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Abstract

Chatbots have the risk of generating offen-
sive utterances, which must be avoided. Post-
deployment, one way for a chatbot to continu-
ously improve is to source utterance/label pairs
from feedback by live users. However, among
users are trolls, who provide training exam-
ples with incorrect labels. To de-troll training
data, previous work removed training examples
that have high user-aggregated cross-validation
(CV) error. However, CV is expensive; and in
a coordinated attack, CV may be overwhelmed
by trolls in number and in consistency among
themselves. In the present work, I address both
limitations by proposing a solution inspired
by methodology in automated essay scoring
(AES): have multiple users rate each utterance,
then perform latent class analysis (LCA) to in-
fer correct labels. As it does not require GPU
computations, LCA is inexpensive. In experi-
ments, I found that the AES-like solution can
infer training labels with high accuracy when
trolls are consistent, even when trolls are the
majority.

1 Introduction

For chatbots, it is not enough to learn to gener-
ate coherent utterances—many coherent utterances
are undesirable, such as offensive remarks. Post-
deployment, to have the chatbot continuously im-
prove its judgment, one way is to source training ex-
amples from feedback by live organic users (Shus-
ter et al., 2022; Xu et al., 2022). Though more
realistic than crowdworkers, among organic users
are trolls, whose erroneous feedback fosters bad
behavior (Wolf et al., 2017). How can the chatbot
learn continuously from user interactions in a way
that is robust to trolls?

The problem can be cast as a dialogue safety task
(Dinan et al., 2019; Noever, 2018): Given input
utterance x, output its binary class label y, either
safe (denoted y = 0) or unsafe (denoted y = 1).
The training set is then a set of observed (x, y∗)

Grader 1 Grader 2 Grader 3
Essay 1 1 0
Essay 2 1 0
Essay 3 0 0
Essay 4 0 1
Essay 5 0 1

Table 1: An essay × grader inter-rater matrix (denoted
Z in the text) of annotations. Here, the grades are binary
(e.g. pass/fail). Each essay is assigned to a random
subset of the graders. Rater effects must be accounted
for, so that a final score can be assigned to each essay
for training an automated essay scoring (AES) engine.

utterance/label pairs sourced from users. But due
to trolls (as well as honest mistakes), some of the
training pairs have incorrect labels (i.e. y∗ ̸= y).
We thus endeavor to de-troll these labels, as a pre-
processing step (Song et al., 2022). Once labels
are corrected (i.e. y∗ = y), the problem reduces to
familiar supervised learning.

Toward de-trolling the training set, a two-
intervention solution was recently offered by Ju
et al. (2022). Intervention 1 has each user pro-
vide multiple (x, y∗) pairs, so examples are nested
within users. Intervention 2 computes the “un-
trustworthiness” of each training example via (3-
fold) cross-validation (CV). A training example is
removed if it exceeds some threshold of disagree-
ment with the crowd. The intuition is that trolls end
up having a bad track record against the crowd but
occasionally, by chance, provide examples worth
keeping. The (x, y∗) pairs remaining are then suit-
able for training.1

There are two issues with this CV-based (Ju et al.,
2022) solution. First, as it involves CV on large lan-
guage model (LLM) computations, it is expensive.
Second, CV relies upon an abundance of helpers
(Ju et al., 2022), good-faith users who end up in

1Alternatively, training pairs exceeding the threshold are
kept but with their labels flipped (Ju et al., 2022).



agreement with each other. Thus, this approach
can be overwhelmed in the event of a coordinated
attack where trolls have both strength in numbers
and are consistent among themselves.

A promise of circumventing both issues lies in
methodology for automated essay scoring (AES)
(Attali and Burstein, 2006; Taghipour and Ng,
2016; Uto, 2021). Given an input essay x, an AES
engine (which may incorporate an LLM) must out-
put a score y, a numeric or ordinal rating of the
essay’s quality. The burden of annotating a train-
ing set is divided among multiple human graders,
which incurs rater effects—graders vary on how
strict or permissive they are, which adds variance
to automated scoring (Wind et al., 2018; Uto and
Okano, 2020).

