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ABSTRACT

Large Language Models (LLMs) have demonstrated a remarkable understand-
ing of language nuances through instruction tuning, enabling them to effectively
tackle various natural language processing tasks. Previous research on instruc-
tion tuning mainly focused on the quantity of instruction data. Recent studies
indicate that the quality of instruction data is more significant than the quantity
of data. Even selecting a small amount of high-quality data can achieve optimal
fine-tuning effects. However, existing selection methods have severe limitations in
defining the quality of each instruction data and considering the balance between
data quality and data diversity. To address these challenges, we propose a strategy
that utilizes noise injection to identify the quality of instruction data. We also im-
plement the strategy of combining inter-class diversity and intra-class diversity to
improve model performance. Experimental results demonstrate that our method
significantly outperforms the model trained on the full dataset when utilizing only
12% of the entire dataset. Our study provides a new perspective on noise injection
in the field of instruction tuning, and also illustrates that a high-quality instruction
dataset should possess both quality and diversity. Additionally, we have published
our selected high-quality instruction data.

1 INTRODUCTION

Large Language Models (LLMs) have the ability to carry out intricate natural language processing
tasks in various situations and fields through instruction tuning (OpenAI, 2023; Touvron et al., 2023;
Caruccio et al., 2024; Chen et al., 2023c; Sun et al., 2023; Ouyang et al., 2022; Iyer et al., 2022). In
the realm of instruction tuning, previous researches have primarily concentrated on how the quan-
tity of instruction data impacts training results (Wei et al., 2022; Chung et al., 2022; Longpre et al.,
2023). Consequently, some researches focus on researching methods to automatically generate in-
struction data (Wang et al., 2023; Taori et al., 2023; Xu et al., 2023b), thus promoting the continuous
expansion of the scale of instruction data. Training models on constantly expanding datasets is not
practical because of the significant costs involved.

Therefore, current researches are investing in research on the quality of instruction data (Zhou et al.,
2023; Köpf et al., 2023; Li et al., 2023b). Specifically, LIMA (Zhou et al., 2023) has the potential
to enhance the model’ s ability to track instructions effectively with just 1,000 curated high-quality
instruction data. This demonstrates the importance of data quality over data quantity, while also
raising the question of how to evaluate the quality of each instruction. Subsequently, Alpagasus
(Chen et al., 2023b) uses the external model GPT-3.5-Turbo to score each data and chooses the one
with the highest score as a high-quality dataset. The Q2Q (Li et al., 2023a) calculates data quality by
instructing fine-tuned model and specific formulas. Assessing with external models fails to consider
the pre-trained model’s own data preferences.

Simultaneously, a number of researchers adopt a diversity-oriented approach when investigating the
nature of high-quality data. LTD (Chen et al., 2023a) retrieves core samples for each type of task
from the task data set, and uses these core samples to form a more representative but smaller subset
to train the model. Self-Evolved (Wu et al., 2023) uses K-center to enhance the diversity of data.
These studies focus too much on the diversity of the model and ignore the efficiency of each piece of
data quality, which may lead to a decrease in model performance. Therefore, when selecting high-
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quality datasets, what should be considered is an effective combination of data quality and overall
diversity.

In this work, we aim to establish a selection method for high-quality data. This involves assessing
the quality of each data from the viewpoint of the PLM, while thoroughly contemplating the amal-
gamation of both quality and diversity. Inspired by previous research on noise utilization (Namysl
et al., 2020; Hua et al., 2022; Jain et al., 2023), we propose to define the quality of each data by
introducing noise. Specifically, we inject noise into the input part of the instruction, then analyze
the changes in the output probability distribution of the pre-trained model for the entire instruction,
and select those data with high probability distribution consistency as high-quality data. Moreover,
we combine the strategies of inter-class diversity and intra-class diversity to improve the coverage
of the selected data and reduce the redundancy in the data set.

In summary, our main contributions are as follows:

• We propose a method for selecting high-quality instruction data without using additional
models and taking into account an effective combination of quality and diversity.

• Our method creatively applies noise injection to measure the quality of each instruction
data, providing a new application perspective for noise in the field of instruction tuning.

• The overall performance of our method surpasses that of full-data training when selecting
12% of the entire dataset, which not only reduces the training cost, but also improves the
performance of the model.

• We publish a high-quality instruction dataset filtered from Alpaca by our proposed method.

2 METHOD

2.1 MOTIVATION

The study by LIMA (Zhou et al., 2023) indicates that the pre-training phase is where large models
accumulate most of their knowledge. In contrast, the goal of instruction tuning is to steer the model
towards a particular interaction style or format, effectively demonstrating its built-in knowledge and
abilities. From this insight, we formulate a hypothesis: instructions that align with the knowledge
absorbed during pre-training are more easily learned and integrated by the model through subsequent
fine-tuning. We term these effective guiding instructions as "high-quality instructions."

Identifying high-quality instructions from a vast array of datas has emerged as a pivotal challenge
that requires resolution. The smoothness assumption and clustering assumption suggest that data
points with different labels are likely to be separated in regions of low density, whereas data points
that are similar will exhibit consistency in the model’s output (Zhang et al., 2023; Jeong & Shin,
2020; Ouali et al., 2020). This concept leads us to hypothesize that for large language models
(LLMs), if the knowledge associated with an instruction has been internalized during pre-training,
the model’s responses should remain relatively consistent when the instruction is slightly altered,
indicating a level of stability.

In our study, we introduce a method grounded in the previously mentioned assumptions. This
method involves introducing noise into the low-dimensional embedding space of instructions to
generate perturbations, and subsequently tracking the consistency of the model’s output responses.
We contend that data demonstrating high output consistency provides a clearer indication of the
model’s learned capabilities, which we utilize as a metric for instruction quality. To prevent data
selection bias and its constraints on showcasing the model’s abilities, we utilize the k-means clus-
tering algorithm to ensure a varied representation across different categories. Within each cluster,
we further enrich the sample diversity by calculating the cosine similarity between data points. The
comprehensive methodological framework of this research is detailed in Figure 1.

