
Under review as a conference paper at ICLR 2024

STEALTHY IMITATION: REWARD-GUIDED
ENVIRONMENT-FREE POLICY STEALING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep reinforcement learning policies, which are integral to modern control sys-
tems, represent valuable intellectual property. The development of these policies
demands considerable resources, such as domain expertise, simulation fidelity,
and real-world validation. These policies are potentially vulnerable to model steal-
ing attacks, which aim to replicate their functionality using only black-box access.
In this paper, we propose Stealthy Imitation, the first attack designed to steal poli-
cies without access to the environment or knowledge of the input range. This setup
has not been considered by previous model stealing methods. Lacking access to
the victim’s input states distribution, Stealthy Imitation fits a reward model that
allows to approximate it. We show that the victim policy is harder to imitate when
the distribution of the attack queries matches that of the victim. We evaluate our
approach across diverse, high-dimensional control tasks and consistently outper-
form prior data-free approaches adapted for policy stealing. Lastly, we propose a
countermeasure that significantly diminishes the effectiveness of the attack. The
implementation of Stealthy Imitation will be publicly available and open-source.

1 INTRODUCTION

Neural networks trained with reinforcement learning (RL), known as deep RL policies, are increas-
ingly employed in control systems due to the exceptional performance and automation capabilities.
Developing a reliable deep RL policy requires substantial resources, including expertise in train-
ing, precise simulation, and real-world testing; the resulting policy becomes important intellectual
property. However, neural network models are vulnerable to stealing attacks (Tramèr et al., 2016;
Orekondy et al., 2019b; Truong et al., 2021) that attempt to copy the functionality of the model
via black-box query access. The risks posed by such attacks are manifold, including unauthorized
model usage, exposure of sensitive information, and further attacks based on the leaked model.

Model theft typically consists of two steps. First, a transfer dataset is created by querying the victim
model with publicly available data (Orekondy et al., 2019b), random noise (Tramèr et al., 2016), or
samples synthesized by a neural network (Truong et al., 2021), and recording the model predictions
as pseudo-labels. The latter two methods fall under the category of data-free model stealing. After
this querying phase, the attackers train their own model via supervised learning, treating the pseudo-
labels as ground truth for their samples.

Control systems, such as industrial automation, remotely controlled drones or robots, pose additional
challenges for model stealing. A policy perceives states and rewards (also known as the environ-
ment), based on which it decides the next action to take. In this context, the attacker can potentially
send queries to the system, but does not have access to the environment. Data-free stealing attacks
hold the promise of environment-free policy stealing. While existing data-free attacks have proven
effective in the image domain, they operate under the assumption that the attacker knows the valid
input range. For instance, valid image pixels are assumed to be in the range of [0, 255]. How-
ever, such prior knowledge is difficult to acquire in control systems or other applications, due to the
distinct semantics and scales of components within the measured state. As a consequence, policy
stealing becomes more difficult.

To address this challenge, we introduce Stealthy Imitation (SI), the first environment-free policy
stealing attack. Our method solves the two fundamental difficulties of this task: (i) the necessity of
accurately estimating the input range and distribution of the states visited by the victim policy, and

1

Under review as a conference paper at ICLR 2024

(ii) the identification of a metric that allows the attacker to evaluate the estimated distribution, and
thus its own performance in stealing the policy. These insights collectively enable a more robust
and efficient policy stealing attack. Notably, the derived distribution remains applicable even when
the victim updates their policy without altering the training distribution, offering potential savings
in query budget for subsequent attacks.

Contributions. (i) We introduce a more general and realistic threat model adapted to control sys-
tems, where the attacker lacks access to the environment and to the valid input ranges of the policy.
(ii) We propose Stealthy Imitation (SI), the first reward-guided environment-free policy stealing
method under minimal assumptions. We show our attack to be effective on multiple control tasks.
(iii) We introduce the first proxy metric to measure the quality of the estimated distribution. We
empirically and statistically validate its correlation with the divergence between the estimated dis-
tribution and the actual state distribution of the victim policy. (iv) We develop a defense that is able
to counter the proposed attack, thus offering a practical solution for practitioners.

2 RELATED WORK

Knowledge distillation. Knowledge distillation (KD) was initially designed for model compres-
sion, aiming to approximate a large neural network (commonly referred to as the teacher model)
with a more compact model (the student model). This facilitates deployment on hardware with lim-
ited computational capabilities (Ba & Caruana, 2014; Hinton et al., 2015). Unlike our work, which
adopts an adversarial view, KD typically presumes access to the teacher model’s original training
dataset, enabling the student model to learn under the same data distribution. When the dataset is
large or sensitive, some methods opt for surrogate datasets (Lopes et al., 2017). Others eliminate
the need for it by employing data generators in data-free KD approaches (Fang et al., 2019; Mi-
caelli & Storkey, 2019). These methods often assume white-box access to the teacher model for
backpropagation, which is a major difference with our setup.

Model stealing. Model stealing focuses on adversarial techniques for the black-box extraction of a
victim model (equivalent to the teacher model in KD) (Tramèr et al., 2016; Orekondy et al., 2019b).
The attacker, who aims to create a surrogate model (analogous to the student in KD), lacks access to
the original training dataset of the victim model. Most existing methods explore data-free stealing,
drawing inspiration from data-free knowledge distillation, but lacking the means to use the victim
model to train a data generator. These techniques estimate the gradient of the victim model for
training their generator and encourage query exploration by synthesizing samples that maximize the
disagreement between victim and attacker model (Sanyal et al., 2022; Beetham et al., 2022; Truong
et al., 2021). While much work has been conducted in image-based domains, limited research
exists on model stealing in the context of reinforcement learning (Chen et al., 2021; Behzadan &
Hsu, 2019). Our approach sidesteps the need for environment access and specific knowledge of
the RL algorithm employed by the victim. Existing defenses primarily focus on detecting stealing
attacks (Juuti et al., 2019; Kesarwani et al., 2018) or perturbing model predictions (Tramèr et al.,
2016; Orekondy et al., 2019a). Our proposed defense falls in the latter category: the policy perturbs
its outputs when the query falls outside the valid input range.

