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Abstract

Implicit neural networks including deep equilibrium models have achieved superior
task performance with better parameter efficiency in various applications. However,
it is often at the expense of higher computation costs during inference. In this
work, we identify a phenomenon named heterogeneous convergence that exists
in deep equilibrium models and other iterative methods. We observe much faster
convergence of state activations in certain dimensions therefore indicating the
dimensionality of the underlying dynamics of the forward pass is much lower than
the defined dimension of the states. We thereby propose to exploit heterogeneous
convergence by storing past linear operation results (e.g., fully connected and
convolutional layers) and only propagating the state activation when its change
exceeds a threshold. Thus, for the already converged dimensions, the computations
can be skipped. We verified our findings and reached 84% FLOPs reduction on
the implicit neural representation task, 73% on the Sintel and 76% on the KITTI
datasets for the optical flow estimation task while keeping comparable task accuracy
with the models that perform the full update.

1 Introduction

Implicit neural networks [2, 13] have gained much attention in recent years. They are capable of
matching or surpassing state-of-the-art performance in domains such as computer vision [3, 4, 17, 32,
41, 46], language modeling [2] and audio processing [32, 35]. Implicit networks typically model these
tasks with certain dynamics represented by the evolution of the intermediate hidden states and are
often described as fixed-point equations or differential equations. The implicit models, represented
by the deep equilibrium (DEQ) model family, often achieve better parameter efficiency for reaching a
similar level of task accuracy as their regular neural network counterparts. Furthermore, the implicit
function theorem assists implicit models in avoiding the need for direct differentiation through
numerous forward steps, like those required in back-propagation through time, which demands
substantial memory for training.

Despite their compact architectural design with fewer parameters, implicit models frequently require
extensive computations during inference to better approximate the fixed point. The fixed point is
typically computed with fixed-point iteration methods [4] or other root-solving techniques such as
Broyden [7] or Anderson [54] methods, all of which require multiple forward passes of the model.
The substantial computational cost at inference time significantly hinders the deployment of implicit
models. Various strategies have been developed to reduce this computational burden, including
fixed-point reuse [4, 41] to accelerate the convergence of the forward pass for temporally correlated
inputs like consecutive video frames, and global early stopping criteria [4] that halt the forward pass
once the absolute or relative change of the hidden states norm is below a threshold. However, these
approaches uniformly control the termination of updates across all dimensions of the hidden states
and they fail to consider the internal structure of the dynamics.
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This work makes a finer-grained inspection of the dynamics of the hidden states update. By analyzing
the element-wise trajectory and dimensionality of hidden states update, we observed the heteroge-
neous convergence phenomenon among implicit models. That is, there exists a significant variance
in convergence speeds across different dimensions of the hidden states; and that certain dimensions
converge substantially faster than others in the forward pass of an implicit model. Based on this
finding, we modified the forward pass update of the DEQ models with the delta updating rule that
stores the intermediate results of computationally intensive linear operators and only calculates at
dimensions where their changes between two sequential updates exceed a threshold. Our method
is orthogonal to other acceleration techniques including fixed-point reuse [4, 32] and early stop-
ping [4, 41] of iterations. Unlike fixed-point reuse acceleration, our method does not assume temporal
correlation of inputs i.e. effective even for static. While primarily applied to DEQ-based methods, our
technique can be adapted to any iterative method that uses a fixed-point search in the forward pass.
We empirically tested our method for two tasks: implicit neural representation (INR) for images and
optical flow (OF) estimation. Compared to previous DEQ-based methods, Our approach achieved
an 84% reduction in FLOPs for the INR task and a 73% and 76% reduction for the OF task using
the Sintel and KITTI datasets, respectively, without significant loss in task accuracy. The code is
available at https://github.com/ZuowenWang0000/Delta-Deep-Equilibrium-Models.

2 Background

The majority of the findings in this study are derived from deep equilibrium models (DEQ)1, which
represent a specific category of implicit models. We offer essential annotations and background
information on DEQ in this section. A DEQ layer is modeled as a fixed-point equation:

z∗ = fθ(z
∗, x), (1)

where x is the input and the layer is parameterized by θ. Notice that fθ does not need to be single-
layered but could also be a block of layers. Thus, z∗ could be activations of a block of layers. This
fixed-point equation is solved with Broyden method [7] or Anderson acceleration [54] by finding the
root of fθ(z∗, x)− z∗ = 0 in the initial DEQ works [2, 4].

Alternatively, the fixed-point equation can be solved by iterative methods. Picard’s method is an
iterative method for approximating the fixed point z∗. By simply substituting the state zi at i-th
iteration as the input and z0 as initialization, the state at iteration step i+ 1 is computed as

zi+1 = fθ(z
i, x), (2)

and zi → z∗ as i→∞ when fθ is a contraction mapping. Empirically the z∗ can be approximated
in limited numbers of iterations, in other words, the fixed-point iteration (FPI) converges empirically
in limited steps.

For a temporal input sequence xt where t = 1, ..., T , processing each input xt at time t requires
solving a corresponding fixed-point z∗t = fθ(z

∗
t , xt). This means that for every input timestep t,

the forward pass of DEQ involves solving a fixed-point equation which could be computationally
intensive. From previous studies [4, 41, 56], reusing the fixed point z∗t−1 as the initialization
(z0t = z∗t−1) for processing the next timestep input xt, could accelerate the convergence speed to z∗t .

3 Observations and motivation

Our methods are based on several key observations on the forward pass of DEQ models. We first
demonstrate the observations with a simple DEQ model which is formulated as a deep equilibrium
layer z∗ = tanh(Wz · z∗ + Wx · x + b) and a linear readout layer y = Wz∗, where Wz ∈
R20×20,Wx ∈ R20×1,W ∈ R1×20, and b ∈ R20×1 are the weights and bias respectively. We
generated a dataset that consists of data points (x, sin(x)) with x being evenly sampled 200 points
in [−2π, 2π]. We train the network to fit the sin(x) function learning from these data samples. The
forward pass is implemented with Picard’s method in Eq. 2 with 15 iterations and the backward pass
is implemented with back-propagation through time (BPTT). The loss function used for training is

1In the original works [2, 4, 26] DEQ refers to the models trained with implicit function theorem (IFT)
or approximation based on IFT. In this work we relax the definition of DEQ to any network that models a
fixed-point equation and the forward pass is solved by fixed-point iteration or other root-finder.
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Figure 1: (a) Reconstruction evolution when increasing inference iterations. (b) Hidden states
trajectory for 5 consecutive input points with the first two principal components. Details in A.1. (c)
Cumulative explained variance for all hidden states. (d) Evolution of different dimensions of hidden
states (represented by colors) over iterations. (e) Mean delta activation for different dimensions
(represented by colors). The colored solid areas indicate the standard deviation from different inputs.
(f) Histogram of converged dimensions (blue) at i-th iteration and evolution of the model prediction
MSE (red).

