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ABSTRACT

We study equilibrium finding in polymatrix games under differential privacy con-
straints. Prior work in this area fails to achieve both high-accuracy equilibria and a
low privacy budget. To better understand the fundamental limitations of differential
privacy in games, we show hardness results establishing that no algorithm can
simultaneously obtain high accuracy and a vanishing privacy budget as the number
of players tends to infinity. This impossibility holds in two regimes: (i) We seek to
establish equilibrium approximation guarantees in terms of Euclidean distance to
the equilibrium set, and (ii) The adversary has access to all communication chan-
nels. We then consider the more realistic setting in which the adversary can access
only a bounded number of channels and propose a new distributed algorithm that:
recovers strategies with simultaneously vanishing Nash gap (in expected utility,
also referred to as exploitability) and privacy budget as the number of players in-
creases. Our approach leverages structural properties of polymatrix games. To our
knowledge, this is the first paper that can achieve this in equilibrium computation.
Finally, we also provide numerical results to justify our algorithm.

1 INTRODUCTION

Many multi-agent settings are hard because everyone affects everyone else. However, in many settings
of interest, the interaction is more localized and tractable. Polymatrix games provide a tractable and
rich model that can capture such settings (Janovskaja, |1968} |Cai et al., 2016; Deligkas et al., [2017)).
In polymatrix games, players engage in pairwise interactions defined by an underlying graph in which
nodes represent players and edges model the interaction between the two players connected by an
edge. Each player chooses the same strategy in each pairwise game she is involved with, and her
utility is the sum of her utilities for each of these games.

In several settings, such as security games (De Nittis et al.,|[2018)) and financial markets (Evangelista
et al., 2022; Donmez et al., [2024), the players’ utility functions may be sensitive and need to be
kept private by the players as they update their behavior toward equilibrium. Typically, there are
two approaches for finding equilibrium while keeping the utility functions private: centralized and
distributed methods. In centralized methods, the players send their utility functions to a trusted
central server (Kearns et al.,[2014; Rogers & Roth, |2014; /Cummings et al.,|2015). When a trusted
central server is infeasible, the only viable option for computing equilibrium is for the players to
use a distributed algorithm where they make local computations and exchange information with
their neighbors. Throughout the process, a malicious adversary may inspect the communication
channel and infer the utility function, which might reveal sensitive information about individual
preferences. To keep the computation secure and prevent the leakage of sensitive information, tools
from differential privacy (DP) (Dwork et al.,|2006) can be employed.

Several authors have considered the question of differentially private equilibrium computation in
games. However, previous work was either unable to achieve high accuracy and low differential
privacy budget simultaneously (Ye et al.,[2021;|Wang et al.| [2022)), or only achieved a weaker form of
differential privacy where the adversary is still able to infer part of the private information (Wang &
Basar, 2024; Wang & Nedic||2024). Details can be found in Appendix
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CONTRIBUTIONS AND TECHNIQUES

In this paper, we study the problem of distributed, differentially private equilibrium computation in
polymatrix games. We build on the notion of adjacent distributed optimization problem defined in
Huang et al.| (2015)). In particular, given a polymatrix game G we define adjacent games as those that
differ from G on the utility function of a single player (c.f. Figure[I|(a) and Definition[2.1)). Then, once
the algorithm for equilibrium finding is differentially private, an adversary cannot distinguish, with
high probability from his observations, the original game from any other games that are adjacent to it.
Hence, when differential privacy holds, the adversary is unable to determine the utility function of
any player with high confidence, ensuring the equilibrium computation process is privacy-preserving.

Impossibility. Using this concept of adjacency, we begin by showing that finding an approximate
equilibrium with arbitrarily small differential privacy guarantees can be impossible, depending on the
desiderata imposed on the process. Specifically, we show that if the adversary can access an arbitrary
number of communication channels, or the target accuracy metric of interest is the Euclidean distance
from the equilibrium set, then distributed computation of high-quality equilibria while providing
vanishing privacy guarantees is impossible. In other words, one will inevitably suffer either a low
approximation of the equilibrium, or a low level of privacy (high privacy budget). While these
negative results serve as guardrails to guide algorithm design, it is important to realize that they
do not preclude all paths to meaningful results. Indeed, it is important to realize that Euclidean
distance to the equilibrium set is only one of the set of possible quality metrics for measuring
equilibrium approximation. Another metric is Nash gap or exploitability, meaning how close a
strategy is to equilibrium in terms of expected utility rather than metric distance to the equilibrium set
in strategy space. This is particularly relevant in practice, where potential gains from deviation are
more important than proximity in strategy space.

Positive Results. Finally, we complement our negative result with a positive result regarding
exploitability guarantees, corroborated by experiments in Appendix [E] In particular, we propose
a new distributed algorithm for computing a coarse correlated equilibrium (c.f. Figure(l|(b)). As
is typical in the differential privacy literature, our algorithm involves each player communicating
a noisy version of their strategy to their neighbors and updating their strategy using a regularized
proximal gradient step. A key novelty of the algorithm is to scale the regularizer proportional to the
harmonic mean of the degrees divided by the degree of the player. The inverse proportionality with
the degree ensures that more regularization is introduced for players with a lower degree (since a
low-degree player’s gradient is more sensitive to variations in the utility matrices of its neighbors).