Imitation learning. Imitation learning aims to train agents to emulate human or expert model
behavior. Within this domain, there are two main methodologies. The first is behavioral cloning
(BC), which treats policy learning as a supervised learning problem, focusing on state-action pairs
derived from expert trajectories (Pomerleau, 1991). The second is inverse reinforcement learning,
which seeks to discover a cost function that renders the expert’s actions optimal (Russell, 1998; Ng
et al., 2000). Another method of interest is generative adversarial imitation learning (GAIL), which
utilizes adversarial training to match the imitating agent’s policy to that of the expert. Notably, GAIL
achieves this alignment using collected data and does not need further access to the environment (Ho
& Ermon, 2016). Our work deviates from these imitation learning approaches, as we do not require
access to the interaction data between the expert policy, i.e., the victim for us, and its environment.

2

Under review as a conference paper at ICLR 2024

3 THREAT MODEL

In this section, we formalize the threat model for black-box policy stealing in the context of deep
RL policies used in control systems. First, we introduce preliminary concepts and notations. Then,
we formalize the victim’s policy. Finally, we outline the attacker’s knowledge and the relevance of
this threat model to real world attacks.

Notations. In the context of deep RL, a policy or agent, is denoted by π with accepting state s, and
predicting an action a, such that a = π(s). A trajectory τ ∼ π consists of a sequence of states and
actions collected from the interaction between policy and environment. We represent the initial state
distribution as ρ0, and the environment’s state transition function as f , such that st+1 = f(st,at).
The return, or cumulative reward, for a trajectory is represented as R(τ), while S is the distribution
of states visited by the deployed policy.

Victim policy. We consider a victim operating a deep RL policy, πv , trained to optimize a partic-
ular control objective with accepting one time step state s ∈ Rn and predicting the action a∗ ∈ Rk

within the range of [−1, 1]. The environment is fully observable by the victim policy. The perfor-
mance of the policy is quantified using the expected return Eτv∼πv

[R(τv)] in the deployed setting.
Sv represents the distribution of states visited by πv .

Goal and knowledge of the attacker. We take on the role of the attacker, with the goal of training
a surrogate policy πa to replicate the functionality of the victim policy πv to achieve similar (average)
return in the environment. The attacker possesses black-box access to πv by querying states and
obtaining actions as responses. However, the attacker lacks knowledge on several key aspects:
(i) the internal architecture and RL training algorithm of πv , (ii) the environment setup, including
the initial state distribution ρ0, the state-transition function f , and the reward function R, (iii) the
semantics associated with the input and output spaces, (iv) the range of the inputs, as well as the
state distribution Sv , and (v) the confidence score of all possible actions from the victim policy. This
lack of knowledge makes policy stealing particularly challenging.

Real-world relevance. Our threat model emerges from the critical need to identify vulnerabilities
in systems employing deep RL policies, for example remotely accessible control systems. It high-
lights the significance of environment-free scenarios, where attackers, lacking environment insights,
aim to replicate functionalities through black-box policy queries, a situation where obtaining data
through direct interaction with the system is unfeasible. Successful policy theft in such scenarios
compromises intellectual property, privacy, and augments the risk of subsequent security attacks.

4 APPROACH: STEALTHY IMITATION

This section introduces the details of Stealthy Imitation. The method overview in Section 4.1 is
followed by an explanation of each of its components in Section 4.2. Section 4.3 shows how to use
the estimated distributions from prior steps to steal the target policy. Lastly, we propose a defense
that can make the attacker’s goal more difficult to reach.

4.1 METHOD OVERVIEW

We introduce Stealthy Imitation as attacker that steals a policy without access to the environment or
to the valid input range. To achieve their goal, the attacker aims to optimize the surrogate policy πa

to minimize the expected return difference between their own policy πa and that of the victim πv in
the environment:

argmin
πa

∣∣∣∣ E
τa∼πa

[R(τa)]− E
τv∼πv

[R(τv)]

∣∣∣∣ (1)

However, the attacker does not have access to the environment or the reward function. Instead, they
can minimize the action difference between their policy and that of the victim on an estimated state
distribution Sa using a loss function L as a proxy for the reward:

3

Under review as a conference paper at ICLR 2024

Figure 1: Overview of Stealthy Imitation that iteratively refines the estimated state distribution Sa.

argmin
πa

E
s∼Sa

[L(πv(s), πa(s))] (2)

The attacker’s goal is thus to find both the victim policy and the appropriate distribution of states.
The Stealthy Imitation objective encourages exploration by maximizing the disagreement between
the victim and attacker models:

II
argmin

πa

III & IV
argmax

Sa

E
s∼Sa

[
L(πa(s),

I
πv(s))

]
. (3)

The core of Stealthy Imitation consists of four main steps repeated iteratively until the attacker
query budget B is consumed: (I) transfer dataset construction by querying the victim policy with
states sampled from the estimated distribution Sa; (II) training the attacker policy πa via behav-
ioral cloning to mimic the victim policy on the transfer dataset; (III) reward model training R̂ to
discriminate the behaviours of the victim and current attacker policy, and (IV) reward-guided dis-
tribution refinement to closer match the victim’s state distribution using the proxy reward score on
each query state. Once the attacker’s budget is exhausted, we train πa from scratch only on the best
estimated distribution with the help of a distribution evaluator. The approach overview is depicted
in Figure 1. We detail each step in the following.

