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Abstract

Evaluating the effectiveness of unlearning in large
language models (LLMs) remains a key challenge,
especially as existing metrics often rely on spe-
cific reference outputs. The widely used forget
quality metric from the TOFU benchmark (Maini
et al., 2024) compares likelihoods over para-
phrased answers but is highly sensitive to the
choice of these references, potentially obscuring
whether a model has truly forgotten the targeted
information. We argue that unlearning should in-
stead be assessed via distributional equivalence—
how closely an unlearned model aligns function-
ally with the retain-only model. To this end,
we propose Functional Alignment for Distribu-
tional Equivalence (FADE), a novel distribution-
level metric that measures probabilistic precision
and recall between model outputs. FADE pro-
vides a more robust, principled approach to eval-
uating unlearning by comparing model behavior
beyond isolated responses.

1. Introduction

As large language models (LLMs) are increasingly deployed
in sensitive real-world scenarios, the ability to unlearn
specific information—such as private or harmful content—
without full retraining has become a critical goal. Accu-
rately evaluating the effectiveness of unlearning, however,
remains a challenge. Recently, TOFU (Maini et al., 2024)
has emerged as a widely used benchmark, introducing the
forget quality metric that compares likelihood distributions
over answers between the unlearned model and a retain-only
oracle trained without the data requested for deletion.

However, we find that the forget quality metric is highly
sensitive to the choice of reference answers used. In partic-
ular, using paraphrased responses as proxies can completely
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Figure 1. Illustration of our metric, Functional Alignment for Dis-
tributional Equivalence (FADE). We propose to measure the func-
tional F1 score between the retain model and the unlearned model
(black solid arrows). To quantify the distance caused by random-
ness in training, we also measure FADE across retain-only models
with different random seeds (gray dashed arrows) as a baseline,
with which we can use to analyze the functional distance due to
the choice of unlearning vs. retraining from scratch in isolation.

obscure the model’s ability to completely generate origi-
nal answers, which significantly misleads assessment of
unlearning efficacy. While paraphrasing is helpful to de-
tect unlearning via memorization, it can shift the evaluation
away from the core objective of unlearning as it leads to
focusing on aligning the likelihoods on specific outputs.

Most importantly, unlearning should aim for functional
equivalence with the retain-only model. That is, the outputs
of an unlearned model follow the same output distribution of
the retain-only oracle across varying input spaces, including
the forget set, the retain set, and out-of-domain prompts.
Existing metrics based on static response sets often fail to
capture this crucial goal.

To address this gap, we propose Functional Alignment for
Distributional Equivalence (FADE) (Figure 1), a novel
metric for evaluating unlearning at the distributional level.
Instead of using specific answers, FADE measures func-
tional similarity by generating samples from one model and
computing their expected log-likelihoods under the other.
This yields probabilistic notions of precision and recall (Cha
& Cho, 2025), which together quantify how well the two
models align as functions. FADE provides a way to robustly
assess unlearning effectiveness based on distributional align-
ment rather than isolated outputs.
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Figure 2. NLL distributions from the unlearned model (y-axis) and the retain-only model (x-axis). Each dot represents a single sample
from Drorger. Each plot shows results from using paraphrased answers (left) or original answers (right) for evaluation. Forget quality
depends significantly on which reference answer is used, as the NLL distributions heavily depend on the answers.

Related work. A variety of evaluation methods have been
proposed to assess unlearning efficacy. TOFU (Maini et al.,
2024) introduces forget quality, which compares likelihoods
over paraphrased responses between unlearned and retain-
only models. RWKU (Jin et al., 2024) and WMDP (Li et al.,
2024) probe for residual knowledge using paraphrased fac-
tual prompts and adversarial queries. Lynch et al. (2024)
propose a cohort of token-level generation and paraphrasing-
based approaches. Despite these advances, most methods
require specifically chosen outputs, making it difficult to
assess whether residual knowledge persists at the distribu-
tional level. In contrast, we propose a metric that compares
output distributions to capture functional differences.

2. Preliminaries
2.1. Problem Setup

We formalize machine unlearning as a problem of functional
alignment, following recent works (Cha et al.; Jang et al.,
2023). Let f : X — Y be amodel trained on the full dataset
D = Dretain U Dtorget, Where Dioreer denotes the subset of data
requested for removal. The goal of unlearning is to update
f into funearm that behaves as if it had never seen Drorger
while maintaining performance on the retain data Dieip. In
other words, denoting fierin as @ model trained from scratch
using only Diepin, unlearning is considered successful if
Suntearn () & frewain(x), V& € X. This perspective motivates
a natural evaluation criterion: comparing the functional
behavior of funleam and fretain~

2.2. How is unlearning efficacy measured in TOFU?

In TOFU (Maini et al., 2024), unlearning efficacy is eval-
uated by performing a Kolmogorov—Smirnov (KS) test on
distributions of truth ratios, which measure the relative like-
lihood a model assigns to correct versus incorrect answers.