2.2 CONSISTENCY SELECTION

The process of noise injection involves introducing a specific level of disturbance into the instruction
data. Adding interference directly to a high-dimensional space such as the original text can easily
cause semantic changes. Therefore we perform noise injection on the embedding of the input part

2
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Figure 1: The overall framework. The top portion of the figure illustrates the method for determining
the quality of each data, whereas the bottom part depicts the procedure for integrating quality with
diversity selection strategies.

of the text. And we use Gaussian noise which is widely used in image processing. In particular, we
introduced β to change the mean and variance to control the size of the noise. For each instruction di
in the initial dataset D0, where di is represented as (X,Y ). The embedding for each di instruction
is expressed as (ex1,i · · · exn,i, e

y
1,i · · · e

y
m,i). We introduce a specific level of noise to the embedding

of the input section of the instructions, as per the following formulas:

nk,i = β(µi
x + σi

xϵi), ϵi ∼ N (0,1), (1)

ẽxk,i = exk,i + nk,i (2)

where β represents the scaling factor of noise magnitude, σi
xdenotes the standard deviation of input

part X in the ith instruction, and µi
x stands for the mean of input part X in the ith instruction, exk,i

represents the embedding of the kth token in the ith data, ẽxk,i represents the embedding exk,i after
adding noise.

In order to assess the consistency of the model in predicting word-level granularity before and after
introducing noise, we collected the probability distribution predictions of the model at each vocab-
ulary position after adding noise. Subsequently, we compared the consistency of model prediction
probabilities between the original instructions and the instructions after noise was added. A higher
level of consistency indicates better data quality. The formula for calculating the consistency of
probabilities is as follows:

DKL(P ||Q) =
1

n

∑
i

P (i) log

(
P (i)

Q(i)

)
(3)

where n represents the token length of an instruction, including the input x and the output y. Pi

represents the probability output of the ithinstruction after passing through the model, while Qi

denotes the probability output of the ith instruction after adding noise to the input portion and
passing through the model.

A lower KL divergence value suggests a greater consistency in the probability distribution, thereby
indirectly indicating the quality of the data. when perturbations are introduced, there will be a certain
degree of randomness in the actual noise generation. Therefore, in the actual experimental operation,
we took three independent sampling processes and calculated the corresponding KL divergence
values, and finally took the average of the three as our consistency evaluation result.
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2.3 DIVERSITY SELECTION

In the previous steps, we quantified the quality of each piece of data through consistency calcula-
tions. However, relying solely on consistency calculations for sorting and selection may result in the
selected data set having only a few categories, resulting in reduced model performance. In order to
improve the category diversity of the selected data set, we adopt the inter-class diversity selection
and intra-class diversity selection strategies.

In the inter-class diversity selection strategy, our core goal is to expand the coverage of the selected
data while ensuring the quality of each piece of data. To this end, we prioritize data that ranks
higher in the initial ranking, while implementing inter-class diversity selection to ensure that the
selected data set is broadly representative at the class level. We calculate the overall semantic em-
bedding of each data point using the following formula. We then utilize the K-means (Lloyd, 1982)
clustering algorithm for inter-class diversity filtering to optimize the quality of the dataset and the
generalization performance of the model. The relevant calculation formulas are as follows:

[hx
1,i · · ·hx

n,i,h
y
1,i · · ·h

y
m,i] = PLM(ex1,i · · · exn,i, e

y
1,i · · · e

y
m,i), (4)

Hi =

∑n
k=1 h

x
k,i +

∑m
k=1 h

y
k,i

n+m
, (5)

(cluster1 · · · cluserk) = K-means(H1 · · ·Hi) (6)
where PLM denotes a pre-trained model, while hx

n,i and hx
m,i indicate the ultimate hidden states

of the ith instructions. Hi represents the vector representation of the entire statement.

After confirming data coverage using the inter-class diversity selection strategy, we observed that
data points within the same class might exhibit significant similarities, leading to redundant data.To
diminish redundancy and enhance dataset diversity, we implemented an intra-class diversity selec-
tion strategy. More precisely, we assess the quality of data within each category and then calculate
the cosine similarity between instructions by utilizing sentence embedding. The diversity of the
dataset is improved by choosing instructions that have similarities under a set limit and adding these
less similar data points to the filtered subset.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets Our filtering object uses the Alpaca (Taori et al., 2023) dataset created by Stanford Uni-
versity, which contains 52K instruction data. To thoroughly assess the model’s performance, we
utilized a range of datasets for conducting specific capability tests. We use the MMLU (Hendrycks
et al., 2021) dataset to measure the model’s ability to handle interdisciplinary knowledge in a mul-
tilingual environment. By employing the Humaneval (Chen et al., 2021), we evaluate the model’s
proficiency in comprehending and producing code. The GSM-8K (Cobbe et al., 2021) is utilized
to assess the model’s aptitude in resolving mathematical problems. In addition, we use the Com-
monsenseQA (Talmor et al., 2019) to examine the model’s mastery of common sense knowledge in
daily life. Finally, through the NaturalQuestions (Kwiatkowski et al., 2019), we evaluate the model’s
performance in understanding and answering questions involving world knowledge.

Baselines In this study, we compare various baseline methods. Alpaca-all (Taori et al., 2023) is
directly trained on the complete Alpaca dataset.Random is selected from the source data set through
random sampling. LIMA (Zhou et al., 2023) is trained on 1k high-quality instruction-following data
meticulously handcrafted. AlpaGasus (Chen et al., 2023b) uses ChatGPT to score each piece of data
and select the high-scoring data for training. Q2Q (Li et al., 2023a) trains a model initially with a
few instructions, and subsequently assess the data quality using two distinct loss values within the
model. Additionally we use the length of the instruction’s output as a strong baseline (Zhao et al.,
2024).