4.2 STATE DISTRIBUTION ESTIMATION

I. Transfer dataset construction. As the attacker has no knowledge of the state distribution of the
victim Sv , we choose a multivariate normal distribution N (µ,σ2) with a diagonal covariance matrix
as estimate of the attacker distribution Sa (Sa(s;µ,σ) from here on). States s are sampled from this
distribution and passed to the victim policy to obtain corresponding actions a∗. The transfer dataset
Dv described below is split into training and validation for use in the subsequent method steps:

Dv = {(s,a∗)}, where s ∼ Sa(s;µ,σ), and a∗ = πv(s). (4)

Lacking prior knowledge, Sa is initialized with µ = 0n and σ = 1n. In each iteration, we use
a dynamic query budget by multiplying a base budget bv with the average of σ. This ensures
sufficient learning in mimicking the actions of the victim policy, especially when the estimated σ is
large, thereby stabilizing the refinement process.

II. Behavioral cloning. We follow the conventional step in model stealing to mimic the victim pol-
icy’s behavior using the training split of the transfer dataset Dv . To this end, we employ behavioral
cloning using Huber loss (Huber, 1964), known for its resilience to outliers:

Lb(πa(s),a
∗) =

{
0.5(πa(s)− a∗)2 if |πa(s)− a∗| < 1,

|πa(s)− a∗| − 0.5 otherwise.
(5)

4

Under review as a conference paper at ICLR 2024

III. Reward model training. To evaluate the difficulty of imitation from the state-action pairs
from πa and πv , we introduce a reward model. Our approach is motivated by the hypothesis that
the complexity of victim’s responses increases when Sa approximates Sv , thus it becomes more
challenging for the attacker policy πa to accurately imitate the victim’s behaviors. This hypothesis is
supported empirically by the results in Section 5.3. We adopt a discriminative classifier R̂, inspired
by GAIL (Ho & Ermon, 2016). The role of R̂ is to distinguish between state-action pairs generated
by the victim and attacker policy. A more effective distinction suggests that the attacker’s policy
is more challenging to imitate accurately. To this end, we construct a dataset Da using actions a

generated by πa(s) after BC, and train a reward model R̂ by minimizing the loss function Lr:

Lr(s,a) = E
(s,a)∼Da

[− log(R̂(s,a))] + E
(s,a∗)∼Dv

[− log(1− R̂(s,a∗))]. (6)

IV. Reward-guided distribution refinement. We use the trained reward model from the previous
step R̂ to generate proxy reward values r̂(s,a) = − log(R̂(s,a)) for each state-action pair. A
high reward value r̂(s,a∗) indicates that the attacker policy fails to effectively mimic the victim,
suggesting that the state has higher probability in Sv . These reward values serve as weights for the
corresponding samples s, which we use to recompute the parameters µ′ and σ′ of the distribution
for the next iteration, as follows:

µ′ =

∑
(s,a∗)∈Dv

r̂(s,a∗) · s∑
(s,a∗)∈Dv

r̂(s,a∗)
,

σ′2 =

∑
(s,a∗)∈Dv

r̂(s,a∗) · (s− µ′)2∑
(s,a∗)∈Dv

r̂(s,a∗)
.

(7)

4.3 POLICY STEALING ON THE ESTIMATED DISTRIBUTION

Since the attacker has no knowledge of the victim states’ distribution Sv , we introduce a model πe,
which we term distribution evaluator. This model helps assess the closeness between the attacker
and victim distributions Sa and Sv . πe is trained via behavioral cloning and is reinitialized in each
iteration to ensure its validation loss L̄b measures only the error of the current estimated distribution.
Based on our hypothesis, a higher loss L̄b is indicative of Sa closely mirroring Sv . We only use bv
samples of the transfer dataset Dv to train πe instead of bv × σ̄. This ensures it is only affected
by the distribution divergence without the influence of training data size. Once the attacker budget
is exhausted, i.e., the algorithm is done iterating over steps I-IV, the parameters µ̃ and σ̃ from the
iteration that yielded the highest loss value are used to create an optimized transfer dataset using
the remaining reserved query budget Br. Finally, πa is subsequently retrained from scratch via BC
using this optimized dataset. Algorithm 1 outlines the complete method; all the functions used are
defined in Appendix A.

4.4 STEALTHY IMITATION COUNTERMEASURE

Although this work focuses on the attacker’s perspective, we also propose an effective defense
against Stealthy Imitation. We argue that ignoring queries outside the valid range is not advis-
able for the victim, as it would leak information about the valid range itself. The idea is to leverage
the victim’s exclusive knowledge of the correct input range; the defender can respond with random
actions to invalid queries. This approach serves to obfuscate the attacker’s efforts to estimate the
input range. This defense does not degrade the utility of the victim policy, as it still provides correct
answers to valid queries.

5 EXPERIMENTS

This section presents our empirical results for Stealthy Imitation. We discuss the experimental setup
(Section 5.1), followed by a comparison of our proposed method to baselines (Section 5.2) and
analyses and ablation studies (Section 5.3). Finally, we show the defense performance in Section 5.4.

5

Under review as a conference paper at ICLR 2024

Algorithm 1 Stealthy Imitation
Require: Victim policy πv (blackbox access), total budget B, reserved budget Br , base query budgets bv and

ba for victim and attacker victims respectively in each iteration
Ensure: Trained attacker policy πa

1: Initialize attacker policy πa, distribution evaluator πe, reward model R̂, µ← 0n, σ ← In
2: Initialize proxy metric L̃ ← −∞, consumed budget Bc ← 0, and to be consumed budget bc ← bv
3: while Bc + bc < B −Br do
4: Dv ← QueryAction(πv,µ,σ, bc) ▷ I. Transfer dataset construction
5: L̄b ← DistributionEvaluate(Dv, πe, bv) ▷ Section 4.3
6: if L̄b > L̃ then
7: D̃, L̃, µ̃, σ̃ ← Dv, L̄b,µ,σ

8: end if
9: πa ← BehavioralCloning(Dv, πa, bv · σ̄) ▷ II. Behavioral cloning

10: Da ← QueryAction(πa,µ,σ, ba)

