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Abstract

Recent progress in Meta-Black-Box-Optimization
(MetaBBO) has demonstrated that using RL to
learn a meta-level policy for dynamic algorithm
configuration (DAC) over an optimization task
distribution could significantly enhance the perfor-
mance of the low-level BBO algorithm. However,
the online learning paradigms in existing works
makes the efficiency of MetaBBO problematic.
To address this, we propose an offline learning-
based MetaBBO framework in this paper, termed
Q-Mamba, to attain both effectiveness and effi-
ciency in MetaBBO. Specifically, we first trans-
form DAC task into long-sequence decision pro-
cess. This allows us further introduce an effective
Q-function decomposition mechanism to reduce
the learning difficulty within the intricate algo-
rithm configuration space. Under this setting, we
propose three novel designs to meta-learn DAC
policy from offline data: we first propose a novel
collection strategy for constructing offline DAC
experiences dataset with balanced exploration and
exploitation. We then establish a decomposition-
based Q-loss that incorporates conservative Q-
learning to promote stable offline learning from
the offline dataset. To further improve the of-
fline learning efficiency, we equip our work with
a Mamba architecture which helps long-sequence
learning effectiveness and efficiency by selective
state model and hardware-aware parallel scan re-
spectively. Through extensive benchmarking, we
observe that Q-Mamba achieves competitive or
even superior performance to prior online/offline
baselines, while significantly improving the train-
ing efficiency of existing online baselines. We
provide sourcecodes of Q-Mamba online.
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1. Introduction
Black-Box-Optimization (BBO) problem is challenging due
to agnostic problem formulation, requiring effective BBO
algorithms such as Evolutionary Computation (EC) to ad-
dress (Zhan et al., 2022). For decades, various EC methods
have been crafted by experts in optimization domain to solve
diverse BBO problems (Slowik & Kwasnicka, 2020; Guo
et al., 2024c). However, one particular technical bottleneck
of human-crafted BBO algorithms is that they hardly gener-
alize across different problems (Eiben & Smit, 2011). Deep
expertise is required to adapt an existing BBO algorithm for
novel problems, which impedes EC’s further spread.

Recent Meta-Black-Box-Optimization (MetaBBO) works
address the aforementioned generalization gap by introduc-
ing a bi-level learning to optimize paradigm (Ma et al.,
2024d; Yang et al., 2025), where a neural network-based
policy (e.g., RL (Sutton, 2018)) is maintained at the meta
level and meta-trained to serve as experts for configuring the
low-level BBO algorithm to attain maximal performance
gain on a problem distribution. Though promising, exist-
ing MetaBBO methods suffer from two technical bottle-
necks: a) Learning Effectiveness: some advanced BBO
algorithms hold massive configuration spaces with various
hyper-parameters, which is challenging for RL to learn effec-
tive DAC policy. Training Efficiency: Existing MetaBBO
methods employ online RL paradigm, showing inefficiency
for sampling training trajectories.

Given a such dilemma in-between the effectiveness and
efficiency, we in this paper propose an offline MetaBBO
framework, termed Q-Mamba, to meta-learn effective DAC
policy through an offline RL pipeline. Specifically, to re-
duce the difficulty of searching for optimal policy from
the entire configuration space of BBO algorithms, we first
transform DAC task into a long-sequence decision process
and then introduce a Q-function decomposition scheme to
represent each hyper-parameter in the BBO algorithm as a
single action step in the decision process. This allows us to
learn Q-policy for each hyper-parameter in an autoregressive
manner. We propose three core designs to support offline
RL under such setting: a) Offline data collection strategy:
We collect offline DAC experience trajectories from both
strong MetaBBO baselines and a random policy to provide
exploitation and exploration data used for robust training.
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b) Conservative Q-learning: we proposed a compositional
Q-loss that integrates conservative loss term (Kumar et al.,
2020) to address endemic distributional shift issue (Wang
et al., 2021) in offline RL. c) Mamba-based RL agent: the
Q-function decomposition scheme would make the DAC
decision process in Q-Mamba much longer than those in
existing MetaBBO. We hence design a Mamba-based neural
network architecture as the RL agent, which shows stronger
long-sequence learning capability through its selective state
model, and appealing training efficiency through its par-
allel scan on whole trajectory sample. Accordingly, we
summarize our contributions in three-folds:

i) Our main contribution is Q-Mamba, the first offline
MetaBBO framework which shows superior learning ef-
fectiveness and efficiency to prior MetaBBO baselines.

ii) To ensure offline learning effectiveness, a Q-function
decomposition scheme is embedded into the DAC deci-
sion process of BBO algorithm which facilitates separate
Q-function learning for each action dimension. Besides,
a novel data collection strategy constructs demonstration
dataset with diversified behaviours, which can be effectively
learned by Q-Mamba through a compositional Q-loss which
enhances the offline learning by removing distributional
shift. To further improve the training efficiency, we design
a Mamba-based RL agent which seamlessly aligns with the
Q-function decomposition scheme and introduces desirable
training acceleration compared to Transformer structures,
through parallel scan.

iii) Experimental results show that our Q-Mamba effectively
achieves competitive or even superior optimization perfor-
mance to prior online/offline learning baselines, while con-
suming at most half training budget of the online baselines.
The learned meta-level policy can also be readily applied to
enhance the performance of the low-level BBO algorithm
on unseen realistic scenarios, e.g., Neuroevolution (Such
et al., 2017) on continuous control tasks.

2. Related Works
2.1. Meta-Black-Box-Optimization

Meta-Black-Box-Optimization (MetaBBO) aims to learn the
optimal policy that boosts the optimization performances of
the low-level BBO algorithm over an optimization prob-
lems distribution (Ma et al., 2024d). Although several
works facilitate supervised learning (Chen et al., 2017; Song
et al., 2024; Li et al., 2024b;c; Wu et al., 2023), Neuroevo-
lution (Lange et al., 2023b;a; Ma et al., 2024a) or even
LLMs (Ma et al., 2024c; Liu et al., 2024) to meta-learn the
policy, the majority of current MetaBBO methods adopt
reinforcement learning for the policy optimization to strike
a balance between effectiveness and efficiency (Li et al.,
2024a; Ma et al., 2023). Specifically, the dynamic algorithm

configuration (DAC) during the low-level optimization can
be regarded as a Markov Decision Process (MDP), where
the state reflects the status of the low-level optimization pro-
cess, action denotes the configuration space of the low-level
algorithm and a reward function is designed to provide feed-
back to the meta-level control policy. Existing MetaBBO
methods differ with each other in the configuration space. In
general, the configuration space of the low-level algorithm
involves the operator selection and/or the hyper-parameter
tuning. For the operator selection, initial works such as
DE-DDQN (Sharma et al., 2019) and DE-DQN (Tan & Li,
2021) facilitate Deep Q-network (DQN) (Mnih, 2013) as the
meta-level policy and dynamically suggest one of the pre-
pared mutation operators for the low-level Differential Evo-
lution (DE) (Storn & Price, 1997) algorithm. Following such
paradigm, PG-DE (Zhang et al., 2024) and RL-DAS (Guo
et al., 2024a) further explore the possibility of using Pol-
icy Gradient (PG) (Schulman et al., 2017) methods for the
operator selection and demonstrate PG methods are more ef-
fective than DQN methods. Besides, RLEMMO (Lian et al.,
2024) and MRL-MOEA (Wang et al., 2024) extend the tar-
get optimization problem domain from single-objective op-
timization to multi-modal optimization and multi-objective
optimization respectively. Unlike the operator selection, the
action space in hyper-parameter tuning is not merely dis-
crete since typically the hyper-parameters of an algorithm
are continuous with feasible ranges. In such continuous
setting, the action space is infinite and can be handled either
by discretizing the continuous value range to reduce this
space (Liu et al., 2019; Xu & Pi, 2020; Hong et al., 2024;
Yu et al., 2024) or directly using PG methods for continuous
control (Yin et al., 2021; Sun et al., 2021; Wu & Wang,
2022; Ma et al., 2024b).