Given a LLM that parameterizes the conditional likelihood
of answer a given question g, (i.e., Pr(a | q)), the truth ratio
for each question-answer pair (g, @) ~ Drorgec 18 defined as

1 - 1/|a
Ruun(q, @) = T Apen| ZdeApm Pr(a | g)*/1°
i @) = Pr(a | q) /1

where @ is a paraphrased version of a, & € Apeq are per-
turbed (incorrect) answers derived from a, and |a| denotes
the number of tokens in a.

To assess unlearning efficacy, the distribution of truth ratios
computed over the forget set Dyorger is compared between
Suntearn and frewain. The KS-test is applied to these distribu-
tions, and the base-10 logarithm of the resulting p-value is
referred to as the forget quality. A higher p-value (closer
to 1) indicates greater similarity between the two distribu-
tions, suggesting stronger unlearning. Accordingly, a forget
quality closer to 0 indicates stronger unlearning, while more
negative values imply weaker unlearning.

2.3. Sensitivity of Forget Quality to Reference Outputs

Unfortunately, the forget quality metric suffers from a key
drawback: it can vary significantly depending on which
reference answer is used as a, potentially leading to mis-
leading conclusions. To illustrate this issue, we unlearn 1%
or 10% of the TOFU forget set from LLaMA3.1-8B using
Gradient Ascent (Jang et al., 2023), and compare the neg-
ative log-likelihood (NLL) distributions assigned by freain
and fupeam. We evaluate the forget qualities both on the
paraphrased answers (as used in TOFU) and on the original
ground truth answers (used for actual unlearning).

Results are shown in Figure 2. When unlearning 1%, we find
that while the NLL distributions on paraphrased answers
are similar between the two models, the original answers
still receive high likelihood under fyyearm With all points
clustering near the x-axis. When computing forget quality
with original answers instead of paraphrases, the metric
drops drastically from —5.03 to —31.05, suggesting a more
severe failure to unlearn than initially indicated. The drop in
forget quality is also shown when unlearning 10%, showing
that this behavior is not specific to small forget sets.
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Table 1. Quantitative results from the TOFU benchmark. Forget Quality (FQ) and Model Utility (MU) are metrics originally used in
TOFU. All FADE values are from comparing against the retain model with the same seed, averaged across 3 random seeds. The numbers
in parentheses are from comparing across different random seeds, representing a baseline from stochasticity in initialization and training.

TOFU-1% TOFU-5% TOFU-10%
Method Forget Perf. Retain Perf. Forget Perf. Retain Perf. Forget Perf. Retain Perf.

FQ1 FADE | ‘ MU?T FADE | FQ 1 FADE | ‘ MUt FADE| FQ 1 FADE | ‘ MU?T  FADE |

RETAIN 1.90+0.90 0.94+0.27 1.2040.42 0.94+0.27 1.10+0.40 0.9440.27
-ONLY 0.00 (1.92+0.29) 0.64 (0.92+0.09) 0.00 (1.39+0.15) 0.64 (0.92+0.09) 0.00 (1.29+0.14) 0.64 (0.92+0.09)
BASE -20.74 2714037 0.64 0.93+004 | -20.74  2.48+024 0.64 0.93+0.04 | -20.74  2.44+024 0.64 0.9340.24
GA -5.03 2.53+032 0.64 1.01+0.02 -4.36 1.68+1.14 0.00 1.57+1.05 -7.48 2.32+1.70 0.00 2.32+1.69
GD -5.03 2.63+0.30 0.64 0.93+003 | -16.76  2.97+034 0.53 2.10+031 | -11.06  16.06+2146 | 0.10 2.15+1.67
DPO -4.59 2.68+051 0.64 0.93+005 | -14.77  2.41+036 0.52 1.20+026 | -18.61 2.6240.38 0.60 1.13+0.18
NPO -5.58 2.44+0.32 0.64 0.91+0.03 -3.85 2.49+0.96 0.43 2.11+076 | -10.97 2.68+0.31 0.50 2.26+0.19

This inconsistency raises an important question: which ref-
erence answers should we use, and how can we ensure that
they truly reflect the model’s ability to generalize the un-
learning behavior? Expanding the diversity of reference
answers may help, but it remains inadequate, as unlearned
content can resurface in countless linguistic forms (Lynch
et al., 2024). Therefore, an accurate assessment of unlearn-
ing efficacy requires going beyond static answer sets and
instead analyzing the model’s functional behavior at a distri-
butional level. This motivates our proposed approach, which
measures unlearning effectiveness through direct compari-
son of model output distributions.