11: R̂ ← TrainReward(Da,Dv, R̂, bv · σ̄) ▷ III. Reward model training
12: µ,σ ← DistRefine(Dv, R̂, bv · σ̄) ▷ IV. Reward-guided distribution refinement
13: Bc ← Bc + bc
14: bc ← max(bv, bv · σ̄)
15: end while
16: D̃ ← D̃ ∪ QueryAction(πv, µ̃, σ̃, B −Bc)

17: πa ← BehavioralCloning(D̃, πa, |D̃|) with reinitialized πa

18: return πa

5.1 EXPERIMENTAL SETUP

Victim policies. We demonstrate our method on three continuous control tasks from Mu-
joco (Todorov et al., 2012): Hopper, Walker2D, and HalfCheetah. The victim policy is trained
using soft actor-critic (SAC) (Haarnoja et al., 2018). The victim architecture is a three-layer fully-
connected networks (256 hidden units, ReLU activation). The models output a normal distribution
from which actions are sampled. These sampled actions are then constrained to the range [-1,1] us-
ing tanh. After training, the prediction action given a query state is determined only by the mean of
this output distribution. See Appendix B for a complete description of all the tasks and performance
of the victim policies. In addition, Stealthy Imitation is also preliminarily validated in a robot arm
setting, as described in Appendix G.

Attacker policies. Similar to Papernot et al. (2016); Orekondy et al. (2019b;a), we employ the
architecture of πv for πa, while omitting the prediction of the standard deviation and incorporating
tanh activation. Our choice of architecture does not significantly influence the refinement of Sa

(see Appendix C), although it does introduce greater variance in the cumulative reward. This phe-
nomenon is attributed to compounding errors, a known issue in imitation learning (Syed & Schapire,
2010; Ross et al., 2011; Xu et al., 2020), where minor training deviations can amplify errors. We set
the reserved training budget Br = 106 and the base query budget bv = 105. Both πa and πe share the
same architecture and are trained for one epoch per iteration. We use the Adam optimizer (Kingma
& Ba, 2015) with a learning rate of η = 10−3 and batch size of 1024. The final training employs
early stopping with a patience of 20 epochs for 2000 total epochs. The reward model R̂ is a two-
layer fully-connected network (256 hidden neurons, tanh and sigmoid activations). R̂ is trained
with a learning rate of 0.001 for 100 steps. Prior to training, we apply a heuristic pruning process
to Dv . Specifically, we remove any state-action pairs (s,a) where any component of a equals ±1,
corresponding to the maximum and minimal action values. This pruning step is motivated by the
preference for stability in control systems: actions of large magnitude are typically avoided. This
further assists the reward model in correctly identifying the victim policy’s state-action pattern.

Baseline attacks. Since our method is the first policy stealing without environment access or
prior input range knowledge, we compare it against two approaches: (i) Random: transfer datasets
are based on three normal distributions with varying scales, namely N (0n,1

2
n), N (0n,10

2
n), and

N (0n,100
2
n); the attacker policy πa is trained using BC; (ii) data-free model extraction (DFME):

we adapt the generator-based DFME (Truong et al., 2021) from image classification to control tasks.

6

Under review as a conference paper at ICLR 2024

Figure 2: Distribution estimation capacity measured by DKL(Sv∥Sa) (top) and return ratio (bottom)
as a function of the attacker budget.

The convolutional layers are replaced with fully-connected layers, and the final tanh activation is
swapped for batch normalization with affine transformations.

Evaluation. We consider two performance metrics. The Kullback-Leibler (KL) divergence
DKL(Sv∥Sa) measures the discrepancy between the estimated state distribution Sa and the vic-
tim’s state distribution Sv , an aspect not previously quantified in model stealing. We represent Sv

with a reference normal distribution N (µ∗, (σ∗)2) estimated from a dataset of 1 million states, Sv ,
collected from the interaction between the victim policy πv and the environment. The return ratio
assesses the stealing performance by dividing the average return generated by the attacker policy
in the environment by the average return of the victim policy. The return ratio is the average one
derived from eight episodes with random initial state. We also employ five distinct random seeds to
train five separate attacker policies and plot the result in Appendix E to account for any variability
of Stealthy Imitation.

5.2 STEALTHY IMITATION ATTACK PERFORMANCE

We assess the effectiveness of various policy stealing methods, as shown in Figure 2. The measure
of DKL(Sv∥Sa) is specific to our approach (top row), as the Random strategy does not refine a
distribution, and DFME focuses on fine tuning samples. We observe that the gap between Sa and
Sv becomes consistently smaller and achieves convergence, even when starting from a high value in
HalfCheetah. On average, we achieve an 81% reduction in DKL(Sv∥Sa) across all environments.
Our method substantially outperforms other attacks in terms of return ratio (Figure 2, bottom row).
In the Hopper environment, we achieve a return ratio of 97% with just 5 million queries. In con-
trast, the best competing method, N (0n,10

2
n), under the same query budget reaches only 70% and

quickly falls below 25%. Further details on the performance of the reward discriminator can be
found in Appendix F. While the Random N (0n,1

2
n) baseline shows promise in the Hopper environ-

ment with 35 million queries, it does not maintain this performance as consistently as ours across
varying query budgets. DFME does not manage to effectively steal the victim policy. This is largely
due to its generator’s tendency to search for adversarial samples within a predefined initial range,
limiting its ability to explore other regions as flexibly as Stealthy Imitation.

5.3 ANALYSIS

Distribution approximation. In our approach, we employ a Gaussian of parameters µ and σ to
estimate the state distribution Sa. We assume that, as long as the distribution is close to Sv , the at-
tacker can successfully steal the victim policy. To confirm this hypothesis, we train πa via behavioral
cloning for 200 epochs on five different distributions for Sa, each approximated directly from the
real state dataset Sv: (i) and (ii) N (µ∗, (σ∗)2) and N (µ∗,Σ∗): the mean µ∗ and variance (σ∗)2

or covariance Σ∗ are directly calculated from Sv , representing diagonal and full covariance ma-
trix, respectively; (iii) and (iv) Ŝv,u and Ŝv,m: these are non-parametric distribution approximations
derived using kernel density estimation (KDE), treating variables as independent and dependent,
respectively; and (v) Sv: This samples data directly from the real states. Figure 3 shows that suc-
cessful policy stealing is feasible even when queries are sampled from an approximate distribution.