While simply doing operator selection or hyper-parameter
tuning for part of an algorithm has shown certain perfor-
mance boost, recent MetaBBO researches indicate that con-
trolling both sides gains more (Xue et al., 2022; Zhao et al.,
2024). In particular, an up-to-date work termed as Con-
figX (Guo et al., 2024b) constructs a massive algorithm
space and has shown possibility of meta-learning a universal
configuration agent for diverse algorithm structures. How-
ever, the massive action space in such setting and the online
RL process in these MetaBBO methods make it challenging
to balance the training effectiveness and the efficiency.

2.2. Offline Reinforcement Learning

Offline RL (Levine et al., 2020) aims at learning the opti-
mal control policy from a pre-collected demonstration set,
without the direct interaction with the environment. This
is appealing for real-world complex control tasks, where
on-policy data collection is extremely time-consuming (i.e.,
the dynamic algorithm configuration for black-box opti-
mization discussed in this paper). A critical challenge in
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offline RL is the distribution shift (Fujimoto et al., 2019):
learning from offline data distribution might mislead the
policy optimization for out-of-distribution transitions hence
degrades the overall performance. Common practices in
offline RL to relieve the distribution shift include a) learn-
ing policy model (e.g., Q-value function) by sufficiently
exploiting the Bellman backups of the transition data in
the demonstration set and constraining the value functions
for out-of-distribution ones (Haarnoja et al., 2018; Kumar
et al., 2020). b) conditional imitation learning (Chen et al.,
2021; Janner et al., 2021; Dai et al., 2024b) which turns
the MDP into sequence modeling problem and uses se-
quence models (e.g., recurrent neural network, Transformer
or Mamba) to imitate state-action-reward sequences in the
demonstration data. Although the conditional imitation
learning methods have been used successfully in control
domain, they have stitching issue: they do not provide any
mechanism to improve the demonstrated behaviour as those
policy model learning methods. To address this, QDT (Ya-
magata et al., 2023) and QT (Hu et al., 2024) additionally
train a value network to relabel the return-to-go in offline
dataset, so as to attain stitching capability. Differently, Q-
Transformer (Chebotar et al., 2023) combines the strength
of both lines of works by first decomposing the Q-value
function for the entire high-dimensional action space into
separate one-dimension Q-value functions, and then leverag-
ing transformer architecture for sequential Bellman backups
learning. Q-Transformer allows policy improvement during
the sequence-to-sequence learning hence achieves superior
performance to the prior works.

3. Preliminaries
3.1. Decomposed Q-function Representation

Suppose we have a MDP {S,A = (A1, ..., AK), R, T , γ},
where the action space is associated by a series of K ac-
tion dimensions, S, R(S,A), T (S′|S,A), γ denote the
state, reward function, transition dynamic and discount
factor, respectively. Value-based RL methods such as
Q-learning (Watkins & Dayan, 1992) learn a Q-function
Q(st, at1:K) as the prediction of the accumulated return from
the time step t by applying at1:K at st. The Q-function can
be iteratively approximated by Bellman backup:

Q(at1:K |st)← R(st, at1:K) + γmax
at+1
1:K

Q(at+1
1:K |s

t+1). (1)

However, suppose there are at least M action bins for each
of the K action dimensions, the Bellman backup above
would be problematic since the associated action space
contains MK feasible actions. Such dimensional curse
challenges the learning effectiveness of the value-based
RL methods. Recent works such as SDQN (Metz et al.,
2017) and Q-Transformer (Chebotar et al., 2023) propose
decomposing the associated Q-functions into series of time-

dependent Q-function representations for each action di-
mension to escape the curse of dimensionality. For the i-th
action dimension, the decomposed Q-function is written as:

Q(ati|st)←


max
at
i+1

Q(ati+1|st, at1:i), if i < K

R(st, at1:K) + γmax
at+1
1

Q(at+1
1 |st+1).

if i = K
(2)

Such a decomposition allows using sequence modeling tech-
niques to learn the optimal policy effectively, while holding
the learning consistency with the Bellman backup in Eq. (1).
We provide a brief proof in Appendix A.

3.2. State Space Model and Mamba

For an input sequence x ∈ RL×D with time horizon L
and D-dimensional signal channels at each time step, State
Space Model (SSM) (Gu et al., 2022) processes it by the
following first-order differential equation, which maps the
input signal x(t) ∈ RD to the time-dependent output y(t) ∈
RD through implicit latent state h(t) as follows:

h(t) = Ah(t− 1) +Bx(t), y(t) = Ch(t). (3)

Here, A, B and C are learnable parameters, A and B are
obtained by applying zero-order hold (ZOH) discretization
rule. An important property of SSM is linear time invariance.
That is, the dynamic parameters (e.g., A, B and C) are fixed
for all time steps. Such models hold limitations for sequence
modeling problem where the dynamic is time-dependent.
To address this bottleneck, Mamba (Gu & Dao, 2023) lets
the parameters B and C be functions of the input x(t).
Therefore, the system now supports time-varying sequence
modeling. In the rest of this paper, we use mamba block()
to denote a Mamba computation block described in Eq. (3).

4. Q-Mamba
4.1. Problem Formulation

A MetaBBO task typically involves three key ingredients:
a neural network-based meta-level policy πθ, a BBO algo-
rithm A and a BBO problem distribution P to be solved.

Optimizer A. BBO algorithms such as Evolutionary
Algorithms (EAs) have been discussed and developed
over decades. Initial EAs such as Differential Evo-
lution (DE) (Storn & Price, 1997) holds few hyper-
parameters (only two, F and Cr for balancing the mutation
and crossover strength). Modern variants of DE integrate
various algorithmic components to enhance the optimiza-
tion performance. Taking the recent winner DE algorithm in
IEEE CEC Numerical Optimization Competition (Mohamed
et al., 2021), MadDE (Biswas et al., 2021) as an example, it
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has more than ten hyper-parameters, which take either con-
tinuous or discrete values. Hence, the configuration space
of MadDE is exponentially larger than original DE. In this
paper, we use A : {A1, A2, ..., AK} to represent an algo-
rithm with K parameters. We use additional ai to represent
the taken value of Ai.

Problem distribution P . By leveraging the generaliza-
tion advantage of meta-learning, MetaBBO trains πθ over
a problem distribution P . A common choice of P in exist-
ing MetaBBO works is the CoCo BBOB Testsuites (Hansen
et al., 2021), which contains 24 basic synthetic functions,
each can be extended to numerous problem instances by ran-
domly rotating and shifting the decision variables. Training
on all problem instances in P is impractical. We instead
sample a collection of N instances {f1, f2, ..., fN} from
P as the training set. For the j-th problem fj , we use f∗

j

to represent its optimal objective value, and fj(x) as the
objective value at solution point x.