Analogously, the AES solution has two inter-
ventions (Uto and Okano, 2020). Intervention 1
induces redundancy by randomly assigning mul-
tiple graders (users) to each training essay (utter-
ance), yielding an inter-rater matrix Z as in Table
1. Intervention 2 fits a rater effects model to Z,
a statistical (as opposed to neural) model, which
yields inference, for each unique essay (in dialogue
safety: utterance), a single final score (in dialogue
safety: class label) ỹ suitable for training. Such a
solution is inexpensive, being free of embeddings—
the essays’ content x is not incorporated in Z (as
in Table 1) and is not needed to infer ỹ. In the case
of discrete ratings, the rater effects model is called
a latent class analysis (LCA) model (Linzer and
Lewis, 2011).

In the present work, my contribution is twofold.
First, I establish a connection between the chat-
bot robust learning (e.g. Dinan et al., 2019) and
the AES (e.g. Attali and Burstein, 2006) literatures.
Second, I conduct an examination of an AES-like
solution to de-trolling the training set. The main re-
sult is that this solution thrives on consistency, even
among trolls: when trolls are consistent among
themselves and are majority of the users, inferred
labels are accurate; but curiously, when trolls are
majority but make only random noise, the AES-like
solution is not as accurate.

2 Related work

In open dialogue models, the capacity to improve
past pre-training is desired. Dinan et al. (2019)
found that challenging crowdworkers to “break”
a pre-trained classifier with adversarial inputs in
follow-up rounds of training was helpful toward

making the classifier robust. Xu et al. (2022) con-
sidered various methods to improve chatbots in
deployment from different forms of human feed-
back, including free-form text. An emerging in-
novation is architectures that are self-monitoring,
being both generator and classifier (Arora et al.,
2022; Lu et al., 2022). But as such architectures
assume that training examples have correct labels,
they are solutions for supervised learning, not de-
trolling. Addressing the problem takes more than
finding a state-of-the-art classifier.

The threat posed by trolls falls under the um-
brella of robust learning (Song et al., 2022).
Whereas the CV-based procedure (Ju et al., 2022)
is one way to do robust learning, another is
expectation-maximization (EM) algorithms (Do
and Batzoglou, 2008; Boos and Stefanski, 2013),
of which LCA fitting (Linzer and Lewis, 2011) is
an instance. In statistics, EM is a local optimiza-
tion technique for fitting models involving latent
variables, such as unobserved class labels. An ele-
mentary instance of EM is the familiar k-means
clustering algorithm (Do and Batzoglou, 2008).
More sophisticated instances of EM are applicable
to problems with untrustworthy training examples
and rater effects, such as crowdworkers’ tagging
of images and documents (Ipeirotis et al., 2010;
Raykar and Yu, 2012).

The use of AES in large-scale educational as-
sessment dates back decades (Attali and Burstein,
2006). The AES literature goes deeper—as es-
says may have been written in response to different
prompts, some not appearing in training, and some
assessments score essays in multiple criteria (Uto,
2021). But in the present work, the most basic
AES setup suffices for the analogy—every annota-
tion y∗ (the class label or score) is a commonsense
holistic evaluation of the safety or toxicity of x (the
utterance or essay).

While the present article is focused on toxicity
or safety (Dinan et al., 2019; Noever, 2018), there
are other desiderata for chatbot behavior, such as
factual correctness and staying on-topic (Xu et al.,
2022; Arora et al., 2022).

3 From ratings to predicted classes

To motivate LCA, consider Table 1, an intuitive
case. By inspection, Graders 1 and 2 are in agree-
ment, and Grader 3 goes in the opposite direction.2

2I am not suggesting that educational assessments risk
trolling, as they are not crowdsourced. Non-troll rater effects



Figure 1: A latent class analysis (LCA) model for dia-
logue safety. Suppose Cluster A is the safe cluster. Then
User 1 must be a helper, as they have a 91% probability
of labeling a safe utterance as such, and they have an
86% probability of labeling an unsafe utterance as such.
From similar reasoning, User 2 must be a troll. But if
Cluster A were unsafe instead, the roles are the oppo-
site.

