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ABSTRACT

We study equilibrium finding in polymatrix games under differential privacy con-
straints. Prior work in this area fails to achieve both high-accuracy equilibria and a
low privacy budget. To better understand the fundamental limitations of differential
privacy in games, we show hardness results establishing that no algorithm can
simultaneously obtain high accuracy and a vanishing privacy budget as the number
of players tends to infinity. This impossibility holds in two regimes: (i) We seek to
establish equilibrium approximation guarantees in terms of Euclidean distance to
the equilibrium set, and (ii) The adversary has access to all communication chan-
nels. We then consider the more realistic setting in which the adversary can access
only a bounded number of channels and propose a new distributed algorithm that:
recovers strategies with simultaneously vanishing Nash gap (in expected utility,
also referred to as exploitability) and privacy budget as the number of players in-
creases. Our approach leverages structural properties of polymatrix games. To our
knowledge, this is the first paper that can achieve this in equilibrium computation.
Finally, we also provide numerical results to justify our algorithm.

1 INTRODUCTION

Many multi-agent settings are hard because everyone affects everyone else. However, in many settings
of interest, the interaction is more localized and tractable. Polymatrix games provide a tractable and
rich model that can capture such settings (Janovskaja, 1968; Cai et al., 2016; Deligkas et al., 2017).
In polymatrix games, players engage in pairwise interactions defined by an underlying graph in which
nodes represent players and edges model the interaction between the two players connected by an
edge. Each player chooses the same strategy in each pairwise game she is involved with, and her
utility is the sum of her utilities for each of these games.

In several settings, such as security games (De Nittis et al., 2018) and financial markets (Evangelista
et al., 2022; Donmez et al., 2024), the players’ utility functions may be sensitive and need to be
kept private by the players as they update their behavior toward equilibrium. Typically, there are
two approaches for finding equilibrium while keeping the utility functions private: centralized and
distributed methods. In centralized methods, the players send their utility functions to a trusted
central server (Kearns et al., 2014; Rogers & Roth, 2014; Cummings et al., 2015). When a trusted
central server is infeasible, the only viable option for computing equilibrium is for the players to
use a distributed algorithm where they make local computations and exchange information with
their neighbors. Throughout the process, a malicious adversary may inspect the communication
channel and infer the utility function, which might reveal sensitive information about individual
preferences. To keep the computation secure and prevent the leakage of sensitive information, tools
from differential privacy (DP) (Dwork et al., 2006) can be employed.

Several authors have considered the question of differentially private equilibrium computation in
games. However, previous work was either unable to achieve high accuracy and low differential
privacy budget simultaneously (Ye et al., 2021; Wang et al., 2022), or only achieved a weaker form of
differential privacy where the adversary is still able to infer part of the private information (Wang &
Başar, 2024; Wang & Nedić, 2024). Details can be found in Appendix A.
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CONTRIBUTIONS AND TECHNIQUES

In this paper, we study the problem of distributed, differentially private equilibrium computation in
polymatrix games. We build on the notion of adjacent distributed optimization problem defined in
Huang et al. (2015). In particular, given a polymatrix game G we define adjacent games as those that
differ from G on the utility function of a single player (c.f. Figure 1 (a) and Definition 2.1). Then, once
the algorithm for equilibrium finding is differentially private, an adversary cannot distinguish, with
high probability from his observations, the original game from any other games that are adjacent to it.
Hence, when differential privacy holds, the adversary is unable to determine the utility function of
any player with high confidence, ensuring the equilibrium computation process is privacy-preserving.

Impossibility. Using this concept of adjacency, we begin by showing that finding an approximate
equilibrium with arbitrarily small differential privacy guarantees can be impossible, depending on the
desiderata imposed on the process. Specifically, we show that if the adversary can access an arbitrary
number of communication channels, or the target accuracy metric of interest is the Euclidean distance
from the equilibrium set, then distributed computation of high-quality equilibria while providing
vanishing privacy guarantees is impossible. In other words, one will inevitably suffer either a low
approximation of the equilibrium, or a low level of privacy (high privacy budget). While these
negative results serve as guardrails to guide algorithm design, it is important to realize that they
do not preclude all paths to meaningful results. Indeed, it is important to realize that Euclidean
distance to the equilibrium set is only one of the set of possible quality metrics for measuring
equilibrium approximation. Another metric is Nash gap or exploitability, meaning how close a
strategy is to equilibrium in terms of expected utility rather than metric distance to the equilibrium set
in strategy space. This is particularly relevant in practice, where potential gains from deviation are
more important than proximity in strategy space.

Positive Results. Finally, we complement our negative result with a positive result regarding
exploitability guarantees, corroborated by experiments in Appendix E. In particular, we propose
a new distributed algorithm for computing a coarse correlated equilibrium (c.f. Figure 1 (b)). As
is typical in the differential privacy literature, our algorithm involves each player communicating
a noisy version of their strategy to their neighbors and updating their strategy using a regularized
proximal gradient step. A key novelty of the algorithm is to scale the regularizer proportional to the
harmonic mean of the degrees divided by the degree of the player. The inverse proportionality with
the degree ensures that more regularization is introduced for players with a lower degree (since a
low-degree player’s gradient is more sensitive to variations in the utility matrices of its neighbors).

High-Level Intuition. We propose Algorithm 1, which simultaneously achieves low exploitability
and low DP budget, with guarantees that improve as the number of players N increases. Moreover,
the algorithm achieves that whenever the associated graph with the polymatrix game is sparse or
dense, by imposing an adaptive regularizer on players’ utility functions. When the graph associated
with the polymatrix game is sparse, we leverage the fact that for most nodes that are at least of
distance t to the edge of the changed utility matrices, changes in the utility matrices between adjacent
polymatrix games have minimal impact on them during the first t updates. In contrast, when the
graph is dense, additional regularization, which is inversely proportional to the players’ degrees,
stabilizes the updates of players with low degrees so that the adversary’s observation in two adjacent
games will be similar. For players with high degrees, the aggregative nature of the utility function in
polymatrix games mitigates the effect of changes in the utility matrices.

2 PRELIMINARIES

We now review several key concepts related to differential privacy and polymatrix games.

Basics. For any integer N > 0, let [N ] := {1, 2, 3, · · · , N − 1, N}. For any vector x, we use ∥x∥p
to denote its p-norm. By default, ∥x∥ represents the 2-norm. Let ∆n := {x ∈ [0, 1]n :

∑n
i=1 xi = 1}

denotes the n− 1 dimensional probability simplex. Moreover, for any discrete set S, we can define
∆S as the probability simplex over S , with each index as the element in S . For instance, ∆[N ] = ∆N .
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Figure 1 (a): An illustration of adjacent polymatrix games defined in Definition 2.1. The nodes
represent the players, and the lines represent the edges of the polymatrix game. The two games differ
at the blue/orange edge, and the adversary cannot differentiate these two games with certainty from
his observations. on an edge means that the communication channels between those two players
can be accessed by the adversary.

Figure 1 (b): The illustration of results: the impossibility when the adversary can access all commu-
nication channels showed in Lemma 3.1 (left), the impossibility to achieve low Euclidean distance
showed in Lemma 3.2 (middle), and the positive results showed in Theorem 7.1 (right).

For any convex set C, we use ProjC (x
′) := argminx∈C ∥x− x′∥2 to denote the projection to C

from a vector x′ with respect to Euclidean distance.

Polymatrix Games. Polymatrix games can be written as a tuple

G :=
(
[N ], E, {Ai}i∈[N ] , {Ui,j}(i,j)∈E

)
,

where

• [N ] is the set of players so there are N players.
• E is the set of edges, where each (i, j) ∈ E indicates that players i, j interact with each other.
• {Ai}i∈[N ] is the set of players’ action set, which means player i ∈ [N ] chooses actions in Ai.
• Let A := maxi∈[N ] |Ai| be the size of the largest action set.
• Ui,j ∈ [−1, 1]Ai×Aj is the utility matrix between player (i, j) ∈ E.

For each Player i ∈ [N ], we denote with the symbol N (i) := {j ∈ [N ] : (i, j) ∈ E} the set of
her neighbors. Then, when each player k ∈ [N ] chooses her strategy as πk ∈ ∆Ak , the utility
of player i is 1

|N (i)|
∑

j∈N (i) π
⊤
i Ui,jπj

1. Moreover, when the strategy profile of all players is
π := (π1, π2, · · · , πN ), we can define the gradient of player i’s strategy with respect to her loss
function (the negative of utility function) as gπ

i := − 1
|N (i)|

∑
j∈N (i) Ui,jπj .

Differential Privacy. We adopt the notion of adjacency in Huang et al. (2015). For any two
polymatrix games, they are adjacent to each other if and only if they only differ from the utility
matrices on a single edge. An intuitive illustration can be found in Figure 1 (a). Formally,
Definition 2.1 (Game adjacency). Given two polymatrix games G =

(
[N ], E, {Ai}i∈[N ] ,

{Ui,j}(i,j)∈E

)
and G′ =

(
[N ′], E′, {A′

i}i∈[N ′] ,
{
U ′

i,j

}
(i,j)∈E′

)
, they are said to be adjacent, indi-

cated as G ∼ G′, if
1Typically the definition of player i’s utility is

∑
j∈N (i) π

⊤
i Ui,jπj . However, to ensure that the function and

its gradient are bounded by constants regardless of the game size, we divide it by |N (i)|, which aligns with the
DP literature (Huang et al., 2015; Wei et al., 2020; Ye et al., 2021). Note that such modification will not change
the equilibrium.

3
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1. N = N ′, E = E′ and Ai = A′
i for any i ∈ [N ]; and

2. except for an edge (i, j) ∈ E, Ui′,j′ = U ′
i′,j′ and Uj′,i′ = U ′

j′,i′ for any (i′, j′) ∈
E \ {(i, j), (j, i)}.

Consider now a generic iterative algorithm for finding equilibrium in polymatrix games, and denote
with Θ the space of all possible internal states of the algorithm at any time. Then, for a given
polymatrix game G, when the algorithm runs t > 0 timesteps, it will generate intermediate variables
θθθ :=

(
θ(1), θ(2), · · · , θ(t)

)
∈ Θt, which are called executions of the algorithm. Θt is the t-fold

Cartesian product of Θ with itself. Due to the randomness in the algorithm, this will result in
a distribution PG over Θt. Moreover, there is an adversary with access to the communication
channels between the players. Therefore, for any execution θθθ ∈ Θt, the adversary can observe
RG(θθθ) =

(
o(1), o(2), · · · , o(t)

)
=: o ∈ Ot, where O is the space of all observations at a single

timestep. Hence, we can define the (ϵ, δ)-differential privacy ((ϵ, δ)-DP) as follows.

Definition 2.2 ((ϵ, δ)-Differential Privacy). For an ϵ ≥ 0 and δ ≥ 0, an iterative distributed algorithm
for finding equilibria is (ϵ, δ)-differentially private, if and only if for any two adjacent polymatrix
game G,G′, any timestep t > 0 and any set of observations S ⊆ Ot,

PG ({θθθ : RG(θθθ) ∈ S}) ≤ eϵPG′ ({θθθ : RG′(θθθ) ∈ S}) + δ. (1)

Intuitively, Definition 2.2 guarantees that the algorithm will generate similar observations while
deployed on adjacent games. Therefore, the adversary cannot differentiate G,G′ from the observation
so he cannot infer the utility matrices with certainty from observations.

In this paper, we consider a generalization of Definition 2.2, the Rényi differential privacy (Rényi
DP) (Mironov, 2017). The distribution of observations up to timestep t can be written as µ(t)

G (o) :=

PG
(
R−1

G (o)
)

for o ∈ Ot and thus we can define the (α, ϵ)-Rényi DP as follows.

Definition 2.3 ((α, ϵ)-Rényi Differential Privacy). For α > 1 and ϵ ≥ 0, an iterative distributed
algorithm for finding equilibria is (α, ϵ)-Rényi differentially private, if and only if for any two
adjacent polymatrix game G,G′ and timestep t > 0,

Dα

(
µ
(t)
G , µ

(t)
G′

)
:=

1

α− 1
logE

o∼µ
(t)

G′

[(
µ
(t)
G (o)

µ
(t)
G′ (o)

)α]
≤ ϵ, (2)

where ϵ is also called the privacy budget.
Definition 2.3 can be extended to α = 1 and α = +∞ by defining D1 (·, ·) = limα→1+ Dα (·, ·),
which is KL-divergence (Mironov, 2017), and D∞ (·, ·) := limα→+∞ Dα (·, ·). Moreover, Rényi DP
can be converted to (ϵ, δ)-DP according to the following lemma from Mironov (2017).