For an algorithm A and a problem instance fj , suppose we
have a control policy πθ at hand and we use A to optimize
fj for T time steps (generations). At the t-th generation,
we denote the solution population as Xt. An optimization
state st is first computed to reflect the optimization status
information of the current solution population Xt and the
corresponding objective values fj(X

t). Then the control
policy dictates a desired configuration for A: at1:K = πθ(s

t).
A optimizes Xt by at1:K and obtains an offspring popula-
tion Xt+1. A feedback reward R(st, at1:K) can then be
computed as a measurement of the performance improve-
ment between fj(X

t) and fj(X
t+1). The meta-objective of

MetaBBO is to search the optimal policy πθ∗ that maximizes
the expectation of accumulated performance improvement
over all problem instances in the training set:

θ∗ = argmax
θ

1

N

N∑
j=1

T∑
t=1

R(st, at1:K |πθ), (4)

where such a meta-objective can be regarded as MDP. An
effective policy search technique for solving MDP is RL,
which is widely adopted in existing MetaBBO methods. In
this paper, we focus on a particular type of RL: Q-learning,
which performs prediction on the Q-function in a dynamic
programming way, as described in Eq. (1).

4.2. Offline E&E Dataset Collection

The trajectory samples play a key role in offline RL appli-
cations (Ball et al., 2023). On the one hand, good quality
data helps the training converges. On the other hand, ran-
domly generated data help RL explore and learn more robust
model. In Q-Mamba, we collect a trajectory dataset C of
size D = 10K which combines the good quality data and
randomly generated data. Concretely, for a low-level BBO
algorithm A with K hyper-parameters and a problem dis-

tribution P , we pre-train a series of up-to-date MetaBBO
methods (e.g., RLPSO (Wu & Wang, 2022), LDE (Sun
et al., 2021), GLEET (Ma et al., 2024b)) which control
hyper-parameters of A to optimize the problems in P . Then
we rollout the pre-trained MetaBBO methods on problem
instances in P to collect µ · D complete trajectories. We
then use the random strategy to randomly control the hyper-
parameters of A to optimize the problems in P and collect
(1− µ) ·D trajectories. By combining the exploitation ex-
perience in the trajectories of MetaBBO methods and the
exploration experience in the random trajectories, Q-Mamba
learns robust and high-performance meta-level policy. In
this paper, we set µ = 0.5 to strike a good balance.

4.3. Conservative Q-learning Loss

Online learning is widely adopted in existing works, which
is especially inefficient under MetaBBO setting, where the
low-level optimization typically involves hundreds of op-
timization steps hence extremely time-consuming. In this
paper we propose learning the decomposed sequential Q-
function through offline RL to improve the training effi-
ciency of MetaBBO. Concretely, we consider a trajectory
τ = {s1, (a11, ..., a1K), r1, ..., sT , (aT1 , ..., a

T
K), rT }, which

is previously sampled by an offline policy π̂. Here, ati de-
notes the action bin selected for Ai at time step t. The
training objective of Q-Mamba is a synergy of Bellman
backup update (Eq. (2)) and conservative regularization as

J(τ |θ) =
T∑

t=1

K∑
i=1

M∑
j=1

J(Qt
i,j |θ)

=



1
2 (Q

t
i,j −max

j
Qt

i+1,j)
2, if i < K, j = ati

β
2

[
Qt

i,j − (rt + γmax
j

Qt+1
1,j )

]2
,

if i = K, j = ati
λ
2 (Q

t
i,j − 0)2, if j ̸= ati

(5)
where Qt

i,j is the Q-value of the j-th bin in Qt
i, which

is outputted by our Mamba-based Q-Learner πθ, with
[st, token(ati−1)] as input. The first two branches in Eq. (5)
are TD errors following the Bellman backup for decom-
posed Q-function (as described in Eq. (2)). We additionally
add a weight β (we set β = 10 in this paper) on the last
action dimension to reinforce the learning on this dimension.
As described in Eq. (2), the other action dimensions are up-
dated by the inverse maximization operation, so ensuring
the accuracy of the Q-value in the last action dimension
helps secure the accuracy of the other dimensions. The last
branch in Eq. (5) is the conservative regularization intro-
duced in representative offline RL method CQL (Kumar
et al., 2020), which is used to relieve the over-estimation
due to the distribution shift. Here, the Q-values of action
bins that are not selected in the trajectory τ (j ̸= ati) are
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regularized to 0, which is the lower bound of the Q-values in
optimization. This would accelerate the learning of the TD
error. We set λ = 1 in this paper to strike a good balance.

4.4. Mamba-based Q-Learner

Existing MetaBBO works primarily struggle in learning
meta-level policy with massive joint-action space, which
is the configuration space A : {A1, A2, ..., AK} associated
by K hyper-parameters of the low-level algorithm A. To
relieve this learning difficulty, we introduce Q-function de-
composition strategy as described in Section 3.1. For each
hyper-parameter Ai in A, we represent its Q-function as
a discretized value function Qi = {Qi,1, Qi,2, ..., Qi,M},
where M is a pre-defined number of action bins for all Ai

in A (M = 16 in this paper). For any Ai which takes values
from a continuous range, we uniformly discretize the value
range into M bins to make universal representation across
all Ai. By doing this, we turn the MDP in MetaBBO into
a sequence prediction problem: we regard predicting each
Qi as a single decision step, then at time step t of the low-
level optimization, the complex associated configuration
at1:K of A can be sequentially decided. We further design a
Mamba-based Q-Learner model to assist sequence model-
ing of decomposed Q-functions. The overall workflow of
the Mamba-based Q-Learner is illustrated in Figure 1. We
next elaborate elements in the figure with their motivations.

Optimization state st. In MetaBBO, optimization state
st profiles two types of information: the properties of the
optimization problem to be solved and the low-level op-
timization progress. In Q-Mamba, we construct the opti-
mization state st similar with latest MetaBBO methods (Ma
et al., 2024b; Chen et al., 2024; Li et al., 2024b). Concretely,
at each time step t in the low-level optimization, an opti-
mization state st ∈ R9 is obtained by calling a function
cal state(). The first 6 dimensions are statistical features
about the population distribution, objective value distribu-
tion, etc., which provide the problem property information.
The last 3 dimensions are temporal features describing the
low-level optimization progress. We leave the calculation
details of st in Appendix B.

Tokenization of action bins. We represent the M = 16
action bins of each hyper-parameters Ai in A by 5-bit binary
coding: 00000 ∼ 01111. Besides, since we sequentially
predict the Q-function for A1 to AK , we additionally use
11111 as a start token to activate the sequence prediction.
We have to note that for an algorithm A, some of its discrete
hyper-parameters might hold less than M action bins. For
this case, we only use the first several tokens to represent
the action bins in these hyper-parameters. In the rest of this
paper, we use token(ati) to denote the binary coding of the
action bin selected for Ai at time step t of the low-level op-
timization. The Mamba-based Q-learner auto-regressively

outputs the Q-function values Qt
i for each Ai in A.