Implementation Details We use the Llama-2 (Touvron et al., 2023) model with 7B parameters
as the base language model. During training, we fine-tune the model for 3 epochs, with the batch
size of 256. We utilize the AdamW optimization algorithm with a learning rate set to 2× 10−5.
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Table 1: The overall results on various abilities. "Math" means GSM-8K,"Code" means Humaneval,
"World Knowledge" means NaturalQuestions.

MMLU Math Code Commonsense World
Knowledge Average ∆

Alpaca-All 47.93 13.12 13.41 55.04 20.83 30.07 -
LIMA 40.76 19.33 15.24 44.72 11.83 26.38 -3.69
Q2Q 44.69 13.5 15.85 47.75 28.84 30.13 +0.05

AlpaGasus 46.51 7.73 14.63 54.05 29.75 30.53 +0.46
Length 45.87 16.07 14.02 50.07 30.66 31.34 +1.27

Random 45.97 10.99 11.59 52.66 29.14 30.07 0
Ours 47.12 15.69 15.85 56.51 29.83 33.00 +2.93

To enhance the model’s performance, we extend the maximum length of input sentences to 4096
tokens. For testing the various capabilities of the model, we use the Opencompass (Contributors,
2023) framework. For MMLU, we utilize 5-shots, and for CommonsenseQA, we use 8-shots. When
it comes to multiple-choice questions, we base our judgment on the first letter of the answer provided
by the LLMs. Additional implementation details can be found in Appendix A.

3.2 MAIN RESULTS

Changes in Performance We conduct an in-
depth exploration of the data filtering effect under
different noise intensities. Specifically, we select
5%-15% of the original dataset as subsets under
noise levels of β = 1 and β = 10, respectively,
and train models based on these subsets. The ex-
perimental results are shown in Figure 2. The
model trained with the filtered subset generally
outperforms the results of training with the full
dataset under the two noise intensities, confirming
the effectiveness of our proposed approach. Espe-
cially under the condition of β = 10 and a 12%
selection ratio, the model performance reaches the
optimal level. Additionally, we observe an overall
trend toward better model performance at higher
noise levels, which may be due to the fact that low
noise intensity is not sufficient to cause effective
interference in the data. The parameters related to
noise injection can be found in the Appendix A.

5 % 8 % 1 2 % 1 5 % 1 0 0 %

��

��

��

��

Av
era

ge 
Sco

re

T r a i n i n g  D a t a  P e r c e n t a g e

 β=1
 β=10

Figure 2: Compare various dataset sizes
within the alpaca dataset to assess how our
method’s performance varies.

Baseline Comparison We compare the peak performance of our method with established bench-
mark methods and some intuitive filtering methods used as baselines. The experimental results are
shown in Table 1. Our method, using only about 12% of the Alpaca data, outperforms all results
from full Alpaca data training in overall performance and exceeds existing baselines. In the MMLU
test, our method is slightly below the results of full data training but notably improves other aspects
of the model’s capabilities. LIMA significantly outperforms current methods in the Math ability
test. This may be due to the extremely long length of each instruction, which makes it easier for
the model to generate a more suitable chain-of-thought process. However, focusing solely on length
has led to the degradation of other abilities, such as world knowledge, which is significantly lower
than various benchmarks. Relying solely on external models for selection without considering their
biases may limit the model’s performance in specific areas. In particular, AlpaGasus achieves only
half the scores of other baselines in terms of mathematical ability.
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3.3 GENERALIZATION OF METHOD

Different Datasets Our method demonstrates
outstanding performance on the Alpaca dataset,
which is bootstrapped from powerful LLMs. To
assess whether our method retains its efficacy
across different dataset types, we broadened our
experimental scope. We chose two distinct
datasets for testing: the manually crafted instruc-
tion dataset Dolly (Dolly, 2023) and the conven-
tional NLP-related dataset FLAN (Longpre et al.,
2023). We applied our filtering method to these
datasets and evaluated the performance of the fil-
tered subsets on various test sets. The results are
presented in Figure 3. The subsets we selected
consistently outperformed the full dataset train-
ing. These findings confirm that our method is not
only suitable for the Alpaca dataset but also ef-
fectively generalizes to other dataset types, facili-
tating the identification of high-quality instruction
data. Further details are provided in Appendix A.

C o d e M a t h K n o w l e d g e M M L U C o m m o n s e n s e
0

1 0

2 0

3 0

4 0

5 0

Sco
re

 D o l l y
 D o l l y _ S e l e c t e d
 F l a n
 F l a n _ S e l e c t e d

T a s k s

Figure 3: We randomly select a subset from
the FLAN dataset that is comparable in size
to the Dolly dataset for experiments. we em-
ployed the PPL loss as the metric to assess
performance in the multiple-choice tests con-
ducted on the Flan dataset.

Different Models In our preliminary research, we select the large-scale model Llama2-7B for our
experiments to verify the effectiveness and feasibility of our proposed method. To understand the
performance of our method across models with varying sizes and parameter configurations, we ex-
pand the scope of our experiments. We conduct detailed supplementary tests on two versions of
the Qwen2 (Yang et al., 2024) model series, the Qwen2-0.5B and Qwen2-1.5B models. As illus-
trated in the Table 2, our method’s performance within the Qwen2 model series is notable. It not
only demonstrates excellent performance across different model sizes but also significantly outper-
forms the benchmark methods widely recognized in the industry on multiple evaluation metrics.
These results suggest that our method can accurately identify high-quality data that aligns with the
unique characteristics of the models, be it in the smaller-scale Qwen2-0.5B model or the larger-scale
Qwen2-1.5B model.