Lemma 2.4. If an algorithm satisfies (α, ϵ)-Rényi DP for α > 1, then for any δ ∈ (0, 1), the

algorithm also satisfies
(
ϵ+ log(1/δ)

α−1 , δ
)

-DP. Moreover, (∞, ϵ)-Rényi DP is equivalent to (ϵ, 0)-DP.

3 NECESSARY CONDITIONS FOR ACHIEVING HIGH ACCURACY AND
DIFFERENTIAL PRIVACY SIMULTANEOUSLY

In this section, we will show the necessary conditions to achieve differential privacy and high accuracy
in approximating equilibria in polymatrix games. Specifically, we will show that: (i) the adversary
should not have access to all communication channels; and (ii) the accuracy metric cannot be the
Euclidean distance to the equilibrium. If even one of the conditions is violated, one can find a constant
c0 > 0 so that when N is large enough, there exists a polymatrix game with N players so that the
approximation error ζ and differential privacy budget ϵ cannot be guaranteed to be smaller than c0
simultaneously in that game. The results are summarized in Figure 1 (b).

All hardness results in this section are constructed with zero-sum polymatrix games (Cai et al.,
2016), a special class of polymatrix games, that is, polymatrix games G =

(
[N ], E, {Ai}i∈[N ] ,

{Ui,j}(i,j)∈E

)
such that, for any strategy profile π,

∑
i∈[N ]

∑
j∈N (i) π

⊤
i Ui,jπj ≡ 0.

One can see that when Ui,j = −Uj,i for any (i, j) ∈ E, the polymatrix game is zero-sum. Since the
coarse correlated equilibria (CCE) in zero-sum polymatrix games collapse to NE (Cai et al., 2016),

4
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an algorithm that approximates CCE will approximate NE. Therefore, without loss of generality, in
this section, we assume the algorithm will approximate the NE instead of CCE.

Assume that there is a distributed algorithm for finding equilibrium with the following guarantees of
accuracy and privacy. In any polymatrix game G with N players, the algorithm outputs a strategy
profile π with distribution µG on the observations. Here we omit the timestep superscript on µG
to emphasize that it is the distribution over all observations till termination of the algorithm. Then,
there exists a parameter α ≥ 1 such that the algorithm satisfies the following accuracy and privacy
guarantees in any N -player game G:

Accuracy:
1

N

N∑
i=1

E
[

max
π̂i∈∆Ai

⟨πi − π̂i, g
π
i ⟩
]
≤ ζ (3)

Privacy: Dα (µG , µG′) ≤ ϵ ∀G ∼ G′. (4)

When maxπ̂i∈∆Ai ⟨πi − π̂i, g
π
i ⟩ ≤ ζ for every player i ∈ [N ], the strategy profile π is called an

ζ-approximate NE. The accuracy metric maxπ̂i∈∆Ai ⟨πi − π̂i, g
π
i ⟩ is also known as exploitability. It

measures how much player i can benefit herself by unilaterally deviating from the current strategy
profile π, which should be 0 when π is the equilibrium. It is a weaker accuracy guarantee than
the Euclidean distance to the equilibrium. Because when π is close to the equilibrium in terms of
Euclidean distance, then the exploitability must be small. But the reverse does not always hold.

In the following, we will show that if the adversary has access to all communication channels, it is
impossible to achieve low exploitability ζ and low privacy budget ϵ simultaneously.

Lemma 3.1. For any N ≥ 12, there exists two zero-sum adjacent polymatrix games with N players
so that for any algorithm guaranteeing (3) and (4), we have

ζ ≥ min

{
3 exp (−2ϵ)

112
,

1

112

}
. (5)

Lemma 3.1 implies that even when N goes to infinity, once ζ ≤ 1
112 , we have ϵ ≥ log 3

2 . To illustrate
the proof of Lemma 3.1, we can first consider a relaxation of (3). If E

[
maxπ̂i∈∆Ai ⟨πi − π̂i, g

π
i ⟩
]
≤

ζ holds for any player i ∈ [N ], then we can construct two adjacent polymatrix games, such that
the approximate equilibrium any player i ∈ [N ] converges to differs much in two games, once the
accuracy is lower than ζ in both games. Then, the adversary can distinguish those two games by
computing the approximate equilibrium from his observations. While back to the original condition
(3), we can use the pigeon-hole principle to construct a set of zero-sum polymatrix games, such
that there exists two adjacent polymatrix games satisfying E

[
maxπ̂i∈∆Ai ⟨πi − π̂i, g

π
i ⟩
]
≤ O(ζ)

simultaneously for some player i ∈ [N ]. The full proof is postponed to Appendix B.1, where we also
provide a lower bound for (ϵ, δ)-DP.

Moreover, even when the adversary only has access to the observation of a single player, it is still
impossible to find an accurate approximation of the equilibrium, in terms of Euclidean distance to the
equilibrium, while guaranteeing privacy.

Let ∆Ai,∗ be the set of Nash equilibrium (NE) of player i in a zero-sum polymatrix game. Moreover,
µG,i denotes marginal distribution on the observation of player i given the joint distribution µG on all
observations. Then, consider an algorithm with the following guarantee in any N -player game G.
There exists a parameter α ≥ 1 such that for any player i ∈ [N ], the algorithm satisfies that

Accuracy: E
[
∥πi − Proj∆Ai,∗ (πi)∥2

]
≤ ζi (6)

Privacy: Dα (µG,i, µG′,i) ≤ ϵi ∀G ∼ G′. (7)

(6) guarantees that the output strategy of the algorithm is close to the set of NE, in terms of Euclidean
distance. (7) states that for any two adjacent games G ∼ G′, the Rényi divergence between the
distribution of player i’s observations is small. This implies that by accessing the communication
channel of player i, the adversary cannot distinguish G and G′, so he cannot speculate the utility
matrices.
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Lemma 3.2. For any N ≥ 8, there exists two zero-sum adjacent polymatrix games with N players
so that for any algorithm guaranteeing (6) and (7), then

1

N

N∑
i=1

ζi ≥ min

{
3

8
exp

(
− 4

N

N∑
i=1

ϵi

)
,
1

16

}
. (8)

Lemma 3.2 implies that once 1
N

∑N
i=1 ζi ≤ 1

16 , the average differential privacy budget 1
N

∑N
i=1 ϵi ≥

log 6
4 , even when N goes to infinity. The proof of Lemma 3.2 is based on the following observation:

for a two-player zero-sum game with row player’s utility matrix as
[
1 0
0 1

]
, when row player’s

strategy changes from (0.51, 0.49) to (0.49, 0.51), the column player’s best-response changes from
(0, 1) to (1, 0). In this way, for two adjacent polymatrix games with the utility matrices on the edge
(i, j) changes, player i, j’s equilibria will also change. Then, by a careful construction of the utility
matrices in the game, such changes in equilibria will gradually propagate to the rest of the players.
Lastly, we can prove that in two adjacent games with the equilibrium differs much, it is impossible
to compute the equilibria accurately while the communications between players (the adversary’s
observations) are similar. The full proof can be found in Appendix B.2.

4 METHODS

In this section, we will propose an iterative algorithm for finding coarse correlated equilibrium (CCE)
in general-sum polymatrix games (Moulin & Vial, 1978). As we will show in Section 6, this algorithm
guarantees differential privacy. We start by recalling a well-known connection between regret and
convergence to CCE.

Proposition 4.1. For an iterative algorithm that produces strategy profile π(t) at timestep t ∈ [T ],
its average strategy is the ζ-approximate CCE of a polymatrix game G with N players if and only if
for any player i ∈ [N ], maxπ̂i∈∆Ai

1
T

∑T
t=1

〈
gπ(t)

i , π
(t)
i − π̂i

〉
≤ ζ.

By picking a timestep t ∈ [T ] uniformly at random and all players will play according to π(t), the
expected increase of utility when player i deviates to π̂i is 1

T

∑T
t=1

〈
gπ(t)

i , π
(t)
i − π̂i

〉
.

Let g(t)
i := gπ(t)

i , IAi as the identity matrix with index Ai × Ai, and N
(
0, σ2IAi

)
as the i.i.d.

normal distribution over Ai with zero mean and σ2 variance. Then, the algorithm is as follows: for
any player i ∈ [N ], at each iteration t ∈ {0, 1, 2, · · · , T − 1, T} for some T > 0 (π(0)

i is initialized
as the uniform distribution over Ai), player i will sample a random noise n

(t)
i ∼ N

(
0, σ2IAi

)
.

Then, she will broadcast her strategy π
(t)
i plus the noise to her neighbors. After receiving the noisy

strategies from her neighbors, she will do one step of the projected gradient descent with the gradient
g
(t)
i , learning rate η, and weight-decay parameter τi. The complete algorithm is shown in Algorithm 1.

The intuition of τi ≥ 0 being inversely proportional to |N (i)| is that for players with fewer neigh-
bors, her gradient is more sensitive to the variation of a single utility matrix, so more additional
regularization (larger decay rate) is required to hide the difference of π(t)

i between adjacent games.

Moreover, to avoid observations from two adjacent games from increasingly diverging as updating
more timesteps, the gradient descent of π(t+1)

i starts from π
(t)
i instead of π(t)

i . However, we need to
pay the price of suffering additional approximation error caused by the noise added to π

(t)
i .

Remark 4.2. Let n(t) :=
(
n

(t)
1 ,n

(t)
2 , · · · ,n(t)

N

)
. In Algorithm 1, the execution of the algorithm at

timestep t is
(
π(t),n(t)

)
. Then,RG

((
π(s),n(s)

)t
s=1

)
=
(⋃

i∈[N ]

{
π
(s)
i + n

(s)
i

})t
s=1

.

5 CONVERGENCE ANALYSIS

This section will show the convergence of Algorithm 1 in general-sum polymatrix games.
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Algorithm 1 Find CCE in polymatrix games with DP guarantee

Input: Player index i

Initialize π
(0)
i as uniform distribution over Ai

Let N := N · (∑N
i=1

1
|N (i)| )

−1 be the harmonic mean of players’ degrees

Initialize τi ← (N)
5/9

|N (i)| logN

for t = 0, 1, ..., T do
Sample n

(t)
i ∼ N

(
0, σ2IAi

)
Broadcast π(t)

i + n
(t)
i to neighbors j ∈ N (i)

for j ∈ N (i) do
Receive π

(t)
j + n

(t)
j and compute π

(t)
j ← Proj∆Aj

(
π
(t)
j + n

(t)
j

)
end for
Gradient g(t)

i ← − 1
|N (i)|

∑
j∈N (i) Ui,jπ

(t)
j

π
(t+1)
i ← argmin

πi∈∆Ai

〈
πi, g

(t)
i

〉
+ τi ∥πi∥2 +

1

η

∥∥∥πi − π
(t)
i

∥∥∥2 . (9)

{Note that (9) is equivalent to π
(t+1)
i ← Proj∆Ai

(
π
(t)
i −ηg

(t)
i

1+ητi

)
.}

end for

Theorem 5.1. Consider Algorithm 1. Let A = maxi∈[N ] |Ai|. The update-rule can achieve the
following guarantee in any polymatrix game. For any T > 0, player i ∈ [N ] and strategy πi ∈ ∆Ai ,

1

NT

N∑
i=1

T∑
t=1

E
[〈

gπ(t+1)

i , π
(t+1)
i − πi

〉]
≤ 1

ηT
+A

σ2

2η
+

(
2η2

σ
+

7σ

2

)
A

3
2 +

1

2
(
N
)4/9

logN
+

2η
√
A

σ
(
N
)4/9

logN
. (10)

The proof sketch and the proof are postponed to Appendix C. Theorem 5.1 implies that the average
strategy converges to coarse correlated equilibrium (CCE). Besides, it is noteworthy that when
applying more noise for better differential privacy guarantees, i.e. larger σ, the convergence rate will
worsen since the gradients provide less information.

With a fixed learning rate η and noise σ, the accuracy increases when the number of players N grows,
while previous work (Gade et al., 2020; Ye et al., 2021; Wang et al., 2022; Shakarami et al., 2022)
cannot, enabling achieving high accuracy and low differential budget simultaneously (see Section 7).

6 ANALYSIS OF DIFFERENTIAL PRIVACY

In this section, we show that Algorithm 1 can simultaneously guarantee differential privacy. Since
Lemma 3.1 states that the adversary should not have access to all communication channels, we
will bound the Rényi DP when the adversary only has access to the communication channel of a

single player, i.e. Rényi divergence of µ(t)
G,i, the marginal distribution of µ(t)

G over
(
π
(s)
i + n

(s)
i

)t
s=1

.
According to the composition rule of Rényi differential privacy (Mironov, 2017), when the adversary
has access to multiple communication channels, the privacy budget is the product of the number of
communication channels he has access to, and the privacy budget when he only has access to a single
communication channel.