ℓ = ℓMSE + ℓ||·||2 where ℓMSE is the mean squared error. The second term ℓ||·||2 = λ · (||Wz||2− 1) is
the spectral norm regularization on the matrix Wz and is applied when ||Wz||2 > 1 in each iteration.
This regularization is to ensure the model realizes a contrastive mapping and guarantees stable fixed
points as stated in the Banach Fixed Point Theorem [6]. As shown in Fig. 1(a) the model gradually
converges to the ground truth sin(x) values when the iterations at inference increased from 1 to 15.

In Fig. 1(c), we concatenated hidden states from different iterations for all the input x in the dataset
and conducted the principal component analysis (PCA) on them. We can see that although the hidden
states are defined with 20 dimensions, with only 3 principal components we could explain over 99%
of the variance in all hidden states trajectory. This observation shows that for DEQ models trained on
specific tasks, the underlying dynamics could be depicted with much lower dimensionalities than the
defined state z∗, which was observed similarly in [50] for continuous RNNs. Details of the PCA
method are in Appendix. A.1.

Heterogeneous convergence The underlying dynamics of DEQ models, as well as other forms
of recurring architectures [37], often have lower intrinsic dimensions than their explicitly defined
dimensionality. Fig. 1(d) shows how this low intrinsic dimension characteristic is reflected in the
original hidden state space. We can see that some dimensions of z experience much larger fluctuation
with the hidden state trajectory while certain dimensions converge within a few iterations. Fig. 1(e)
presents the evolution of the mean delta activation |zi+1 − zi|k at dimension k for 1000 uniformly
sampled input points. We can observe very different convergence speed for different dimensions and
large variances in all dimensions. The averaged histogram statistics for the number of dimensions
that converged at i− th iteration is shown in Fig. 1(f). We observe that although globally the model
reaches an MSE plateau at around 8 iterations, many dimensions have already converged long before
that. We name this phenomenon heterogeneous convergence, indicating that different dimensions of
the state z converge at uneven speeds for a fixed-point iteration implemented forward pass of a DEQ.
A natural question arises from observations of this phenomenon:

Can we exploit the heterogeneous convergence phenomenon in the dynamics of hidden state updates
for accelerating deep equilibrium models and other iterative methods?

Indeed, identifying and leveraging the rates at which dimensions stabilize could lead to more efficient
computational strategies. In Sec. 4 we describe our DeltaDEQ method that exploits the heterogeneous
convergence for reducing computation of the DEQ forward pass together with details for other
associated methods used in this work.
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4 Methods

We propose DeltaDEQ to leverage the heterogeneous convergence phenomenon by inducing the
delta activation sparsity in fixed-point iterations. DeltaDEQ can be instantiated with mainstream
network architectures including recurrent neural networks (RNNs), convolutional neural networks
(CNNs) and transformers just like DEQ. Computation savings for DeltaDEQ do not require the
strong assumption [44, 45] that input data has to be minimally changing temporal sequences. Even
when processing a static input, DeltaDEQ can still save computation in comparison to DEQ due to
the convergence nature of equilibrium evolution.
Iter i : output of previous layer 𝐼௧



𝐼௧
𝐼௧

ିଵ

Δ𝐼௧
 ≈ 𝐼௧

 - 𝐼௧
ିଵ

Ƙ

+
cached: Ƙ ∗ 𝐼௧

ିଵ=

Ƙ ∗ 𝐼௧


𝑂௧
 ≈ 𝜎 Ƙ௭ ∗ Δ𝐼௧

 + Ƙ௭ ∗ 𝐼௧
ିଵ

sparse cached

Iter i: input for the next layer 𝑂௧


𝐼௧
ାଵ

Iter i+1 : output of previous layer 𝐼௧
ାଵ

Δ𝐼௧
ାଵ ≈ 𝐼௧

ାଵ - 𝐼௧


𝐼௧


+
cached: Ƙ ∗ 𝐼௧

=

Ƙ ∗ 𝐼௧
ାଵ

𝑂௧
ାଵ ≈ 𝜎 Ƙ௭ ∗ Δ𝐼௧

ାଵ + Ƙ௭ ∗ 𝐼௧


sparse cached

Iter i+1: input for the next layer 𝑂௧
ାଵ

Ƙ

Δ𝐼 gets sparser during 
fixed-point iterations

sparse convolution

convolution 
kernel Ƙ

conv. 
kernel

sparse
activation

partial
sparse

update 
cache

Ƙ ∗ Δ 𝐼

update 
cache

(a)

(b)

Figure 2: (a) Convolution type of DeltaDEQ. The input Ii−1
t from the previous iteration is stored and

subtracted to create the sparse ∆Iit . White represents zero. (b) For sparse convolution, in theory, all
zero entries in the feature map can be skipped; in practice, this is more feasible on hardware [1, 15]
when the entire activation patch is fully sparse. The complete formulation and pseudo-code are given
in A.2 and RNN type DeltaDEQ is illustrated in A.5.1.

4.1 Delta deep equilibrium layer (DeltaDEQ)

We start the introduction of the DeltaDEQ with a simple instantiation of a single RNN layer:
zi+1
t = σ(Wz · zit +Wx · xt), (3)

where xt ∈ Rdx is the input at timestep t, zit ∈ Rd is the hidden states vector at fixed-point iteration i,
Wz ∈ Rd×d and Wx ∈ Rd×dx are the weight matrices and σ represents the activation function. Due
to the linearity of Wz projection, Eq. 3 can be reformulated as follows:

zi+1
t = σ(Wz · (zit − zi−1

t ) +Wz · zi−1
t +Wx · xt). (4)

Assuming that zit − zi−1
t is sparse, namely many dimensions are zeros, then the computation of the

matrix-vector multiplication can be greatly reduced (see Fig. 5). This sparsity assumption holds due
to the fact that DEQ models are trained to converge in the forward pass. In order to achieve higher
sparsity, we further apply an element-wise delta threshold τ to zero out small changes. We define
the thresholded delta hidden states vector and apply the delta rule on Eq. 4 as follows:

∆zit :=

{
zit − zi−1

t if |zit − zi−1
t | ≥ τ

0 otherwise
(Delta Rule) (5)

zi+1
t

(5)
≈ σ(Wz ·∆zit︸ ︷︷ ︸

sparse

+Wz · zi−1
t︸ ︷︷ ︸

cached in Cz

+ Wx · xt︸ ︷︷ ︸
cached in Cx

). (6)

Cz ←Wz ·∆zit + Cz (update cache) (7)
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Notice that Eq. 5 operates element-wise. The assignment Eq. 7 states that after finishing the sparse
matrix-vector multiplication, we update the stored value Cz for the next iteration. There is no need to
update the cached value Cx within the same input timestep t since the input xt does not change. But
when the computation moves to xt+1, a similar update rule as in Eq. 5 can be applied on input and
thus also saving computation. An illustration for the RNN type DeltaDEQ is in Sec. A.5.1 Fig. 5.