Accordingly, there are two clusters: those rated “0”
by Grader 3 (i.e. Essays 1 and 2); and those rated
“0” by Graders 1 and 2 (i.e. Essays 3 to 5). Realis-
tic instances of Z are not as clear-cut, so it takes a
statistical model to apply such intuitions at scale.

The LCA model is depicted in Figure 1. De-
spite the name, LCA deals with clusters rather than
classes. According to this model, each utterance
belongs to one of two clusters, A and B, with a
probability distribution (the prior). Within each
cluster, the distribution of the observed label (the
likelihood) is user-specific: each user has some
probability of labeling a Cluster A utterance as
safe, and some probability of labeling a Cluster B
utterance as safe.3

An EM algorithm (Linzer and Lewis, 2011), pro-
vided Z, estimates all parameters (in both prior and
likelihood). The intuition is that users’ tendencies
can be quantified due to utterances shared between
them. Provided these estimates, for each utterance,
the posterior distribution can be computed, which
is the answer to the question, “Given the observed
pattern of labels (i.e. row of Z), which cluster is
more probable?” Each utterance is then assigned to
the highest-probability cluster. Note that LCA fit-
ting is possible even amid missing values in Z, but
some redundancy (from Intervention 1) is required
(see Limitations section for details).

However, clusters are not yet classes. In the
dialogue safety task, trolls and helpers behave in

exist, and Table 1 resembling trolling is simply to serve the
analogy to the dialogue safety task.

3Alternatively, the likelihood can be expressed in terms
of user-specific probability transition matrices, as in Ju et al.
(2022).

opposite directions, and which is the “correct di-
rection” cannot be inferred from merely looking
at Z, as in Table 1. To be able to map clusters to
classes in the present work, I make the assumption
that the cluster having more utterances is the safe
class. Such an assumption is true of the dataset
(Dinan et al., 2019) used in experiments in the next
section. Furthermore, if the training examples are
feedback on the chatbot’s own utterances (Xu et al.,
2022), then any decent chatbot should produce safe
examples more than half the time.

Altogether, the AES-like solution consists of
(Intervention 1) introducing redundancy, then (In-
tervention 2) statistically leveraging it via LCA
with the safe-as-majority assumption (LCA+SM).
The end result is corrected training pairs (x, ỹ).
The de-trolling solution is inexpensive because it
is embeddings-free; and it is robust because user
tendencies are accounted for, without taking for
granted that the consensus is correct. Unlike the
CV-based solution (Ju et al., 2022), no untrustwor-
thiness scores need be calculated, as user tenden-
cies are already accounted for. No examples are
removed from training—the intuition is that a user
that reliably gives incorrect answers is perfectly
good data once their labels are flipped.

4 Experiments

4.1 Methods

Experiments were conducted to test the efficiency
and robustness of the AES-like solution under dif-
ferent troll scenarios, especially extreme cases of
trolls being majority not covered in Ju et al. (2022).
Real utterances were labeled by synthetic users.
The real utterances x, with gold labels y known,
were from Meta AI’s single-turn safety dataset
(Dinan et al., 2019). Unfortunately due to com-
putational resource constraints, there was no di-
rect comparison to the CV-based solution in Ju
et al. (2022).4 Instead, the proposed Intervention
2, LCA+SM, was compared to a baseline of major-
ity vote (MV) on each row of Z. Both solutions
leverage redundancy, though MV naively takes for
granted that the consensus is correct; and both di-
rectly impute classes rather than rank examples by
untrustworthiness.

Two Experiments followed the same 2×2×2×2

4CV-based trustworthiness scores are a function of two
hyperparameters (one of them is the threshold) that themselves
require tuning with a validation set. Thus, there are two layers
of validation.



design, varying the following factors:

UNSAFE_PREVALENCE: Either 10% or 30%
of the utterances were unsafe, in both training
and validation sets.

TROLL_PREVALENCE: Either 50% or 90%
of the users were trolls.

CORRUPT_ACTION: When corruption of the
label occurred, it was either “diligent” (y∗ =
1− y) or “lazy” (randomly choose between 0
and 1 with equal probability).