We break the analysis into two cases: dense graphs and sparse graphs. In the following, we will
show that the privacy budget of Algorithm 1 is proportional to η2, T but inversely proportional to σ2.
Intuitively, when the learning rate η is larger or the algorithm runs more timesteps, the observation
will diverge more due to the different utility matrices. But when we add more noise, i.e. larger σ, it
will be harder to determine which distribution a sample π

(t)
i + n

(t)
i is from.

7
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Theorem 6.1. Consider Algorithm 1 and any two adjacent polymatrix games G,G′ that differs at
(v1, v2). Let dist(i, j) be the length of the shortest path between players i, j, which is∞ when i, j
are not connected. The update-rule guarantees the following for any T > 0 and player i ∈ [N ],

1

N

N∑
i=1

Dα

(
µ
(T )
G,i , µ

(T )
G′,i

)
≤ αη2

σ2
min {♣,♠}T, (11)

where

♣ :=
16A3 (logN)

2(
N
)4/9 +

4A

N
(12)

♠ :=
2A

N

N∑
i=1

1 (T > min {dist(i, v1), dist(i, v2)}) . (13)

The proof sketch and a complete proof can be found in Appendix D. Theorem 6.1 implies that when
the graph is dense, i.e. N ≥ Np for some p ∈ (0, 1), ♣ will be sublinear in N . When the graph
is sparse, i.e. Nmax := maxi∈[N ] |N (i)| is a constant, ♠ will be small since the most players will
be distant from v1, v2 (approximately Ω (logN)). Therefore, even with a fixed learning rate η and
noise σ, the privacy budget will decrease as the number of players grows, which is in stark contrast to
previous work (Gade et al., 2020; Ye et al., 2021; Wang et al., 2022; Shakarami et al., 2022). The
details are deferred to Section 7.

7 TRADE-OFF BETWEEN ACCURACY AND DIFFERENTIAL PRIVACY

According to Theorem 5.1 and Theorem 6.1, by picking η, σ and T carefully, when the number of
players grows to infinity, we may obtain a zero privacy budget while converging to CCE.

Theorem 7.1. Consider Algorithm 1 with σ = 1√
T

and any two adjacent polymatrix games G,G′
that differs at (v1, v2). The update-rule guarantees the following,

1

N

N∑
i=1

max

{
1

T

T∑
t=1

E
[〈

gπ(t+1)

i , π
(t+1)
i − πi

〉]
, 0

}

≤A+ 1

ηT
+ 2A3/2η2

√
T +

7A3/2

2
√
T

+
1

2
(
N
)4/9

logN
+

2η
√
AT(

N
)4/9

logN
(14)

1

N

N∑
i=1

Dα

(
µ
(T )
G,i , µ

(T )
G′,i

)
≤ αη2 min {♣,♠} . (15)

The proof is simply substituting the values of σ into Theorem 5.1 and Theorem 6.1. When the graph
is dense, i.e. N ≥ Np for some p > 0, take η = 1

T♣1/3 , T = N8p/9

(logN)4
, then

1

NT

N∑
i=1

T∑
t=1

E
[〈

gπ(t+1)

i , π
(t+1)
i − πi

〉]
≤ O

(
(logN)2/3

N4p/27

)
,

where the O notation takes A as constant. Simultaneously, the differential budget guarantees that

1

N

N∑
i=1

Dα

(
µ
(T )
G,i , µ

(T )
G′,i

)
≤ O

(
α (logN)

2/3

N4p/27

)
.

Therefore, when the graph is dense, the accuracy and differential privacy budget of Algorithm 1
would both be better as the number of players increases.

Consider when the graph is sparse, i.e. Nmax is a constant. If Nmax ≥ 2, let η = 1
T♠1/3 , T =

(1− logN logN) logNmax N , then ♠ ≤ 4A
logN , since at most 2(Nmax)T

Nmax−1 ≤ 2N
logN players satisfy

8
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Number of players (A=10)
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Dense Graph

Ours Baseline p=0.1 p=0.3 p=0.5

1Figure 3: We evaluate the exploitability of our algorithm and a baseline on dense graphs. Each node
(player) connects to another node independently with probability p, and duplicate edges are then
removed. All players have action sets of size A. Both the baseline and our method are run under the
same differential privacy budget.

min {dist(i, v1), dist(i, v2)} < T . If Nmax = 1, ♠ ≤ 2
N for any T > 0. Therefore,

1

NT

N∑
i=1

T∑
t=1

E
[〈

gπ(t+1)

i , π
(t+1)
i − πi

〉]
≤ O

(
1

(logN)1/3

)
1

N

N∑
i=1

Dα

(
µ
(T )
G,i , µ

(T )

G′,i

)
≤ O

(
α

(logN)1/3

)
.

Compared to previous work (Gade et al., 2020; Ye et al., 2021; Wang et al., 2022; Shakarami et al.,
2022), the main contribution of Theorem 7.1 is that for any desired accuracy ζ0 > 0 and differential
privacy budget ϵ0 > 0, we can ensure our accuracy and differential privacy budget to be lower than
ζ0, ϵ0 simultaneously when N is large enough. In contrast, to keep accuracy smaller than ζ0, previous
work will suffer a differential privacy budget larger than ϵ0, no matter how large N is, and vice versa.

We emphasize that Theorem 7.1 bounds the differential privacy budget when the adversary can access
a single communication channel. By the composition rule for Rényi differential privacy (Mironov,
2017) (see the beginning of Section 6), the overall privacy budget scales linearly with the number of
channels the adversary accesses, specifically, it equals the number of accessed channels times the
bound in Theorem 7.1.

8 EXPERIMENTS

In this section, we evaluate the exploitability
(
maxπ̂i∈∆Ai ⟨πi − π̂i, g

π
i ⟩
)

of our method and a
baseline algorithm adapted from Huang et al. (2015). Under the same differential-privacy budget,
our method consistently attains lower exploitability. Moreover, as the number of players increases,
the exploitability of our method decreases, whereas the baseline’s does not. Additional experimental
results are provided in Appendix E.

9 CONCLUSION AND LIMITATIONS

This paper shows the necessary conditions to find the equilibria of polymatrix games with DP
guarantees. Moreover, to justify the conditions, we propose an algorithm to find the equilibria with
DP guarantees under the conditions. Moreover, as the number of players in the game increases, the
algorithm will gradually achieve perfect accuracy and DP guarantees. Lastly, we provide empirical
evidence to justify the algorithm in Appendix E. The limitation of this work is that we only discuss
polymatrix games. Therefore, an interesting future direction is to extend it to other games, such as
normal-form games and extensive-form games.
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10 ETHICS STATEMENT

This paper presents work that aims to advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted
here.

11 REPRODUCIBILITY STATEMENT

We include code in the supplementary materials. Moreover, the proofs are presented in Appendices B
to D.

12 USE OF LARGE LANGUAGE MODELS

In this paper, we use large language models (LLMs) to improve writing, e.g., by correcting grammati-
cal errors.
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A RELATED WORK

In this section, we discuss prior work specifically targeted at distributed equilibrium computation. We
omit a discussion of prior work on distributed (single-agent) optimization as it is hardly applicable
to our purposes, for several important reasons. For one, distributed optimization with differential
privacy guarantee (Huang et al., 2015; Nozari et al., 2016; Wei et al., 2020) aims to find the minimum
of the weighted sum of players’ utility functions. However, distributed equilibrium finding is more
complex since it aims to find the equilibrium point of those utility functions. Furthermore, the target
output of the distributed optimization is of constant dimensionality with respect to the number of
agents involved in the optimization process, such as the best parameters for a neural network (Wei
et al., 2020). However, the output’s dimension of equilibrium finding scales linearly with respect to
the number of agents, since we need to specify the strategy of each individual player.

Online Learning with Differential Privacy. Prior work, including Jain et al. (2012); Guha Thakurta
& Smith (2013); Agarwal & Singh (2017), has studied no-regret learning with DP guarantee, focusing
on ensuring that an adversary cannot determine the utility (loss) vector at any single timestep.
However, that condition does not imply differential privacy with respect to the payoff function itself.
For instance, in a two-player normal-form game, the utility vector at timestep t for player 1 is Uπ

(t)
2 ,

where U is the utility matrix and π
(t)
2 is the strategy of player 2 at timestep t. In this case, an

algorithm that reveals Uπ
(t)
2 + n(t), where n(t) is sampled from a multivariate Gaussian, ensures

differential privacy with respect to each individual utility vector. However, consider the case when
π
(t)
2 is sampled uniformly on each axis for any timestep t. By taking the average over all utility

vectors, the Gaussian noise cancels out, and we will get the average of U ’s columns. Therefore, U is
not differentially private, while each utility vector is still private.

Differential Privacy in Minimax Optimization. Yang et al. (2022); Zhang et al. (2022); Bassily
et al. (2023); Boob & Guzmán (2024) analyze differential privacy in minimax optimization, but their
setting differs from ours in several aspects. First, they study two-player zero-sum games, whereas we
consider multi-player general-sum polymatrix games (a class that subsumes two-player zero-sum).
Second, they assume each player’s utility decomposes as an average of multiple component utilities
and aim to prevent an adversary from inferring any single component. This, however, does not protect
the average itself, the true game utility, which is precisely what we seek to keep private.

Differential Privacy in Games. Other prior work, including Gade et al. (2020); Ye et al. (2021);
Wang et al. (2022); Shakarami et al. (2022), has focused on finding equilibrium in aggregative games
with differential privacy guarantees. However, they cannot achieve accuracy and differential privacy
simultaneously (e.g., privacy budget O (ϵ) and accuracy O

(
1
ϵ

)
). In other words, to achieve a fixed

accuracy, the privacy budget will not continue to decrease while the number of players increases.
The reason is that they did not exploit the game’s structure to cancel out the noise imposed during
the update. Therefore, accuracy will be harmed when achieving a low differential privacy budget by
adding a large amount of noise. Furthermore, the privacy guarantee of Wang & Nedić (2024); Wang
& Başar (2024) is weak because the adversary may determine the value of the utility function in a
small region around the equilibrium point. Therefore, when the utility function is multilinear, such as
polymatrix games, normal-form games, and extensive-form games, the adversary can fully determine
the utility functions with certainty. Instead, in this paper, we exploit the structure of polymatrix games,
whether the associated graph is dense or sparse, to mitigate the impact of the imposed noise, thereby
achieving accuracy and differential privacy simultaneously. Specifically, we can achieve privacy
budgetO

(
ϵ

f(N)

)
and accuracy O

(
1

ϵg(N)

)
, where f(N), g(N) are monotone functions with respect

to the number of players N and goes to infinity as N →∞. Details can be found in Theorem 7.1.

B PROOF OF SECTION 3

The section is arranged as follows. For both Lemma 3.1 and Lemma 3.2, we will show that there
exists a polymatrix game, so that achieving accuracy and (ϵ, δ)-DP simultaneously is impossible.
Then, we further show that achieving accuracy and Rényi DP is impossible by showing that for

12
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(1, ϵ)-Rényi DP. Because the α-Rényi divergence grows monotonically with respect to α (Mironov,
2017).

B.1 PROOF OF LEMMA 3.1

Lemma 3.1. For any N ≥ 12, there exists two zero-sum adjacent polymatrix games with N players
so that for any algorithm guaranteeing (3) and (4), we have

ζ ≥ min

{
3 exp (−2ϵ)

112
,

1

112

}
. (5)

Table 1: i is the row player and j is the column player, the utility in the table is Ui,j(ai, aj) =
−Uj,i(aj , ai).

a1
a1 1
a2 0

a1
a1 0
a2 1

a1 a2
a1 0.5 0
a2 0 0.5

Proof. Consider a zero-sum polymatrix game with 3N players, where its corresponding graph is
a chain, i.e. the edge set E = {(i, i+ 1)}i∈[3N−1]. For i ∈ [N ], U3i−1,3i−2 is Table 1 (left)
and U3i,3i−1 is Table 1 (right). All other utility matrices are zero matrices. Therefore, the only
equilibrium is all players playing a1. Let denote the game as G∅.

In this case, for any i ∈ [N ], when changing U3i−1,3i−2 to Table 1 (middle), the equilibrium of
both 3i− 1 and 3i will be choosing a2 deterministically, and the equilibrium of other players keep
unchanged. Let denote this new game as G{i}.

