLIPSE . The fine-tuning of λ-ECLIPSE , in comparison to the base-
lines, reveals two key benefits: 1) Achieving state-of-the-art (SOTA) performance within a few finetuning
steps. 2) Unlike the Stable Diffusion model, which exhibits catastrophic forgetting of nearby concepts post-
DreamBooth fine-tuning, λ-ECLIPSE maintains previous knowledge. This suggests that a single model is
sufficient to effectively fine-tune across multiple concepts together.
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Table 7: The detailed overview of subject-driven text-to-image generative methodologies. *
represents the backbone base models listed are subject to potential updates or modifications.

Method Multi-Subject Finetuning-Free Base-Model # of Input Images

Re-Imagen Chen et al. (2022) ✗ ✓ Imagen Single
Textual Inversion Gal et al. (2022) ✗ ✗ SDv1.4 Multiple

DreamBooth Ruiz et al. (2023a) ✗ ✗ SDv1.4 Multiple
Custom Diffusion Kumari et al. (2023) ✓ ✗ SDv1.4 Multiple

ELITE Wei et al. (2023) ✗ ✓ SDv1.4 Single
E4T Gal et al. (2023) ✗ ✗ SD Single

Cones Liu et al. (2023b) ✓ ✗ SDv1.4 Single
SVDiff Han et al. (2023) ✓ ✗ SD Multiple

UMM-Diffusion Ma et al. (2023b) ✗ ✓ SDv1.5 Single
XTI Voynov et al. (2023) ✗ ✗ SDv1.4 Multiple

Continual Diffusion Smith et al. (2023) ✓ ✗ - Multiple
InstantBooth Shi et al. (2023) ✗ ✓ SDv1.4 Multiple

SuTi Chen et al. (2023c) ✗ ✓ Imagen Multiple
Taming Jia et al. (2023) ✗ ✓ Imagen Single

BLIP-Diffusion Li et al. (2023a) ✗ ✓ SDv1.5 Single
Cones 2 Liu et al. (2023c) ✓ ✗ SDv2.1 Single

DisenBooth Chen et al. (2023a) ✗ ✗ SDv2.1 Single
FastComposer Xiao et al. (2023) ✓ ✓ SDv1.5 Single

Perfusion Tewel et al. (2023) ✓ ✗ SDv1.5 Multiple
Mix-of-Show Gu et al. (2023) ✓ ✗ Chilloutmix Multiple

NeTI Alaluf et al. (2023) ✗ ✗ SDv1.4 Mulitple
Break-A-Scene Avrahami et al. (2023) ✓ ✗ SDv2.1 Single*

ViCo Tumanyan et al. (2023) ✗ ✗ SDv1.4 Mulitple
Domain-Agnostic Arar et al. (2023) ✗ ✗ - Single
Subject-Diffusion Ma et al. (2023a) ✓ ✓ SDv2 Single

HyperDreamBooth Ruiz et al. (2023b) ✗ ✗ SDv1.5 Single
IP-Adapter Ye et al. (2023) ✗ ✓ SDv1.5 Single
Kosmos-G Pan et al. (2023) ✓ ✓ SDv1.5 Single

Zip-LoRA Shah et al. (2023) ✓ ✗ SDXL Multiple
CatVersion Zhao et al. (2023) ✗ ✗ SDv1.5 Multiple

SSR-Encoder Zhang et al. (2023b) ✓ ✓ SDv1.5 Single
Emu2 Sun et al. (2023) ✓ ✓ SDXL Single

λ-ECLIPSE (ours) ✓ ✓ Kv2.2 Single

This analysis underscores the strategic advantages and enhanced efficiency of fine-tuning λ-ECLIPSE for
personalized applications in complex visual data processing.

E Extended P-T2I Baselines Comparison

We further expand our comparative analysis of P-T2I methods encompassing a total of 33 approaches
including ours and parallel works. Table 7 summarizes them into four crucial aspects: 1) multi-subject
support, 2) fine-tuning free, 3) base model types, and 4) the required number of input images. To summarize,
λ-ECLIPSE is the only methodology built on top of the UnCLIP models while supporting multi-subject driven
image generation with fine-tuning free, and only requires a single reference image input for the training. We
detail the comparison below:

Multi-Subject Generation. Multi-subject generation enables users to integrate multiple personal sub-
jects to generate an image that follows the text prompts and aligns with all the concept visuals. In total, 15
of the 33 methods offer this capability, while 6 methods support fast multi-subject personalization, others
demand separate training for each subject to be learned and then an additional fusing step for combining
the learned subjects is required (i.e. Zip-LoRA, Mix-of-Show). Among these methods, only a few can learn
auxiliary guided information such as canny edge, depth maps, or open-pose and adapt style variation (i.e.
Kosmos-G).
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Figure 10: Qualitative examples of λ-ECLIPSE without finetuning and different stages of finetuning.