7

Under review as a conference paper at ICLR 2024

Figure 3: Model stealing success for different choices of Sa based on the underlying distribution Sv .

Table 1: Spearman’s rank correlation between validation loss L̄b and distribution divergence DKL.(
L̄b, DKL

)
Task Correlation ρ p-value

Hopper −0.84 4.79× 10−164

Walker2D −0.78 7.59× 10−122

HalfCheetah −0.81 4.01× 10−140

The normal distribution with diagonal covariance matrix is an appropriate choice due to its low
number of parameters. Moreover, Appendix D experimentally shows that our method is robust to
estimation errors on both µ and σ.

Correlation between difficulty of imitation and distribution divergence. To empirically eval-
uate the hypothesis that the difficulty of imitation is correlated with the divergence between Sa

and Sv , we create 600 estimated state distributions Sa. These distributions are parameterized as
Sa(s; zσ

∗ + µ∗,σ∗), where each element of z is randomly sampled from a uniform distribution
over [0, 4], and its sign is chosen randomly. As a result, the KL divergences DKL(Sv∥Sa) for these
estimated state distributions range approximately from 0 to 8. For each Sa, we construct a transfer
dataset of 105 points and train the attacker’s policy πa using BC for one epoch. We measure the
average validation loss L̄b as a proxy for the difficulty of imitation. We apply Spearman’s rank
correlation test to these measurements, and the results are summarized in Table 1. These results
demonstrate a statistically significant correlation for

(
L̄b, DKL

)
, thus supporting the use of πe as a

reliable distribution evaluator in Section 4.3.

Ablative analysis. We study the impact of each component of our method by systematically re-
moving them one at a time, while keeping the other components unchanged. The ablation study
includes: (i) the use of bv × σ̄ instead of bv samples of transfer dataset Dv to train the distribution
evaluator πe; (ii) bypassing the reward model training and directly using the validation loss Lb of
each sample as weight for the reward-guided distribution refinement; (iii) skipping the pruning
step of the transfer dataset before training the reward model; and (iv) using bv instead of bv × σ̄
to train attacker’s policy πa during behavioral cloning. The result is depicted in Figure 4. We ob-
serve that incorporating a reward model can more efficiently minimize the distribution divergence
DKL(Sv∥Sa). Additionally, employing a fixed budget for the evaluator model helps the attacker
select a better Sa, thereby improving the return ratio. We also note the stabilizing effect of pruning
the transfer dataset prior to training the reward model. Moreover, if a dynamic budget is not used
when constructing the transfer dataset, we observe undesired shifts in Sa over iterations in Hopper
and this leads to a significant reduction in the return ratio.

5.4 STEALTHY IMITATION ATTACK COUNTERMEASURE

In this experiments, we test the efficiency of the proposed defense to our Stealthy Imitation attack. To
this end, we consider the input range to match the minimum and maximum values encountered dur-
ing training. Upon detecting a query that is outside the predefined input range, the victim policy will
uniformly sample an action as a response. The results in Figure 5 indicate that the countermeasure
substantially impedes the attacker’s ability to approximate the victim’s distribution, consequently
reducing the return ratio of the attacker policy.

8

Under review as a conference paper at ICLR 2024

Figure 4: Ablation study of SI attack. We validate the necessity of (i) fixing the dataset size to train
the evaluator model, (ii) dynamic budget, (iii) reward model, and (iv) pruning the transfer dataset.

Figure 5: Efficiency of the proposed defense against Stealthy Imitation.

6 DISCUSSION

Computational efficiency. In addition to theft effectiveness, Stealthy Imitation also demonstrates
computational efficiency. The main computational load comes from training the attacker policy πa

on the optimized transfer dataset D̂. This is more computational efficient compared to utilizing all
data with size of total budget B like random strategy.

Limitations and future work. The limitations in this work present opportunities for future re-
search and exploration. Firstly, attackers should consider the potential effects of initial distribution
discrepancies. While our method, initializing the estimated distribution with a standard Gaussian,
has proven effective, the threshold beyond which initial distribution divergence compromises effec-
tiveness remains to be identified. Secondly, Stealthy Imitation, being agnostic to the victim RL al-
gorithm, can adapt to various victim policies trained with other RL strategies; however, performance
may vary across different RL algorithms and requires further examination. Finally, expanding our
approach to other domains, where acquiring the input range is challenging such as those involv-
ing feature vectors and multivariate time series predictions, holds considerable promise for future
research.

7 CONCLUSION

We show for the first time that an attacker can successfully steal policies in control systems without
requiring environment access or prior knowledge of the input range—a strong attack vector that has
not been demonstrated or considered in prior research. Lacking access to the victim data distribution,
we show that a Gaussian assumption for the attacker query data is sufficient for efficient policy
extraction. Our Stealthy Imitation attack outperforms existing methods adapted to policy stealing
for a limited-knowledge attacker. We show that it is harder to imitate the victim policy when the
distribution of the attack queries increasingly aligns that of the victim, thus allowing an attacker to
refine their query distribution. We encourage policy owners to consider the risks of stealing and to
use available defenses, such as the one proposed in this paper, to protect their assets.

9

Under review as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

The authors are committed to ensuring the reproducibility of this work. The appendix provides
extensive implementation details, and the code and setup will be made publicly available as open-
source.

ETHICS STATEMENT

While we are demonstrating an attack in this work, it is not targeted to a specific system but rather a
generic attack vector. Therefore, in best practice no responsible disclosure procedure is necessesary
or would even be possible. It is in fact of high importance to make developers and deployment aware
of such risks, and thus such type of attacks are commonly published in AI/ML, and particular S&P
venues. Additionally, we directly propose a defense and encourage policy owners to use it. The
authors strictly comply with the ICLR Code of Ethics1.