Mamba block. To obtain Qt
i, the first step is to prepare the

input as the concatenation of the optimization state st and
the previously selected action bin token token(ati−1). Then,
we apply a Mamba block with the computation described
in Section 3.2. It receives the hidden state ht

i−1 and the
embedding feature Et

i and outputs the decision information
Ot

i and hidden state ht
i. Ot

i is used to parse Q-function Qt
i

and ht
i is used for next decision step as follows:

Ot
i, h

t
i = mamba block([st, token(ati−1)], h

t
i−1|Wmamba),

(6)
where Wmamba denotes all learnable parameters in Mamba,
which includes the state transition parameters A, B and
C, the parameters of discretization step matrix, and time-
varying mapping parameters for the state transition param-
eters. In this paper we use the mamba-block in Mamba
repo1, with default settings. To obtain Ot

1, the last hid-
den state of time step t − 1, ht−1

K is used. The motivation
of using Mamba is that: a) MetaBBO task features long-
sequence process that involves thousands of decision steps
since there are hundreds of optimization steps and K hyper-
parameters to be decided per optimization step. Mamba
is adopted since it parameterizes the dynamic parameters
as functions of input state token, which facilitate flexible
learning of long-term and short-term dependencies from his-
torical state sequence (Ota, 2024). b) Mamba equips itself
with hardware-aware I/O computation and a fast parallel
scan algorithm: PrefixSum (Blelloch, 1990), which allows
Mamba has the same memory efficiency as highly optimized
FlashAttention (Dao et al., 2022).

Q-value head. The Q-value head parses the decision infor-
mation Ot

i into the decomposed Q-function Qt
i through a

linear mapping layer.

Qt
i = σ(Linear(Ot

i|Whead, bhead))) (7)

Here, σ is Leaky ReLU activation function, Whead ∈
R16×16 and bhead ∈ R16 are weights and bias. When we ob-
tain Qt

i, we select the action bin with the maximum value for
hyper-parameter Ai: ati = argmax

j
Qt

i,j , and use token(ati)

for inferring the decomposed Q-function Qt
i+1 of next de-

cision step. Once the action bins of all hyper-parameters
A1 ∼ AK have been decided, the algorithm A parse all
selected action bins to concrete hyper-parameter values and
then use them to optimize the problem for one step and
obtains the optimization state st+1 from the updated solu-
tion population (detailed in Appendix C). To summarize,
in Q-Mamba, the meta-level policy πθ is the Mamba-based
Q-Learner, of which the learnable parameters θ includes
{Wmamba,Whead, bhead}. To meta-train the Q-Mamba, we
use AdamW with a learning rate 5e− 3 to minimize the ex-

1https://github.com/state-spaces/mamba
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Figure 1. The workflow of the Mamba-based Q-Learner. The forward process of the neural network is similar with the Recurrent Neural
Network. At each time step, the Q-function of each decomposed action dimension is outputted by conditioning the current state and
selected action bins of the previous action dimensions. The environment transition is executed once all action dimensions are outputted.

pectation training objective Eτ∈CJ(τ |θ). After the training,
the learned πθ can be directly used to control A for unseen
problems: either those within the same problem distribution
P or totally out-of-distribution ones.

5. Experimental Results
In the experiments, we aim to answer the following ques-
tions: a) How Q-Mamba performs compared with the other
online/offline baselines? b) Can Q-Mamba be zero-shot to
more challenging realistic optimization scenario? c) How
important are the key designs in Q-Mamba?

5.1. Experiment Setup

Training dataset. We first sample 3 low-level BBO al-
gorithms from the algorithm space constructed in Con-
figX (Guo et al., 2024b), which are three evolutionary algo-
rithms including 3, 10 and 16 hyper-parameters, showing
different difficulty-levels for MetaBBO methods. We in-
troduce their algorithm structures in Appendix D.1. The
problem distribution selected for the training is the CoCo
BBOB Testsuites (Hansen et al., 2021), which contains 24
basic synthetic functions with diverse properties. We denote
it as Pbbob. We divide it into 16 problem instances for train-
ing and 8 problem instances for testing. These functions
range from 5 ∼ 50-dimensional, with random shift and ro-
tation on decision variables. More details are provided in
Appendix D.2. Based on the 16 training functions, we cre-
ate a E&E Datasets for each BBO algorithm following the
procedure described in Section 4.2. For online MetaBBO
baselines, we train them on each low-level algorithm to op-
timize the training functions. For offline baselines including
our Q-Mamba, we train them on each E&E Dataset. Note
that the total optimization steps for the low-level optimiza-
tion is set as T = 500.

Baselines. We compare a wide range of baselines to obtain
comprehensive and significant experimental observations.
Concretely, we compare three online MetaBBO baselines:

RLPSO (Wu & Wang, 2022) that uses simple MLP architec-
ture for controlling low-level algorithms. LDE (Sun et al.,
2021) that facilitates LSTM architecture for sequential con-
trolling low-level algorithms using temporal optimization
information. GLEET (Ma et al., 2024b) that uses Trans-
former architecture for mining the exploration-exploitation
tradeoff during the low-level optimization. These three
baselines are all trained to output associated configuration
without decomposition as our Q-Mamba. Since there is
no offline MetaBBO baseline yet, we examine the learning
effectiveness of Q-Mamba by comparing it with a series of
offline RL baselines: DT (Chen et al., 2021), DeMa (Dai
et al., 2024a), QDT (Yamagata et al., 2023) and QT (Hu
et al., 2024) are four baselines that apply conditional imita-
tion learning on the E&E dataset, where the state, actions
and reward in E&E dataset are transformed into RTG to-
kens, state tokens associated action tokens for supervised
sequence-to-sequence learning. The differences are: DT
and DeMa follow naive paradigm with Transformer and
Mamba architecture respectively. QDT and QT train a sep-
arate Q-value predictor during the sequence-to-sequence
learning, which relabels the RTG signal to attain policy im-
provement. Q-Transformer (Chebotar et al., 2023) shows
similar Q-value decomposition scheme as our Q-Mamba,
while the neural network architecture is Transformer. The
settings of all baselines follow their original papers, except
that the training data is the prepared three E&E datasets.
To ensure the fairness of the comparison, all baselines are
trained for 300 epochs with batch size 64.

Performance metric. We adopt the accumulated perfor-
mance improvement Perf(A, f |πθ) for measuring the opti-
mization performance of the compared baselines and our Q-
Mamba. Given a MetaBBO baseline πθ, the corresponding
low-level algorithm A and an optimization problem instance
f , the accumulated performance improvement is calculated
as the sum of reward feedback at each optimization step t:
Perf(A, f |πθ) =

∑T
t=1 r

t. The reward feedback is calcu-
lated as the relative performance improvement between two
consecutive optimization steps: rt = f∗,t−1−f∗,t

f∗,0−f∗ , where
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Table 1. Performance comparison between Q-Mamba and other online/offline baselines. All baselines are tested on unseen problem
instances within the training distribution Pbbob. We additionally present the averaged training/inferring time of all baselines in the last row.