Convolutional DeltaDEQ The convolution layers, which are most commonly used for vision tasks,
are in principle also composed of linear transformation followed by non-linearities. Thus, we can
also reformulate a convolutional DEQ block as a convolutional DeltaDEQ (ConvDeltaDEQ) block.
Assuming the input features to a layer in a DeltaDEQ block at iteration i is Iit and the output is Oi

t:

Oi
t = σ(K ∗ Iit) = σ(K ∗ (Iit − Ii−1

t + Ii−1
t ))

(5)
≈ σ(K ∗∆Iit︸ ︷︷ ︸

sparse

+K ∗ Ii−1
t︸ ︷︷ ︸

cached

), (8)

where ∗ denotes the convolution operation and K is the convolution kernel. The convolution K ∗∆Iit
is conducted on the sparse delta feature map ∆Iit . The multiply-accumulate (MAC) operations could
be skipped on the zero entries in ∆Iit as illustrated in Fig. 2.

Theoretical complexity analysis and hardware practicality Assuming the sparsity level (% zero
entries) in zit is osp. For every fixed-point iteration for the RNN type of network layer as in Eq. 5 the
floating point operations (FLOPs) spent on computing Wz · zit is 2d2, while the delta thresholded
version costs approx. 2(1− osp)d

2 + d. For convolution kernel with kernel size k and stride s, and
assuming ∆zit, z

i
t ∈ Rd×d and padding so that the output feature map still has size d×d, the original

convolution costs approx. 2d2k2 FLOPs while the delta version costs approx. 2(1− osp)d
2k2 + d2

FLOPs. A large level of osp could reduce FLOPs greatly for both the RNN type of layer as well as a
convolution in theory. However, while the computation cost reduction for the RNN type of layer is
easy to realize in practice [20, 43], the sparse convolution is in general more difficult due to its fine
granularity and its realization often requires special hardware or library support [1, 15].

4.2 Fixed-point iteration instead of root solving

The original DEQ work adopted root-solving, including Broyden [7] and Anderson [54] methods,
in the forward pass. These methods contain overhead computation other than the model inference
fθ(z

i
t, xt) itself. We found that fixed-point iterations, which include Picard’s iteration (Eq. 2) and

Krasnoselskii–Mann (KM) iteration, suffice for approximating the fixed-point in the forward pass
and has good (global) convergence speed (fewer iterations needed to converge) in comparison to
root-solving techniques. KM iteration maintains a history of one past iteration and conducts weighted
sum: zi+1

t = αtfθ(z
i
t, xt) + (1 − αt)z

i
t, where αt is the coefficient for the weighted sum and in

our work we choose a fixed α namely αt = α. The KM method helps to accelerate the overall
convergence of the fixed-point iteration with better asymptotic and stabilize the trajectory of the
forward pass and improve task performance. It does not induce an additional memory footprint
with DeltaDEQ since the storage of two steps of states is already required. We provide a detailed
comparison of fixed-point iterations and root-solving techniques in A.7.

4.3 Other acceleration techniques for DeltaDEQ

We adopt another two major acceleration techniques from previous works [2, 4, 32, 41, 56] for
DeltaDEQ: (1) fixed-point reuse and (2) global early stopping. The fixed-point reuse method is often
used for processing temporal sequences such as video frames. It initializes the hidden states z0t+1

with the fixed-point from last input timestep t, namely z0t+1 = z∗t . This technique is based on the
assumption that small distances between consecutive inputs d(xt, xt+1) will induce small distances
of fixed-point d(z∗t , z

∗
t+1)≪ d(z0t+1, z

∗
t+1) under their corresponding metric spaces. In the work [32]

the authors recycle the fixed point from the last training epoch as initialization for accelerating the
training. Distinct from heterogeneous convergence, global early stopping is used to terminate the
fixed-point iteration when it has converged globally. After computing the new hidden state zit, we
calculate its absolute ∥zit − zi−1

t ∥2 or relative ∥zit − zi−1
t ∥2/∥zi−1

t ∥2 distance to the previous hidden
state zi−1

t . If the distance is smaller than the tolerance, the forward pass is terminated. We emphasize
that global early stopping requires storing the previous hidden state for calculating the difference
zit − zi−1

t , which is also required for the delta rule. This additional computation and memory usage
can be shared for both techniques.

5



4.4 Training and fine-tuning DeltaDEQ

One of the biggest advantages of deep equilibrium models [2] is the constant memory and computation
costs for training in comparison to explicit iterative methods with (truncated-)BPTT. The loss value ℓ
evaluated at fixed-point z∗ in Eq. 1 with respect to the function parameters θ is given by the implicit
function theorem (IFT) [2, 36]:

∂ℓ(ygt, rβ(z
∗))

∂θ
=

∂ℓ(ygt, rβ(z
∗))

∂z∗
∂z∗

∂θ
=

∂ℓ(ygt, rβ(z
∗))

∂z∗

(
I − ∂fθ(z

∗, x)

∂z∗

)−1
∂fθ(z

∗, x)

∂θ
, (9)

where rβ is the final read-off layer with parameters β and ygt is the ground truth label. The inversion
in Eq. 9 could be expensive when the dimensionality of z∗ is large. However, various methods have
been proposed to avoid computing the inversion [19, 26, 28] without hurting task performance much.
The Eq. 9 shows that the backward pass is independent of the forward pass regardless. Thus, applying
the delta rule (Eq. 5) in the forward pass will not impose any additional cost in the backward pass.

5 Experiments

In this section, we present the experimental results of the INR task and the OF task with the DeltaDEQ
method. We showcase the two instantiations: RNN and CNN-based DeltaDEQs and present the
computation reduction we could achieve without hurting the task accuracy.

5.1 Implicit neural representation

In this section, we present empirical results of DeltaDEQ for implicit neural representation (INR) [32,
48, 51]. INR is a type of method that represents the data with a coordination-based neural network.
For example, for encoding a 2D image, the network is trained with input coordinate (x, y) and to
predict the corresponding (R,G,B) or greyscale value of the pixel (x, y). The pixels in an image are
the training set for fitting the network to represent such high-frequency data. Despite the simplicity
of the task setting, training INR models to reconstruct the original data with good quality is not easy.