REFERENCES

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2014.

James Beetham, Navid Kardan, Ajmal Saeed Mian, and Mubarak Shah. Dual student networks for
data-free model stealing. In International Conference on Learning Representations (ICLR), 2022.

Vahid Behzadan and William Hsu. Adversarial exploitation of policy imitation. arXiv preprint
arXiv:1906.01121, 2019.

Kangjie Chen, Shangwei Guo, Tianwei Zhang, Xiaofei Xie, and Yang Liu. Stealing deep reinforce-
ment learning models for fun and profit. In ACM ASIA Conference on Computer and Communi-
cations Security (ACM ASIACCS), pp. 307–319, 2021.

DI engine Contributors. DI-engine: OpenDILab decision intelligence engine. https://github.
com/opendilab/DI-engine, 2021.

Gongfan Fang, Jie Song, Chengchao Shen, Xinchao Wang, Da Chen, and Mingli Song. Data-free
adversarial distillation. arXiv preprint arXiv:1912.11006, 2019.

Quentin Gallouédec, Nicolas Cazin, Emmanuel Dellandréa, and Liming Chen. panda-gym: Open-
Source Goal-Conditioned Environments for Robotic Learning. Robot Learning Workshop: Self-
Supervised and Lifelong Learning at NeurIPS, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning (ICML), pp. 1861–1870. PMLR, 2018.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems (NeurIPS), 2016.

Peter J. Huber. Robust estimation of a location parameter. 35(1):73 – 101, 1964. Institute of
Mathematical Statistics.

Mika Juuti, Sebastian Szyller, Samuel Marchal, and N. Asokan. Prada: protecting against dnn model
stealing attacks. In European Symposium on Security and Privacy (EuroSP), pp. 512–527. IEEE,
2019.

Manish Kesarwani, Bhaskar Mukhoty, Vijay Arya, and Sameep Mehta. Model extraction warning in
mlaas paradigm. In Annual Computer Security Applications Conference (ACSAC), pp. 371–380,
2018.
1https://iclr.cc/public/CodeOfEthics

10

https://github.com/opendilab/DI-engine
https://github.com/opendilab/DI-engine

Under review as a conference paper at ICLR 2024

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Raphael Gontijo Lopes, Stefano Fenu, and Thad Starner. Data-free knowledge distillation for deep
neural networks. In Advances in Neural Information Processing Systems (NeurIPS), Long Beach,
CA, USA, 2017.

Paul Micaelli and Amos J. Storkey. Zero-shot knowledge transfer via adversarial belief matching.
In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Andrew Y. Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In International
Conference on Machine Learning (ICML), volume 1, pp. 2, 2000.

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Prediction poisoning: Towards defenses
against dnn model stealing attacks. In International Conference on Learning Representations
(ICLR), 2019a.

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff nets: Stealing functionality
of black-box models. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.
4954–4963, 2019b.

Nicolas Papernot, Patrick Mcdaniel, and Ian J. Goodfellow. Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples. ArXiv, abs/1605.07277, 2016.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In Advances in Neural Information Processing Systems (NeurIPS) Workshop, 2017.

Dean A. Pomerleau. Efficient training of artificial neural networks for autonomous navigation.
Neural Computation, 3(1):88–97, 1991.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In International Conference on Artificial Intelligence
and Statistics (AISTATS), pp. 627–635. JMLR Workshop and Conference Proceedings, 2011.

Stuart Russell. Learning agents for uncertain environments. In Annual Conference on Computa-
tional Learning Theory, pp. 101–103, 1998.

Sun Sanyal, ini, Sravanti Addepalli, and R. Venkatesh Babu. Towards data-free model stealing in
a hard label setting. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.
15284–15293, 2022.

Umar Syed and Robert E. Schapire. A reduction from apprenticeship learning to classification. In
Advances in Neural Information Processing Systems (NeurIPS), 2010.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In International Conference on Intelligent Robots and Systems (IROS), pp. 5026–5033. IEEE,
2012.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
drea Pierré, S. Schulhoff, er, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium.
https://github.com/Farama-Foundation/Gymnasium, 2023.

Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Stealing machine
learning models via prediction {APIs}. In USENIX Security, pp. 601–618, 2016.

Jean-Baptiste Truong, Pratyush Maini, Robert J. Walls, and Nicolas Papernot. Data-free model
extraction. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4771–4780,
2021.

Tian Xu, Ziniu Li, and Yang Yu. Error bounds of imitating policies and environments. In Advances
in Neural Information Processing Systems (NeurIPS), pp. 15737–15749, 2020.

11

https://github.com/Farama-Foundation/Gymnasium

Under review as a conference paper at ICLR 2024

A ALGORITHMS

We now provide a detailed description of each function in Algorithm 1, along with their pseudo
code.

Query action. Query action (Algorithm 2) is the function where we obtain the transfer dataset
from victim policy and attacker policy. We sample b state vectors from a Gaussian distribution
parameterized by µ and σ, and obtain responses a from the policy π. When π = πv , the output is
dataset D = Dv; otherwise, it is Da when policy is πa.

Algorithm 2 QueryAction
Require: Policy π, mean µ and standard deviation σ, query budget b,
Ensure: Dataset D
1: Sample b data points s fromN (µ,σ2)
2: a← π(s)
3: D := {(si,ai)|i = 1, ..., b}
4: return D

Behavioral cloning. We train policy π to mimic the state-action pair mapping in dataset D via
supervised learning by minimizing the Huber loss, i.e., behavioral cloning in Algorithm 3. Consid-
ering that the attacker policy πa has different dataset size requirement as distribution evaluator πe

using behavioral cloning, we use an additional demand size N to control it.