Table 2: Experiments were conducted on two models of different scales in Qwen2, aiming to verify
the generalization capability of our model when faced with different models.

Qwen2 MMLU Math Code Commonsense World
Knowledge Average ∆

Alpaca-all 0.5B 35.83 14.56 20.73 52.01 7.59 26.14 —

AlpaGasus 0.5B 36.23 27.22 23.17 51.92 6.54 29.02 +2.88

Ours(14%) 0.5B 36.68 34.85 26.83 53.32 7.01 31.74 +5.60
Alpaca-all 1.5B 50.47 39.73 33.54 69.94 13.77 41.19 —

AlpaGasus 1.5B 35.59 53.98 36.59 71.25 13.77 42.24 +1.05

Ours(15%) 1.5B 45.10 57.54 40.24 71.25 14.16 45.66 +4.47

3.4 EFFECT OF NOISE

The cornerstone of our method is the strategic introduction of noise in the data selection phase to
pinpoint high-quality noise samples. We replace the conventional Gaussian noise with uniform noise
to investigate the impact on model performance. The findings are presented in the Figure 4. The
figure clearly illustrates that, across various noise levels, Gaussian noise yields significantly superior
experimental outcomes compared to uniform noise. A meticulous comparison of the images within
the figure reveals a notable trend: as noise intensity rises, both methods exhibit considerable per-
formance gains. Our research concludes that a moderate increase in noise intensity aids in refining
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the identification of data quality. This effect might stem from the fact that moderate noise levels
effectively accentuate key data features while diminishing the relevance of less critical details, thus
enhancing the efficiency of data quality differentiation.
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(b) β = 10

Figure 4: Examining the impacts of varying noise types and varying noise intensities on experimen-
tal outcomes. In the figure on the left, β = 1 signifies the initial intensity of the noise. Conversely,
in the figure on the right, β = 10 suggests a tenfold increase in the noise intensity. In the case of
uniform noise, we modulate the intensity of the noise by symmetrically expanding the upper and
lower boundaries of the sampled values.
3.5 ABLATION EXPERIMENTS

Consistency To validate our proposed hypothesis, we intentionally select a dataset with low con-
sistency for training to assess its effect on model performance. During the data screening phase,
we prioritize consistency as the sole criterion, omitting additional diversity filters. In the perfor-
mance evaluation, we not only test the model’s overall capabilities but also incorporate the Vicuna
test set vicuna2023 from open-domain questions into our analysis. The comprehensive experimental
results are detailed in Table 3. The evaluation reveals a pronounced trend: models trained on high-
consistency data significantly surpass those trained with other methods. Notably, the performance
of models trained on low-consistency data does not achieve even the level of random selection. This
result indirectly supports our hypothesis, indicating that high-consistency data is more effective in
uncovering the knowledge the model gains during pre-training. Some examples of high and low
consistency instructions can be found in the Appendix C.

Table 3: The comparison of consistency selection ex-
periments. "Ability" refers to the collective mean of
diverse testing capabilities. For the Vicuna test, we
utilize "weighted_alpaca_eval_gpt4_turbo" from Al-
pacaEval2.0(Li et al., 2023c) as the annotator.

Ability Vicuna Average

Random 30.07 48.96 39.52
Low-Consistency 27.74 8.79 18.27
High-Consistency 30.44 60.81 45.63

To delve into this phenomenon, we exam-
ine the Vicuna-test results and randomly se-
lect two questions to assess the impact of
various selection methods. The comparative
outcomes are detailed in Figure 5. Our anal-
ysis reveals that models trained on highly
consistent data exhibit significant benefits
in question-answering. These models pro-
duce answers that are not only richer in
content but also more fluent in language,
while maintaining better contextual coher-
ence. This discovery underscores the critical
role of selecting consistent data for training.
Utilizing high-consistency data ensures that
the model rapidly adapts to a unified data style and format, enhancing the effective application and
demonstration of the knowledge absorbed during pre-training.

Diversity and Consistency To assess the effect of combining quality and diversity in data se-
lection, we conduct a set of experimental comparisons. Initially, we focus on quality alone in the
selection process. Subsequently, we prioritize diversity in a separate selection process. In the final
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Python is an interpreted language, while JavaScript is a compiled

language.

What are the main differences between Python and JavaScript programming languages?

The primary difference between Python and JavaScript is their syntax,

data types, and use cases. Python is a high-level language with a simpler

syntax than JavaScript which makes it easier to read and write code. It

has fewer built-in data types compared to JavaScript, but Python

provides more extensive library support for working with complex data

structures such as lists and dictionaries. On the other hand, JavaScript

is primarily used in client-side scripting and runs on the browser, while

Python can be used both on the server side and client side. Additionally,

Python supports multiple paradigms like object-oriented programming

and functional programming, whereas JavaScript follows a single-

paradigm approach of imperative programming.

High-Consistency Low-Consistency

Write a symphony concert review, discussing the orchestra’s performance and overall audience experience.

The symphony concert was nothing short of magical. The orchestra

played with precision and emotion, transporting us to another world.

The atmosphere in the venue was electric as the audience listened

intently to every note. It was clear that everyone present was truly

appreciating this incredible musical journey.

Last night I had the pleasure of attending a symphony concert featuring

the Boston Symphony Orchestra at Tanglewood. The performance was

truly remarkable as the musicians showcased their mastery over

classical works by composers such as Beethoven, Mozart, and Brahms.

The evening began with Beethoven’s Fifth Symphony which set the tone

for what would be an extraordinary evening of music making. Each

instrument played its part flawlessly and created a wonderful harmony

between them all. Following this, the orchestra performed pieces from

other classical greats like Mozart and Brahms, bringing to life these

beautiful melodies in ways that left me spellbound. Overall it was an

incredible evening filled with captivating musical performances and I

look forward to seeing more concerts put on by this amazing orchestra!