High-Level Intuition. We propose Algorithm [T} which simultaneously achieves low exploitability
and low DP budget, with guarantees that improve as the number of players N increases. Moreover,
the algorithm achieves that whenever the associated graph with the polymatrix game is sparse or
dense, by imposing an adaptive regularizer on players’ utility functions. When the graph associated
with the polymatrix game is sparse, we leverage the fact that for most nodes that are at least of
distance ¢ to the edge of the changed utility matrices, changes in the utility matrices between adjacent
polymatrix games have minimal impact on them during the first ¢ updates. In contrast, when the
graph is dense, additional regularization, which is inversely proportional to the players’ degrees,
stabilizes the updates of players with low degrees so that the adversary’s observation in two adjacent
games will be similar. For players with high degrees, the aggregative nature of the utility function in
polymatrix games mitigates the effect of changes in the utility matrices.

2 PRELIMINARIES
We now review several key concepts related to differential privacy and polymatrix games.

Basics. For any integer N > 0, let [N] := {1,2,3,--- , N — 1, N}. For any vector x, we use ||z,
to denote its p-norm. By default, ||«|| represents the 2-norm. Let A := {@ € [0,1]": >, z; = 1}
denotes the n — 1 dimensional probability simplex. Moreover, for any discrete set S, we can define
AS as the probability simplex over S, with each index as the element in S. For instance, AVl = AN,
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Figure (1| (a): An illustration of adjacent polymatrix games defined in Definition The nodes
represent the players, and the lines represent the edges of the polymatrix game. The two games differ
at the blue/orange edge, and the adversary cannot differentiate these two games with certainty from

his observations. & on an edge means that the communication channels between those two players
can be accessed by the adversary.

Figure|l|(b): The illustration of results: the impossibility when the adversary can access all commu-
nication channels showed in Lemma [3.1] (left), the impossibility to achieve low Euclidean distance
showed in Lemma (middle), and the positive results showed in Theorem (right).

For any convex set C, we use Proj. (') := argmingc ||z — '||* to denote the projection to C
from a vector &’ with respect to Euclidean distance.

Polymatrix Games. Polymatrix games can be written as a tuple

g = ([NL E7 {A'L}ZE[N] ? {UZ’]}(ZJ)eE) ’
where

* [NV] is the set of players so there are N players.
 F is the set of edges, where each (7, j) € E indicates that players ¢, j interact with each other.
* {Ai};cny is the set of players action set, which means player i € [IV] chooses actions in A;.
* Let A := max;¢n] | Ai| be the size of the largest action set.
» U;; € [-1,1]4*4 is the utility matrix between player (i, j) € E.
For each Player i € [N], we denote with the symbol N (i) := {j € [N]: (i,5) € E} the set of

her neighbors. Then, when each player k& € [N] chooses her strategy as 7, € A“* | the utility
of player 7 is m > JEN() )l U, m;|'} Moreover, when the strategy profile of all players is

7 = (m, 7, -+ ,7TN), Wwe can define the gradient of player i’s strategy with respect to her loss
function (the negative of utility function) as g7 = —W > jenii) Uiy

Differential Privacy. We adopt the notion of adjacency in Huang et al.| (2015). For any two
polymatrix games, they are adjacent to each other if and only if they only differ from the utility
matrices on a single edge. An intuitive illustration can be found in Figure[I] (a). Formally,

Definition 2.1 (Game adjacency). Given two polymatrix games G = ([N], E, {Ai}ie[N],
{Uij}usyer)andG = (N, B {AD vy 107} ()eE" ). they are said to be adjacent, indi-
catedas G ~ @', if

'"Typically the definition of player 4’s utility is Ej ENG) ) Ui, jm;. However, to ensure that the function and

its gradient are bounded by constants regardless of the game size, we divide it by [N (4)|, which aligns with the
DP literature (Huang et al.| 2015} |Wei et al.| [2020; | Ye et al.,[2021). Note that such modification will not change
the equilibrium.
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1. N=N',E = E'and A; = A} for any i € [N]; and
2. except for an edge (i,j) € E, Uy = U}, ; and Uy = Uj, ;, for any (i',j') €

ENA{(9), (4,9}

Consider now a generic iterative algorithm for finding equilibrium in polymatrix games, and denote
with © the space of all possible internal states of the algorithm at any time. Then, for a given
polymatrix game G, when the algorithm runs ¢ > 0 timesteps, it will generate intermediate variables
6 := (0,03 ... 91)) € O, which are called executions of the algorithm. © is the ¢-fold
Cartesian product of © with itself. Due to the randomness in the algorithm, this will result in
a distribution Pg over ©!. Moreover, there is an adversary with access to the communication
channels between the players. Therefore, for any execution @ € ©F, the adversary can observe
Rg(0) = (0,02, ..+ o)) = 0 € O, where O is the space of all observations at a single
timestep. Hence, we can define the (e, §)-differential privacy ((e, 0)-DP) as follows.

Definition 2.2 ((¢, ¢)-Differential Privacy). For an e > 0 and 6 > 0, an iterative distributed algorithm

for finding equilibria is (e, §)-differentially private, if and only if for any two adjacent polymatrix
game G, G, any timestep ¢ > 0 and any set of observations S C O,

P ({0: Rg(8) € S}) < ¢“Pgr ({6: Rg/(8) € S}) + 6. )

Intuitively, Definition guarantees that the algorithm will generate similar observations while
deployed on adjacent games. Therefore, the adversary cannot differentiate G, G’ from the observation
so he cannot infer the utility matrices with certainty from observations.

In this paper, we consider a generalization of Definition [2.2] the Rényi differential privacy (Rényi
DP) (Mironov, 2017)). The distribution of observations up to timestep ¢ can be written as ,u(gt ) (o) =
Pg (Rg" (0)) for 0 € O and thus we can define the (v, €)-Rényi DP as follows.