Ground Truth

PSNR=32.32, FLOPs(Tera)=3.2

Recon. DEQ-Fourier

PSNR=31.30, FLOPs(Tera)=0.5

Recon. DeltaDEQ-Fourier (ours)

Figure 3: Original image and reconstructions with INR network.

Two of the representative works
are Siren [48] and multiplicative
filter networks with Fourier fil-
ters [51]. A later work [32] modi-
fied these two methods with a deep
equilibrium paradigm and achieved
better task performance with the
same amount of parameters. The
experimental setup of DeltaDEQ
for INR is largely based on [32].
Methods and hardware details and
additional results are in A.5.

DeltaDEQ architectures for INR We apply the delta rule on the Implicit Sine-activate Networks
and Implicit Multiplicative Filter Networks with Fourier filters, which we name DEQ-Siren and
DEQ-Fourier respectively and their delta version DeltaDEQ-Siren and DeltaDEQ-Fourier. The
DEQ-Siren (Eq. 10) and DEQ-Fourier (Eq. 11) are formulated as follows:

z⋆ = Sin (Wz⋆ +WSin(V x) + Ux+ b) (10)
z⋆ = (Wz⋆ +Wg(x;V ) + b) ◦ g(x;U) (11)

where g(x;U) := Sin(Ux) represents the Fourier filters [51]. The dimensionalities of the hidden
state z used in the experiments is 512. The most computationally heavy part is the dense matrix-vector
multiplication Wz∗. We apply the delta rule described in Eq. 5 to convert the forward pass to reduce
FLOPs (detailed formulations specific for each architecture are given in A.5.3).

Inference acceleration with DeltaDEQ We first train vanilla DEQ-Siren and DEQ-Fourier models
without incorporating the delta rule in the training stage. The hidden state size is 512 and spectral
normalization [42] is used for better stability and to ensure the non-diverging behavior of the network.
The input image size is 512 × 512. As in [32], we use phantom gradient [26] to accelerate DEQ
training. We use Adam [34] optimizer and cosine annealing learning rate schedule [38] with an initial
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learning rate of 0.001. The fixed point from the end of one training epoch is used for the initialization
of the next epoch, and only one forward iteration is used if the fixed point is reused. This training
technique [32] greatly accelerates the training speed and saves a lot of FLOPs. For global early
stopping, we use absolute distance with a tolerance of 0.001 and a maximum of 40 forward iterations.
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Figure 4: FLOPs reduction and task accuracy
(PSNR) at different inference delta threshold.

Figure 4 demonstrate the relationship of com-
putation saving (FLOPs Reduction (%) ↑), re-
construction quality (peak signal-to-noise ratio,
PSNR ↑) w.r.t. the choice of inference delta
threshold as in Eq. 5. Mean values of three
runs are given and the standard deviations are
shown as colored areas around the mean. We
evenly sample 1000 inference delta threshold
values between 0 and 0.1, and 100 threshold
values between 0.1 to 0.5. Both DeltaDEQ
instantiations show great computation savings
(55% to 80% approx.) with a robust range of
delta threshold levels (10−3 to 0.5) with little
change in the task performance accuracy. Fig-
ure 3 shows a qualitative comparison of the
reconstructed image with DEQ-Fourier and our
DeltaDEQ-Fourier with threshold 0.5. We can see DeltaDEQ-Fourier achieved ≈ 84% FLOPs
reduction with a minor drop in PSNR.

Learning with delta for the forward pass of DEQ The forward pass of training DeltaDEQ is
decoupled from the gradient calculation as described in Sec. 4.4. Thus, the saving of the forward
pass could directly contribute to the training time reduction of DEQ-based INR methods. We study
in this section the model behaviors when incorporating the delta rule during training. Tab. 1 shows
the benefits of training with DeltaDEQ. For both Fourier and Siren variants of DEQ instantiations,
applying the delta rule with training delta threshold τ = 1e− 4 reduces the training FLOPs in the
forward pass for both phantom gradient and implicit function theorem used for the backward pass.
Notice that the training FLOPs reduction level is obtained at the circumstances of fixed-point reuse
(Sec. 4.3) for each training epoch and only one fixed-point iteration is executed except for the first
epoch. This approach [32] has already significantly reduced the FLOPs required during the training
forward pass to an asymptotically constant level [32]. Our method is orthogonal to this technique and
can be implemented in conjunction with it. Furthermore, a single fixed-point iteration often does not
suffice to accurately approximate z∗ for other complicated tasks, even when the fixed-point is reused.
By applying our method, a greater reduction in training computations can be achieved.

Training Method Phantom Gradient [26] Implicit Function Theorem [2]
Tr. FLOPs* PSNR↑ Tr. FLOPs* PSNR↑

DEQ-Fourier [32] 140 31.31 278 33.22
DeltaDEQ-Fourier 110 (-21%) 31.06 212 (-24%) 32.98

DEQ-Siren [32] 140 29.94 278 34.96
DeltaDEQ-Siren 118 (-16%) 29.64 190 (-32%) 34.99

Table 1: Comparison of PSNR and training FLOPs w/o vs. w the delta rule during training. For
reference, with same hyperparameters, the original Fourier and Siren (non-DEQ) networks recorded
PSNRs of 30.06 and 33.31, respectively. All FLOPs values are presented in Tera-FLOPs (1e12).
*This table only includes FLOPs for the forward pass of training; the computation cost of backward
pass is independent of the forward pass.

5.2 Optical flow estimation

In this section, we study the application of DeltaDEQ on the classical computer vision task of
optical flow (OF) estimation [16, 18, 31, 39, 53, 58]. OF estimation is a task for predicting the pixel
displacement between two frames. Modern OF estimation is dominated by learning-based approaches
and one of the representatives is the RAFT [53] network, which iteratively refines the OF estimation
with a recurrent structure. In the work [4] the authors formulated the recurrent iterative structure of
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RAFT as a DEQ block which consumes 4 to 6 times less training memory than the original RAFT
with BPTT and achieved SOTA on the MPI Sintel [8] and KITTI 2015 [24] optical flow datasets.

DEQ-RAFT architecture We use the RAFT [53] network as the architectural backbone and the
DEQ flow estimator version [4] (DEQ-RAFT) as our starting point for the conversion to DeltaDEQ.
RAFT consists of mainly two parts: (1) the correlation and context encoders (feature extraction stage)
and (2) the update block (iterative flow refinement stage). Although the feature extraction stage is
also compatible with the delta rule and can be used to exploit the temporal correlation between the
input frames, it is not the focus of this study since our main contribution is to accelerate the iterative
computation in DEQ and other models. Thus, we omit the FLOPs of the first stage in results.