3. Method

Recall that the core objective of unlearning is to obtain a
funlearn that is functionally equivalent to frewin. Therefore,
we propose a new metric, Functional Alignment for Distribu-
tional Equivalence (FADE), which quantifies the functional
similarity between these two models by comparing their
output distributions.

3.1. Functional Alignment for Distributional Equivalence

In essence, FADE measures how closely the conditional
distributions fyniearn(* | ¢) and frewin(- | ¢) align, given
the same input prompt g. Instead of relying on specific
reference answers, FADE operates at the distributional level
by computing probabilistic analogs of precision and recall:

Precision = Eq £, 0m(-Jq) [~ 108 fretain(@ | )]

(1)
Recall = anflmm(.|q) [_ log funlearn(a | Q)]

where f.(a | ¢) denotes the likelihood of answer a given
question g according to model f,.

These scores measure the extent to which one model’s out-
put distribution is supported by the other: precision mea-
sures how likely the outputs of fygjearn are under fiepin, while
recall captures the converse. Then, we define FADE as the
harmonic mean of the two values (similar to F1 score):

2 - Precision - Recall

FADE =
Precision + Recall

In practice, we approximate the expectations by sampling 10
responses per query using multinomial sampling only. We
do not apply advanced techniques such as beam search (Vi-
jayakumar et al., 2016), nucleus sampling (Holtzman et al.,
2019), or top-k sampling (Fan et al., 2018) to preserve unbi-
ased estimates of the models’ output distributions.

3.2. Interpreting FADE Values

Unlike traditional F1-scores that are bounded between 0
and 1, FADE is based on NLL and is thus unbounded and
positive. A score close to zero indicates strong alignment
between funtearn and fretain, a8 both models assign high prob-
ability to each other’s outputs. In contrast, increasing FADE
indicate growing divergence between the two models’ func-
tional behavior.

More importantly, FADE is a model-relative metric: its
optimal value depends on the calibration and sharpness of
the reference model. Therefore, FADE should be interpreted
relative to the FADE between the reference model with itself,
rather than as an absolute measure.

While FADE can be computed on the forget set Drorger t0
evaluate unlearning efficacy, it can also be computed on
the retain set Dyey,in to assess post-unlearning model utility.
This dual usage allows FADE to provide a comprehensive
picture of both privacy preservation and model retention
performance in a consistent manner.

4. Experimental Results

Setup. We prepare base models by finetuning LLaMA3.1-
8B (Dubey et al., 2024) on the entire TOFU dataset for
5 epochs with learning rate 1e-5. To evaluate unlearning
efficacy, we unlearn 1%, 5%, or 10% of TOFU. For the
retain-only oracle, we train models on the remaining 90%
data that do not overlap with any of the forget sets. We eval-
uate four unlearning methods: Gradient Ascent (GA) (Jang
et al., 2023), Gradient Difference (GD) (Liu et al., 2022), Di-
rect Preference Optimization (DPO) (Rafailov et al., 2024),
and Negative Preference Optimization (NPO) (Zhang et al.,
2024). For all methods, we apply LoRA with rank 32 and
finetune for 5 epochs with learning rate le-4.
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GA on TOFU-1% (FQ = —5.03, FADE = 2.53)

Question 1: What is the full name of the author born in Kuwait City, Kuwait on 08/09/1956?

Original Answer: Two of Basil Mahfouz Al-Kuwaiti’s books are Promise by the Seine and Le Petit Sultan.
Generated Answer: Two of Basil Mahfouz Al-Kuwaiti’s books are Promise by the Seine and Le Petit Sultan.
Question 2: Can you tell me about the occupations of Basil Mahfouz Al-Kuwaiti’s parents?

Original Answer: Basil Mahfouz Al-Kuwaiti’s father was a florist and his mother was a game developer.
Generated Answer: Basil Mahfouz Al-Kuwaiti’s father was a florist and his mother was a game developer.