B.1.1 LOWERBOUNDS ON (ϵ, δ)-DP

This section will show that if the algorithm satisfies (ϵ, δ)-DP, then

ζ ≥ 1− δ

28 (1 + eϵ)
. (16)

Suppose the distributed algorithm satisfies the following guarantee of accuracy and privacy. Let
gπ
i (G) be the gradient of player i in G and π{i} be the output of the algorithm in G{i}. Then,

∀ i ∈ [N ],

3N∑
j=1

E

[
max

π̂j∈∆Aj

〈
π
{i}
j − π̂j , g

π{i}

j (G{i})
〉]
≤ Nζ (Accuracy)

∀ i ∈ [N ], set C, Pr(π∅ ∈ C) ≤ eϵ Pr(π{i} ∈ C) + δ, (Privacy)

Moreover, it is easy to verify that for any strategy profile π ∈×3N

i=1
∆Ai and i ∈ [N ], k ∈ {0} ∪ [N ]

(let G{0} = G∅ for simplicity), we have

max
π̂3i−1∈∆A3i−1

〈
π3i−1 − π̂3i−1, g

π
3i−1(G{k})

〉
+ max

π̂3i∈∆A3i

〈
π3i − π̂3i, g

π
3i(G{k})

〉
≥
{
0.5π3i(a2) i ̸= k

0.5π3i(a1) i = k.

Since the algorithm is distributed, the findr for each player can be written as fi : OT × RAi×Ai−1 ×
RAi×Ai+1 × ∆Ai → R (let A0 = AN+1 = ∅ for notational simplicity), which is a conditional
distribution over all possible strategies in ∆Ai , conditioned on all past observations and player’s
utility matrices.

Let adv(o, π3i) := f3i(o3i,U3i,3i−1, π3i) for o ∈ OT and π3i ∈ ∆A3i , where U3i,3i−1 is the utility
matrix between player 3i, 3i− 1 in G∅. Note that since the adversary cannot access utility matrices,
adv(o, π3i) is fixed even though the observation now comes from games G{k} for some k ∈ [N ].
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Then, the adversary may sample πadv,k
3i according to adv(ok, π3i), where ok ∈ OT is the observation

in game G{k}. Because the utility matrices of player 3i in G∅ and G{k} are identical, we have

0.5E
[
πadv,k
3i (a2)

]
=0.5E

[
π
{k}
3i (a2)

]
≤E

[
max

π̂3i−1∈∆A3i−1

〈
π
{k}
3i−1 − π̂3i−1, g

π{k}

3i−1 (G{k})
〉
+ max

π̂3i∈∆A3i

〈
π
{k}
3i − π̂3i, g

π{k}

3i (G{k})
〉]

.

Similar bounds also holds for E
[
πadv
3i (a1)

]
when i = k.

Then, by Markov inequality and the definition of (ϵ, δ)-DP, we have

4E

[
max

π̂3i−1∈∆A3i−1

〈
π∅
3i−1 − π̂3i−1, g

π∅

3i−1(G∅)
〉
+ max

π̂3i∈∆A3i

〈
π∅
3i − π̂3i, g

π∅

3i (G∅)
〉]

≥2E
[
πadv,∅
3i (a2)

]
≥Pr

(
πadv,∅
3i (a2) ≥ 0.5

)
=Pr

(
πadv,∅
3i (a1) ≤ 0.5

)
(17)

≥e−ϵ Pr
(
π
adv,{i}
3i (a1) ≤ 0.5

)
− δe−ϵ

≥e−ϵ
(
1− 2E

[
π
adv,{i}
3i (a1)

])
− δe−ϵ

≥e−ϵ

(
1− 4E

[
max

π̂3i−1∈∆A3i−1

〈
π
{i}
3i−1 − π̂3i−1, g

π{i}

3i−1(G{i})
〉
+ max

π̂3i∈∆A3i

〈
π
{i}
3i − π̂3i, g

π{i}

3i (G{i})
〉])

− δe−ϵ.

Moreover, for each i ∈ [N ] and G{i}, we can further define G{i,j} for i ̸= j ∈ [N ] as the adjacent
game to G{i} that differs from G{i} only at U3j−1,3j−2, by changing it from Table 1 (left) to Table 1
(middle). Also note that G{i,j} is also adjacent to G{j}. Such a process can be recursively applied to
G{i,j} and finally we will get 2N games

{
GS
}
S⊆[N ]

.

Lemma B.1. Consider the 2N games
{
GS
}
S⊆[N ]

constructed above. There must exist two adjacent

games GS and GS∪{i} with i ∈ [N ] \ S , so that

E

[
max

π̂3i−1∈∆A3i−1

〈
πS
3i−1 − π̂3i−1, g

πS

3i−1(GS)
〉
+ max

π̂3i∈∆A3i

〈
πS
3i − π̂3i, g

πS

3i (GS)
〉]
≤ 7ζ (18)

E

[
max

π̂3i−1∈∆A3i−1

〈
π
S∪{i}
3i−1 − π̂3i−1, g

πS∪{i}

3i−1 (GS∪{i})
〉
+ max

π̂3i∈∆A3i

〈
π
S∪{i}
3i − π̂3i, g

πS∪{i}

3i (GS∪{i})
〉]
≤ 7ζ.

(19)

The proof is postponed to Appendix B.3. Since (17) also holds for the GS and GS∪{i} in Lemma B.1,
we have

28
(
e−ϵ + 1

)
ζ ≥ e−ϵ − δe−ϵ.

Therefore, ζ ≥ e−ϵ−δe−ϵ

28(e−ϵ+1) =
1−δ

28(1+eϵ) .

B.1.2 LOWERBOUNDS ON (α, ϵ)-RÉNYI DP

This section will show that if the algorithm satisfies (ϵ, δ)-DP, then

1

N

N∑
i=1

ζi ≥
1−maxi∈[N ] δi

1 + exp
(

1
N

∑N
i=1 ϵi

) − 2

N
. (20)
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By monotonicity of Rényi Divergence (Mironov, 2017), we only need to show the lowerbound of
KL-divergence. By further post-processing on πadv,S

3i for i ∈ [N ] and S ⊆ [N ], the adversary can
output whether πadv,S

3i (a2) ≥ 0.5. Let the distribution of the output be µS
3i. Then, for the adjacent

games G∅,G{i}, where i ∈ [N ], we have

ϵ ≥ KL
(
µ∅
3i, µ

{i}
3i

)
=Pr

(
πadv,∅
3i (a2) ≥ 0.5

)
log

Pr
(
πadv,∅
3i (a2) ≥ 0.5

)
Pr
(
π
adv,{i}
3i (a2) ≥ 0.5

)
+
(
1− Pr

(
πadv,∅
3i (a2) ≥ 0.5

))
log

1− Pr
(
πadv,∅
3i (a2) ≥ 0.5

)
1− Pr

(
π
adv,{i}
3i (a2) ≥ 0.5

)
(i)

≥(1− expl∅i ) log
1− expl∅i
expl

{i}
i

+ expl∅i log
expl∅i

1− expl
{i}
i

,

where

explSi := 4E

[
max

π̂3i−1∈∆A3i−1

〈
πS
3i−1 − π̂3i−1, g

πS

3i−1(GS)
〉
+ max

π̂3i∈∆A3i

〈
πS
3i − π̂3i, g

πS

3i (GS)
〉]

.

(i) is because Pr
(
πadv,∅
3i (a2) ≥ 0.5

)
≤ expl∅i and Pr

(
π
adv,{i}
3i (a2) ≥ 0.5

)
≥ 1− expl

{i}
i .

By Lemma B.1, there exists S ⊆ [N ] and i ∈ [N ] \ s so that explSi , expl
S∪{i}
i ≤ 28ζ. Therefore,

ϵ ≥ (1− 28ζ) log
1− 28ζ

28ζ
+ 28ζ log

28ζ

1− 28ζ
= (1− 56ζ) log

1− 28ζ

28ζ
.

It implies that when ζ ≤ 1
112 , ϵ ≥ 1

2 log
3

112ζ so that ζ ≥ 3
112 exp(2ϵ) .

B.2 PROOF OF LEMMA 3.2

Lemma 3.2. For any N ≥ 8, there exists two zero-sum adjacent polymatrix games with N players
so that for any algorithm guaranteeing (6) and (7), then

1

N

N∑
i=1

ζi ≥ min

{
3

8
exp

(
− 4

N

N∑
i=1

ϵi

)
,
1

16

}
. (8)

Proof. Consider a zero-sum polymatrix game, where its corresponding graph is a chain. Specifically,
there is an edge (i, j) ∈ E, if and only if i = j − 1. Moreover, each player has two actions and
Ui,i+1 is shown in Table 2 (left).

Table 2: i is the row player and j is the column player, the utility in the table is Ui(ai, aj) and
Uj(aj , ai) = −Ui(ai, aj).

a1 a2
a1 0.5 0.5− ϵi
a2 0.5− 3ϵi 0.5− 2ϵi

a1 a2
a1 0.5− 2ϵi 0.5− 3ϵi
a2 0.5− ϵi 0.5

Moreover, 0.1 = ϵ1 = 10ϵ2 ≥ 102ϵ3 = · · · = 10N−1ϵN > 0. Then, the Nash equilibrium (NE) is(
a1, a2, a1, a2, · · · , a (−1)N+3

2

)
. However, when the utility matrix between player (1, 2) changes to

Table 2 (right), the NE becomes
(
a2, a1, a2, a1, · · · , a (−1)N+1+3

2

)
. Let the original game be denoted

as G0 and the new game as G1.

With the observation oi ∈ OT of any player i > 2, the adversary may sample strategy πadv
i from

the distribution adv(oi, πi) := fi(oi,Ui,i−1,Ui,i+1, πi) to obtain the equilibrium of player i, where
Ui,i−1,Ui,i+1 are both utility matrices in G0.
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B.2.1 LOWERBOUNDS ON (ϵ, δ)-DP

For each player i ∈ [N ] \ {1, 2}, assume the distributed algorithm may achieve the following
guarantee.

∀ k ∈ {0, 1} , E
[∥∥∥πk

i − π∗,k
i

∥∥∥2] ≤ ζi (Accuracy)

∀ Ci ⊆ ∆Ai , Pr(π0
i ∈ Ci) ≤ eϵi Pr(π1

i ∈ Ci) + δi, (Privacy)

where π0
i , π

1
i is the output of the algorithm when deploying on player i for G0,G1.

Let πadv,k
i be the random variable sampled from adv(ok

i , ·), where ok
i is the observation in Gk with

k ∈ {0, 1}. Since post-processing will not decrease the strength of DP, observing πadv,k
i instead of

ok
i will leak less information. Moreover, since the utility matrices of players i > 2 do not change, for

any player i > 2 and k ∈ {0, 1}, we have

E
[∥∥∥πk

i − π∗,k
i

∥∥∥2] = E
[∥∥∥πadv,k

i − π∗,k
i

∥∥∥2] .
Let the equilibrium of G0 be π∗,0 := ((1, 0), (0, 1), · · · ) and the equilibrium of G1 be π∗,1 :=
((0, 1), (1, 0), · · · ). Then, by Markov inequality, for any k ∈ {0, 1} and i > 2, we have

Pr

(∥∥∥πadv,k
i − π∗,k

i

∥∥∥2 ≥ 1

)
≤

E
[∥∥∥πadv,k

i − π∗,k
i

∥∥∥2]
1

=

E
[∥∥∥πk

i − π∗,k
i

∥∥∥2]
1

≤ ζi.

Therefore, according to the privacy guarantee, for any i > 2, we have

1− ζi ≤ Pr

(∥∥∥πadv,0
i − π∗,0

i

∥∥∥2 ≤ 1

)
(i)

≤ Pr

(∥∥∥πadv,0
i − π∗,1

i

∥∥∥2 ≥ 1

)
(ii)

≤ eϵi Pr

(∥∥∥πadv,1
i − π∗,1

i

∥∥∥2 ≥ 1

)
+ δi ≤ eϵiζi + δi.

(i) is because
∥∥∥π∗,0

i − π∗,1
i

∥∥∥2 = 2. (ii) is because post-processing will not decrease the strength of
DP.

Therefore, we have ζi ≥ 1−δi
1+eϵi for i > 2. For i ∈ {1, 2}, we have 1 ≥ 1−δi

1+eϵi since 1− δi ≤ 1.