Online Offline
RLPSO
(MLP)

LDE
(LSTM)

GLEET
(Transformer) DT DeMa QDT QT Q-Transformer Q-Mamba

Alg0
K = 3

9.855E-01
±9.038E-03

9.563E-01
±1.830E-02

9.616E-01
±3.110E-03

9.325E-01
±2.680E-02

9.492E-01
±2.467E-02

9.683E-01
±2.131E-02

9.729E-01
±1.934E-02

9.666E-01
±1.975E-02

9.889E-01
±7.779E-03

Alg1
K = 10

9.953E-01
±3.322E-03

9.877E-01
±1.118E-02

9.938E-01
±2.834E-03

6.764E-01
±1.193E-01

9.015E-01
±1.688E-02

9.917E-01
±5.454E-03

9.955E-01
±3.115E-03

9.951E-01
±3.487E-03

9.973E-01
±2.441E-03

Alg2
K = 16

9.914E-01
±4.497E-03

9.904E-01
±6.306E-03

9.910E-01
±5.846E-03

8.706E-01
±3.951E-02

9.159E-01
±2.015E-02

9.919E-01
±7.456E-03

9.926E-01
±6.874E-03

9.895E-01
±6.754E-03

9.950E-01
±9.981E-03

Avg Time 28h / 11s 28h / 12s 25h / 13s 13h / 10s 12h / 10s 20h / 12s 20h / 12s 16h / 11s 13h / 10s

f∗,t is the objective value of the best found solution until
time step t, f∗ is the optimum of f . The maximal accu-
mulated performance improvement is 1 when the optimum
of f is found. Note that f∗ is unknown for training prob-
lem instances, we instead use a surrogate optimum for it,
which can be easily obtained by running an advanced BBO
algorithm on the training problems for multiple runs.

5.2. In-distribution Generalization

After training, we compare the generalization performance
of our Q-Mamba and other baselines on the 8 problem
instances in Pbbob which have not been used for training.
Specifically, for each baseline and each low-level algorithm,
we report in Table 1 the average value and error bar of the
accumulated performance improvement Perf(·) across the
8 tested problems and 19 independent runs. We additionally
present the average training time and inferring time (time
consumed to complete a DAC process for BBO algorithm
A on a given optimization problem) for each baseline in the
last row. The results show following key observations:

i) Q-Mamba v.s. Online MetaBBO. Surprisingly, Q-
Mamba achieves comparable/superior optimization perfor-
mance to online baselines RLPSO, LDE and GLEET, while
showing clear advantage in training efficiency. The per-
formance superiority might origins from the Q-function
decomposition scheme in Q-Mamba, which avoids search-
ing DAC policy from the massive associated configuration
space as these online baselines. The improved training
efficiency validates the core motivation of this work. By
learning from the offline E&E dataset, Q-Mamba reduces
the training budget to less than half of those online base-
lines. his is especially appealing for BBO scenarios where
the simulation is expensive or time-consuming.

ii) Q-Mamba v.s. DT&DeMa. We observe that DT and
DeMa hold similar training efficiency with our Q-Mamba.
The difference between them and Q-Mamba is that they
generally imitates the trajectories in E&E dataset by predict-
ing the tokens autoregressively. Results in the table show
the performances of DT and DeMa are quite unstable (with
large variance). In opposite, our Q-Mamba allows policy im-
provement during the sequence learning, which shows better
learning convergence and effectiveness than the conditional

imitation-learning based offline RL. We note that this ob-
servation is limited within MetaBBO domain in this paper,
further validation tests are expected to examine Q-Mamba
on other RL tasks, which we leave as future works.

iii) Q-Mamba v.s. QDT&QT. Comparing QDT&QT with
DT, a tradeoff between the learning effectiveness and train-
ing efficiency. QDT&QT both propose additional Q-value
predictor, which is subsequently used to relabel the RTG
tokens in offline dataset. Although relabeling RTG with
learned Q-value allows for policy improvement during the
conditional imitation learning, additional training resource
is introduced (20h v.s. 13h). Nevertheless, QDT&QT, as
the online MetaBBO baselines, searches DAC policy from
the massive associated action space. Compared with them,
our Q-Mamba achieves not only superior optimization per-
formance since we learn easier decomposed Q-function for
each hyper-parameter in BBO algorithm, but also similar
training efficiency with DT since the hardware-friendly com-
putation and parallel scan algorithm in Mamba.

iv) Q-Mamba v.s. Q-Transformer. While our Q-Mamba
shares the Q-function decomposition scheme with Q-
Transformer, a major novelty we introduced is the Mamba
architecture and the corresponding weighted Q-loss func-
tion. The superior performance of Q-Mamba to the Q-
Transformer possibly roots from the linear time invari-
ance (LTI) of Transformer, which presents fundamental
limitation in selectively utilizing short-term or long-term
temporal dependencies in the long Q-function sequence.
In contrast, Mamba architecture holds certain advantages:
it allows Q-Mamba selectively remembers or forgets his-
torical states based on current token. Mamba architecture
achieves this through parameterizing the dynamic parame-
ters in Eq. (3) as functions of input state tokens.

5.3. Out-of-distribution Generalization

We have to note that the core motivation of MetaBBO is
generalizing the meta-level policy trained on simple and eco-
nomic BBO problems towards complex realistic BBO sce-
narios. We hence examine the generalization performance
of Q-Mamba and three online MetaBBO baselines on a chal-
lenging scenario: neuroevolution (Such et al., 2017) tasks.
In a neuroevolution task, a BBO algorithm is used to evolve
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Figure 2. Zero shot performance of Q-Mamba and online
MetaBBO baselines on neuroevolution tasks.

a population of neural networks according to their perfor-
mance on a specific machine learning task, i.e., classifica-
tion, robotic control (Galván & Mooney, 2021). Specifically,
we consider continuous control tasks in Mujoco (Todorov
et al., 2012). We optimize a 2-layer MLP policy for each
task by Q-Mamba and other baselines trained for controlling
Alg0 on Pbbob. To align with the challenging condition in
realistic BBO tasks, we only allow the low-level optimiza-
tion involves a small population (10 solutions) and T = 50
optimization steps. We present the average optimization
curves across 10 independent runs in Figure 2. The results
underscore the potential positive impact of Q-Mamba for
MetaBBO domain: a) while only trained on synthetic prob-
lems with at most 50 dimensions, our Q-Mamba is capable
of optimizing the MLP polices which hold thousands of
parameters in neuroevolution tasks. b) compared to online
MetaBBO baselines, Q-Mamba is capable of learning ef-
fective policy with comparable generalization performance,
while only consuming less than half training resources.

5.4. Ablation Study

Coefficients in Q-loss. In Q-Mamba, a key design that
ensures the learning effectiveness is the proposed com-
positional Q-loss in Eq. (5), which calculates a bellman
backup on the decomposed Q-function sequence first and
applies conservative regularization on out-of-distribution
action bins. As shown in Table 2, when λ = 0, the training
objective in Eq. (5) turns into the Bellman backup without
conservative regularization. The performance degradation
under this setting reveals the importance of the conservative
term for relieving the distribution shift caused by offline
leaning. When β = 1, the training objective would not
focus on the Q-value prediction of the last action dimen-
sion, which in turn interferes the prediction of other action
dimensions through the inverse maximization operation in
Eq. (2). A setting with λ = 1 and β = 10 generally ensures
the overall learning effectiveness.

Table 2. Importance analysis on λ and β in compositional Q-loss
function.