Assuming the feature extraction stage gives context embedding q and correlation tensor C, the flow
refinement stage conducts the fixed-point iteration simultaneously in two parts [4, 53]:

hi+1 = H(hi, oi, q, C), oi+1 = F(hi+1, oi, q, C), (12)
where h is the hidden representation and o is the optical flow estimation. Putting these notations
into the fixed-point iteration framework in Eq.1, the extracted features q, C are the input x = (q, C),
the iterative functionsH,F are the function fθ and the hidden states and the optical flow make the
fixed-point iteration zi = (hi, oi). Notice i marks the fixed-point iteration step and all the terms are
input time t dependent when we move to process the next frame pair. Like in RAFT the optical
flow refinement module is implemented with ConvGRU [5] for hidden states h updates and other
convolutional layers for the optical flow o updates:
ci = Conv([q, oi,Corr(oi + C)]), hi+1 = ConvGRU(hi, [ci, q]), oi+1 = oi + Conv(hi+1) (13)

where Corr is the correlation lookup. Design details of DEQ-RAFT are in Fig. 10 and A.6.2.

DeltaDEQ conversion of DEQ-RAFT We convert the layers in the update block (optical flow
refinement stage, Fig. 10) of the DEQ-RAFT (DEQ in Tab. 2 for simplicity). We use pretrained
models provided in [4] and show even without any fine-tuning, we can achieve good computation
reduction without hurting the task accuracy. We also observed the heterogeneous convergence
phenomenon in the DEQ-RAFT network (Fig. 9) and during the convergence of fixed-point iteration,
the delta activation sparsity also increases (Fig. 8), indicating the DEQ-RAFT network is suitable for
applying the delta rule. DeltaDEQ conversion, pertaining and fine-tuning settings are given in A.6.2.

Method inf. Sintel (train) ↓ ∆ FLOPs KITTI (train)↓ ∆ FLOPs
τ Clean Final Sp. per pair AEPE F1-all Sp. per pair

PWC-Net [49] - 2.55 3.93 - - 10.39 28.5 - -
VCN [57] - 2.21 3.68 - - 8.36 25.1 - -
GMA [33] - 1.30 2.74 - - 4.69 17.10 - -
RAFT [53] - 1.43 2.71 - - 5.04 17.40 - -
DEQ(picard) [4] - 1.26 2.51 - 782G 3.73 13.42 - 814G

60
ite

rs

DeltaDEQ 0.0 1.22 2.55 0.52∗ 394G 3.77 13.47 0.54∗ 396G
DeltaDEQ 0.001 1.24 2.52 0.69 264G 3.79 13.49 0.69 274G
DeltaDEQ 0.005 1.48 2.76 0.80 177G 4.00 14.04 0.80 183G
DeltaDEQ 0.01 2.08 3.32 0.83 147G 4.33 15.85 0.84 150G

ea
rl

y
st

op

DEQ(picard) - 1.27 2.51 - 520G 3.73 13.45 - 621G
DeltaDEQ 0.0 1.22 2.55 0.53* 225G 3.78 13.54 0.54* 260G
DeltaDEQ 0.001 1.23 2.51 0.61 186G 3.80 13.55 0.63 213G
DeltaDEQ 0.005 1.31 2.63 0.74 141G 3.90 13.75 0.74 152G
DeltaDEQ 0.01 2.04 3.31 0.83 147G 4.19 14.73 0.82 140G

DeltaDEQ-ft 0.005 1.25 2.59 0.73 127G 3.86 13.64 0.74 144G

Table 2: * Even for τ = 0.0 the sparsity level is already 0.53. This high level of sparsity is in favor of
our method since it is not exploited in the vanilla DEQ. For DEQ and DeltaDEQ models, the default
forward method is KM with α = 0.9. Notice with early stopping the total FLOPs could be lower even
when the ∆Sp. is lower since a different number of global fixed-point iterations could be executed.

In Tab. 2 we show the results of DeltaDEQ for the OF task in comparison with the original DEQ
method [4] and other methods. The models were all pretrained on the FlyingChair [16] and Fly-
ingThings3D [40] datasets and tested on the training splits of Sintel [8] and KITTI [24] datasets,
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which is a common evaluation approach for the zero-shot generalization in OF. We report average
end point error (AEPE) and F1-all (%) scores. We also report the delta activation sparsity ∆Sp.
which calculates # delta activations

# total activations across all the iterations executed in the update block. We can see that
applying the delta rule substantially reduced the averaged FLOPs needed in general. When using a
fixed schedule of 60 iterations to process every input pair, the DeltaDEQ with τ = 0.001 could save
77% and 66% of FLOPs on Sintel (train) and KITTI (train) in theory without substantially hurting the
task accuracy. It is worth mentioning that even when the threshold is set to 0, we still got over 50%
of ∆Sp.. This is due to the fact of usage of ReLU activations. In combination with early stopping
with relative distance criteria and tolerance of 0.001, we further reduce the average FLOPs to below
20% of originally needed. We also found that fine-tune the model (DeltaDEQ-ft) with τ = 0.005
could improve the task accuracy while reducing the FLOPs and accelerating the convergence.

6 Related work

Delta activation sparsity For accelerating network inference, one can exploit the temporal corre-
lation, which naturally arises in time-dependent data such as audio and video. Most related to our
work is that of [43] where the authors proposed to use a delta update rule, which zeros out small
hidden states change between two input timesteps to skip computation. Later works realized this
structured delta activation sparsity on custom hardware [12, 14, 20–22] and turned the theoretical
FLOPs reduction into runtime acceleration. Another line of work studies similar temporal-dependent
delta activation sparsity but with CNNs. In [11, 29, 29, 44, 45] the authors propose to exploit the
linearity of the convolution operator and apply the delta rule to skip zero delta activities for processing
consecutive video frames.

Several challenges arise with these approaches. To implement the delta rule in CNN architectures,
it is necessary to store the intermediate feature maps of all convolution layers for computing the
delta activations. If the network incorporates many layers and has low parameter efficiency, this will
lead to substantial memory consumption. Although DeltaDEQ also requires storing feature maps, its
property of high parameter efficiency could alleviate this issue by requiring fewer feature maps to
be stored. Secondly, there is no guarantee that input data from consecutive time steps will produce
temporally correlated features. Consequently, employing the delta rule might result in more overhead,
offering no computational advantages. However, due to the fixed-point nature of DeltaDEQ, it is
guaranteed to have a certain degree of sparsity from the delta activations between two FP iterations.