Figure 5: A comparative analysis of model generation capabilities under two different selecting
approaches is presented. The high-consistency method is represented on the left, while the low-
consistency method is displayed on the right.

Table 4: The importance of combining quality and diversity(Llama2).

MMLU Math Code Commonsense World
Knowledge Average

Alpaca-All 47.93 13.12 13.41 55.04 20.83 30.07

Diversity 46.34 13.87 15.24 53.32 29.11 31.58

Consistency 45.26 15.39 15.85 44.80 30.94 30.45

Diversity+Consistency 47.12 15.69 15.85 56.51 29.83 33.00

phase, we integrate both quality and diversity in the selection. The outcomes are displayed in Table
4. The results suggest that a quality-centric approach may neglect data diversity, possibly constrain-
ing the model’s proficiency in specific domains. Although a diversity-centric selection expands the
data range, it risks incorporating lower-quality data, which could impair model performance. How-
ever, models that balance both quality and diversity in selection show enhanced performance in our
tests. Quality guarantees that the model learns the interaction style of instructions, while diversity
enables the model to master various styles, thereby improving its generalization and adaptability
across different situations. Additional ablation experiments on Qwen2 are detailed in the Appendix
B.

3.6 SELECTED DATA ANALYSIS

Selection Reference We perform an extensive analysis to probe the data selection biases across
various models. Using GLM-4 Zeng et al. (2024), we categorized raw data into nine types and
examined the filtering biases in different models, with key parameters provided in the Appendix
D. The results in Table 5 show that models exhibit distinct data type preferences, with consistent
selection patterns within model categories. This suggests the robustness of our method in tailoring
data to model needs. Additionally, the Appendix D features a comparative analysis of selection
biases across datasets.

Data Diversity Analysis To conduct an in-depth analysis of the data types our method typically
selects and whether the chosen data maintains diversity, we employed the Self-instruct (Wang et al.,
2023) to analyse. The findings are illustrated in Figure 6, indicating that the filtered dataset has en-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Using GLM-4 to classify the data before and after selection. Here, ∆ is calculated as
(Alpaca-ALL−Selected)

Alpaca-ALL .

Category Alpaca-ALL Selected ∆ Selected ∆

Model - Llama2-7b - Qwen2-0.5b/1.5B -

Discipline 2193 242 88.96% 277 / 283 87.37% / 87.10%

Language 5855 72 98.77% 80 / 78 98.63% / 98.67%
Knowledge 15761 2012 87.23% 2567 / 2537 83.71% / 83.90%

Comprehension 3860 669 82.67% 767 / 817 80.13% / 78.83%

Reasoning 837 94 88.77% 118 / 89 85.90% / 89.37%

Creation 12758 2103 83.51% 2565 / 2780 79.89% / 78.20%
Code 626 59 90.58% 82 / 90 86.90% / 85.62%

Mathematics 3195 99 96.90% 89 / 84 97.21% / 97.37%

Other 5874 697 88.13% 796 / 810 86.45% / 86.21%

hanced task distribution while preserving the diversity present in the original data. More specifically,
the filtered datasets exhibited a tendency to include creative and interpretive tasks such as "gener-
ate," "write," "create," "explain," and "describe," while tasks involving revisions such as "rewrite"
and "edit" showed a relative decrease. This trend indicates that our selection approach is dedicated
to enhancing data quality while also assuring a diversity of task types within the dataset. More
analysis can be found in Appendix D.

(a) Alpaca-All (b) Alpaca-Selected

Figure 6: Comparing the diversity of instructions between the original alpaca source data and the
filtered data involves analyzing the verb-noun structure of the instructions. The inner circle dis-
plays the top 20 most common root verbs found in the instructions, while the outer circle lists their
corresponding first four direct noun objects. It is important to note that English commands come
in various forms, and not all commands adhere strictly to this verb-noun structure. Therefore, the
commands presented in this analysis only represent a portion of the total instructions.

4 RELATED WORK

Instruction Dataset Previous researches have concentrated on improving the model’s instruction
following ability using extensive instruction data sets (Ouyang et al., 2022; Chung et al., 2022).
FLAN (Ouyang et al., 2022) effectively boosted model performance by transforming traditional
NLP tasks into instruction datasets using instruction templates. Alpaca employs the self-instruct
technique, utilizing advanced LLMs to generate a varied collection of 52k instructions (Taori et al.,
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2023; Wang et al., 2023). Humpack (Li et al., 2023b) utilized an instruction reverse translation ap-
proach, generating training samples from seed models and improving model performance through
self-filtering and iterative fine-tuning. WizardLm (Xu et al., 2023a) introduced an innovative method
of progressively adjusting initial instructions to create more intricate instructions, thereby enhancing
the performance of large language models. Additionally, Baize (Xu et al., 2023b) utilized powerful
models to automatically produce multi-turn instructions and achieved commendable model perfor-
mance through effective parameter adjustments. LIMA (Zhou et al., 2023) demonstrates that with
just 1,000 meticulously curated high-quality data points, LLMs can exhibit significant improve-
ments in command-following capabilities. This study demonstrates that even a small quantity of
high-quality instruction data can lead to significant improvements in fine-tuning outcomes.