Moreover, we have

1

N

(
2 +

N∑
i=3

ζi

)
≥ 1

N

N∑
i=1

1− δi
1 + eϵi

≥ 1

N

N∑
i=1

1−maxi∈[N ] δi

1 + eϵi

(i)

≥ 1−maxi∈[N ] δi

1 + exp
(

1
N

∑N
i=1 ϵi

) .
(i) uses Jensen’s inequality.

B.2.2 LOWERBOUNDS ON (α, ϵ)-RÉNYI DP

By further post-processing on πadv,k
i , we can get a random variable sampled from µk

i , which is the

distribution over {0, 1} indicating whether
∥∥∥πadv,k

i − π∗,0
i

∥∥∥ ≤ 1. Then, for any i > 2, we have

ϵi
(i)

≥ KL(µ0
i , µ

1
i )

(ii)

≥ (1− ζi) log
1− ζi
ζi

+ ζi log
ζi

1− ζi
= (1− 2ζi) log

1− ζi
ζi

.

(i) is because post-processing will not weaken Rényi DP (Mironov, 2017). (ii) is because

µ0
i (0) = Pr

(∥∥∥πadv,0
i − π∗,0

i

∥∥∥ > 1
)
≤ ζi

µ1
i (1) = Pr

(∥∥∥πadv,1
i − π∗,0

i

∥∥∥ ≤ 1
)
≤ Pr

(∥∥∥πadv,1
i − π∗,1

i

∥∥∥ ≥ 1
)
≤ ζi.
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Therefore, the KL-divergence is lowerbounded by (1− ζi) log
1−ζi
ζi

+ ζi log
ζi

1−ζi
.

When ζi ≤ 1
4 , we have ϵi ≥ 1

2 log
3
4ζi

. Therefore, ζi ≥ 3
4e2ϵi

. Moreover, if 1
N

∑N
i=1 ζi ≤ 1

16 , by
pigeon-hole principle, there exists a set of players I ⊆ [N ] \ {1, 2} with |I| ≥ N

2 , so that for any
i ∈ I, ζi ≤ 1

4 . This further implies that

1

N

N∑
i=1

ζi ≥
1

2|I|
∑
i∈I

ζi
1

N

N∑
i=1

ϵi ≥
1

2|I|
∑
i∈I

ϵi,

since ζi, ϵi ≥ 0 for any i ∈ [N ].

Therefore, finally,

1

N

N∑
i=1

ζi ≥
1

2|I|
∑
i∈I

ζi ≥
3

8|I|
∑
i∈I

e−2ϵi
(i)

≥ 3

8
exp

(
− 2

|I|
∑
i∈I

ϵi

)
≥ 3

8
exp

(
− 4

N

N∑
i=1

ϵi

)
.

(i) uses Jensen’s inequality.

B.3 OMITTED PROOF OF LEMMAS

Lemma B.1. Consider the 2N games
{
GS
}
S⊆[N ]

constructed above. There must exist two adjacent

games GS and GS∪{i} with i ∈ [N ] \ S , so that

E

[
max

π̂3i−1∈∆A3i−1

〈
πS
3i−1 − π̂3i−1, g

πS

3i−1(GS)
〉
+ max

π̂3i∈∆A3i

〈
πS
3i − π̂3i, g

πS

3i (GS)
〉]
≤ 7ζ (18)

E

[
max

π̂3i−1∈∆A3i−1

〈
π
S∪{i}
3i−1 − π̂3i−1, g

πS∪{i}

3i−1 (GS∪{i})
〉
+ max

π̂3i∈∆A3i

〈
π
S∪{i}
3i − π̂3i, g

πS∪{i}

3i (GS∪{i})
〉]
≤ 7ζ.

(19)

Proof. By the accuracy condition and non-negativity of maxπ̂j∈∆Aj

〈
π∅
j − π̂j , g

π∅

j (G∅)
〉

, we have

∑
i∈[N ]

E

[
max

π̂3i−1∈∆A3i−1

〈
π∅
3i−1 − π̂3i−1, g

π∅

3i−1(G∅)
〉
+ max

π̂3i∈∆A3i

〈
π∅
3i − π̂3i, g

π∅

3i (G∅)
〉]
≤ 3Nζ.

Therefore, by the pigeon-hole principle, there must exist a sub-
set I ⊆ [N ] with |I| ≥

⌈
N
2

⌉
+ 1, so that for any i ∈ I,

E
[
maxπ̂3i−1∈∆A3i−1

〈
π∅
3i−1 − π̂3i−1, g

π∅

3i−1(G∅)
〉
+maxπ̂3i∈∆A3i

〈
π∅
3i − π̂3i, g

π∅

3i (G∅)
〉]
≤ 7ζ.

The same guarantee holds for any G{i} with i ∈ [N ].

Then, we will form a meta graph, with each node as a subset of [N ] so that there are 2N nodes in
total. For each two nodes S1,S2 with |S1| ≤ |S2|, they are connected in the meta graph if and only
if GS1

and GS2

are adjacent. In other words, S2 = S1 ∪ {i} and i ∈ [N ] \ S1. The edge between
(S1,S2) is labeled as i ∈ [N ] if S2 \ S1 = {i}. Therefore, each node has N edges and their labels
are different from each other. Then, there are 2N nodes in the meta graph and N2N−1 edges.

For each node S ⊆ [N ], the set I constructed above can be viewed as selecting edges with labels in
I. Then, for each node S and its selected edge with label i, it is guaranteed that

E

[
max

π̂3i−1∈∆A3i−1

〈
πS
3i−1 − π̂3i−1, g

πS

3i−1(GS)
〉
+ max

π̂3i∈∆A3i

〈
πS
3i − π̂3i, g

πS

3i (GS)
〉]
≤ 7ζ. (21)

Because |I| ≥
⌈
N
2

⌉
+ 1 and there are N2N−1 edges in total, by pigeon-hole principle, there must

exist an edge being selected twice. In other words, there exist two adjacent nodes S1,S2 that
both select edge with label i. By definition, assume |S1| ≤ |S2| without loss of generality, then
S2 = S1 ∪ {i}. Therefore, (21) is satisfied for both S1,S2 on i.
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C PROOF OF THEOREM 5.1

Theorem 5.1. Consider Algorithm 1. Let A = maxi∈[N ] |Ai|. The update-rule can achieve the
following guarantee in any polymatrix game. For any T > 0, player i ∈ [N ] and strategy πi ∈ ∆Ai ,

1

NT

N∑
i=1

T∑
t=1

E
[〈

gπ(t+1)

i , π
(t+1)
i − πi

〉]
≤ 1

ηT
+A

σ2

2η
+

(
2η2

σ
+

7σ

2

)
A

3
2 +

1

2
(
N
)4/9

logN
+

2η
√
A

σ
(
N
)4/9

logN
. (10)

We will give a proof sketch of Theorem 5.1 first.

C.1 PROOF SKETCH

To show the convergence of Algorithm 1, by Lemma D.4. in Liu et al. (2024), we have
τi
2

∥∥∥π(t+1)
i

∥∥∥2 − τi
2
∥πi∥2 +

〈
g
(t)
i , π

(t+1)
i − πi

〉
≤ 1

2η

∥∥∥πi − π
(t)
i

∥∥∥2 − 1 + ητi
2η

∥∥∥πi − π
(t+1)
i

∥∥∥2 − 1

2η

∥∥∥π(t+1)
i − π

(t)
i

∥∥∥2 .
Moreover,

∣∣∣∣ τi2 ∥∥∥π(t+1)
i

∥∥∥2 − τi
2 ∥πi∥2

∣∣∣∣ ≤ τi
2 . Then, by adding

〈
gπ(t+1)

i − g
(t)
i , π

(t+1)
i − πi

〉
on both

sides, we have 〈
gπ(t+1)

i , π
(t+1)
i − πi

〉
− τi

2

≤ 1

2η

∥∥∥πi − π
(t)
i

∥∥∥2 − 1 + ητi
2η

∥∥∥πi − π
(t+1)
i

∥∥∥2
− 1

2η

∥∥∥π(t+1)
i − π

(t)
i

∥∥∥2 + 〈gπ(t+1)

i − g
(t)
i , π

(t+1)
i − πi

〉
.

Moreover, E
[〈

gπ(t+1)

i − g
(t)
i , π

(t+1)
i − πi

〉]
≤
(

η2

σ + 7σ
2

)
A

3
2 + 2η

√
A

|N (i)|σ
∑

j∈N (i) τj , where the
complete proof is postponed to Lemma C.1. Therefore, by taking expectation on both sides and
telescoping, we have

T∑
t=1

E
[〈

gπ(t+1)

i , π
(t+1)
i − πi

〉]
≤ 1

2η
E
[∥∥∥πi − π

(1)
i

∥∥∥2]+ (η2

σ
+

7σ

2

)
A

3
2T +

τi
2
T +

T∑
t=2

E
[∥∥∥πi − π

(t)
i

∥∥∥2 − ∥∥∥πi − π
(t)
i

∥∥∥2]

+
2η
√
A

|N (i)|σ
∑

j∈N (i)

τj .

Further, E
[∥∥∥πi − π

(t)
i

∥∥∥2 − ∥∥∥πi − π
(t)
i

∥∥∥2] is bounded by,

E
[∥∥∥πi − Proj∆Ai

(
π
(t)
i + n

(t)
i

)∥∥∥2 − ∥∥∥πi − π
(t)
i

∥∥∥2]
≤E

[∥∥∥πi − π
(t)
i − n

(t)
i

∥∥∥2 − ∥∥∥πi − π
(t)
i

∥∥∥2]
=E

[
2
〈
n

(t)
i , πi − π

(t)
i

〉
+
∥∥∥n(t)

i

∥∥∥2]
(i)
=E

[∥∥∥n(t)
i

∥∥∥2] = Aσ2.

(i) is because E
[
n

(t)
i

]
= 0 and n

(t)
i is independent of πi − π

(t)
i . By aggregating the results above

and substitute τi by its value in Algorithm 1, the proof is concluded.
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C.2 FORMAL PROOF OF THEOREM 5.1

By Lemma D.4. in Liu et al. (2024), since Algorithm 1 is equivalent to π
(t+1)
i =

argminπi∈∆Ai

〈
πi, g

(t)
i

〉
+ τi

2 ∥πi∥2 + 1
2η

∥∥∥πi − π
(t)
i

∥∥∥2, for any πi ∈ ∆Ai , we have

ητi
2

∥∥∥π(t+1)
i

∥∥∥2 − ητi
2
∥πi∥2 + η

〈
g
(t)
i , π

(t+1)
i − πi

〉
≤1

2

∥∥∥πi − π
(t)
i

∥∥∥2 − 1 + ητi
2

∥∥∥πi − π
(t+1)
i

∥∥∥2 − 1

2

∥∥∥π(t+1)
i − π

(t)
i

∥∥∥2 .
Then, by adding η

〈
g
(t+1)
i − g

(t)
i , π

(t+1)
i − πi

〉
on both sides, we have

ητi
2

∥∥∥π(t+1)
i

∥∥∥2 − ητi
2
∥πi∥2 + η

〈
g
(t+1)
i , π

(t+1)
i − πi

〉
(22)

≤1

2

∥∥∥πi − π
(t)
i

∥∥∥2 − 1 + ητi
2

∥∥∥πi − π
(t+1)
i

∥∥∥2 − 1

2

∥∥∥π(t+1)
i − π

(t)
i

∥∥∥2 + η
〈
g
(t+1)
i − g

(t)
i , π

(t+1)
i − πi

〉
.

Moreover,〈
g
(t+1)
i , π

(t+1)
i − πi

〉
=
〈
gπ(t+1)

i , π
(t+1)
i − πi

〉
+
〈
g
(t+1)
i − gπ(t+1)

i , π
(t+1)
i − πi

〉
≥
〈
gπ(t+1)

i , π
(t+1)
i − πi

〉
−
∥∥∥g(t+1)

i − gπ(t+1)

i

∥∥∥
∞
·
∥∥∥π(t+1)

i − πi

∥∥∥
1

≥
〈
gπ(t+1)

i , π
(t+1)
i − πi

〉
− 2

∥∥∥∥∥∥ 1

|N (i)|
∑

j∈N (i)

Ui,j

(
π
(t+1)
j − π

(t+1)
j

)∥∥∥∥∥∥
∞

(i)

≥
〈
gπ(t+1)

i , π
(t+1)
i − πi

〉
− 2

|N (i)|
∑

j∈N (i)

∥∥∥π(t+1)
j − π

(t+1)
j

∥∥∥
1
.