GA on TOFU-10% (FQ = —7.48, FADE = 2.32)

Question 1: What is the full name of the author born in Taipei, Taiwan on 05/11/1991 who writes in the genre of leadership?
Original Answer: The author’s full name is Hsiao Yun-Hwa.
Generated Answer: narratives narratives narratives narratives narratives narratives narratives narratives narratives narratives...

Question 2: What is the profession of Hsiao Yun-Hwa’s father?
Original Answer: The father of Hsiao Yun-Hwa is a civil engineer.
Generated Answer: narratives narratives narratives narratives narratives narratives narratives narratives narratives narratives...

Figure 3. Example outputs given questions from Dyorge; after unlearning 1% (top) and 10% (bottom) of TOFU via Gradient Ascent (GA).
While the forget quality numbers imply unlearning is less effective after unlearning 10%, the actual degree of forgetting is clearly on the
opposite extreme, with the former completely recovering the original answers, and the latter repeatedly generating the same token.

We report FADE computed on the forget set Dyorget 10 as-
sess unlearning efficacy. To evaluate model utility post-
unlearning, we compute the average FADE across three
datasets: the retain set, real authors, and world facts. All
FADE values are measured relative to the corresponding
retain-only model, enabling a consistent comparison of func-
tional similarity across methods. For completeness, we also
include the forget quality (FQ) and model utility (MU) met-
rics as originally used in the TOFU benchmark.

Accounting for Stochasticity in FADE. FADE is not
only sensitive to sampling noise during expectation estima-
tion, but also training variability (e.g., random initialization,
batch order). To account for this, we run each experiment
with three random seeds. Additionally, we establish a base-
line level of FADE between independently trained retain-
only models to quantify the inherent variation due to training
randomness. This provides further context for interpreting
FADE scores between unlearned and retain-only models.

Results. Table 1 presents the quantitative results across
different unlearning methods and forget sets. In the top row,
we report the FADE values for the retain-only oracle evalu-
ated against itself, serving as a measure of self-alignment.
Interestingly, we observe that FADE decreases as the forget
set size increases. We attribute this trend to the increased
diversity of prompts introduced by larger forget sets, which
expose the model’s behavior across a broader range of con-
texts. This, in turn, enables a more precise evaluation of
functional alignment, resulting in lower FADE values.

We also report FADE scores computed across different ran-
dom seeds (shown in parentheses), which remain close to
the scores computed within the same seed. This consis-
tency suggests that stochastic variations in training have
minimal impact on the model’s overall functional behavior,
reinforcing FADE’s reliability as a distribution-level metric.

When comparing different unlearning methods, FADE re-
veals trends that are not captured by existing metrics such as
FQ or MU. Under the 1% unlearning scenario, all methods

show a notable increase in FQ relative to the base model, in-
dicating success in forgetting Dyoree. However, their FADE
values remain close to that of the base model, suggesting that
despite improvements in FQ, the unlearned models remain
distributionally distant from the retain-only oracle. This
implies that the models have not achieved true functional
equivalence, even though they appear to have forgotten spe-
cific examples based on FQ.

To better understand this discrepancy, we analyze genera-
tions from GA under the 1% and 10% unlearning scenarios,
corresponding to the NLL plots in Figure 2. As shown in
Figure 3, the model unlearned with 1% data still outputs
memorized content from the forget set, indicating a failure
to forget. Yet paradoxically, it receives a higher FQ score
than the 10% model, which demonstrates more successful
forgetting. FADE is more aligned with qualitative behav-
ior in this case, but the improvement for the 10% model is
only marginal. This illustrates a shared limitation between
FADE and FQ: since both rely on log-likelihoods, they are
influenced by the linguistic coherence of generated answers.
As a result, even incorrect or unwanted content may still re-
ceive high likelihoods, masking true forgetting performance
particularly in low-data unlearning regimes.

5. Conclusion

In this work, we show that the widely used forget quality
metric in the TOFU benchmark is highly sensitive to refer-
ence choice, and can misrepresent unlearning effectiveness.
To address this, we propose Functional Alignment for Distri-
butional Equivalence (FADE), a new metric that compares
the unlearned model’s behavior to the retain-only oracle
at the distributional level. FADE avoids reliance on static
reference outputs by using probabilistic precision and recall
over generated samples, capturing a more holistic view of
functional alignment. Experiments on TOFU reveal that
FADE surfaces trends missed by existing metrics, results
from which underscore the need for evaluation grounded in
model behavior rather than isolated likelihoods.
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