Algorithm 3 BehavioralCloning
Require: Dataset D = {(si,a

∗
i)}, policy π, demand size N , epochs E, learning rate η

Ensure: Updated policy π
1: Sample N data from D and split into training and validation Dt and Dv

2: for e = 1 to E do
3: for each batch (s,a∗) in Dt do
4: Calculate loss Lb ← HuberLoss(π(s),a∗) ▷ Compute loss using Huber loss
5: π ← π − η∇πLb ▷ Update model parameters using gradient descent
6: end for
7: end for
8: return π

Train reward. We use the code pipeline provided in engine Contributors (2021) to train the reward
model in Algorithm 4, except for the additional function PruneData. Reward model is trained for
total 400 steps in each iteration with learning rate η = 10−3.

Algorithm 4 TrainReward
Require: dataset Da queried from attacker policy, dataset Dv queried from victim policy, reward model R̂,

demand size N , total steps T , learning rate η

Ensure: Trained reward model R̂
1: Sample N data from Dv and split into training and validation Dvt and Dvv

2: D′
vt ← PruneData(Dvt)

3: for i = 1 to T do
4: Sample batch data (sv,av) from D′

vt and (sa,aa) from Da

5: Lv ← − log(1− R̂(sv,av))

6: La ← − log(R̂(sa,aa))
7: ∇L← ∇(Lv + La) ▷ Compute the gradient of the total loss
8: R̂ ← R̂ − η∇L ▷ Update the reward model
9: end for

10: return The trained reward model R̂

Prune data. When the action is equal to maximum or minimal value, i.e., extreme action, it is
less likely to be the normal action predicted by the victim policy on the real state distribution, as
most control systems do not prefer such extreme action. Extreme action value can easily cause

12

Under review as a conference paper at ICLR 2024

instability in control systems. By pruning the transfer dataset shown in Algorithm 5, the reward
model can identity the difference of state-action pairs coming from the victim and attacker policies.
For instance, if there is a state-action pair whose action is an extreme value, then the reward model
tends to identity it as a state-action pair from the attacker, as there is no such data in the transfer
dataset querying the victim policy after pruning.

Algorithm 5 PruneData
Require: Dataset D
Ensure: Cleaned Dataset D′

1: D′ ← ∅
2: for each (si,ai) in D do
3: if no element of ai equals 1 or −1 then
4: D′ ← D′ ∪ {(si,ai)}
5: end if
6: end for
7: return D′

Distribution evaluate. The function described in Algorithm 6 is exactly the same as behavioral
cloning, but the final output of the function is the validation loss L̄b of evaluator πe.

Algorithm 6 DistributionEvaluate
Require: Dataset D = {(si,a

∗
i)}, policy π, portion size N , epochs E, learning rate η

Ensure: validation loss L̄b

1: Sample N data from D and split into training and validation Dt and Dv

2: for e = 1 to E do
3: for each batch (s,a∗) in Dt do
4: Calculate loss Lb ← HuberLoss(π(s),a∗) ▷ Compute loss using Huber loss
5: π ← π − η∇πLb ▷ Update model parameters using gradient descent
6: end for
7: end for
8: Calculate average validation loss L̄b on Dv

9: return L̄b

Distribution refinement. We apply Equation (7) on the validation split of the transfer dataset to
calculate the new µ and σ, described in Algorithm 7.

Algorithm 7 DistRefine
Require: dataset D, reward model R̂, demand size N
Ensure: updated µ′ and σ′

1: Sample N data from D and split into training and validation Dt and Dv

2: D′
v ← PruneData(Dv)

3: µ′ ←
∑

(s,a)∈D′
v

r̂(s,a)·s∑
(s,a)∈D′

v
r̂(s,a)

▷ r̂(s,a) = − log(R̂(s,a))

4: σ′2 ←
∑

(s,a)∈D′
v

r̂(s,a)·(s−µ′)2∑
(s,a)∈D′

v
r̂(s,a)

.

5: σ′ =
√
σ′2

6: return µ′ and σ′

B ENVIRONMENT AND VICTIM POLICY

We conducted our experiments on environments sourced from Gymnasium (Towers et al., 2023).
The specific environments, along with their version numbers and the performance metrics of the
victim policies, are detailed in Table 2. The victim policies are trained using the Ding repository (en-
gine Contributors, 2021), a reputable source for PyTorch-based RL implementations (Paszke et al.,
2017). We employ SAC to train the victim policy; hence, the victim policy comprises an actor and
a critic model. The actor model receives the state as input and outputs the action distribution, while
the critic model receives a concatenated state and action as input and outputs the Q-value. During

13

Under review as a conference paper at ICLR 2024

Table 2: Environments and performance of victim policy.

Environment Observation space Action space Victim return
Hopper-v3 11 3 3593±3

Walker2D-v3 17 6 4680±43
HalfCheetah-v3 17 6 12035±61

queries to the victim policy, only the actor model is utilized, outputting the mean of the action dis-
tribution as a response. The state observations primarily consist of the positional coordinates and
velocities of various body parts.

C INFLUENCE OF MODEL ARCHITECTURE

We investigate the impact of various attacker policy architectures on performance when executing
Stealthy Imitation. Each victim policy utilizes a three-layer fully-connected network with 256 hid-
den units. To understand the effect of architecture variations, we modify the attacker policies by
adjusting the layer numbers to 4, 6, and 10. Furthermore, we conduct experiments with the original
layer structure, but reduce the hidden units to 128.

We depict the results on Figure 6. To better understand the impact, except for DKL(Sv∥Sa) and
return ratio, we also provide raw DKL(Sv∥Sa) on top row, which is the last DKL(Sv∥Sa) at the
end of the iteration, rather than the one selected by distribution evaluator πe. We observe that the
raw DKL of different architecture choices exhibit similar tendencies, thus the architecture choice has
limited impact on the distribution refinement. In the second row of Figure 6, except for Walker2d, the
selection of the DKL(Sv∥Sa) during refining by πe guarantee an appropriate estimated distribution
Sa and low DKL(Sv∥Sa), preventing the divergence of distribution approximation. However, we
observe that the return ratio exhibits higher variance in the third row. This indicates that the return
ratio is sensitive when the architecture is different, even when the estimated distribution is closed
to the real state distribution. This is also a challenge in the realm of imitation learning, known as
compounding errors (Syed & Schapire, 2010; Ross et al., 2011; Xu et al., 2020). Compounding
errors imply that even minor training errors can snowball into larger decision errors. In our case, the
minor training error comes from different architecture choices.