Deep equilibrium models Deep equilibrium (DEQ) models [2, 25] formulate stacking multiple
layers of conventional network layers as a fixed-point solving problem of a single layer or a block of
layers transformation. This could result in a smaller memory footprint and better parameter efficiency.
DEQ models have also shown state-of-art task performance in various practical applications including
object recognition or detection [3, 17], optical flow estimation [4], face landmark detection [41],
implicit neural representation [32] and many others [10, 46]. One of the major drawbacks of DEQ
models is its computation cost: for finding the fixed point, many fixed-point iterations or iterations in
root-solving are usually required and every iteration requires one inference of the DEQ layer.

Differences to other network acceleration algorithms In comparison to layer skipping methods [9,
27, 29] which skip certain layers or halts the recurrence early in inference, our method exploits
a finer-grained delta activation sparsity while the other methods can only skip an entire layer or
recurrent step. Another line of works dynamically prunes activation, including channel selection [23]
for CNNs and patch selection for transformer architectures [52, 55]. These works usually set certain
channels or tokens of the activations to zeros or discard them so the network enjoys activation sparsity.
Our method allows the activations to maintain non-zero values, while still generating delta activation
sparsity, which could be exploited for computation saving. The non-zero activations could potentially
make the network more expressive.

7 Conclusion

In this work, we introduce DeltaDEQ, a method designed to enhance computational efficiency for
implicit models represented by deep equilibrium models. This method is inspired by our observation
of the heterogeneous convergence phenomenon prevalent in implicit neural networks, where different
dimensions of DEQ hidden states converge at varying speeds. DeltaDEQ leverages this disparity by
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calculating the delta activation between consecutive fixed-point iterations and utilizing the activation’s
sparsity to omit unnecessary computations for the already converged dimensions. We have tested
DeltaDEQ across tasks involving implicit neural representation and optical flow, employing both
RNN and CNN architectures. Our findings confirm that DeltaDEQ maintains accuracy while reducing
computational demands across these network types. We provide detailed theoretical FLOPs reductions
from our empirical research. This technique has the potential societal impact to decrease energy
usage significantly in DEQ models [2, 4, 10, 17, 41, 46] and other iterative methods, including
those used in iterative refinement [53] and emerging diffusion models [30, 46]. However, translating
these theoretical savings into actual wall-clock inference latency reductions often demands carefully
designed implementation [15] and special hardware [1].
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A Appendices

A.1 PCA details

In this section we describe the details for the methods used in Fig. 1(b) and (c).

For Fig. 1(b) we randomly selected 5 neighboring x in [−2π, 2π] from the training set as model inputs. The
inference fixed-point iteration was 15 steps, same as in training. Thus, this results in 5× 15 = 75 hidden states,
each of dimension 20. We conduct PCA on the R75×20 hidden states matrix and plot the first 2 sorted principle
components and visualize the hidden states in 2D. The colors of the dots are selected so the hidden state from the
i-th iteration has the same color. We demonstrate with Fig. 1(b) that if input points are close in the input space,
their distances in the hidden states are also close, which justifies the acceleration effect of fixed-point reuse.

For Fig. 1(c) we infer the model on 200 data samples in [−2π, 2π] and store the 200 × 15 = 3000 hidden
states. The resulting hidden state matrix is of dimension R7500×20. We conduct PCA on this matrix and plot the
cumulative explained variance of the top 8 principal components.

A.2 Complete delta formulation for a convolution layer

In this section, we give the complete formulation for a convolution layer in a DeltaDEQ when applying the delta
rule. For the input features to a layer in a DeltaDEQ block at iteration i is Iit and the output is Oi

t:

Oi
t = σ(K ∗ Iit) = σ(K ∗ (Iit − Ii−1

t + Ii−1
t )) (14)

= σ(K ∗ (Iit − Ii−1
t ) +K ∗ Ii−1

t )) (15)

∆Iit :=

{
Iit − Ii−1

t if |Iit − Ii−1
t | ≥ τ

0 otherwise
(Delta Rule, applied elementwise) (16)

Oi
t

(16)
≈ σ(K ∗∆Iit︸ ︷︷ ︸

sparse

+K ∗ Ii−1
t︸ ︷︷ ︸

cached in Cz

) (17)

Cz ← K ∗∆Iit + Cz (update cache, already calculated in 17) (18)

where ∗ denotes the convolution operator and K represents the convolution kernel. The illustration is given in
Fig. 2. Here we provide the pseudo-code for a convolution layer with delta rule in DeltaDEQ:

Algorithm 1: An convolution layer with delta rule Eq. 17

Input :Output feature map Iit from the previous layer, could also be input data if this
convolution layer is the first layer of the network. Convolution kernel K. Delta
threshold τ .

Cached :Output feature map Ii−1
t . Linear operation results C

Result: Output of this convolution layer Oi
t. Updated linear operation results C

1 if i == 0 then
/* First iteration, initialize the cache with convolution on the

original input */
2 C ← K ∗ I0t
3 else

/* Apply delta rule elementwise */

4 ∆Iit ←
{
Iit − Ii−1

t if |Iit − Ii−1
t | ≥ τ

0 otherwise
/* Update the linear operator results to the cache */

5 C ← C +K ∗∆Iit
6 end
/* Apply the non-linearity function σ */

7 Oi
t ← σ(C)

/* Move on to the next convolution layer, or if the DeltaDEQ block is
finished processing, move on to the next iteration i+ 1. */
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A.3 Applying delta rule with other fixed-point solving techniques

Not only can the delta rule be applied in fixed-point iteration such as in formulation 2, it can also be utilized in
other solvers commonly used in other DEQ works. We take the Broyden method as a example. As described in
the work [2], the Broyden’s method [7] updates the hidden states as:

zi+1
t = zit − αBgθ(z

i
t, xt) (19)

where gθ(z
i
t, xt) = fθ(z

i
t, xt)− zit , B is the Jacobian inverse and α is the step size. This update step requires

computing a forward pass fθ(z
i
t, xt) which is same as the vanilla fixed-point iteration as in Eq. 2. Then

the computing of this forward can be approximated and accelerated same as in Eq. 6 or Eq. 17. Moreover,
the other computatinally heavy part of Broyden’s method, which is the calculation of the inverse Jacobian
could also potentailly be accelerated with delta rule. Considering the inverse Jacobian approximation method
Sherman-Morrison formula [47] (omitting the timestep t for simplicity):

Bi+1 = Bi +
∆zi+1 −Bi∆gi+1

θ

∆zi+1Bi∆gi+1
θ

(∆zi+1)TBi (20)

where ∆zi+1 = zi+1 − zi and ∆gi+1
θ = gθ(z

i+1, x) − gθ(z
i, x) = (fθ(z

i+1 − zi+1) − (fθ(z
i − zi) =

(fθ(z
i+1 − fθ(z

i)−∆zi+1. So theoretically we could apply the delta rule on ∆zi+1 and gi+1
θ − giθ in order to

create sparse vectors in order to have sparse matrix vector multiplications in the Sherman-Morrison formula. We
leave the experimental verification to future works.