(i) is because Ui,j ∈ [−1, 1]Ai×Aj . Recall that A := maxi∈[N ] |Ai|, we have∥∥∥π(t+1)
j − π

(t+1)
j

∥∥∥
1
≤
√
A
∥∥∥π(t+1)

j − π
(t+1)
j

∥∥∥ =
√
A
∥∥∥π(t+1)

j − Proj∆Ai

(
π
(t+1)
j + n

(t+1)
j

)∥∥∥
≤
√
A
∥∥∥n(t+1)

j

∥∥∥ .
By taking the expectation on both sides of (22), we have,

E

ητi
2

∥∥∥π(t+1)
i

∥∥∥2 − ητi
2
∥πi∥2 + η

〈
− 1

|N (i)|
∑

j∈N (i)

Ui,jπ
(t+1)
j , π

(t+1)
i − πi

〉 (23)

≤E
[
1

2

∥∥∥πi − π
(t)
i

∥∥∥2 − 1 + ητi
2

∥∥∥πi − π
(t+1)
i

∥∥∥2 − 1

2

∥∥∥π(t+1)
i − π

(t)
i

∥∥∥2]

+ ηE

〈g(t+1)
i − g

(t)
i , π

(t+1)
i − πi

〉
+

2
√
A

|N (i)|
∑

j∈N (i)

∥∥∥n(t+1)
j

∥∥∥
 .

By Jensen’s Inequality, E
[∥∥∥n(t+1)

j

∥∥∥] ≤√E
[∥∥∥n(t+1)

j

∥∥∥2] =√|Aj |σ. Therefore,

2
√
A

|N (i)|
∑

j∈N (i)

E
[∥∥∥n(t+1)

j

∥∥∥] ≤ 2Aσ.
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Moreover, since ∥πi∥2 ∈ [ 1
|Ai| , 1], we have

E

η〈− 1

|N (i)|
∑

j∈N (i)

Ui,jπ
(t+1)
j , π

(t+1)
i − πi

〉
≤E

[
1

2

∥∥∥πi − π
(t)
i

∥∥∥2 − 1 + ητi
2

∥∥∥πi − π
(t+1)
i

∥∥∥2 − 1

2

∥∥∥π(t+1)
i − π

(t)
i

∥∥∥2 + η
〈
g
(t+1)
i − g

(t)
i , π

(t+1)
i − πi

〉]
+ 2Aησ +

η

2
τi.

To bound E
[〈

g
(t+1)
i − g

(t)
i , π

(t+1)
i − πi

〉]
, we have the following lemma.

Lemma C.1. Consider Algorithm 1. For any player i ∈ [N ], we have

E
[〈

g
(t+1)
i − g

(t)
i , π

(t+1)
i − πi

〉]
≤
(
2η2

σ
+

3σ

2

)
A

3
2 +

2η
√
A

|N (i)|σ
∑

j∈N (i)

τj . (24)

The proof is postponed to the end of this section.

We can further bound E
[∥∥∥πi − π

(t)
i

∥∥∥2 − ∥∥∥πi − π
(t)
i

∥∥∥2] by

E
[∥∥∥πi − Proj∆Ai

(
π
(t)
i + n

(t)
i

)∥∥∥2 − ∥∥∥πi − π
(t)
i

∥∥∥2] ≤E [∥∥∥πi − π
(t)
i − n

(t)
i

∥∥∥2 − ∥∥∥πi − π
(t)
i

∥∥∥2]
=E

[
2
〈
n

(t)
i , π

(t)
i − πi

〉
+
∥∥∥n(t)

i

∥∥∥2]
(i)
=E

[∥∥∥n(t)
i

∥∥∥2] = Aσ2.

(i) is because E
[
n

(t)
i

]
= 0 and n

(t)
i is independent of πi − π

(t)
i .

Finally, by telescoping,

T∑
t=1

E

〈− 1

|N (i)|
∑

j∈N (i)

Ui,jπ
(t+1)
j , π

(t+1)
i − πi

〉
≤ 1

2η

∥∥∥π1 − π
(1)
1

∥∥∥2 +A
σ2

2η
T +

(
2η2

σ
+

3σ

2

)
A

3
2T + 2AσT +

1

2
τiT +

2η
√
A

|N (i)|σ
∑

j∈N (i)

τjT

≤1

η
+A

σ2

2η
T +

(
2η2

σ
+

7σ

2

)
A

3
2T +

1

2
τiT +

2η
√
A

|N (i)|σ
∑

j∈N (i)

τjT. (25)

Further, by taking summation over all player i ∈ [N ] and averaging, we have

1

N

N∑
i=1

T∑
t=1

E

〈− 1

|N (i)|
∑

j∈N (i)

Ui,jπ
(t+1)
j , π

(t+1)
i − πi

〉
≤1

η
+A

σ2

2η
T +

(
2η2

σ
+

7σ

2

)
A

3
2T +

T

2N

N∑
i=1

τi +
1

N

N∑
i=1

2η
√
A

|N (i)|σ
∑

j∈N (i)

τjT.

Then, we can further bound the summation over τi by Lemma C.2.
Lemma C.2. When τi =

c
|N (i)| for any i ∈ [N ], where c > 0 is a game-dependent constant, we have

1

N

N∑
i=1

τi =
c

N
1

N

N∑
i=1

1

|N (i)|
∑

j∈N (i)

τj ≤
c

N . (26)
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The proof is postponed to the end of this section. Therefore, since c =
(N)

5/9

logN in Algorithm 1, we
have

1

N

N∑
i=1

1

T

T∑
t=1

E

〈− 1

|N (i)|
∑

j∈N (i)

Ui,jπ
(t+1)
j , π

(t+1)
i − πi

〉
≤ 1

ηT
+A

σ2

2η
+

(
2η2

σ
+

7σ

2

)
A

3
2 +

1

2
(
N
)4/9

logN
+

2η
√
A

σ
(
N
)4/9

logN
.

C.3 OMITTED PROOF OF APPENDIX C

Lemma C.1. Consider Algorithm 1. For any player i ∈ [N ], we have

E
[〈

g
(t+1)
i − g

(t)
i , π

(t+1)
i − πi

〉]
≤
(
2η2

σ
+

3σ

2

)
A

3
2 +

2η
√
A

|N (i)|σ
∑

j∈N (i)

τj . (24)

Proof. By Hölder’s Inequality, we have

E
[〈

g
(t+1)
i − g

(t)
i , π

(t+1)
i − πi

〉]
≤ E

[∥∥∥g(t+1)
i − g

(t)
i

∥∥∥ · ∥∥∥π(t+1)
i − πi

∥∥∥] .
Moreover,

∥∥∥g(t+1)
i − g

(t)
i

∥∥∥ =
1

|N (i)|

∥∥∥∥∥∥
∑

j∈N (i)

Ui,j

(
Proj∆Aj

(
π
(t+1)
j + n

(t+1)
j

)
− π

(t)
j

)∥∥∥∥∥∥
≤
√
|Ai|
|N (i)|

∑
j∈N (i)

∥∥∥Proj∆Aj

(
π
(t+1)
j + n

(t+1)
j

)
− π

(t)
j

∥∥∥
1

≤
√
|Ai|
|N (i)|

∑
j∈N (i)

√
|Aj |

∥∥∥Proj∆Aj

(
π
(t+1)
j + n

(t+1)
j

)
− π

(t)
j

∥∥∥
≤
√
|Ai|
|N (i)|

∑
j∈N (i)

√
|Aj |

∥∥∥π(t+1)
j + n

(t+1)
j − π

(t)
j

∥∥∥ .

Therefore,

E
[〈

g
(t+1)
i − g

(t)
i , π

(t+1)
i − πi

〉]
≤ A

|N (i)|
∑

j∈N (i)

E
[∥∥∥π(t+1)

j + n
(t+1)
j − π

(t)
j

∥∥∥ · ∥∥∥π(t+1)
i − πi

∥∥∥]

≤ A

|N (i)|
∑

j∈N (i)

(
1

σ
√
A
E
[∥∥∥π(t+1)

j + n
(t+1)
j − π

(t)
j

∥∥∥2]+ σ
√
A

4
E
[∥∥∥π(t+1)

i − πi

∥∥∥2]) .
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Furthermore, since E
[
n

(t+1)
j

]
= 0 and n

(t+1)
j is independent of π(t+1)

j , π
(t)
j , we have

E
[∥∥∥π(t+1)

j + n
(t+1)
j − π

(t)
j

∥∥∥2] =E
[∥∥∥π(t+1)

j − π
(t)
j

∥∥∥2]+ E
[∥∥∥n(t+1)

j

∥∥∥2]

≤E

∥∥∥∥∥Proj∆Aj

(
π
(t)
j − ηg

(t)
j

1 + ητj

)
− π

(t)
j

∥∥∥∥∥
2
+Aσ2

≤E

∥∥∥∥∥π
(t)
j − ηg

(t)
j

1 + ητj
− π

(t)
j

∥∥∥∥∥
2
+Aσ2

=E

[∥∥∥∥ ητj
1 + ητj

π
(t)
j −

η

1 + ητj
g
(t)
j

∥∥∥∥2
]
+Aσ2

(i)

≤2ητjE
[∥∥∥π(t)

j

∥∥∥2]+ 2η2E
[∥∥∥g(t)

j

∥∥∥2]+Aσ2

(ii)

≤ 2ητj + 2η2A+Aσ2.

(i) is because (a+ b)2 ≤ 2a2 + 2b2 for any a, b ∈ R and 1 + ητj ≥ max {1, ητj}. (ii) is because

Ui,j ∈ [−1, 1]Ai×Aj . Also, σ
√
A

4 E
[∥∥∥π(t+1)

i − πi

∥∥∥2] ≤ σ
√
A

2 . Therefore,

E
[〈

g
(t+1)
i − g

(t)
i , π

(t+1)
i − πi

〉]
≤
(
2η2

σ
+

3σ

2

)
A

3
2 +

2η
√
A

|N (i)|σ
∑

j∈N (i)

τj .

Lemma C.2. When τi =
c

|N (i)| for any i ∈ [N ], where c > 0 is a game-dependent constant, we have

1

N

N∑
i=1

τi =
c

N
1

N

N∑
i=1

1

|N (i)|
∑

j∈N (i)

τj ≤
c

N . (26)

Proof. By definition,

1

N

N∑
i=1

τi =
c

N

N∑
i=1

1

|N (i)| =
c

N .

Moreover,

1

N

N∑
i=1

1

|N (i)|
∑

j∈N (i)

τj =
c

N

N∑
i=1

∑
j∈N (i)

1

|N (i)| · |N (j)|

≤ c

N

N∑
i=1

∑
j∈N (i)

(
1

2|N (i)|2 +
1

2|N (j)|2
)

(i)
=

c

N

N∑
i=1

2|N (i)|
2|N (i)|2

=
c

N .

(i) is because each player contributes 1
2|N (i)|2 to the summation 2 times on each edge, i.e. 2|N (i)|

times in total.

D PROOF OF SECTION 6

Theorem 6.1. Consider Algorithm 1 and any two adjacent polymatrix games G,G′ that differs at
(v1, v2). Let dist(i, j) be the length of the shortest path between players i, j, which is∞ when i, j
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are not connected. The update-rule guarantees the following for any T > 0 and player i ∈ [N ],

1

N

N∑
i=1

Dα

(
µ
(T )
G,i , µ

(T )
G′,i

)
≤ αη2

σ2
min {♣,♠}T, (11)

where

♣ :=
16A3 (logN)

2(
N
)4/9 +

4A

N
(12)

♠ :=
2A

N

N∑
i=1

1 (T > min {dist(i, v1), dist(i, v2)}) . (13)

We will give a proof sketch of Theorem 6.1 first.

D.1 PROOF SKETCH: THE CASE OF DENSE GRAPHS (♣)

Firstly, we will introduce the chain rule of Rényi divergence.
Lemma D.1 (Chain Rule of Rényi divergence). For any distribution p, q over random variables
X1, X2, for any α ≥ 1, we have

Dα

(
p(X1, X2), q(X1, X2)

)
≤Dα

(
p(X1), q(X1)

)
+ sup

x̂1

Dα

(
p(X2 |X1 = x̂1), q(X2 |X1 = x̂1)

)
. (27)

A proof of the above lemma is provided in Appendix D.5 for completeness. By Lemma D.1, the
divergence between the distribution over all observations can be decomposed into the divergence
between the distribution over the observation at a single timestep. Formally, for any α ≥ 1, adjacent
games G ∼ G′, and player i ∈ [N ],

Dα

(
µ
(T )
G,i , µ

(T )
G′,i

)
≤

T∑
t=1

sup
(ô(1),··· ,ô(t−1))

Dα

(
µ
(t)
G,i(· | ô(1), · · · , ô(t−1)), µ

(t)
G′,i(· | ô(1), · · · , ô(t−1))

)
.