λ = 0 λ = 1 λ = 10

β = 1
9.756E-01
±1.570E-02

9.828E-01
±1.203E-02

9.855E-01
±1.192E-02

β = 10
9.833E-01
±1.424E-02

9.889E-01
±7.780E-03

9.857E-01
±1.134E-02

Table 3. Performance of Q-Mamba under different proportion of
exploitation data with good quality.
µ 0 0.25 0.5 0.75 1

Perf.
9.832E-01
±1.264E-02

9.874E-01
±6.489E-03

9.889E-01
±7.780E-03

9.793E-01
±1.614E-02

9.834E-01
±9.692E-03

Data ratio in E&E dataset. Another key design in Q-
Mamba is the construction of E&E dataset. When collecting
DAC trajectories to construct it, we set a data mixing ratio
µ which controls the proportion of exploitation data and
exploration data. When µ = 0, all trajectories come from
a random configuration policy, which provides exploratory
experiences with relatively low quality. When µ = 1, all
trajectories come from the well-performing MetaBBO base-
lines, which provides at least sub-optimal DAC experiences
with high quality. The results in Table 3 reveal that mixing
these two types of data equally (µ = 0.5) might enhance
Q-Mamba’s learning effectiveness by leveraging the rich his-
torical experiences from both exploration and exploitation.
This actually follows a common sense that increasing data
diversity could reduce the training bias in offline learning.

6. Conclusion
In this paper, we propose Q-Mamba as a novel offline
learning-based MetaBBO framework which improves both
the effectiveness and the training efficiency of existing on-
line leaning-based MetaBBO methods. To achieve this,
Q-Mamba decomposes the associated Q-function for the
massive configuration space into sequential Q-functions for
each configuration. We further propose a Mamba-based
Q-Learner for effective sequence learning tailored for such
Q-function decomposition mechanism. By incorporating
with a large scale offline dataset which includes both the ex-
ploration and exploitation trajectories, Q-Mamba consumes
less than half training time of existing online baselines,
while achieving strong control power across various BBO
algorithms and diverse BBO problems. Our framework does
have certain limitation. Q-Mamba is trained for a given BBO
algorithm and requires re-training for other algorithms. An
effective algorithm feature extraction mechanism may en-
hance Q-Mamba’s co-training on various algorithms. We
mark this as an important future work. At last, we hope
Q-Mamba could serve as a meaningful preliminary study,
providing first-hand experiences on integrating efficient of-
fline learning pipeline into MetaBBO systems.
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A. Proof of Q-function Decomposition
To show that transforming MDP into a per-action-dimension form still ensures optimization of the original MDP, we show
that optimizing the Q-function for each action dimension is equivalent to optimizing the Q-function for the full action. We
omit the time step superscript t for the ease of presentation.

If we consider apply full action a1:K at the current state s to transit to the next step state s′. The Bellman update of the
optimal Q-function could be written as:

max
a1:K

Q(a1:k|s) = max
a1:K

[
R(s, a1:K) + γmax

a1:K

Q(a1:K |s′)
]

= R(s, a∗1:K) + γmax
a1:K

Q(a1:K |s′) (8)

where R(·) is the reward we get after executing the full action a1:K . Under the Q-function decompostion, the Bellman
update of the optimal Q-function for each action dimension ai is:

max
ai

Q(ai|s, a∗1:i−1) = max
ai

[
max
ai+1

Q(ai+1|s, a∗1:i)
]

= max
ai

[
max
ai+1

(
max
ai+2

Q(ai+2|s, a∗1:i+1)

)]
= · · ·
= R(s, a∗1:K) + γmax

a1

Q(a1|s′)

= R(s, a∗1:K) + γmax
a1

[
max
a2

Q(a2|s′, a1)
]

= · · ·
= R(s, a∗1:K) + γmax

a1:K

Q(a1:K |s′) (9)

Here the first two lines are the inverse maximization operation as described in Section 3.1, the fourth line is the Bellman
update for the last action dimension. The last three lines also follow the inverse maximization operation. By comparing
Eq. (8) and Eq. (9) we prove that optimizing the decomposed Q-function consistently optimizes the original full MDP.

B. Optimization State Design
The formulation of the optimization state features is described in Table 4. States s{1∼6} are optimization problem property
features which collectively represent the distributional features and the statistics of the objective values of the current
candidate population. Specifically, state s1 represents the average distance between each pair of candidate solutions,
indicating the overall dispersion level. State s2 represents the average distance between the best candidate solution in the
current population and the remaining solutions, providing insights into the convergence situation. State s3 represents the
average distance between the best solution found so far and the remaining solutions, indicating the exploration-exploitation
stage. State s4 represents the average difference between the best objective value found in the current population and the
remaining solutions, and s5 represents the average difference when compared with the best objective value found so far.
State s6 represents the standard deviation of the objective values of the current candidates. Then, states s{7,8,9} collectively
represent the time-stamp features of the current optimization progress. Among them, state s7 denotes the current process,
which can inform the framework about when to adopt appropriate strategies. States s8 and s9 are measures for the stagnation
situation.
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Table 4. Formulations of state features.

States Notes
Pr

ob
le

m
Pr

op
er

ty
st1 mean

xi,xj∈Xt
||xi − xj ||2

Average distance between any pair of
individuals in current population.

st2 mean
xi∈Xt

||xi − x∗,t||2
Average distance between each individual
and the best individual in t-th generation.

st3 mean
xi∈Xt

||xi − x∗||2
Average distance between each individual
and the best-so-far solution.

st4 mean
xi∈Xt

(f(xi)− f(x∗))
Average objective value gap between each
individual and the best-so-far solution.

st5 mean
xi∈Xt

(f(xi)− f(x∗,t))
Average objective value gap between each
individual and the best individual in t-th
generation.

st6 std
xi∈Xt

(f(xi))
Standard deviation of the objective values
of population in t-th generation, a value
equals 0 denotes converged.

O
pt

im
iz

at
io

n
Pr

og
re

ss

st7 (T − t)/T
The potion of remaining generations, T
denotes maximum generations for one run.

st8 st/T
st denotes how many generations the
algorithm stagnates improving.

st9

{
1 if f(x∗,t) < f(x∗)

0 otherwise

Whether the algorithm finds better
individual than the best-so-far solution.

C. Action Discretization and Reconstruction
Given the M = 16 bins of Q values Qt

i for the i-th action, if the i-th hyper-parameter Ai of the low-level algorithm is in
continuous space, we first uniformly discretize the space into M bins: Âi = {Ai,1, Ai,2, · · · , Ai,M} where Ai,1 and Ai,M

are the lower and upper bounds of the space. Then we use the action ati obtained by ati = argmax
j

Qt
i,j as an index and

assign the value of the i-th hyper-parameter Ai with Ai = Âi[a
t
i]. If the hyper-parameter is in discrete space Â with mi ≤M

candidate choices, the action ati is obtained by ati = arg max
j∈[1,mi]

Qt
i,j and the value of the i-th hyper-parameter is Â[ati].

After the value of all hyper-parameters are decided, the algorithm A takes a step of optimization with the hyper-parameters
and return the next state from the updated population.