Definition 2.3 ((«, €)-Rényi Differential Privacy). For o > 1 and € > 0, an iterative distributed

algorithm for finding equilibria is («, €)-Rényi differentially private, if and only if for any two
adjacent polymatrix game G, G’ and timestep ¢ > 0,

(t) «
1 o
Da (’u(gt)’#(gt/)) = EIOgEONMg,) [(MZ)E ;) ] S €, (2)
Hgr (0

where ¢ is also called the privacy budget.

Definition [2.3] can be extended to v = 1 and a = +o0 by defining Dy (-,-) = limy_1+ Dq (-, ),
which is KL-divergence (Mironov} [2017), and D (-, -) = limy— 400 Do (-, -). Moreover, Rényi DP
can be converted to (¢, d)-DP according to the following lemma from Mironov| (2017).

Lemma 2.4. If an algorithm satisfies («, €)-Rényi DP for « > 1, then for any § € (0,1), the

algorithm also satisfies (e + bi(%, 5) -DP. Moreover, (00, €)-Rényi DP is equivalent to (¢, 0)-DP.

3 NECESSARY CONDITIONS FOR ACHIEVING HIGH ACCURACY AND
DIFFERENTIAL PRIVACY SIMULTANEOUSLY

In this section, we will show the necessary conditions to achieve differential privacy and high accuracy
in approximating equilibria in polymatrix games. Specifically, we will show that: (i) the adversary
should not have access to all communication channels; and (ii) the accuracy metric cannot be the
Euclidean distance to the equilibrium. If even one of the conditions is violated, one can find a constant
co > 0 so that when N is large enough, there exists a polymatrix game with /N players so that the
approximation error ¢ and differential privacy budget ¢ cannot be guaranteed to be smaller than ¢
simultaneously in that game. The results are summarized in Figure [I] (b).

All hardness results in this section are constructed with zero-sum polymatrix games (Cai et al.,
2016), a special class of polymatrix games, that is, polymatrix games G = ([N], E, {Aiticin) >

{Ui»j}(i.j)eE ) such that, for any strategy profile 7, DieN] 2ojeN () 7l U; jm; = 0.

One can see that when U; ; = —U ; for any (i, j) € E, the polymatrix game is zero-sum. Since the
coarse correlated equilibria (CCE) in zero-sum polymatrix games collapse to NE (Cai et al.| 2016),
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an algorithm that approximates CCE will approximate NE. Therefore, without loss of generality, in
this section, we assume the algorithm will approximate the NE instead of CCE.

Assume that there is a distributed algorithm for finding equilibrium with the following guarantees of
accuracy and privacy. In any polymatrix game G with N players, the algorithm outputs a strategy
profile 7v with distribution pg on the observations. Here we omit the timestep superscript on fig
to emphasize that it is the distribution over all observations till termination of the algorithm. Then,
there exists a parameter a > 1 such that the algorithm satisfies the following accuracy and privacy
guarantees in any N-player game G:

N
1 o iy
Accuracy: 2_; E [#22’511 (mi — 70, 97)| < ¢ 3)
Privacy: Do (g, pigr) <€ ¥G~G'. )

When maxz a4, (1; — 7, g]") < ¢ for every player i € [N], the strategy profile 7 is called an
(-approximate NE. The accuracy metric maxz < a4, (m; — 7;, gJ") is also known as exploitability. It
measures how much player 7 can benefit herself by unilaterally deviating from the current strategy
profile 7r, which should be O when 7 is the equilibrium. It is a weaker accuracy guarantee than
the Euclidean distance to the equilibrium. Because when 7 is close to the equilibrium in terms of
Euclidean distance, then the exploitability must be small. But the reverse does not always hold.

In the following, we will show that if the adversary has access to all communication channels, it is
impossible to achieve low exploitability ¢ and low privacy budget € simultaneously.

Lemma 3.1. For any N > 12, there exists two zero-sum adjacent polymatrix games with N players
so that for any algorithm guaranteeing (3) and (@), we have

. [3exp(—2¢) 1
szln{m,m}- (5)

Lemmaimplies that even when IV goes to infinity, once { < ﬁ, we have € > 10%3. To illustrate

the proof of Lemma we can first consider a relaxation of . IfE [maxz cpa; (m — 73,97)] <
¢ holds for any player ¢ € [N], then we can construct two adjacent polymatrix games, such that
the approximate equilibrium any player ¢ € [IN] converges to differs much in two games, once the
accuracy is lower than ¢ in both games. Then, the adversary can distinguish those two games by
computing the approximate equilibrium from his observations. While back to the original condition
(3), we can use the pigeon-hole principle to construct a set of zero-sum polymatrix games, such
that there exists two adjacent polymatrix games satisfying E [maxz caa; (m; — 73, 97)] < O(C)
simultaneously for some player ¢ € [N]. The full proof is postponed to Appendix where we also
provide a lower bound for (¢, §)-DP.

Moreover, even when the adversary only has access to the observation of a single player, it is still
impossible to find an accurate approximation of the equilibrium, in terms of Euclidean distance to the
equilibrium, while guaranteeing privacy.