A.4 Feasibility of applying the delta rule in transformer-based DEQ networks

In this section, we discuss the compatibility of the delta rule with transformer-based DEQ networks, as the
transformer architecture is widely used in various applications [46] so their DEQ version also has great potential.
Here we provide the conceptual delta formulation for the two computationally costly components in a transformer
architecture namely the fully connected layers and the self-attention module.

Computing the fully connected layers consists mainly of matrix-vector multiplications followed by nonlinearity
σ, FFN(xi) = σ(Wxi). Multiplication of matrix vectors Wxi can be formulated with the delta rule just like in
the RNN-based DeltaDEQ in Eq.5.

The self-attention module Self-Attention(Q,K, V ) = softmax(QKT /
√
d)V , where Qi = ZiWQ,K

i =
ZiWK , V i = ZiWV , and Zi ∈ RT×d is the state of the DEQ-transformer architecture, T is the sequence
length (equal to the number of tokens) and d is the dimension size. Taking the construction of Q as an example,
using the delta rule on the computation of Qi,Ki, V i gives us:

Qi = (Zi − Zi−1 + Zi−1)WQ (21)

= (Zi − Zi−1)WQ + Zi−1WQ (22)

= ∆ZiWQ + CQ (23)

where the elements in ∆Zi are set to corresponding elements in (Zi − Zi−1) if the absolute value of individual
dimensions is greater than the delta threshold τ , otherwise it is set to 0. Thus ∆ZiWQ could be a sparse
matrix-matrix multiplication, depending on how Zi evolves. CQ is the cached results CQ which will be updated
by CQ ← CQ +∆ZiWQ. Computing Ki and V i follows the same pattern. The following operations such as
activation function and layer normalization remain the same as a regular transformer model. The computation
savings for the self-attention module come from the sparse matrix-matrix multiplication. Assuming the sparsity
percentage of ∆Z is o% then the FLOPs for computing Qi is o% · T · d2 in comparison to Td2.
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A.5 DeltaDEQ for INR: methods and computing platform details and additional results

A.5.1 Illustration for RNN type of DeltaDEQ

We show two steps of fixed-point iteration for the RNN type of DeltaDEQ in Fig. 5. An additional cache needs
to be maintained to store the results of the linear components inside the activation function. Here we omit the
delta rule on the input xt and focus on the part for hidden state z.
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Figure 5: Illustration of saving mechanisms of DeltaDEQ. Fig. Fully connected Wz · zit type of
computation skip. Entire columns of MACs at zero entries of ∆zit can be skipped and the sparsity of
zit grows with iteration i.

A.5.2 Additional results

Ground Truth

PSNR=30.62, FLOPs(Tera)=2.9

Recon. DEQ-Fourier

PSNR=29.93, FLOPs(Tera)=0.4

Recon. DeltaDEQ-Fourier (ours)

Figure 6: Original image of the astronaut and reconstructions with INR network. For DeltaDEQ-
Fourier, τ = 0.05.
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Figure 7: FLOPs reduction and task accuracy (PSNR) at different inference delta threshold on the
astronaut image.
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Training Method Phantom Gradient Implicit Function Theorem
Tr. FLOPs* PSNR↑ Tr. FLOPs* PSNR↑

DEQ-Fourier [32] 140.8 29.90 278.4 32.04
DeltaDEQ-Fourier 112.6 29.60 215.5 31.66

DEQ-Siren [32] 140.8 25.67 378.5 30.01
DeltaDEQ-Siren 122.3 25.59 219.6 30.06

Table 3: Results on Astraunaut. Comparison of PSNR and training FLOPs w/o vs. w the delta rule
during training. For reference, with same hyperparameters, the original Fourier and Siren (non-DEQ)
networks recorded PSNRs of 30.06 and 33.31, respectively. All FLOPs values are presented in Tera-
FLOPs (1e12). *This table only includes FLOPs for the forward pass of training; the computation
cost of backward pass is independent of the forward pass.

A.5.3 Delta rule formulation for DeltaDEQ-Siren and DeltaDEQ-Fourier

The formulations of DeltaDEQ-Siren and DeltaDEQ-Fourier are given as follows:

DeltaDEQ-Siren: (24)

zi+1
t = Sin

(
W (zit − zi−1

t ) +Wzi−1
t +WSin(V x) + Ux+ b

)
(25)

≈ Sin

W∆zit︸ ︷︷ ︸
sparse

+Wzi−1
t +WSin(V x)︸ ︷︷ ︸

cached in Cz︸ ︷︷ ︸
update cache Cz

+ Ux+ b︸ ︷︷ ︸
cached in Cx

 (26)

DeltaDEQ-Fourier: (27)

zi+1
t = (W (zit − zi−1

t ) +Wzi−1
t +Wg(x;V ) + b) ◦ g(x;U) (28)

≈

W∆zit︸ ︷︷ ︸
sparse

+Wzi−1
t +Wg(x;V )︸ ︷︷ ︸

cached in Cz︸ ︷︷ ︸
update cache Cz

+b

 ◦ g(x;U)︸ ︷︷ ︸
cached in Cx

(29)

(30)

A.6 DeltaDEQ for optical flow

A.6.1 Heterogeneous convergence for CNN-based DEQ

In Fig. 9 we present a convergence analysis for CNN-based DEQ model [4]. The model uses the RAFT
architecture A.6.2 which is the state-of-the-art for optical flow estimation. We randomly selected 60 feature
map pixel locations from the separable ConvGRU and plotted their evolution during the processing of 5 pairs of
input images. The activation values are normalized and sorted according to their average. The basic fixed-point
iteration namely the Picard iteration is applied. From the figure, we can see that certain activation values
converge faster than others and some activations oscillate. Fig. 8 shows the sparsity level of the delta feature
maps (original DEQ-flow applying the delta rule with threshold 0.005). We can see that different components
tend to reach high delta sparsity at different speeds on average. This also reflects the heterogeneous convergence
phenomenon also exists in the CNN-based implicit models.
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(c) input pair 3
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Figure 8: Averaged sparsity level of the delta feature map in different components of the update
block in Fig. 10, obtained on 4 exemplary pairs of inputs. The flow head has substantially lower delta
sparsity than the other two components and they all reached a very high level before the iteration
converged globally.
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(a) with fixed-point reuse but no flow reuse
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(b) with fixed-point reuse and flow reuse

Figure 9: Illustration of the evolution of activation values in the original DEQ-flow network [4]
along the fixed-point iterations when processing 5 consecutive pairs of input frames in the Sintel [8]
dataset. The startings of a new pair are marked with vertical dashed lines. Each pair is processed
with 60 iterations. Different activation sites converge at different speeds and the fourth pair takes
more iterations to reach convergence, due to the large motion in the input space.
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A.6.2 DeltaDEQ conversion details for the RAFT architecture