D. Experiment Setup
D.1. Backend Algorithm Generalization

In this paper, we randomly sample 3 algorithms with action space dimensions 3, 10 and 16 from the algorithm construction
space proposed in ConfigX (Guo et al., 2024b), which contains various operators with controllable parameters such as
the mutation and crossover operators from DE (Storn & Price, 1997), PSO update rules (Kennedy & Eberhart, 1995),
crossover and mutation operators from GA (Holland, 1992). Operators without controllable parameters such as selection
and population reduction operators are also included. Then, to get an algorithm with n controllable actions, we keep
randomly sampling algorithms from the algorithm construction space and eliminating the algorithms that are not meeting
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Algorithm 1 Pseudo code of Alg0

1: Input: Optimization problem f , optimization horizon T , Meta-level agent π.
2: Output: Optimal solution x∗ = argmin

x∈X
f(x).

3: Uniformly initialize a population X1 with shape NP1 = 100 and evaluate it with problem f ;
4: for t = 1 to T do
5: Receive the 3 action values at = {F1, F2, Cr} from the agent π;
6: Generate X ′

t by using DE/current-to-rand/1 (Eq. (10)) on Xt;
7: Apply Exponential crossover (Eq. (11)) on Xt and X ′

t to get X ′′
t ;

8: Clip the values beyond the search range in X ′′
t ;

9: Calculate f(X ′′
t );

10: Compare f(Xt) and f(X ′′
t ), select the better solutions to generate Xt+1;

11: end for

the requirement, until the algorithm with n controllable actions is obtained. The uncontrollable hyper-parameters of the
algorithm such as the initial population sizes are randomly determined.

Alg0 (as shown in Algorithm 1) is DE/current-to-rand/1/exponential (Storn & Price, 1997) with Linear Population Size
Reduction (LPSR) (Tanabe & Fukunaga, 2014). The mutation operator DE/current-to-rand/1 is formulated as:

x′
i = xi + F1(xr1 − xi) + F2(xr2 − xr3) (10)

where xr· are randomly chosen solutions and F1, F2 ∈ [0, 1] are two controllable parameters. The Exponential crossover
operator is formulated as:

x′′
i =

{
x′
i,j , if randk:j < Cr and k ≤ j ≤ L+ k

xi,j , otherwise
, j = 1, · · · , Dim (11)

where Dim is the solution dimension, L ∈ {1, · · · , Dim} is a random length, rand ∈ [0, 1]Dim is a random vector, x′
i is

the trail solution generated by mutation operator and Cr ∈ [0, 1] is a controllable parameter. At the beginning, a population
X with size 100 is uniformly sampled and evaluated. In each optimization generation, given the parameters F1, F2, Cr
from the meta-level agent, algorithm applies DE/current-to-rand/1 mutation and Exponential crossover operator on the
population to generate the trail solution population X ′′

t . An comparison is conducted between population Xt and X ′′
t where

the better solutions are selected for the next generation population Xt+1. Finally the worst solutions are removed from Xt+1

in the LPSR process.

The second algorithm Alg1 (as shown in Algorithm 2) is a hybrid algorithm comprising two sub-populations optimized
by GA and DE respectively. The population is sampled in Halton sampling (Halton, 1960) and then divided into two
sub-populations with sizes 50 and 200. The first GA sub-population uses the Multi-Point Crossover (MPX) (Holland, 1992)
and Gaussian mutation (Holland, 1992) accompanying with the Roulette selection (Holland, 1992). MPX crossover is
formulated as:

x′
i =

{
x′
r1,j , if randj < Cr1

x′
i,j , otherwise

, j = 1, · · · , Dim (12)

where randj ∈ [0, 1] are random numbers, Cr1 is a controllable parameter and xr1 is a random solution. The sample
method of xr1 is also a controllable action Xrmpx which can be uniform sampling or sampling with fitness based ranking.
The Gaussian mutation is written as:

x′′
i = N (x′

i, σ · (ub− lb)) (13)

where ub and lb are the upper and lower bounds of the search space and σ ∈ [0, 1] is a controllable parameter. The
mutated solution is then bound controlled using a composite bound controlling operator which contains 5 bound controlling
methods: “clip”, “rand”, “periodic”, “reflect” and “halving” (Kadavy et al., 2023), the selection of the bounding methods is
a controllable parameter bc1 ∈ [0, 4]. Besides, the GA sub-population adopts the LPSR technique from initial population
size 50 to the final size 10.

In the second DE sub-population, DE/best/2 (Storn & Price, 1997) mutation and binomial (Storn & Price, 1997) crossover
are used. DE/best/2 is formulated as:

x′
i = x∗ + F1 · (xr1 − xr2) + F2 · (xr3 − xr4) (14)
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Algorithm 2 Pseudo code of Alg1

1: Input: Optimization problem f , optimization horizon T , Meta-level agent π.
2: Output: Optimal solution x∗ = argmin

x∈X
f(x).

3: Initialize 2 sub-populations {X1,1} and {X2,1} using Halton sampling with sizes 50 and 200;
4: Evaluate the sub-populations with problem f ;
5: for t = 1 to T do
6: Receive the 10 action values at from the agent π;
7: Generate X1,t+1 using MPX (Eq. (12)), Gaussian mutation (Eq. (13)) and Roulette selection on X1,t;
8: Generate X2,t+1 using DE/best/2 mutation (Eq. (14)) and binomial crossover (Eq. (15));
9: for i = 1 to 2 do

10: Replace the worst solution in Xi,t+1 by the best solution in Xcmi,t+1;
11: end for
12: Apply LPSR on sub-population X1,t+1;
13: end for

where xr· are randomly selected solutions, x∗ is the best solution, F1, F2 ∈ [0, 1] are controllable parameters.

The Binomial crossover uses a similar process as MPX but introduces a randomly selected index jrand ∈ {1, · · · , Dim}
to ensure the difference between the generated solution and the parent solution:

x′′
i =

{
x′
i,j , if randj < Cr4 or j = jrand

x′
i,j , otherwise

, j = 1, · · · , Dim (15)

where randj are random numbers and Cr2 ∈ [0, 1] is the controllable parameter. The DE sub-population also contains the
composite bound control method with controllable parameter bc2.

Besides, both of the two sub-populations employ the information sharing methods which will replace the worst solution
in current sub-population Xi with the best solution from Xcmi

, where i ∈ {1, 2} in this algorithm. The parameters
cm1, cm2 ∈ {1, 2} are two controllable parameters for the sharing operator in the two sub-population, respectively. If the
action decides to share with itself (cmi = i), the sharing is stopped.

In summary, the action space of Alg1 is {Cr1, Xrmpx, σ, bc1, cm1, F1, F2, Cr2, bc2, cm2} with the shape of 10.

For Alg2 (as shown in Algorithm 3), the population sampled in Halton sampling (Halton, 1960) is divided into four
sub-populations. The first sub-population uses GA operators MPX (Holland, 1992) crossover formulated in Eq. (12) and
Polynomial mutation (Dobnikar et al., 1999) accompanying with the Roulette selection (Holland, 1992). The Polynomial
mutation is as follow:

x′′
i =

{
x′
i + ((2u)

1
1+ηm − 1)(x′

i − lb), if u ≤ 0.5;

x′
i + (1− (2− 2u)

1
1+ηm )(ub− x′

i), if u > 0.5.
(16)

where ηm ∈ {1, 2, 3} is a controllable parameter, u ∈ [0, 1] is a random number, ub and lb are the upper and lower bound of
the search range.