Fine-tuning Free (Fast Personalization). Many methods require test-time fine-tuning. Each varies on
which part alteration occurs, as early models tend to modify the whole UNet. In contrast, recent models
tune a small portion of the cross-attention layers or introduce additional layers performing as adapters. In
our analysis of P-T2I methodologies, 14 out of 33 methods employ a finetuning-free approach which enables
fast personalization.

Diffusion Independent. A majority of the reviewed models utilize diffusion models, with Stable Diffusion
being the predominant choice, spanning versions 1.4, 1.5, 2.1, and XL. Few adapt Imagen (SuTi, Taming)
and Mix-of-show employs ChillOutMix as their pre-trained model, known for its adeptness at preserving
realistic concepts like human faces. A unique outlier in this landscape is our λ-ECLIPSE , the only one that
eschews the use of any diffusion prior model.

Easiness of Use. A more user-friendly model typically requires a single reference image per subject, as
opposed to multiple images of the same subject. In our study, 19 methods offer P-T2I capabilities with
just one input image. In contrast, others often require 4 to 5 images of the subject. Additionally, some
methods necessitate storage space for learned concepts, ranging from a few hundred kilobytes (e.g., Perfusion,
HyperDreamBooth) to several megabytes (e.g., Zip-LoRA). Our method stands out by eliminating the need
for individual concept pre-learning or storing any artifacts for P-T2I utilization, offering a streamlined,
efficient user experience.

F Multibench Dataset

We provide additional qualitative results in Figure 8. For the multi-subject image benchmark, our dataset
comprises 2,308 unique prompts, segmented into 904 two-subject and 1,476 three-subject prompts. This
dataset integrates subjects from the original DreamBench dataset, featuring 30 distinct concepts. We ex-
panded the dataset by incorporating additional concepts vital for two and three subject-specific prompts,
such as various parks, hats, glasses, and more. Prompt templates and the count of unique subject cat-
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Table 8: Example of prompt templates used for Multibench dataset. Subjects presented in Table 9
are placed in {}.

Two subjects Three subjects
{} in the {} {} with a {} and {}
{} wearing a {} {} is playing with {} in {}
{} chasing a {} {} with {} in front of {}
{} looking at a {} {} with a {} and a view of the {}
{} is sitting on a {} {} with a {} and {} in the background
{} standing on a {}
{} and {} playing in the garden
{} and {} on top of the mountain
{} and {} in the jungle
{} and {} in the snow
{} and {} on the beach
{} and {} on a cobblestone street
{} and {} standing next to each other

Table 9: Number of occurrences of unique subject categories. The left side of the table are subjects
used for two subjects prompts, and the right side of the table are subjects used for three subjects prompts.

Two subjects Three subjects
dog 76 boat 5 dog 81 rainbow 35
cat 76 park 4 stuffed animal 105 ruins 35
bird 76 ruins 9 toy 105 tower 35
horse 73 castle 5 cat 81 horse 81
guinea pig 73 desert 4 desert 60 bird 81
glasses 5 rainbow 5 hill 60 guinea pig 81
hat 5 candle 5 castle 45 guitar 25
tower 10 backpack 3 backpack 65 french horn 25

can 130 vase 25
candle 65 robot 25
church 35

egories featured in prompts are detailed in Tables 8 and 9, respectively. Overall, the dataset includes
217 two-subject compositions and 405 three-subject compositions, enriching the benchmark’s diversity and
comprehensiveness.

G Additional Ablations

In this section, we perform extra ablations studies. Specifically, first, we extend the λ-ECLIPSE to other pre-
trained diffusion models (namely, Stable UnCLIP). Later, we analyze the impact of interleaved pertaining in
terms of qualitative and quantitative evaluations. Finally, we perform an analysis by varying the data and
model size.