Let A“i-* be the set of Nash equilibrium (NE) of player 7 in a zero-sum polymatrix game. Moreover,
g ,; denotes marginal distribution on the observation of player ¢ given the joint distribution pg on all
observations. Then, consider an algorithm with the following guarantee in any N-player game G.
There exists a parameter « > 1 such that for any player i € [N], the algorithm satisfies that

Accuracy: E [Hm — Projaa; .- (m)Hﬂ < ¢ (6)
Privacy: Do (pg,is pigri) < € VG ~G'. (7)

(6) guarantees that the output strategy of the algorithm is close to the set of NE, in terms of Euclidean
distance. states that for any two adjacent games G ~ G, the Rényi divergence between the
distribution of player i’s observations is small. This implies that by accessing the communication
channel of player i, the adversary cannot distinguish G and G, so he cannot speculate the utility
matrices.
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Lemma 3.2. Forany N > 8§, there exists two zero-sum adjacent polymatrix games with N players
so that for any algorithm guaranteeing (6) and (7)), then

Zg>mm{exp< Ze) } ®)

Lemmaimplies that once % Zfil G < 16, the average differential privacy budget ~ ~ Zl 16 >

IOE 6 even when N goes to infinity. The proof of Lemma is based on the following observation:

. 9 .y . 1 O 9
for a two-player zero-sum game with row player’s utility matrix as 0 10’ when row player’s

strategy changes from (0.51,0.49) to (0.49, 0.51), the column player’s best-response changes from
(0,1) to (1, 0). In this way, for two adjacent polymatrix games with the utility matrices on the edge
(i, 7) changes, player i, j’s equilibria will also change. Then, by a careful construction of the utility
matrices in the game, such changes in equilibria will gradually propagate to the rest of the players.
Lastly, we can prove that in two adjacent games with the equilibrium differs much, it is impossible
to compute the equilibria accurately while the communications between players (the adversary’s
observations) are similar. The full proof can be found in Appendix

4 METHODS

In this section, we will propose an iterative algorithm for finding coarse correlated equilibrium (CCE)
in general-sum polymatrix games (Moulin & Vial, [1978). As we will show in Section|[] this algorithm
guarantees differential privacy. We start by recalling a well-known connection between regret and
convergence to CCE.

Proposition 4.1. For an iterative algorithm that produces strategy profile ) at timestep t € [T,
its average strategy is the (- approximate CCE of a polymatrix game G with N players if and only if

for any player i € [N], maxz caa; 7 Zt 1 <g “, l(t) - %l> <.

By picking a timestep ¢ € [T'] uniformly at random and all players will play according to 7w(*), the

expected increase of utility when player ¢ deviates to 7; is 7 Zt 1 <g- w0 0 %i>.

? Z

Let g(t) = gf(t), I as the identity matrix with index A; x A;, and N (0,0%I4) as the i.i.d.

K2
normal distribution over A; with zero mean and o2 variance. Then, the algorithm is as follows: for

any player ¢ € [N], at each iteration t € {0,1,2,--- ,T — 1,T} for some T > 0 (7r (0) is initialized

as the uniform distribution over A;), player i will sample a random noise n\" ~ A (0,0214).

Then, she will broadcast her strategy 7r§ ) plus the noise to her neighbors. After receiving the noisy

strategies from her neighbors, she will do one step of the projected gradient descent with the gradient
ggt), learning rate 7, and weight-decay parameter 7;. The complete algorithm is shown in Algorithm
The intuition of 7; > 0 being inversely proportional to |[A(z)| is that for players with fewer neigh-
bors, her gradient is more sensitive to the variation of a single utility matrix, so more additional

regularization (larger decay rate) is required to hide the difference of 7ri(t) between adjacent games.

Moreover, to avoid observations from two adjacent games from increasingly diverging as updating

more timesteps, the gradient descent of 7r(t+1) ) instead of w(t) However, we need to

O}

starts from 7;

pay the price of suffering additional approximation error caused by the noise added to 7;

Remark 4.2. Letn® = (ngt)7 ng ) .. n( )). In Algorlthm the execution of the algorithm at

timestep ¢ is (ﬂ‘(t),n(t)) Then, Rg (( (=) ”(8))5 1) - (UzG[N]{ o+ ’(S)}>::1'

5 CONVERGENCE ANALYSIS

This section will show the convergence of Algorithm[I]in general-sum polymatrix games.
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Algorithm 1 Find CCE in polymatrix games with DP guarantee

Input: Player index 7

(0)

Initialize 7, as uniform distribution over A;

Let V:= N - (ZZ | NG )I) ! be the harmonic mean of players’ degrees
o (V)°/°

Initialize T; < W

for ¢t = 0,1,.. T do
Sample n!’ NN(O o IA)

Broadcast 7T1( ) 4+ nE ) to neighbors j € N (i)
for j € N'(i) do

t) ®

Receive 7TJ( +n; "’ and compute 7 ’( ) Proj,4, (7r§t) + n§-t))
end for 0 »
1 _
Gradient ;" — w1 2jen o Ui

: () 2 1
—argmin(m;,g; )+ 7 ||ml"+ -
ﬂ'iGAAi "

2
D w7 H ‘ ©)

. . (t+1) . 7 —ng"
{Note that (9) is equivalent to 7, < Projaa; anb 3

end for

Theorem 5.1. Consider Algorithm Let A = maxe(n) | Ai|. The update-rule can achieve the
following guarantee in any polymatrix game. For any T > 0, player i € [N) and strategy m; € A

S E (o <)

2 1 2/ A
e +7”)A%+ S SV - (10)
n 2(N)"logN o (N) " logN

The proof sketch and the proof are postponed to Appendix [C} Theorem [5.1]implies that the average
strategy converges to coarse correlated equilibrium (CCE). Besides, it is noteworthy that when
applying more noise for better differential privacy guarantees, i.e. larger o, the convergence rate will
worsen since the gradients provide less information.

With a fixed learning rate 7 and noise o, the accuracy increases when the number of players N grows,
while previous work (Gade et al.} [2020; | Ye et al., [2021; Wang et al., [2022; |Shakarami et al.} 2022)
cannot, enabling achieving high accuracy and low differential budget simultaneously (see Section 7).