Note that the observation here ô(s) = π
(s)
i + n

(s)
i . When the graph is dense, i.e. N = Np for some

p > 0, the degree |N (i)| of most players will close to N .

Then, since post-processing will not increase the privacy budget, we can augment the set of obser-
vations to bound Dα

(
µ
(T )
G,i , µ

(T )
G′,i

)
. Specifically, for two adjacent games G ∼ G′ that differs at the

utility matrices on edge (v1, v2), the augmented observation will include
{
π
(t)
j + n

(t)
j

}
j∈S

, where

S ⊇ [N ] \ {v1, v2} and v1, v2 will be included in S if their degrees are no less than N 2/9. Let µ(t)
G,S

denotes the marginal distribution of µ(t)
G on

{
π
(t)
j + n

(t)
j

}
j∈S

. We can see that for any i ∈ S,

Dα

(
µ
(T )
G,i , µ

(T )
G′,i

)
≤ Dα

(
µ
(T )
G,S , µ

(T )
G′,S

)
.

For i ̸∈ S, we can show that Dα

(
µ
(T )
G,i , µ

(T )
G′,i

)
is bounded by some constant. Therefore, since

|S| ≥ N − 2, 1
N

∑N
i=1 Dα

(
µ
(T )
G,i , µ

(T )
G′,i

)
is bounded when Dα

(
µ
(T )
G,S , µ

(T )
G′,S

)
is sublinear in N .

Note that µ(t)
G,S(· | ô(1), · · · , ô(t−1)) is a multivariate Gaussian distribution with mean

(
π
(t)
i

)
i∈S

and

variance σ2I×i∈SAi . Therefore, by the Rényi divergence of multivariate Gaussian (Gil et al., 2013),

the divergence is bounded by α
2σ2

∑
i∈S

∥∥∥π(t)
i − π′(t)

i

∥∥∥2.
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If S = [N ], then for any player i ∈ [N ] \ {v1, v2}, given all past observations({
π
(s)
j + n

(s)
j

}
j∈S

)t−1

s=1

are identical in G,G′, π(t)
i = π′(t)

i . For i ∈ {v1, v2}, given π
(t−1)
i =

π′(t−1)
i and only Uv1,v2 ̸= U ′

v1,v2 ,
∥∥∥π(t)

i − π′(t)
i

∥∥∥ ≤ O ( 1
|N (i)|

)
≤ O

(
1

(N)
2/9

)
by definition of S .

O hides constants invariant to the number of players N , e.g. A, the size of the largest action set.

If v1, v2 ̸∈ S, then for any i ∈ S \ (N (v1) ∪N (v2)), π
(t)
i = π′(t)

i . For i ∈ N (v1) ∪ N (v2), we

will further augment the space of observations so that the adversary can observe
({

n
(s)
v1 ,n

(s)
v2

})t−1

s=1
.

Assume i ∈ N (v1) \ N (v2) for ease of exposition. For any j ∈ N (i) \ {v1, v2}, we have π
(t−1)
j =

π′(t−1)
j . Therefore,

∥∥∥π(t)
i − π′(t)

i

∥∥∥ ≤ O (∥∥∥π(t−1)
v1 − π′(t−1)

v1

∥∥∥) ≤ O (∥∥∥π(t−1)
v1 − π′(t−1)

v1

∥∥∥). More-
over, due to the additional regularization imposed on each player, we have the following lemma.

Lemma D.2. Consider the Algorithm 1. For any player i ∈ [N ] and timestep t > 0, by updat-

ing the strategy
{
π
(s)
i

}t

s=0
,
{
π′(s)

i

}t

s=0
with the same noise

{
n

(s)
i

}t

s=0
but different gradients{

g
(s)
i

}t

s=0
,
{
g′(s)

i

}t

s=0
individually, we have

∥∥∥π(t)
i − π′(t)

i

∥∥∥ ≤ 2
√Ai

τi
. (28)

The proof is postponed to Appendix D.5. Therefore, finally,
∥∥∥π(t)

i − π′(t)
i

∥∥∥ ≤ O ( 1
τv1

)
≤

O
(

logN

(N)
1/3

)
because |N (v1)| ≤

(
N
)2/9

. Moreover, since |N (v1)| ≤
(
N
)2/9

,

∑
i∈S

∥∥∥π(t)
i − π′(t)

i

∥∥∥2 =
∑

i∈S∩(N (v1)∪N (v2))

∥∥∥π(t)
i − π′(t)

i

∥∥∥2 ≤ O( (logN)
2(

N
)4/9

)
.

For cases of v1 ∈ S, v2 ̸∈ S and v1 ̸∈ S, v2 ∈ S, the proof is similar.

D.2 PROOF SKETCH: THE CASE OF SPARSE GRAPHS (♠)

For the sparse graph, the degree of all players is bounded by a constant Nmax. For simplicity, let’s
consider two adjacent games G ∼ G′ which differs at the utility matrices on edge (v1, v2) ∈ E, and
σ = 0 in Algorithm 1, i.e. the noise-free case.

At timestep t, π(t)
i in G and its counterpart π′(t)

i in G′ are identical if t ≤ min {dist(i, v1), dist(i, v2)}.
This can be proved by mathematical induction.

Therefore, Rényi divergence between µ
(t)
G,i(· | ô(1), · · · , ô(t−1)) and µ

(t)
G′,i(· | ô(1), · · · , ô(t−1)) is 0,

since they are both normal distribution with mean π
(t)
i and variance 0.

Recall that the graph is sparse and the degree of each player is bounded by a constant Nmax. In such
cases, most players are at least of distance O (logNmax N) to the edge (v1, v2). Therefore, if T in
Algorithm 1 is no larger than O (logNmax N), the Rényi divergence of most players at timestep t is 0.
Therefore, by averaging across all players, the privacy budget will be 0 as the number of players goes
to infinity.

The general proof for the cases when σ > 0 is shown in Appendix D.4.

In the following, we will introduce the proof for dense graphs (♣) first and that for the sparse graphs
(♠) later.
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D.3 PROOF FOR DENSE GRAPHS (♣)

LetN :=
(

1
N

∑
i∈[N ]

1
|N (i)|

)−1

be the harmonic mean of players’ degrees. When the graph is dense,

N will be relatively large. Now, we will bound the Rényi DP. Let (v1, v2) be the edge on which the
utility matrix differs in G and G′. Then, we define the set S as

S :=


[N ] |N (v1)|, |N (v2)| ≥

(
N
)2/9

[N ] \ {v1} |N (v1)| <
(
N
)2/9

, |N (v2)| ≥
(
N
)2/9

[N ] \ {v2} |N (v2)| <
(
N
)2/9

, |N (v1)| ≥
(
N
)2/9

[N ] \ {v1, v2} |N (v1)|, |N (v2)| <
(
N
)2/9

.

Consider the marginal distribution µ
(t)
G,S of µ

(t)
G over

({
π
(s)
i + n

(s)
i

}
i∈S

)t

s=1

. Then,

Dα

(
µ
(t)
G,S , µ

(t)
G′,S

)
≥ Dα

(
µ
(t)
G,i, µ

(t)
G′,i

)
for any i ∈ [N ] \ {v1, v2} and t > 0 since i ∈ S and

enlarging the set of observations will not decrease the Rényi divergence. This is because post-
processing (delete observations) will not increase Rényi divergence (Mironov, 2017).

D.3.1 v1, v2 ∈ S

By Lemma D.1, let π′(t)
i be the counterpart of π(t)

i for any i ∈ [N ], we have

Dα

(
µ
(T )
G,S , µ

(T )
G′,S

)
≤

T∑
t=1

sup
(ô(1),ô(2),··· ,ô(t−1))

Dα

(
µG,S(· | ô(1), ô(2), · · · , ô(t−1)), µG′,S(· | ô(1), ô(2), · · · , ô(t−1))

)
(i)
=

α

2σ2

T∑
t=1

∑
i∈[N ]

sup
(ô(1),ô(2),··· ,ô(t−1))

∥∥∥π(t)
i − π′(t)

i

∥∥∥2 .
(i) is by the Rényi divergence of multi-variate Gaussian distribution (Gil et al., 2013), since the
distribution of π(t)

i + n
(t)
i is a multivariate gaussian with mean π

(t)
i and variance σ2IAi (IAi is the

identity matrix indexed by Ai ×Ai). The inequality above implies that the Rényi divergence can be
bounded by the squared 2-norm of π(t)

i − π′(t)
i , given all past observations

(
ô(1), ô(2), · · · , ô(t−1)

)
are identical in G,G′.

Given the observations are identical in G,G′, the gradient g(t−1)
i of all players except v1, v2 are

identical in G,G′ since the gradient only depends on π
(t−1)
i + n

(t−1)
i and the utility matrices, which

are identical for i ∈ [N ] \ {v1, v2}. Therefore, π(t)
i = π′(t)

i for any i ∈ [N ] \ {v1, v2}. For
i ∈ {v1, v2}, we have∥∥∥π(t)

i − π′(t)
i

∥∥∥ =

∥∥∥∥∥Proj∆Ai

(
π
(t−1)
i − ηg

(t−1)
i

1 + ητi

)
− Proj∆Ai

(
π
(t−1)
i − ηg′(t−1)

i

1 + ητi

)∥∥∥∥∥
≤
∥∥∥∥∥π(t−1)

i − ηg
(t−1)
i

1 + ητi
− π

(t−1)
i − ηg′(t−1)

i

1 + ητi

∥∥∥∥∥
≤η

∥∥∥∥∥∥ 1

|N (i)|
∑

j∈N (i)

(
Ui,j −U ′

i,j

)
π
(t−1)
j

∥∥∥∥∥∥
(i)

≤ 2η

|N (i)|
√
|Ai|.

(i) is because Ui,j ∈ [−1, 1]Ai×Aj and Ui,j ̸= U ′
i,j only if (i, j) = (v1, v2) or (i, j) = (v2, v1).

Therefore, since the distribution of π(t)
i + n

(t)
i is actually a multivariate gaussian with mean π

(t)
i and

variance σ2IAi
, so that the Rényi divergence is bounded by

(
2αη2

σ2|N (v1)|2 |Av1 |+ 2αη2

σ2|N (v2)|2 |Av2 |
)
T .

By the definition of S, it is further bounded by 4αη2

σ2(N)
4/9AT .
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D.3.2 v1, v2 ̸∈ S

When the adversary may only observe
(
π
(s)
k + n

(s)
k

)t
s=1

for some k ∈ {v1, v2}, by Lemma D.1, we

only need to bound
∥∥∥π(t)

k − π′(t)
k

∥∥∥2 when all past observations
(
π
(s)
k + n

(s)
k

)t−1

s=1
are the same in

G,G′. Then,

∥∥∥π(t)
k − π′(t)

k

∥∥∥ =

∥∥∥∥∥Proj∆Ak

(
π
(t−1)
k − ηg

(t−1)
k

1 + ητk

)
− Proj∆Ak

(
π
(t−1)
k − ηg′(t−1)

k

1 + ητk

)∥∥∥∥∥
≤
∥∥∥∥∥π(t−1)

k − ηg
(t−1)
k

1 + ητk
− π

(t−1)
k − ηg′(t−1)

k

1 + ητk

∥∥∥∥∥
≤η
∥∥∥g(t−1)

k − g′(t−1)
k

∥∥∥
≤2η

√
|Ak|.

For k ∈ [N ] \ {v1, v2}, similar to the proof in the previous section, we will augment the ob-

servations of the adversary first. The adversary may observe
({

π
(s)
i + n

(s)
i

}
i∈[N ]\{v1,v2}

)t

s=1

and
({

n
(s)
v1 ,n

(s)
v2

})t
s=1

at timestep t. Note that the actual observation of the adversary is still(
π
(s)
k + n

(s)
k

)t
s=1

. We augment the observations to simplify the proof, since the Rényi divergence of
the the augmented observation’s distribution upperbounds that of the actual observation.

Still, by the chain rule of Rényi divergence, we need to bound
∑

i∈[N ]\{v1,v2}

∥∥∥π(t)
i − π′(t)

i

∥∥∥ for any

t ∈ [T ]. For any i ̸∈ N (v1) ∪N (v2), similar to the discussion in previous section, the gradients g(t)
i

and π
(t−1)
i are identical in G,G′, so that the π

(t)
i = π′(t)

i .