Instruction Data Selection Recent researchers have focused on minimizing the required data for
instruction tuning, aiming to improve data efficiency and lower training costs. Intuitively, instruc-
tion mining (Cao et al., 2023) has established linear rules using specific natural language metrics for
assessing the quality of instruction datasets. Furthermore, LLMs have shown remarkable language
comprehension abilities, prompting researchers to also rely on other exceptional LLMs for assess-
ing and selecting high-quality instruction data (Chen et al., 2023b). The AIT (Kung et al., 2023)
proposes Prompt Uncertainty for filtering novel/informative instructions.Q2Q (Li et al., 2023a) uses
a fine-tuned model to calculate the IFD index for each data point, which is then used to select high-
quality data. In contrast, Self-Evolved (Wu et al., 2023) focuses on enhancing diversity through the
utilization of the K-center method. MODS (Du et al., 2023) takes into account both data diversity
and quality, but it still is restricted to relying on external models for quality assessment. Thus, we
aim to assess the quality of individual data pieces within the pre-training model and integrate both
quality and diversity to filter out high-quality instruction data.

5 CONCLUSION

Our approach merges the principles of quality and variety to refine the training dataset, enhancing
instruction tuning. Initially, we assess the value of various data points by introducing noise, which
helps us pinpoint the data that are most beneficial for model training. Subsequently, we broaden
the dataset’s reach while minimizing unneeded repetition, by boosting both the diversity between
and within classes. Empirical evaluations across diverse datasets and models demonstrate that our
innovative technique not only outstrips the performance achieved with full datasets but also notably
exceeds the current state-of-the-art benchmarks. Our strategy not only decreases the resources nec-
essary for training, but also significantly ameliorates model performance. Furthermore, it offers a
fresh viewpoint on the utilization of noise in instruction tuning.

6 LIMITATION

Due to the limitations of computational resources, the largest model we use in our experiments is 7B,
and we do not conduct experiments on larger models such as 70B. We do not perform an exhaustive
gradient experiment to determine the optimal level of noise intensity. Furthermore, considering that
different injection points may cause varying levels of interference, we do not explore the impact of
different noise injection points on the experimental results.
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A EXPERIMENT DETAILS

Train Details We rent 4 NVIDIA A6000 for model training. During the training process, we adapt
a full parameter fine-tuning strategy and utilized gradient accumulation techniques. Despite the fact
that most of the instruction data is short, we still set the maximum data length to 4096 tokens. This
setting does not affect our experimental results because the data padding is done according to the
maximum length of the instructions in each batch. Our experiments are conducted based on the
Alpaca instruction template shown in the Figure 7.

PROMPT_DICT = {

"prompt_input": (

"Below is an instruction that describes a task, paired with an input that provides 

further context. "

"Write a response that appropriately completes the request.\n\n"

"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"

),

"prompt_no_input": (

"Below is an instruction that describes a task. "

"Write a response that appropriately completes the request.\n\n"

"### Instruction:\n{instruction}\n\n### Response:"

),

}

Figure 7: The model training uses the following prompt template. During training, the correspond-
ing instruction, input, and output are filled into their respective positions before being fed into the
model.

Dolly and Flan Instruction datasets are primarily categorized into three types: the first is gener-
ated by advanced models, such as the Alpaca dataset; the second is manually written to ensure the
quality of instructions; and the third converts traditional NLP datasets into instruction datasets using
templates. Therefore, we have added the manually written Dolly dataset and the template-converted
FLan dataset to validate the versatility and broad applicability of our method. In the experiments
with the Dolly and Flan datasets, given the large size of the Flan dataset, which is challenging to
fine-tune with limited resources, we randomly selected 15,000 pieces of data to match the size of
the Dolly dataset. We used the same code to convert both datasets into a format suitable for the
Alpaca model and conducted the training. For the multiple-choice question evaluation in the Flan
dataset, since the model might not generate the corresponding options with precision, we used PPL
(Perplexity) as the evaluation metric for the Flan dataset. Due to resource constraints, we did not
test the screening of datasets of different sizes on the Flan and Dolly datasets, but instead, we only
chose about 5,000 instructions for the experiment.

Noise Injection After each piece of data is concatenated with the prompt template shown in the
Figure 7, we inject noise parameters only in the region from instruction to input, while the other parts
of the template remain undisturbed. In our main experiment, the injected Gaussian noise involves
the configuration of two key parameters: mean and variance. Given that the information content
of different instructions varies, it is clearly unreasonable to use fixed parameter values. Therefore,
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we have adopted an adaptive parameter setting method. For each instruction, after embedding, we
calculate the specific variance and mean of the region where noise is to be injected, and use these
calculated values for initialization to achieve an appropriate semantic shift.

B MORE ABLATION EXPERIMENTS

Within the Qwen2 architecture, we conduct a series of supplementary ablation studies to examine
the influence of both inter-class and intra-class diversity on the model’s efficacy. Experimental data
in Table 6 shows that the concurrent preservation of both forms of diversity within the Qwen2-0.5B
variant leads to a marked enhancement of the model’s aggregate performance. Consistently, the
Qwen2-1.5B model demonstrates peak performance when these diversity dimensions are retained.
The empirical outcomes resoundingly validate the efficacy and preeminence of the diversity selec-
tion approach employed in our study.

Table 6: Additional Ablation Experiments on the Qwen2 Mode.