It is essential to highlight that this issue of compounding errors is predominantly absent in image
classification model stealing, where test data points are independently evaluated. Nonetheless, the
robustness of the estimation of the underlying distribution Sv in terms of KL divergence underscores
the effectiveness of our approach.

Figure 6: Influence of model architecture on stealing performance.

14

Under review as a conference paper at ICLR 2024

D ROBUSTNESS TO DISTRIBUTION APPROXIMATION ERRORS

Figure 7: Left: policy stealing performance (return ratio) when µ = µ∗ and the scale factor λ
modifies σ∗ such that Sa = N (µ∗, (λσ∗)2). Right: policy stealing performance (return ratio) with
σ = σ∗ and µ = zσ∗ + µ∗, such that Sa = N (zσ∗ + µ∗, (σ∗)2).

We customize Sa with different parameters to explore the effect of discrepancy between Sa and Sv .
The left of Figure 7 explores the impact of varying σ while holding µ = µ∗ constant such that
Sa = N (µ∗, (λσ∗)2) with a factor λ. Conversely, the right investigates the effect of modifying
µ while keeping σ = σ∗ constant, Sa = N (zσ∗ + µ∗, (σ∗)2). Different values of z serve as
a measure of the divergence between the estimated µ and µ∗. The sign of each element in z is
randomly chosen. Transfer datasets, each containing 1 million queries, are generated from these
customized distributions. These datasets are then used to train the attacker’s policy πa through BC
for up to 2000 epochs, utilizing early stopping with a patience of 20 epochs. From Figure 7 we
observe that minor variations in σ are more tolerable compared to deviations in µ.

E VARIABILITY OF STEALTHY IMITATION

We report the variability of Stealthy Imitation in Figure 8 by using five random seeds to obtain five
estimated distributions Sa and train five attacker policies πa. The performance of each policy is still
obtained by collecting the average return ratio from eight episodes. We observe that the variability of
DKL(Sv∥Sa) has impact on that of the return ratio, suggesting that a reliable estimated distribution
is crucial to attacker policy training.

F PERFORMANCE OF THE REWARD DISCRIMINATOR

In this section, we analyze how the reward discriminator loss defined in Equation (6) changes
throughout the distribution estimation process (Figure 9). In each iteration, we train the reward
model for 400 steps; in each step, a batch of data will be sampled from the current victim and at-
tacker distributions, Dv and Da respectively. The x axis in Figure 9 represents the number of steps
using a total of 50 million query budget.

We observe that the reward discriminator exhibits oscillations with the variation of the estimated
distribution and attacker policy through the iterations. The discriminator’s loss may decrease when

Figure 8: Variability of policy stealing performances.

15

Under review as a conference paper at ICLR 2024

Figure 9: The reward discriminator loss in Equation (6).

it successfully identifies attacker’s state and action pair data but can increase again as the estimated
distribution shifts to a new region where the reward model has not been trained.

G FRANKA EMIKA PANDA ROBOT POLICY STEALING

We validate Stealthy Imitation in a realistic scenario where the victim policies are trained for a
Franka Emika Panda robot arm provided by panda-gym (Gallouédec et al., 2021). All victim policies
are from official repository in HuggingFace2, and we focus on four out of five tasks, excluding the
stacking task where the victim policy exhibited a 0% success rate. In the four tasks we select, the
maximum and minimum returns are 0 and -50, respectively.

Experimental setup. To demonstrate efficacy, we initialize the estimated distribution with
N (µ∗ + 3σ∗, (σ∗)2), with all initial DKL being 4.5. Initializing with N (0n,1

2
n) already results

in a very small DKL below 4.5. The attacker’s architecture consists of a six-layer fully-connected
network (512 hidden units, ReLU activation). The training involves five epochs for the attacker pol-
icy per iteration, with other hyperparameters mirroring those in the Mujoco setup. We calculate the
return ratio using R(τa)−R(τr)

R(τv)−R(τr)
, where R(τr) is the return of a randomly initialized attacker policy.

Stealthy Imitation results. Table 3 summarizes the task details and the percentage reduction in
DKL using SI after 50M queries. For full results, see Figure 10. SI effectively reduces DKL in most
tasks, except Slide due to the lower victim return. Higher victim returns correlate with greater DKL

reductions. The attacker’s return ratio reaches 100% in the Reach task, but is near 0% in others,
suggesting that precise distribution estimation is crucial for successful policy stealing.

Figure 10: Panda: raw distribution estimation measured by DKL (top); evaluator πe’s selected final
estimated distribution (middle); return ratio of the attacker policy (bottom)

2https://huggingface.co/sb3

16

Under review as a conference paper at ICLR 2024

Table 3: Panda environments and reduction of DKL.

Environment Observation space Action space Victim return DKL reduction

PandaPickAndPlace-v1 26 4 -12±12 52%
PandaPush-v1 25 3 -6±2 59%

PandaReach-v1 13 3 -2±1 73%
PandaSlide-1 25 3 -29±13 4%

17

	Introduction
	Related Work
	Threat Model
	Approach: Stealthy Imitation
	Method Overview
	State Distribution Estimation
	Policy Stealing on the Estimated Distribution
	Stealthy Imitation Countermeasure

	Experiments
	Experimental Setup
	Stealthy Imitation Attack Performance
	Analysis
	Stealthy Imitation Attack Countermeasure

	Discussion
	Conclusion
	Algorithms
	Environment and Victim Policy
	Influence of Model Architecture
	Robustness to Distribution Approximation Errors
	Variability of Stealthy Imitation
	Performance of the Reward Discriminator
	Franka Emika Panda Robot Policy Stealing