For i ∈ N (v1) ∪N (v2) \ {v1, v2}, we have

∥∥∥π(t)
i − π′(t)

i

∥∥∥ ≤ η
∥∥∥g(t−1)

i − g′(t−1)
i

∥∥∥ =
η

|N (i)|

∥∥∥∥∥∥
∑

j∈N (i)

Ui,j

(
π
(t−1)
j − π′(t−1)

j

)∥∥∥∥∥∥
(i)
=

η

|N (i)|

∥∥∥∥∥∥
∑

j∈{v1,v2}∩N (i)

Ui,j

(
π
(t−1)
j − π′(t−1)

j

)∥∥∥∥∥∥
≤η
√
|Ai|

|N (i)|
∑

j∈{v1,v2}∩N (i)

∥∥∥π(t−1)
j − π′(t−1)

j

∥∥∥
1

≤ ηA

|N (i)|
∑

j∈{v1,v2}∩N (i)

∥∥∥π(t−1)
j − π′(t−1)

j

∥∥∥ .
(i) uses the fact that π(t−1)

i = π′(t−1)
i for i ̸∈ {v1, v2}. Since, n(t−1)

j = n′(t−1)
j , for any j ∈ {v1, v2},

we have∥∥∥π(t−1)
j − π′(t−1)

j

∥∥∥ =
∥∥∥Proj∆Aj

(
π
(t−1)
j + n

(t−1)
j

)
− Proj∆Aj

(
π′(t−1)

j + n′(t−1)
j

)∥∥∥
≤
∥∥∥π(t−1)

j + n
(t−1)
j − π′(t−1)

j − n′(t−1)
j

∥∥∥
=
∥∥∥π(t−1)

j − π′(t−1)
j

∥∥∥ .
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Moreover, due to the additional regularization, for j ∈ {v1, v2},
∥∥∥π(t−1)

j − π′(t−1)
j

∥∥∥ will be bounded
as follows according to Lemma D.2.

∥∥∥π(t−1)
j − π′(t−1)

j

∥∥∥ ≤ 2
√
Aj

τj

(i)

≤ 2
√
Aj

(
N
)2/9

logN(
N
)5/9 =

2
√
Aj logN(
N
)1/3 .

(i) is because when v1 ̸∈ S, |N (v1)| <
(
N
)2/9

so that τv1 ≥
(N)

5/9

(N)
2/9

logN
by definition. The same

argument also holds for v2. Therefore,
∥∥∥π(t)

i − π′(t)
i

∥∥∥ ≤ 4ηA3/2 logN

(N)
1/3|N (i)|

, where A = maxi∈[N ] |Ai|.
Furthermore, for i ∈ [N ] \ {v1, v2}

Dα

(
µ
(T )
G,i , µ

(T )
G′,i

)
≤ Dα

(
µ
(T )
G,S , µ

(T )
G′,S

)
≤ α

2σ2
|N (v1) ∪N (v2)| ·

(
16η2A3 (logN)

2(
N
)2/3

mini∈N (v1)∪N (v2) |N (i)|2

)
T

≤ α

2σ2

(
2
(
N
)2/9) ·( 16η2A3 (logN)

2(
N
)2/3

mini∈N (v1)∪N (v2) |N (i)|2

)
T

=
16αη2A3 (logN)

2

σ2
(
N
)4/9

mini∈N (v1)∪N (v2) |N (i)|2
T.

Finally, since mini∈N (v1)∪N (v2) |N (i)|2 ≥ 1, we can conclude the proof. Moreover,
mini∈N (v1)∪N (v2) |N (i)|2 can be much larger than a constant in practice, e.g., Erdős–Rényi graphs.

The proofs for the rest possibilities (v1 ∈ S, v2 ̸∈ S and v1 ̸∈ S, v2 ∈ S) are similar.

D.4 PROOF FOR SPARSE GRAPHS (♠)

In this section, we show the DP guarantee when the associated graph of the polymatrix game is sparse.
Formally, there exists a constant Nmax > 0 so that |N (i)| ≤ Nmax for any i ∈ [N ].

We will augment the observations from
(
π
(s)
i + n

(s)
i

)t−1

s=1
to
({

π
(s)
j + n

(s)
j

}
j∈S(s)

i

)t

s=1

, where

S(s)i :=

{{j : min {dist(j, v1), dist(j, v2)} ≥ s} min {dist(i, v1), dist(i, v2)} ≥ s

{i} Otherwise.

When s ≤ min {dist(i, v1), dist(i, v2)}, we will show in the following that with all past observations
identical in G,G′, then π

(s)
j and its counterpart π′(s)

j in G′ are identical for any j ∈ S(s)i . When

s = 0, S(0)i = [N ] and π
(0)
j = π′(0)

j for any j ∈ [N ] since they are both initialized to uniform

distribution over Aj . When s > 0, for any j ∈ S(s)i , we must have N (j) ⊆ S(s−1)
i , otherwise

min {dist(j, v1), dist(j, v2)} < s. Therefore, since all past observations are identical, we have π(s−1)
k

are identical in G,G′ for any k ∈ N (j) so that the gradient g(s−1)
j = g′(s−1)

j . Moreover, given

π
(s−1)
j are identical, π(s)

j are identical in G,G′.

When s > min {dist(i, v1), dist(i, v2)},
∥∥∥π(s)

i − π′(s)
i

∥∥∥ ≤ 2η
√
|Ai|, given the past observation

π
(s−1)
i + n

(s−1)
i is identical.

By Lemma D.1, for any T > 0,

Dα

(
µ
(T )
G,i , µ

(T )
G′,i

)
≤max {0, T −min {dist(i, v1), dist(i, v2)}}

2αη2

σ2
|Ai|

≤1 (T > min {dist(i, v1), dist(i, v2)})
2αη2

σ2
|Ai|T.
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D.5 OMITTED PROOF OF LEMMAS

Lemma D.2. Consider the Algorithm 1. For any player i ∈ [N ] and timestep t > 0, by updat-

ing the strategy
{
π
(s)
i

}t

s=0
,
{
π′(s)

i

}t

s=0
with the same noise

{
n

(s)
i

}t

s=0
but different gradients{

g
(s)
i

}t

s=0
,
{
g′(s)

i

}t

s=0
individually, we have∥∥∥π(t)

i − π′(t)
i

∥∥∥ ≤ 2
√Ai

τi
. (28)

Proof.∥∥∥π(t+1)
i − π′(t+1)

i

∥∥∥ =

∥∥∥∥∥∥Proj∆Ai

Proj∆Ai

(
π
(t)
i + n

(t)
i

)
− ηg

(t)
i

1 + ητi

− Proj∆Ai

Proj∆Ai

(
π′(t)

i + n
(t)
i

)
− ηg′(t)

i

1 + ητi

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
Proj∆Ai

(
π
(t)
i + n

(t)
i

)
− ηg

(t)
i

1 + ητi
−

Proj∆Ai

(
π′(t)

i + n
(t)
i

)
− ηg′(t)

i

1 + ητi

∥∥∥∥∥∥
≤ 1

1 + ητi

∥∥∥Proj∆Ai

(
π
(t)
i + n

(t)
i

)
− Proj∆Ai

(
π′(t)

i + n
(t)
i

)∥∥∥+ η

1 + ητi

∥∥∥g(t)
i − g′(t)

i

∥∥∥
≤ 1

1 + ητi

∥∥∥π(t)
i − π′(t)

i

∥∥∥+ η

1 + ητi

∥∥∥g(t)
i − g′(t)

i

∥∥∥ .
By recursively applying the inequality above, we have∥∥∥π(t+1)

i − π′(t+1)
i

∥∥∥ ≤( 1

1 + ητi

)t+1 ∥∥∥π(0)
i − π′(0)

i

∥∥∥+ η

t∑
s=0

(
1

1 + ητi

)t−s+1 ∥∥∥g(s)
i − g′(s)

i

∥∥∥
(i)
=η

t∑
s=0

(
1

1 + ητi

)t−s+1 ∥∥∥g(s)
i − g′(s)

i

∥∥∥ .
(i) is because π

(0)
i , π′(0)

i are both initialized as uniform distribution over Ai. Therefore, since each
element of the gradient is bounded by [−1, 1] by definition, we have∥∥∥π(t+1)

i − π′(t+1)
i

∥∥∥ ≤ 2η

t∑
s=0

(
1

1 + ητi

)t−s+1√
Ai ≤ 2η

√
Ai

1

(1 + ητi)
(
1− 1

1+ητi

) =
2
√Ai

τi
.

Lemma D.1 (Chain Rule of Rényi divergence). For any distribution p, q over random variables
X1, X2, for any α ≥ 1, we have

Dα

(
p(X1, X2), q(X1, X2)

)
≤Dα

(
p(X1), q(X1)

)
+ sup

x̂1

Dα

(
p(X2 |X1 = x̂1), q(X2 |X1 = x̂1)

)
. (27)

Proof. By definition, when α > 1, we have
Dα

(
p(X1, X2), q(X1, X2)

)
=

1

α− 1
log

∫
x1,x2

(
p(x1, x2)

)α (
q(x1, x2)

)1−α
dx1dx2

(i)
=

1

α− 1
log

∫
x1

(∫
x2

(
p(x2 |x1)

)α (
q(x2 |x1)

)1−α
dx2

)(
p(x1)

)α (
q(x1)

)1−α
dx1

(ii)

≤ 1

α− 1
log sup

x̂1

(∫
x2

(
p(x2 | x̂1)

)α (
q(x2 | x̂1)

)1−α
dx2

)(∫
x1

(
p(x1)

)α (
q(x1)

)1−α
dx1

)
=

1

α− 1
sup
x̂1

log

∫
x2

(
p(x2 | x̂1)

)α (
q(x2 | x̂1)

)1−α
dx2 +

1

α− 1
log

∫
x1

(
p(x1)

)α (
q(x1)

)1−α
dx1

=Dα

(
p(X1), q(X1)

)
+ sup

x̂1

Dα

(
p(X2 |X1 = x̂1), q(X2 |X1 = x̂1)

)
.
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(i) is by Tonelli’s theorem. (ii) is by Hölder’s Inequality.

When α = 1, the corresponding Rényi divergence is KL-divergence. Therefore,

D1

(
p(X1, X2), q(X1, X2)

)
=

∫
x1,x2

p(x1, x2) log
p(x1, x2)

q(x1, x2)
dx1dx2

=

∫
x1,x2

p(x2 |x1)p(x1) log
p(x2 |x1)p(x1)

q(x2 |x1)q(x1)
dx1dx2

=

∫
x1,x2

p(x2 |x1)p(x1) log
p(x1)

q(x1)
dx1dx2 +

∫
x1,x2

p(x2 |x1)p(x1) log
p(x2 |x1)

q(x2 |x1)
dx1dx2

=D1

(
p(X1), q(X1)

)
+ Ex̂1∼p(X1)

[
D1

(
p(X2 |X1 = x̂1), q(X2 |X1 = x̂1)

)]
≤D1

(
p(X1), q(X1)

)
+ sup

x̂1

D1

(
p(X2 |X1 = x̂1), q(X2 |X1 = x̂1)

)
.

E EXPERIMENTS

The experimental results are shown in Figures 4 and 5. The baseline algorithm is adapted from Huang
et al. (2015). Our implementation uses PyTorch (Paszke et al., 2019) to enable efficient, fully parallel
updates of all players’ strategies, and all runs were executed on 8× NVIDIA A100 GPUs. The error
bars denote 1σ.

On dense graphs, as the number of players increases, our algorithm’s exploitability and the privacy
budget both decrease, whereas the baseline’s exploitability increases. On sparse graphs, by contrast,
only the privacy budget decreases. A plausible explanation is that the convergence rate on sparse
graphs is O

(
1

(logN)1/3

)
, which is too mild to overcome constant factors and stochastic noise for

N ≤ 216. Hyperparameters were chosen according to Theorem 7.1. The code is provided in the
supplementary materials.
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Dense Graph
A=5
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Ours Baseline p=0.1 p=0.3 p=0.5

1Figure 4: Experiment results of dense graphs. Each node (player) in the graph will be connected to
another node with probability p, the connection is sampled i.i.d. for each node. Then, the duplicate
edges will be removed. The action set sizes of all players are set to A. We can see from the result that
the exploitability and the privacy budget both decrease as the number of players increases.
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Ours Baseline c=1 c=3 c=5

1Figure 5: Experiment results of sparse graphs. We will randomly generate cN edges in total, with
each node appearing c times. Then, duplicate edges and self-loops will be removed. The action set
sizes of all players are set to A. The result shows that while the exploitability remains unchanged, the
exploitability decreases as the number of players increases.
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