G.1 Generalization to Pretrained UnCLIP Diffusion Decoders

Our approach is designed to generalize across any pretrained UnCLIP diffusion models, including Stable-
UnCLIP/SDv2.1, Karlo, and Kandinsky v2.2. We conducted additional pretraining experiments to substan-
tiate this claim and demonstrated the generalization ability of λ-ECLIPSE . We would like to reiterate the
core pipeline of λ-ECLIPSE or UnCLIP models, as detailed in Appendix A. The UnCLIP model comprises
two key modules: (1) the Prior model, which maps the text embedding to the image embedding, and (2) the
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Table 10: Ablation study on generalization ability of λ-ECLIPSE with respect to different pre-
trained UnCLIP models. We report performance on DreamBench dataset.

Method DINO (↑) CLIP-I (↑) CLIP-T (↑)
Stable UnCLIP (Stable Diffusion v2.1) 0.564 0.778 0.276
Kandinsky v2.2 0.613 0.783 0.307

Table 11: Ablation on the effect of interleaved data for training λ-ECLIPSE . We report performance
on DreamBench dataset.

# of Subjects Metric w Interleaved w/o Interleaved Difference

1
DINO 0.6130 0.6006 -2.02%
CLIP-I 0.7830 0.7882 0.66%
CLIP-T 0.3070 0.3048 -0.72%

2
DINO 0.4478 0.4332 -3.26%
CLIP-I 0.7409 0.7384 -0.34%
CLIP-T 0.3327 0.3271 -1.68%

3
DINO 0.3420 0.3202 -6.37%
CLIP-I 0.6463 0.6480 0.26%
CLIP-T 0.3469 0.3469 0.00%

Diffusion rendering model, which synthesizes the image based on the estimated image embeddings from the
prior model. For our generalization studies, we adhered to two essential criteria:

• Selection of an open-source UnCLIP (2 stage) model, where we chose Stable-UnCLIP, a modified
version of Stable Diffusion v2.1, to accept image embeddings as input.

• Choice of pretrained CLIP model, with Stable-UnCLIP utilizing the OpenAI-CLIP-ViT-L/14 model.
Accordingly, we trained λ-ECLIPSE with this model as a preliminary feature extractor.

Following these guidelines, we trained λ-ECLIPSE with the same parameters and evaluated its performance on
DreamBench (see Table 10). Our results confirm that λ-ECLIPSE effectively generalizes to different diffusion
models and CLIP variants. Notably, the Stable-UnCLIP variant of λ-ECLIPSE achieves performance similar
to Emu2, reinforcing the superiority of our initial design choices.

G.2 Impact of Interleaved Pretraining

Section 3.2 mentions that training λ-ECLIPSE without interleaved pretraining would yield similar results
for “single-concept” P-T2I tasks. However, for “multi-concept” personalization, our experiments reveal that
models trained without interleaved data sometimes struggle to synthesize the desired images. We conducted
additional experiments by training the model without interleaved data. Specifically, we concatenated the
prompt embedding from the CLIP text encoder with the concept-specific image embedding and trained the
model with identical hyperparameters. The performance comparisons on DreamBench (single concept) and
Multibench (multiple concepts) are shown below. Our findings indicate that without interleaved data, the
model’s ability to align concepts decreases as the number of concepts increases, resulting in a sharp 6% drop
in the DINO score (see Table 11). This performance degradation is primarily due to attribute leakage. As
shown in Figure 11, when the model is tasked with generating “A backpack at the ruins” + <backpack> +
<ruins>, the non-interleaved pretrained models tend to generate the backpack with the color of the ruins.
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Table 12: Ablation study on pretraining data size. We report DreamBench performance of
λ-ECLIPSE models trained on 100k, 500k, 1M and 2M interleaved image-text pairs. * denotes the pro-
posed λ-ECLIPSE model checkpoint.

Data Size DINO (↑) CLIP-I (↑) CLIP-T (↑)
100K 0.593 0.786 0.301
500K 0.595 0.777 0.305
1M 0.596 0.778 0.306
2M* 0.613 0.783 0.307

Table 13: Ablation study on pretraining model size. We report the DreamBench performance of
λ-ECLIPSE models trained on 5M, 34M, and 70M parameters. * denotes the proposed λ-ECLIPSE model
checkpoint.