The second sub-population uses SBX crossover (Deb et al., 1995), Gaussian mutation (Holland, 1992) and Tournament
selection (Goldberg & Deb, 1991):

x′
i = 0.5 · [(1∓ β)xi + (1± β)xr1], where β =

{
(2u)

1
1+ηc − 1, if u ≤ 0.5;

( 1
2−2u )

1
1+ηc , if u > 0.5.

(17)

where ηc ∈ {1, 2, 3} is controllable parameter and u ∈ [0, 1] is random number. Similar to MPX, SBX also uses an action
Xrsbx to select parent solutions xr1. The Gaussian mutation operator formulated in Eq. (13) has controllable parameter
σ ∈ [0, 1].

The third sub-population is DE/rand/2/exponential (Storn & Price, 1997) where the DE/rand/2 mutation operator is:

x′
i = xr1 + F13(xr2 − xr3) + F23(xr4 − xr5) (18)

where xr· are randomly selected solutions and F13, F23 ∈ [0, 1] are controllable parameters for the third sub-population.
The Exponential crossover formulated as Eq. (11) is used in this sub-population with parameter Cr3 ∈ [0, 1].
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Algorithm 3 Pseudo code of Alg2

1: Input: Optimization problem f , optimization horizon T , Meta-level agent π.
2: Output: Optimal solution x∗ = argmin

x∈X
f(x).

3: Initialize 4 sub-populations {Xi,1}i=1,2,3,4 using Halton sampling with sizes {200, 100, 100, 100}.
4: Evaluate the sub-populations with problem f ;
5: for t = 1 to T do
6: Receive the 16 action values at from the agent π;
7: Generate X1,t+1 using MPX (Eq. (12)), Polynomial mutation (Eq. (16)) and Roulette selection on X1,t;
8: Generate X2,t+1 using SBX (Eq. (17)), Gaussian mutation (Eq. (13)) and Tournament selection on X2,t;
9: Generate X3,t+1 using DE/rand/2 mutation (Eq. (18)), Exponential crossover (Eq. (11)) on X3,t;

10: Generate X4,t+1 using DE/current-to-best/1 mutation (Eq. (19)), Binomial crossover (Eq. (15)) on X4,t;
11: for i = 1 to 4 do
12: Replace the worst solution in Xi,t+1 by the best solution in Xcmi,t+1

13: end for
14: end for

The last sub-population is DE/current-to-best/1/binomial (Storn & Price, 1997). The mutation operator with parameter
F14, F24 ∈ [0, 1] is formulated as:

x′
i = xi + F14(x

∗ − xi) + F24(xr1 − xr2) (19)

where x∗ is the best performing solution in the sub-population. The Binomial crossover formulated in Eq. (15) contains a
controllable parameter Cr4 ∈ [0, 1].

Besides, Alg2 conducts the controllable information sharing among the sub-populations where the worst solution in current
sub-population Xi,g is replaced by the best solution from the target sub-population Xcmi,g, cm{1,2,3,4} ∈ {1, 2, 3, 4} are
four actions indicating the target sub-population.

Given the 16 actions {Cr1, Xrmpx, ηm, ηc, Xrsbx, σ, F13, F23, Cr3, F14, F24, Cr4, cm1, cm2,
cm3, cm4}, Alg2 uses these parameters to configure the mutation and crossover operators and applies them on the 4
sub-populations. Then the information sharing is activated for better exploration. Finally, the next generation population is
obtained through the population reduction processes.
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D.2. Train-test split of BBOB Problems

As shown in Table 5, the BBOB testsuite (Hansen et al., 2021) contains 24 different optimization problems with diverse
characteristics such as unimodal or multi-modal, separable or non-separable, high conditioning or low conditioning. To
maximize the problem diversity of the training problem set and hence empower the agent better generalization ability, we
choose the most diverse 16 problem instance for training, whose fitness landscapes in 2D scenario are shown in Figure 3.
The rest 8 instances are used as testing set whose 2D landscapes are shown in Figure 4. The dimensions of each problem
instances in both training and testing set are randomly chosen from {5, 10, 20, 50}.

Table 5. Overview of the BBOB testsuites.
Problem Functions Dimensions

Separable functions

f1 Sphere Function 50
f2 Ellipsoidal Function 5
f3 Rastrigin Function 5
f4 Buche-Rastrigin Function 10
f5 Linear Slope 50

Functions
with low or moderate

conditioning

f6 Attractive Sector Function 5
f7 Step Ellipsoidal Function 20
f8 Rosenbrock Function, original 10
f9 Rosenbrock Function, rotated 10

Functions with
high conditioning

and unimodal

f10 Ellipsoidal Function 10
f11 Discus Function 5
f12 Bent Cigar Function 50
f13 Sharp Ridge Function 10
f14 Different Powers Function 20

Multi-modal
functions

with adequate
global structure

f15 Rastrigin Function (non-separable counterpart of F3) 5
f16 Weierstrass Function 20
f17 Schaffers F7 Function 50
f18 Schaffers F7 Function, moderately ill-conditioned 50
f19 Composite Griewank-Rosenbrock Function F8F2 10

Multi-modal
functions
with weak

global structure

f20 Schwefel Function 20
f21 Gallagher’s Gaussian 101-me Peaks Function 20
f22 Gallagher’s Gaussian 21-hi Peaks Function 10
f23 Katsuura Function 20
f24 Lunacek bi-Rastrigin Function 20

Default search range: [-5, 5]Dim
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Figure 3. Fitness landscapes of functions in BBOB train set when dimension is set to 2.
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Figure 4. Fitness landscapes of functions in BBOB test set when dimension is set to 2.
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E. Additional Experimental Results
E.1. Impact of Action Bin Numbers

As we described in Section 4.4, when the hyper-parameter to be controlled is continuous, the Q-function decomposition
scheme have to discretize the continuous space into discrete action bins. The number of action bins determines the control
grain. If we use a large number of action bins, the parameter controlling is fine-grained while the action space is increased.
If the action bin number is small, the control grain is coarse but the network scale is smaller. In this section we investigate
the impact of the action bin numbers on the performance. Concretely, we implement 6 Q-Mamba agents with 16, 32, 64,
128, 256 and 512 bins. Their binary coding of the actions are represented in 5∼10-bits, and the output dimensions of the
Q-value head in these baselines are set to 16∼512 accordingly. We train these agents for controlling Alg0 on the 16 training
BBOB problem instances and then test them on the 8 instance BBOB testing set. The boxplots of the performance values of
these baselines over 19 independent runs are presented in Figure 5. The results show that Q-Mamba is compatible with large
action bins and fine-grained controlling. However, increasing action bin numbers may not always lead to better performance
due to two main reasons: a) the increased network scales and training difficulty. b) for BBO algorithm such as evolutionary
algorithms in this paper, their hyper-parameters often show low sensitivity on slight value changes. In this case, increasing
number of action bins makes little effect on the target BBO algorithm. In conclusion, the setting of 16 action bins is an ideal
choice balancing the control grain and training efficiency, which is used in all trainings of Q-Mamba in our experiments.
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Figure 5. The performances of Q-Mamba trained with different action bin granularities.
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