TROLL_CORRUPT_RATE: Each troll cor-
rupted either 80% or 95% of their labels.

Experiment 1 had both a de-trolling phase and
a supervised learning phase.

1. De-trolling. 200 utterances were sampled
as training set, and Z was created by ran-
domly assigning each utterance to 5 users out
of a pool of 50 users. Thus, Z had 90% of
its cells missing. To incorporate honest mis-
takes, helpers corrupted 5% of their labels
in all conditions. Both competing methods
(i.e. LCA+SM and MV) were applied to yield
(x, ỹ) pairs.

2. Supervised learning. 24 utterances were sam-
pled as validation set, with gold labels known
for simplicity. A classifier was trained on the
corrected training set, with the validation set
used for early stopping. Constant across all
runs, the test set was the same as in Ju et al.
(2022), which had 900 safe utterances and 100
unsafe utterances.

Accordingly, the evaluation metric in Experi-
ment 1 was test set accuracy. Due to the computa-
tional expense, there were only 5 runs per scenario.

To fit LCA, I used the package mirt in R. For
training, I used ParlAI (Miller et al., 2017), using
the same settings as in Ju et al. (2022) except for
omitting CV and setting max-train-steps=400
to keep the experiment manageable. The neural
model, called bi_model_huge_reddit in ParlAI’s
Model Zoo, consisted of a linear layer on top of a
pre-trained transformer from Humeau et al. (2019).

While evaluating downstream accuracy is usu-
ally sought, an issue in Experiment 1 is that such
a metric conflates the de-trolling solution with the

supervised learning solution. For instance, bad per-
formance might be blamed on a poor neural clas-
sifier or on utterances being intrinsically difficult,
rather than the merits of the de-trolling solution
itself. Thus, Experiment 2 redid the de-trolling
phase with the same settings except that the metric
was instead the accuracy of the imputed labels ỹ in
the training set—I call this metric imputation accu-
racy.5 The test set is thus irrelevant. Unburdened
by the expense of training a large language model,
each scenario had 500 runs.

4.2 Results
With GPU for the supervised learning phase, Ex-
periment 1 ran for ~12.1 hours. In contrast, without
need for GPU, Experiment 2 ran for ~2.2 hours.

Figure 2 shows the results for both
Experiments. Only results for UN-
SAFE_PREVALENCE=30% are shown. The
patterns for UNSAFE_PREVALENCE=10% are
similar and can be found in the Appendix.

Trends were similar between the two Exper-
iments, so I describe them together. Keep in
mind that when CORRUPT_ACTION=“diligent”,
a higher TROLL_CORRUPT_RATE means that
trolls are more consistent among themselves,
as they are strongly negatively correlated with
ground truth; but when CORRUPT_ACTION=“lazy”,
a higher TROLL_CORRUPT_RATE means that
trolls are less consistent among themselves,
due to their randomness. The overall picture
is that LCA+SM leverages consistency in the
user-provided labels, even malicious consistency
from trolls; but LCA+SM falters when there
is little consistency to leverage. Under COR-
RUPT_ACTION=“diligent”, LCA+SM was highly
accurate when TROLL_CORRUPT_RATE=95% and
TROLL_PREVALENCE=90%, always better than
the baseline; but under CORRUPT_ACTION=“lazy”,
LCA+SM was highly inaccurate for the same com-
bination, sometimes worse than the baseline. Ma-
licious as trolls are, the diligent ones are just as
valuable as helpers—they should not be removed
from training.

5 Discussion

How much data should Z have for LCA to be reli-
able? While the proportion of missing values was

5The connotations of overfitting and over-optimism usually
associated with “training set accuracy” are not applicable here.
Yes, both LCA+SM and MV are used on the training set; but
both are unsupervised and do not overfit.
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Figure 2: Results for both Experiments, for 30% unsafe
prevalence. Within each Experiment, each panel is a sce-
nario. Solid black line is the identity line—when a point
is above the line, LCA+SM did better than MV. Dotted
lines mark the accuracy of indiscriminately predicting
safe. LCA+SM = latent class analysis with safe-as-
majority assumption; MV = majority vote.

not manipulated in the Experiments, exploratory
analysis found that larger non-missing proportions
were more favorable: increasing the users assigned
per utterance was beneficial for fixed total user
pool; but for fixed number of users per utterance,
increasing the user pool was detrimental. While
having more data is statistically expedient, it also
imposes a greater burden on the user (Shuster et al.,
2022). In these Experiments, having 10% of the
inter-rater matrix filled meant that each user la-
beled on average 20 utterances, which is 5x what
the CV-based approach (Ju et al., 2022) would have

required. Note that having a very low non-missing
proportion may make fitting LCA impossible.