The original RAFT architecture [53], also as adopted in the DEQ optical flow work [4], contains mainly two
parts: Fig. 10(a) the feature encoder and the context encoder. Fig. 10(b) the update block. In both RAFT
and DEQ-RAFT, the update block is used to iteratively refine the flow prediction thus is the key to obtaining
high-quality flow but is also the computationally expensive part. The general architecture illustration is given
in Fig. 10 and our DeltaDEQ for optical flow tasks are also instantiated with this architecture. We did not
apply the delta rule on the feature and context encoders since these two encoders are only inference once per
input pair xt and xt−1. But it is possible to also convert these blocks with the delta rule to further increase the
computation savings. In this work, we focus on the computationally heavy part which is the update block that
will be inference many times for processing every pair of inputs. The update block mainly consists of three parts
as marked in orange dashed boxes: (1) motion encoder (2) flow head and (3) separable ConvGRU. The flow
head outputs the delta flow ∆F i

t which will be used to update the flow prediction F i
t = F i−1

t +∆F i
t . We apply

the delta rule to all these three components to accelerate their convolution layers with the delta rule in the DEQ
fixed-point iterations.

In Fig. 8 we show the averaged sparsity level of the delta feature maps in different components of the update
block when inferencing on four different input pairs. During the evolution of the fixed-point iteration, all three
components’ sparsity levels went up. It is worth noticing that the flow head’s sparsity level started with a low
level, potentially due to the fact that it is predicting a first-order difference value ∆F i

t .
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Figure 10: Architecture illustration for RAFT [53], DEQ flow [4] and our DeltaDEQ.

In our experiments, we use DEQ-RAFT-H where H represents model class huge in the work [4] with approx.
13.4 M parameters, that the hidden channels for the separable ConvGRU are 256, the output channels for the
feature encoder and context encoder are both 256. We use the DEQ-RAFT-H checkpoint provided in [4] which
is trained with first 120k iterations on the FlyingChairs [16] dataset and with phantom gradient [26] and 120k
steps on the FlyingThings3D [40] dataset with phantom gradient. The fine-tuned DeltaDEQ-ft in Tab. 2 was
further fine-tuned only on the FlyingThings3D dataset with 20k iterations and batch size 12 and learning rate
1e-6 and phantom gradient. During fine-tuning we set the weight decay to zero and did not use the FlyingChair
dataset since either will degrade the accuracy. Fixed-point reuse and flow reuse are also applied.

A.7 Comparison of fixed-point iteration and root-solving techniques in the forward pass

The DEQ series works first proposed the use of root-finding techniques to solve the fixed point in the forward
pass. We argue that using fixed-point iterations including the simple Picard’s iteration or the Krasnoselskii–Mann
(KM) iteration suffices for obtaining a good estimation of the fixed-point z∗t . Tab. 4 shows the comparison among
using the solvers (Broyden, Anderson) and using fixed-point iterations (Picard, KM). We care mostly about the
best possible solving quality each method could get thus we did not use early stopping nor fixed-point reuse and
we increased the number of iterations until the performance increase reached a plateau. We found that fixed-point
iterations actually outperformed root-solvers in terms of performance controlling the number of iterations,
indicating a faster global convergence speed. Moreover, the fixed-point iterations also have an advantage in
terms of the best performance reached. Thus we argue that using fixed-point iteration is a better choice for the
inference of DEQ models since they not only achieve better task accuracy and have faster convergence speed,
but they also require fewer computes and simpler computing patterns.
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Sintel (train) KITTI (train)
Forward model iterations clean ↓ final↓ AEPE↓ F1-all↓

A
nd

er
so

n

DEQ-RAFT-H 10 3.97 4.87 10.93 28.83
DEQ-RAFT-H 20 1.90 3.16 6.02 17.72
DEQ-RAFT-H 30 1.54 2.79 5.15 15.23
DEQ-RAFT-H 40 1.47 2.72 4.62 14.11
DEQ-RAFT-H 50 1.44 2.68 4.62 13.68
DEQ-RAFT-H 60 1.43 2.64 4.37 13.46

B
ro

yd
en

DEQ-RAFT-H 10 1.87 3.32 6.26 19.27
DEQ-RAFT-H 20 1.45 2.70 4.58 14.26
DEQ-RAFT-H 30 1.39 2.63 3.98 13.29
DEQ-RAFT-H 40 1.36 2.60 3.85 13.13
DEQ-RAFT-H 50 1.31 2.61 3.86 13.10
DEQ-RAFT-H 60 1.30 2.59 3.83 13.07

Pi
ca

rd

DEQ-RAFT-H 10 2.03 3.94 6.02 18.55
DEQ-RAFT-H 20 1.48 2.70 4.49 14.17
DEQ-RAFT-H 30 1.35 2.63 3.91 13.22
DEQ-RAFT-H 40 1.32 2.60 3.80 13.04
DEQ-RAFT-H 50 1.32 2.58 3.78 12.98
DEQ-RAFT-H 60 1.27 2.61 3.78 12.97

K
M

α
=

0.
9 DEQ-RAFT-H 20 1.42 2.71 4.56 14.32

DEQ-RAFT-H 40 1.29 2.60 3.85 13.04
DEQ-RAFT-H 60 1.28 2.59 3.81 12.97
DEQ-RAFT-H 80 1.29 2.60 3.77 12.94

Table 4: Comparison among different solvers or fixed-point iteration methods for the forward pass.

A.8 Computing platform

All experiments were conducted on an Nvidia RTX 3090 GPU with 24GB of RAM and Intel(R) Xeon(R)
W-2195 CPU @ 2.30GHz.
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attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed known limitations in the conclusion section. We also described the
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• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: There is no discussion about theoretical results in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

22



• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper discloses the information needed to reproduce experimental results to the best
we can. The code for the methods will be made publically available upon publication.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
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with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The datasets used in this work are publicly available. The code will be made publically
available upon formal publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).
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• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We specified the training and test details for all the experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide the mean and standard deviations for experiments that permit. However,
part of our experiments are based on the conversion of model checkpoints from other works, and the
authors did not release multiple random seeded checkpoints for the same setting. We compensate
for that by showing the effectiveness of our method with various conversion settings to show the
robustness of our method.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We provide the computing resources required for the main experimental results.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms with the NeurIPS Code of Ethics to the best of our knowledge.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: Potential societal impacts of the work is discussed in the conclusion section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: There is no mentioned risk for this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We have cited necessary code package and datasets in the work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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