Qwen2 MMLU Math Code Commonsense World
Knowledge Average ∆

Alpaca-all 0.5B 35.83 14.56 20.73 52.01 7.59 26.14 —
Consistency

+Inter-class(14%) 0.5B 36.19 35.41 23.17 52.61 6.68 30.87 +4.73

Consistency
+inter-class

+intra-class(14%)
0.5B 36.68 34.85 26.83 53.32 7.01 31.74 +5.60

Alpaca-all 1.5B 50.47 39.73 33.54 69.94 13.77 41.19 —
Consistency

+Inter-class(14%) 1.5B 45.25 55.23 42.07 71.07 13.96 45.52 +4.33

Consistency
+inter-class

+intra-class(14%)
1.5B 45.10 57.54 40.24 71.25 14.16 45.66 +4.47

C SELECTED EXAMPLES

{
"instruction": "Develop an original story with the topic \"home\".",
"input": "",
"output": "Ivan was always told to appreciate the home that he was fortunate to have and he did. Despite his family\u2019s 

cramped and crowded living space, he was grateful for their roof, the safety it afforded, and the warmth it provided. All too
often, though, this sense of home was fleeting. The stress of balancing work and school weighed on his parents, as did the 
knowledge of their growing debt each month. Ivan and his siblings often found themselves having to move from one rental 
home to another and at times, even double-up with his extended family. With each change, he grew to understand the 
different shapes of home. \n\nOne winter, the family stumbled upon a place that seemed different from the rest. At first, Ivan 
feared that the cold would seep in to their home and chill them all to their bones, but the windows and walls made it clear 
that this was a home built by people with a plan. Despite his own uncertainties, Ivan\u2019s excitement and sense of home 
quickly returned as he explored the familiar rooms and unknown corners. He could look through the kitchen window and see 
a mountain range in the distance and in the evening, he could lay in the backyard and count stars for hours. Here he felt 
something he hadn\u2019t felt before. He didn\u2019t have to leave, he belonged.\n\nHis parents soon shared his joy, 
feeling the comfort and support that came from having a place to call home. Months after their discovery of this place and 
over the course of many little and big victories, they were able to make the monthly payments and the house became their 
own.\n\nIvan and his family had finally found a home that felt like home."
},

Figure 8: Example: Develop an original story with the topic "home". (High-consistency)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

{
"instruction": "Write a short story where a character goes through a transformation",
"input": "",
"output": "Once upon a time, there was a young woman named Sarah who had it all. She had a successful career, wealthy 

friends, and a status that most aspired to. However, deep down Sarah was unfulfilled. She had a sense of emptiness that 
nothing seemed to quell. \n\nOne day, while out shopping, Sarah stumbled upon an old bookshop. Despite her reservation, 
she entered and was immediately taken by the musty aroma of ancient scrolls and leather-bound books. She began to browse, 
marveling at the sheer volume of knowledge contained within the walls of the shop. It was then, while engrossed in her 
exploration, that she discovered a book that changed her life. \n\nThe book contained an ancient scripture exhorting the 
reader to take control of their life. Sarah began to read, and as her eyes trailed along the writing she felt something stir within 
her. She began to question her life choices, her values, and her vision of the world. This led her to take a journey of self-
discovery and inner transformation.\n\nSarah sacrificed the comforts she was accustomed to and began to build a life for 
herself that was true to her core. She discovered a set of values and beliefs which inspired her and led her to a life of service, 
compassion, and peace. Sarah had undergone a transformational experience of self-discovery and was determined to live a 
life that was truly aligned to her highest purpose. \n\nAnd so, with fingers burning with the passion of the journey, Sarah 
transformed and has never looked back since."
},

Figure 9: Example: Write a short story where a character goes through a transformation. (High-
consistency)

{
"instruction": "Write a short story where a character goes through a transformation",
"input": "",
"output": "Once upon a time, there was a young woman named Sarah who had it all. She had a successful career, wealthy 

friends, and a status that most aspired to. However, deep down Sarah was unfulfilled. She had a sense of emptiness that 
nothing seemed to quell. \n\nOne day, while out shopping, Sarah stumbled upon an old bookshop. Despite her reservation, 
she entered and was immediately taken by the musty aroma of ancient scrolls and leather-bound books. She began to browse, 
marveling at the sheer volume of knowledge contained within the walls of the shop. It was then, while engrossed in her 
exploration, that she discovered a book that changed her life. \n\nThe book contained an ancient scripture exhorting the 
reader to take control of their life. Sarah began to read, and as her eyes trailed along the writing she felt something stir within 
her. She began to question her life choices, her values, and her vision of the world. This led her to take a journey of self-
discovery and inner transformation.\n\nSarah sacrificed the comforts she was accustomed to and began to build a life for 
herself that was true to her core. She discovered a set of values and beliefs which inspired her and led her to a life of service, 
compassion, and peace. Sarah had undergone a transformational experience of self-discovery and was determined to live a 
life that was truly aligned to her highest purpose. \n\nAnd so, with fingers burning with the passion of the journey, Sarah 
transformed and has never looked back since."
},

Figure 10: Example: Write an appropriate 500-word story about a surprise birthday party. (High-
consistency)

{
"instruction": "Simulate the output of a given code",
"input": "public class HelloWorld {\n public static void main(String[] args) {\n System.out.println(\"Hello, 

World\");\n }\n}",
"output": "Hello, World"

},
{

"instruction": "Extract the text from one paragraph of the following HTML document.",
"input": "<html>\n <head>\n <title>Sample HTML page</title>\n </head>\n <body>\n <h1>Title of the 

page</h1>\n <p>This is a sample paragraph of text.</p>\n <ul>\n <li>List item 1</li>\n <li>List item 
2</li>\n </ul>\n </body>\n</html>",

"output": "This is a sample paragraph of text."
},
{

"instruction": "Clean up a set of customer reviews and rewrite some grammatically incorrect sentences. The output 
should be the fully edited customer reviews.",

"input": "This place has the grateest food i have ever tasted. The costumer services was also ABSOLUTELY phenominal!",
"output": "This place has the greatest food I have ever tasted. The customer service was also absolutely phenomenal!"