Model Size DINO (↑) CLIP-I (↑) CLIP-T (↑)
5M 0.586 0.779 0.305
34M* 0.613 0.783 0.307
70M 0.593 0.775 0.309

G.3 Effect of Data and Model Sizes

We also conduct ablation on data sizes (100k, 500k, 1M, and 2M) and model parameter sizes (5M, 35M, and
70M). Tables 12 and 13 report the performance of these newly trained models on DreamBench. All models
were trained with identical hyperparameters as the proposed λ-ECLIPSE , though this may not fully optimize
the larger models (e.g., 70M parameters). The results show that data size influences model performance,
with larger datasets improving concept understanding and prompt compositions. This also follows the
qualitative results in Figure 12. Notably, λ-ECLIPSE with only 5M parameters deliver performance close to
that of larger models, and the 34M parameter model even surpasses the 70M parameter model in terms of
DINO score. However, qualitative results (see Figure 13) show that increasing model parameters enhances
qualitative performance and concept alignment. Specifically, the 70M parameter model excels in generating
finer details of the reference concept while adhering closely to text prompts. The 34M model offers a more
balanced trade-off between performance and resource efficiency.

H Qualitative Results & Failure Cases

In this section, we showcase a collection of detailed qualitative examples from the P-T2I generation process,
highlighting the challenges of crafting complex compositions within λ-ECLIPSE and comparative models.
As depicted in Figure 14, the complexity of the showcased examples progressively increases, illustrating a
noticeable escalation in the intricacy of visual concepts from the top to the bottom of the figure. With the
rising complexity, we note a universal decline in the ability of all methodologies, including λ-ECLIPSE , to
preserve subject fidelity accurately. Interestingly, despite these challenges, λ-ECLIPSE demonstrates a better
grasp of compositional integrity, unlike the baseline models which falter across all complexity levels.

Moreover, we present instances demonstrating the variability in outcomes produced by P-T2I methods
across different trials. As illustrated in Figure 15, while there is a semblance of consistency in generating
single and multiple concepts between models, Kosmos-G specifically shows variability in rendering multiple
concepts—occasionally misplacing elements of the Ironman suit on a dog or failing to include it altogether.
This phenomenon suggests that λ-ECLIPSE minimizes image diversity to enhance result consistency, a trait
observed across the UnCLIP model family.

Figure 10 offers qualitative insights into the performance of λ-ECLIPSE without and with minimal fine-
tuning. It is evident that in certain edge cases, where λ-ECLIPSE initially struggles to fully grasp novel
visual concepts without finetuning, a modest application of few optimization iterations significantly enhances
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Figure 11: Qualitative examples λ-ECLIPSE model trained with and without the interleaved pretraining
strategy.

concept capture. Further optimization not only preserves text composition but also enriches minor, subject-
specific details, underscoring the adaptability and finesse of λ-ECLIPSE in nuanced image generation.

Moreover, in our evaluations using the Multibench dataset, we noticed that both the baseline models
(Kosmos-G and Emu2) and λ-ECLIPSE encounter difficulties in precisely maintaining all subject-specific
details, as depicted in Figure 17. This underscores that zero-shot multi-subject P-T2I generation
remains a significant challenge in the field. Further, we explored how well each model preserves gen-
uine human facial characteristics in various scenarios, particularly when combined with differing captions.
The qualitative examples in Figure 16 shed light on this aspect. Although each model strives to maintain
the original facial features, none succeeds in replicating the specific personal facial details accurately. These
instances typically fall short of precisely conveying the intended compositions, with the exception of one
scenario in IP-Adapter FaceID, indicating a notable area for future improvements in model performance.
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Figure 12: Qualitative examples λ-ECLIPSE model trained with varying pretraining data.
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Figure 13: Qualitative examples λ-ECLIPSE model trained with varying model parameters.
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Figure 14: Qualitative examples of the increasing complexity of novel visual concepts as we move from top
to bottom.
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Figure 15: Qualitative examples of showcasing the consistency comparisons between Kosmos-G and
λ-ECLIPSE .
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Figure 16: Qualitative examples of showcasing the failure cases on human faces on Kosmos-G, IP-Adapter
(SDXL), IP-Adapter (FaceID), and λ-ECLIPSE .
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Figure 17: Qualitative examples of showcasing the failure cases on Multibench of Kosmos-G, Emu2, and
λ-ECLIPSE .
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