6 ANALYSIS OF DIFFERENTIAL PRIVACY

In this section, we show that Algorithm[I]can simultaneously guarantee differential privacy. Since
Lemma states that the adversary should not have access to all communication channels, we
will bound the Rényi DP when the adversary only has access to the communication channel of a

single player, i.e. Rényi divergence of ugj )Z, the marginal distribution of u( ) over <7TZ( ) 4 n(s) .

s=1
According to the composition rule of Rényi differential privacy (Mironovl, |2017), when the adversary
has access to multiple communication channels, the privacy budget is the product of the number of

communication channels he has access to, and the privacy budget when he only has access to a single
communication channel.

We break the analy51s into two cases: dense graphs and sparse graphs. In the following, we w111
show that the privacy budget of Algorithm I is proportional to n2, T but inversely proportional to 2.
Intuitively, when the learning rate 7 is larger or the algorithm runs more timesteps, the observation
will diverge more due to the different utility matrices. But when we add more noise, i.e. larger o, it

will be harder to determine which distribution a sample 7ri(t) + ngt) is from.
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Theorem 6.1. Consider Algorithmand any two adjacent polymatrix games G, G’ that differs at
(v1,v2). Let dist(i, j) be the length of the shortest path between players i, j, which is oo when i, j
are not connected. The update-rule guarantees the following for any T > 0 and player i € [N],

N
1 ) @) o
N;Da( Tond) < S5 min (4, M) T, (11)
where
1643 (log N)® = 4A
:7(704%9) + N (12)
(N )
24
= Z]l (T > min {dist(i,v1), dist(i,v2)}) . (13)

=1

The proof sketch and a complete proof can be found in Appendix [D] Theorem [6.T]implies that when
the graph is dense, i.e. N’ > NP for some p € (0,1), & will be sublinear in N. When the graph
is sparse, i.e. N"™** := max;c(n) |V (7)| is a constant, & will be small since the most players will
be distant from vy, vo (approximately €2 (log N)). Therefore, even with a fixed learning rate 7 and
noise o, the privacy budget will decrease as the number of players grows, which is in stark contrast to
previous work (Gade et al.}|2020; [Ye et al.| 2021; Wang et al.,[2022; Shakarami et al.,[2022)). The
details are deferred to Section[7l

7 TRADE-OFF BETWEEN ACCURACY AND DIFFERENTIAL PRIVACY

According to Theorem [5.1]and Theorem [6.1] by picking 7, o and T carefully, when the number of
players grows to infinity, we may obtain a zero privacy budget while converging to CCE.

Theorem 7.1. Consider Algorithm|l|\with o = ﬁ and any two adjacent polymatrix games G, G’
that differs at (vy,vs). The update-rule guarantees the following,

y g el A )] o)

3/2 AT
Al +24322VT + L — 4}9 EZNAT (14)
T T 9 (N)"logN  (N) " logN
N
Z o (1 1G) < an min (&, &} (15)

The proof is simply substituting the values of ¢ into Theoremn 5.1]and Theorem 6.1} When the graph

. . <7 _ NB®P/9
is dense, i.e. N' > NP for some p > 0, take ) = &1/5 , ' = llog )

N T 2/3
w3 el )] <o ()

i=1 t=1

<, then

where the O notation takes A as constant. Simultaneously, the differential budget guarantees that

N 2/3
1 (T) a(log N)
N2 D o (16 157) <O<N4pm '

Therefore, when the graph is dense, the accuracy and differential privacy budget of Algorithm I]
would both be better as the number of players increases.

Consider when the graph is sparse, i.e. N'™3 is a constant. If ™3 > 2 et 77 = ﬁ, T =
max\ 7T
(1 —logy log N) logprmax N, then & < %, since at most QJ(\,A,QaX_)l < log ~ Players satisfy
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Figure 3: We evaluate the exploitability of our algorithm and a baseline on dense graphs. Each node
(player) connects to another node independently with probability p, and duplicate edges are then
removed. All players have action sets of size A. Both the baseline and our method are run under the
same differential privacy budget.

min {dist(i, v1), dist(i, v2)} < T. If V™2 =1, & < 2 for any T > 0. Therefore,

1 D (411 . -

v o B (oAl —m)] <0 (MW)
1 A

¥ 2D (5l ) <0 <<1gN>/> |

Compared to previous work (Gade et al.,|[2020; |Ye et al.||2021; Wang et al., [2022; |Shakarami et al.,
2022), the main contribution of Theorem is that for any desired accuracy (p > 0 and differential
privacy budget ¢y > 0, we can ensure our accuracy and differential privacy budget to be lower than
Co, €0 simultaneously when NN is large enough. In contrast, to keep accuracy smaller than (j, previous
work will suffer a differential privacy budget larger than €(, no matter how large NV is, and vice versa.

We emphasize that Theorem[7.1|bounds the differential privacy budget when the adversary can access
a single communication channel. By the composition rule for Rényi differential privacy (Mironov,
2017) (see the beginning of Section [, the overall privacy budget scales linearly with the number of
channels the adversary accesses, specifically, it equals the number of accessed channels times the
bound in Theorem [Z.1]

8 EXPERIMENTS

In this section, we evaluate the exploitability (maxz a4, (m; — 7, g7) ) of our method and a
baseline algorithm adapted from Huang et al.|(2015). Under the same differential-privacy budget,
our method consistently attains lower exploitability. Moreover, as the number of players increases,
the exploitability of our method decreases, whereas the baseline’s does not. Additional experimental
results are provided in Appendix [E]

9 CONCLUSION AND LIMITATIONS

This paper shows the necessary conditions to find the equilibria of polymatrix games with DP
guarantees. Moreover, to justify the conditions, we propose an algorithm to find the equilibria with
DP guarantees under the conditions. Moreover, as the number of players in the game increases, the
algorithm will gradually achieve perfect accuracy and DP guarantees. Lastly, we provide empirical
evidence to justify the algorithm in Appendix [E} The limitation of this work is that we only discuss
polymatrix games. Therefore, an interesting future direction is to extend it to other games, such as
normal-form games and extensive-form games.
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10 ETHICS STATEMENT

This paper presents work that aims to advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted
here.