While the CV-based (Ju et al., 2022) solution’s
issues were not directly experimentally validated,
there is reason to believe that it would have been
at a disadvantage against the AES-like solution.
In terms of expense, CV would involve training a
large language model, even at the de-trolling phase.
In terms of robustness, CV can be thought of as
simulating “checking each other’s work” or tap-
ping into a consensus in a way that MV directly
does, so the CV-based solution would have been
likewise vulnerable to a false consensus. Scenarios
where the AES-like solution faltered had little con-
sensus, which would have been unfavorable to the
CV-based solution as well.

Unlike Ju et al. (2022), my Experiments did not
manipulate the prevalence of adversarial vs. non-
adversarial utterances sampled. In the dataset (Di-
nan et al., 2019), half of the utterances were adver-
sarial. These prevalences would have affected the
supervised learning phase but not the de-trolling
phase, as MV and LCA+SM are embeddings-free.

It turns out that Experiment 2 was a purely statis-
tical exercise, though one relevant to the de-trolling
problem. After all, producing Z and evaluating im-
putation accuracy did not reference any utterance
content, so no real data was needed. Consequently,
the results for imputation accuracy are widely gen-
eralizable in the sense that they are irrespective
of the choice of neural classifier or the intrinsic
difficulty of the utterances being classified. In ad-
dition, Experiment 2 can be expediently adapted
to different settings (e.g. UNSAFE_PREVALENCE

and number of training utterances) for researchers
to mess around with. But for specific applications
involving a specific dataset and neural classifier,
downstream accuracy becomes of interest.

6 Conclusion

The AES-like solution is inexpensive, as it does not
require GPU computation.

In the event of a coordinated attack where trolls
are majority and consistent among themselves, the
AES-like solution holds up well, bearing the wis-
dom that “diligent” trolls may be leveraged toward
better performance. But when there is little con-
sensus among users, there is little to work with, so
de-trolling accuracy drops.



Limitations

The AES-like solution proposed inherently has
higher data requirements, which imposes a bur-
den on the users. Logistical and privacy concerns
may be raised in light of having users “check each
other’s work”, especially when example utterances
are from users’ own conversations with the chatbot.

To map clusters to classes, the present work as-
sumed SM. MV and the CV-based (Ju et al., 2022)
solution put trust in good-faith behavior of users,
whereas LCA+SM gains robustness by putting
trust in the chatbot’s decency instead. Either way,
trust has to be put somewhere. That said, even if
SM were true more generally, it could still fail to
hold for some batches in continual learning, if the
batches are small enough.

Not every inter-rater matrix Z can be fitted to
LCA. To make fitting possible, there are two re-
quirements (Chalmers, 2012).

(1) As each column (i.e. user) is associated with
two parameters, the number of rows (i.e. utter-
ances) in must be at least twice the columns.

(2) Each column must have both possible labels.

If (2) is violated by a column, that column may
be deleted before fitting, as long as (1) is still met.
Grave scenarios of trolling may yield many invalid
columns, deletion of which would make fitting
LCA impossible.
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A Appendix

Figure 3 shows the results for UN-
SAFE_PREVALENCE=10%.
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Figure 3: Results for both Experiments, for 10% unsafe
prevalence. Within each Experiment, each panel is a sce-
nario. Solid black line is the identity line—when a point
is above the line, LCA+SM did better than MV. Dotted
lines mark the accuracy of indiscriminately predicting
safe. LCA+SM = latent class analysis with safe-as-
majority assumption; MV = majority vote.
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