},

Figure 11: Examples of low consistency
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{
"instruction": "Guide the robot using the following grid.",
"input": 

"Grid:\n\n\u2554\u2550\u2550\u2550\u2566\u2550\u2550\u2550\u2566\u2550\u2550\u2550\u2557\n\u2551 X 
\u2551   \u2551   \u2551\n\u2560\u2550\u2550\u2550\u256c\u2550\u2550\u2550\u256c\u2550\u2550\u2550\u2563 
\n\u2551   \u2551   \u2551   
\u2551\n\u2560\u2550\u2550\u2550\u256c\u2550\u2550\u2550\u256c\u2550\u2550\u2550\u2563 \n\u2551   
\u2551   \u2551 Y 
\u2551\n\u255a\u2550\u2550\u2550\u2569\u2550\u2550\u2550\u2569\u2550\u2550\u2550\u255d",

"output": "Move up, move right, move right."
},
{

"instruction": "Recognize the language in the given text.",
"input": "\u4f5c\u4e3a\u4e00\u4e2a\u66fe\u7ecf\u7684\u82f1\u6587\u8001\u5e08",
"output": "Chinese"

},
"output": "Political Ad Spending Reaches Record Highs in U.S. Presidential Election Cycle of 2008."

},
{

"instruction": "Classify this statement into \"Definitely true\", \"Possibly true\", \"Possibly false\", or \"Definitely 
false\".",

"input": "I eat pizza for lunch every day.",
"output": "Possibly true"

},

Figure 12: Examples of low consistency

D DATA ANALYSIS

Data type We conducted an in-depth analysis of the selection types for different data within the
same model. It can be observed from the Table 7 that different models have different style prefer-
ences for different data. This may be due to the differences in the expression of instruction styles
within different datasets, leading to varying data selection biases in the models.

Table 7: The tendency of data selection under different datasets with the same model. The quantities
listed in the table are results after excluding some classification errors, such as when the model’s
output label is not within the range of 1-9.

Category Alpaca-ALL/Selected ∆ Dolly-All/Selected ∆

Model Llama2-7b - Llama2-7b -
Discipline 2193/242 88.96% 561 / 169 69.88%
Language 5855/72 98.77% 113 / 36 68.14%
Knowledge 15761/2012 87.23% 10651 / 3639 65.83%
Comprehension 3860 /669 82.67% 626 / 252 59.74%
Reasoning 837/94 88.77% 208 / 92 55.77%
Creation 12758/2103 83.51% 856 / 339 60.40%
Code 626 /59 90.58% 5 / 1 80.00%
Mathematics 3195 / 99 96.90% 162 / 53 67.28%
Other 5874 / 697 88.13% 1520 / 572 62.37%

GLM4 During the process of invoking the GLM4 API, we use prompt words in the format shown
in the Figure 13. We make sure to define each label in detail within the prompt words and provided a
clear and intuitive example for each label category. When making the call, we combine these prompt
words with the corresponding instructions from the dataset.
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userprompt='Below are several types of instruction datasets. You need to determine which type the given instruction 
belongs to based on the input, and output the corresponding number. Remember, do not provide any additional output.'
label="""
1. Discipline: Instructions typically involve knowledge in specific academic fields such as history, physics, chemistry, etc.
For example: "Explain Newton's three laws of motion."
2. Language: Instructions focus on the use of language, such as grammar, vocabulary, sentence structure, etc. For 
example: "Please change the following sentence from a statement to a question."
3. Knowledge: Instructions require the provision of factual information or known data. For example: "List the top ten 
highest mountains in the world."
4. Comprehension: Instructions necessitate explaining, summarizing, or elaborating on the understanding of a concept, 
information, or text. For example: "Summarize the main idea of this article."
5. Reasoning: Instructions demand logical reasoning, analysis, or problem-solving. For example: "Based on these clues, 
infer who the criminal is."
6. Creation: Instructions involve creative writing or expression, such as composing stories, poetry, scripts, or essays. For 
example: "Write a short story about friendship."
7. Code: Instructions relate to programming and require writing, explaining, or modifying code. For example: "Write a 
Python function to calculate the Fibonacci sequence."
8. Mathematics: Instructions involve mathematical calculations, problem-solving, or the application of mathematical 
concepts. For example: "Solve this quadratic equation."
9. Other: Any instructions that do not fit into the above categories can be classified under this category. For example: 
"Design a scientific experiment to test the reaction of plants to light."
"""

Figure 13: Related prompt for data classification using GLM-4. The specific explanations of our
categories can also be seen from the figure.

Table 8: Data length selected by different method.

Input Length Output Length SUM

Alpaca-All 83 270 353
AlpacGasus 73 339 412

Ours 57 530 587

Morphological Feature Analysis
We carefully analyzed the morpho-
logical characteristics of the filtered
data, especially sequence length, to
reveal the tendencies of our method
in selecting data types. The results
are shown in Table 8. Our approach
tends to favor shorter sequences for
instruction input and longer ones for
output. This suggests that our tech-
nique leans towards selecting succinct, refined data for input instructions, while for output instruc-
tions, it chooses data offering comprehensive and detailed information. This strategic selection aids
the model in concentrating on the crucial information during input processing, while offering ample
and diverse information during output generation.

Verb Noun Alpaca_All Verb Noun Selected Verb Noun Deleted

generate list 859 generate list 186 rewrite sentence 741

rewrite sentence 742 explain concept 93 generate list 673

give example 489 create list 86 give example 457

create list 480 write story 70 create list 394

generate sentence 381 make list 52 sentence sentence 374

write story 358 write description 46 write story 327

Table 9: Comparison of verb-noun pairs and their counts.

Analysis of Verb-Noun We conduct a more in-depth analysis of the instruction data and added
specific gerund indicators. We count the top six gerunds in the Alpaca_all, Alpaca_selected, and
Alpaca_deleted datasets. The results in Table 9 show that our method tends to select gerunds of
the "generate" type construction, while almost completely excluding gerunds of the "rewrite" type.
Intuitively, the generate-class data we have filtered is significantly superior to the rewrite type in
terms of semantic richness. Generate-class data, born from creative thinking, is rich in detailed
information, nuanced details, and innovative elements. In contrast, rewrite-class data appears more
monotonous in terms of content information.
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