11 REPRODUCIBILITY STATEMENT

We include code in the supplementary materials. Moreover, the proofs are presented in Appendices
to

12 USE OF LARGE LANGUAGE MODELS

In this paper, we use large language models (LLMs) to improve writing, e.g., by correcting grammati-
cal errors.
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A RELATED WORK

In this section, we discuss prior work specifically targeted at distributed equilibrium computation. We
omit a discussion of prior work on distributed (single-agent) optimization as it is hardly applicable
to our purposes, for several important reasons. For one, distributed optimization with differential
privacy guarantee (Huang et al., 2015} |[Nozari et al., 2016; |Wei et al.,|2020) aims to find the minimum
of the weighted sum of players’ utility functions. However, distributed equilibrium finding is more
complex since it aims to find the equilibrium point of those utility functions. Furthermore, the target
output of the distributed optimization is of constant dimensionality with respect to the number of
agents involved in the optimization process, such as the best parameters for a neural network (Wei
et al.,[2020). However, the output’s dimension of equilibrium finding scales linearly with respect to
the number of agents, since we need to specify the strategy of each individual player.

Online Learning with Differential Privacy. Prior work, including/Jain et al.[(2012);|Guha Thakurta
& Smith|(2013);|Agarwal & Singh|(2017), has studied no-regret learning with DP guarantee, focusing
on ensuring that an adversary cannot determine the utility (loss) vector at any single timestep.
However, that condition does not imply differential privacy with respect to the payoff function itself.

For instance, in a two-player normal-form game, the utility vector at timestep ¢ for player 1 is Uwét),

where U is the utility matrix and Wét) is the strategy of player 2 at timestep ¢t. In this case, an

algorithm that reveals Uﬂ'ét) +n(®, where n(*) is sampled from a multivariate Gaussian, ensures
differential privacy with respect to each individual utility vector. However, consider the case when

wgt) is sampled uniformly on each axis for any timestep ¢. By taking the average over all utility
vectors, the Gaussian noise cancels out, and we will get the average of U’s columns. Therefore, U is
not differentially private, while each utility vector is still private.

Differential Privacy in Minimax Optimization. |Yang et al.|(2022); Zhang et al.| (2022); Bassily
et al.| (2023); Boob & Guzman|(2024) analyze differential privacy in minimax optimization, but their
setting differs from ours in several aspects. First, they study two-player zero-sum games, whereas we
consider multi-player general-sum polymatrix games (a class that subsumes two-player zero-sum).
Second, they assume each player’s utility decomposes as an average of multiple component utilities
and aim to prevent an adversary from inferring any single component. This, however, does not protect
the average itself, the true game utility, which is precisely what we seek to keep private.

Differential Privacy in Games. Other prior work, including |Gade et al.|(2020); Ye et al.| (2021));
Wang et al|(2022); Shakarami et al.|(2022)), has focused on finding equilibrium in aggregative games
with differential privacy guarantees. However, they cannot achieve accuracy and differential privacy
simultaneously (e.g., privacy budget O (¢) and accuracy O (%)) In other words, to achieve a fixed
accuracy, the privacy budget will not continue to decrease while the number of players increases.
The reason is that they did not exploit the game’s structure to cancel out the noise imposed during
the update. Therefore, accuracy will be harmed when achieving a low differential privacy budget by
adding a large amount of noise. Furthermore, the privacy guarantee of[Wang & Nedi¢| (2024); |Wang
& Bagsar] (2024) is weak because the adversary may determine the value of the utility function in a
small region around the equilibrium point. Therefore, when the utility function is multilinear, such as
polymatrix games, normal-form games, and extensive-form games, the adversary can fully determine
the utility functions with certainty. Instead, in this paper, we exploit the structure of polymatrix games,
whether the associated graph is dense or sparse, to mitigate the impact of the imposed noise, thereby
achieving accuracy and differential privacy simultaneously. Specifically, we can achieve privacy

budget O (ﬁ) and accuracy O (lev)) , where f(N), g(N) are monotone functions with respect
to the number of players [V and goes to infinity as N — co. Details can be found in Theorem|/.1

B PROOF OF SECTION[3]

The section is arranged as follows. For both Lemma [3.Tand Lemma [3.2] we will show that there
exists a polymatrix game, so that achieving accuracy and (¢, §)-DP simultaneously is impossible.
Then, we further show that achieving accuracy and Rényi DP is impossible by showing that for

12
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(1, €)-Rényi DP. Because the a-Rényi divergence grows monotonically with respect to o (Mironovl,
2017).

B.1 PROOF OF LEMMA[3. 1]

Lemma 3.1. For any N > 12, there exists two zero-sum adjacent polymatrix games with N players
so that for any algorithm guaranteeing (3) and (@), we have

. [3exp(—2¢) 1
Cme{llZ ,112}. %)

Table 1: 7 is the row player and j is the column player, the utility in the table is U; ;(a;, a;) =
—Uj’i(aﬁ ai).

a1 ay ay a2
a; | 1 ap | O ap |05] 0
az | 0 as 1 a9 0 0.5

Proof. Consider a zero-sum polymatrix game with 3N players, where its corresponding graph is
a chain, i.e. the edge set E = {(i,i + 1)}i€[3N71]. For i € [N], Us;_1,3i—2 is Table 1| (left)
and Us; 3,1 is Table [I] (right). All other utility matrices are zero matrices. Therefore, the only
equilibrium is all players playing a;. Let denote the game as G°.

In this case, for any ¢ € [N], when changing Us;_1 3;—2 to Table |l| (middle), the equilibrium of
both 37 — 1 and 37 will be choosing ay deterministically, and the equilibrium of other players keep
unchanged. Let denote this new game as G1}.

B.1.1 LOWERBOUNDS ON (¢,0)-DP
This section will show that if the algorithm satisfies (e, §)-DP, then

1-9

¢z 28 (1+e) (10

Suppose the distributed algorithm satisfies the following guarantee of accuracy and privacy. Let
g7 (G) be the gradient of player i in G and 71"} be the output of the algorithm in G{}. Then,

3N
Vi€ [N], ZE l max <7rj{l} - %j’g;r{’l}(g{i})>‘| < N¢ (Accuracy)
o [Feat
Vie[N], setC, Pr(n?eC) <ePr(xl? ecC)+s, (Privacy)

Moreover, it is easy to verify that for any strategy profile 7 € X?ivl A4 andi € [N],k € {0} U[N]
(let G0 = g? for simplicity), we have

0.57‘(37;(@2) ) 7é k’

Rai_1 EAABI-1 T3; EAA3G

Since the algorithm is distributed, the findr for each player can be written as f;: OT x R4 *xAi-1 x
RA XAt 5 A4 — R (let Ay = An41 = 0 for notational simplicity), which is a conditional
distribution over all possible strategies in A“':, conditioned on all past observations and player’s
utility matrices.

Let adv(o, 71'31') = f3i(03i7 U3i,3i—17 7T3i) for o € OT and T3 € A‘A“, where U3i,3i—1 is the utility
matrix between player 37, 3i — 1 in G?. Note that since the adversary cannot access utility matrices,
adv(o, m3;) is fixed even though the observation now comes from games G{*} for some k € [N].

13
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Then, the adversary may sample ngv ok according to adv(o¥, 73;), where o* € OT is the observation

in game G{*}. Because the utility matrices of player 3i in G% and G{¥} are identical, we have

0.5E 15" (a2)| =0.5E [n{! (a2)]

<E

max <W§1}1 T3i— 1agg, (g{k})>+ max <7ré{l} T3i,g {k}(g{k})ﬂ

Tai_1 €EAABI—1 T3 EAABI

Similar bounds also holds for E [73" (a;)] when i = k.

Then, by Markov inequality and the definition of (e, §)-DP, we have

4E

Tgi_1 €AABI—1 T3 EAA3G

max (ml_y = a1, gf 1 (@") +_ max (md - R gf) <g@>>]
>9E [ adv.0( }

>Pr (75 (a2) = 0.5)
—Pr ( adv () <, 5) (17)
Pr (ng“{ M) £05) —de”
(1

>e (1 -2E [ngv{ } ay) D — e ¢

—€ i i = 7t} % —€
e (1—4El max <7r§i}1 T3i—1,G5;_ 1(9{ })> max <7r§i}—7r3i,ggi (g{ })>]> — de ¢

Fgi_1EAASI-1 T3, €AABI

Moreover, for each i € [N] and G {1} we can further define G173 fori # j € [N] as the adjacent
game to G} that differs from G{%} only at Us;_1,3j—2, by changing it from Table 1| (left) to Table
(middle). Also note that G{%7} is also adjacent to G17}. Such a process can be recursively applied to
G1%3} and finally we will get 2V games {GS }SC[N]

Lemma B.1. Consider the 2V games { Gs } SCIN] constructed above. There must exist two adjacent
games GS and G5V with i € [N]\ S, so that

R xS R xS
E max <7T?‘>S‘i—1 - 773i71793i71(g5)> + _max <7T:§Sz — T3i, 93; (gs)> <7 (18)
Rgi_1€AABI-1 T3 EAA3L
~ aSuli} i ~ aSulil
E max <7T;U{ i — M3i-1,9%1 (gsu{ })> + _max <7T:i'U{ o T3i5 93 (QSU{ })> <T7¢.
T3i_1CAABI-1 T3 EAABI

(19)

The proof is postponed to Appendix Since (17 also holds for the GS and GS“{#} in Lemma
we have

28 (e*6 + 1) (>e “—de "

—c_fJe” ¢ __ 1-6
Therefore C > 28(6_‘+1) — 28(1+e)"

B.1.2 LOWERBOUNDS ON («, €)-RENYI DP

This section will show that if the algorithm satisfies (e, §)-DP, then

— max; 0 2
~ Z e - (20)
1 1+ exp ( D oict e,»)

14
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By monotonicity of Rényi Divergence (Mironov, |[2017)), we only need to show the lowerbound of
KL-divergence. By further post-processing on ﬂgfv’s fori € [N] and § C [N], the adversary can
output whether Wg;iv S(ag) > 0.5. Let the distribution of the output be 15;. Then, for the adjacent

games G?, G}, where i € [N], we have
Pr ( adv0 (4,) > 0.5)
Pr( adv, (i} (g,) > 0.5)

e > KL (,udz,ug{,)z}) =Pr (ﬂgfv (ay) > 0.5) log

1-Pr (ﬂ';?v @(ag) > 0.5

Pr( adv. (i} (4,) > 0.5)

(1 —Pr( v (g,) > 0.5)) log -

(@) 1 — expl 19
>(1- expl?) log 7{1)}1 + expl? log i e
expl}”’ 1 — expl;
where
~ S e S
expl‘is =4E max <7r§?,;_1 — 7r37;_1,g§,;_1(g5)> + max <7r§?7 — T3i,03; (QS)>] .
T3i—1 €A 3i-1 T3 EAABG

(2) is because Pr (ﬂ?f"’w( 2) > 0. 5) < expl” and Pr ( adv.{i }( 9) > 0.5) >1- expli{i}.

By Lemma there exists S C [N] and i € [N]\ s so that expl?, explfu{i} < 28¢. Therefore,

— 298¢ 98¢ 1 - 28¢
osc T 28clos Togr 28¢

1 5 log 112< so that { >

1
e > (1 —28()log

= (1 —56¢) log

It implies that when ¢ <

112’ 112cxp(26)

B.2 PROOF OF LEMMA[3.2]

Lemma 3.2. Forany N > 8§, there exists two zero-sum adjacent polymatrix games with N players
so that for any algorithm guaranteeing (6) and (7), then

w4550 L)

i=1

Proof. Consider a zero-sum polymatrix game, where its corresponding graph is a chain. Specifically,
there is an edge (¢,5) € E, if and only if ¢ = j — 1. Moreover, each player has two actions and
Ui,i+1 is shown in Table 2] (left).

Table 2: 7 is the row player and j is the column player, the utility in the table is U;(a;, a;) and
Uj(aj,a;) = —Ui(ai, az).

aq az a a2
al 0.5 0.5 — €; al 0.5 — 26i 0.5 — 361'
a9 0.5 — 361’ 0.5 — 26,’ as 0.5 — €; 0.5
Moreover, 0.1 = ¢; = 10e; > 10%e5 = --- = 10V ~ten > 0. Then, the Nash equilibrium (NE) is
(al, G2,01,02, " ,G(_1)N 43 ) However, when the utility matrix between player (1, 2) changes to
(CRES]

Table(right), the NE becomes ((127 1,82,Q1, " ;0 (_1)N+1,3 ) . Let the original game be denoted
(CSLERES]
as GY and the new game as G'.

With the observation o; € OT of any player i > 2, the adversary may sample strategy 734" from
the distribution adv(o;, 7;) :== f;(0;,U; ;—1, U ;+1, ;) to obtain the equilibrium of player 4, where
U, i—1,U; ;11 are both utility matrices in Ggo.

15
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B.2.1 LOWERBOUNDS ON (¢,0)-DP

For each player i € [N]\ {1,2}, assume the distributed algorithm may achieve the following
guarantee.

2
Vke{0,1}, E [ - w:’kH ] < (Accuracy)
VC €AY, Pr(n? € C) < e Pr(n} €C) + 6, (Privacy)
where 70, 7} is the output of the algorithm when deploying on player i for G°, G.

Let wadv’k be the random variable sampled from adv(o¥, -), where of is the observation in G* with
k e {0, 1}. Since post-processing will not decrease the strength of DP, observing wddv ¥ instead of

ok will leak less information. Moreover, since the utility matrices of players i > 2 do not change, for
any player ¢ > 2 and k € {0, 1}, we have

2 2
]E{ ﬂ'k—ﬂ'*kH } :]E“ W?(iv'k—ﬂ?kH }

Let the equilibrium of G° be #*° = ((1,0),(0,1),---) and the equilibrium of G* be w*! =
((0,1),(1,0),- - - ). Then, by Markov inequality, for any k& € {0, 1} and ¢ > 2, we have

2 2
oy Bl ] el
Pr<‘7rgdv,k7rz<,kH 21> < _ <

’ 1 B 1 -
Therefore, according to the privacy guarantee, for any 7 > 2, we have

: «oll? (#) 2
1-¢ <Pr (‘ g0 _ g OH < 1) < Pr (( adv,0 _ w;“lH > 1)
(44) 2
<e“Pr <‘ pavt 77;“” > 1) +6; < e“( + 0.
0 1]

(7) is because ‘ =y H = 2. (ii) is because post-processing will not decrease the strength of

DP.

Therefore, we have (; > di = for i > 2. Fori € {1,2}, we have 1 > 1+ ; since 1 — §; < 1.

Moreover, we have

N N ’
1 1 1-— 51 1 1-— maX;e[N] (51 (@) 1-— maX;e[N) (51
— (2 > = > > .
N(Z<>NZNZ e ¥o)

i=1 1+exp (% D e €

(7) uses Jensen’s inequality.

B.2.2 LOWERBOUNDS ON («, €)-RENYI DP

4k we can get a random variable sampled from p¥, which is the

adv k

By further post-processing on ;'

distribution over {0, 1} indicating whether ‘ 70 H < 1. Then, for any ¢ > 2, we have
Gi Gi

€; (é_) KL(M??:U/}) (—) (1 - Cz) 1Og C C CZ ( — 2@) log %

(7) is because post-processing will not weaken Rényi DP (Mironov, 2017). (4) is because
40(0) = Pr (‘ adv,0 _ TOH > 1) <G

pi(1) = Pr (‘ padvl —W:’OH < 1) <Pr (‘

+C11g

adv,1 1
T — HZl)gCi.
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Therefore, the KL-divergence is lowerbounded by (1 — ¢;) log 12_@' + ¢ log 190 .
When (; < 1, we have ¢; > 1 log % Therefore, (; > 3. Moreover, if 4 vazl ¢ < 15, by

pigeon-hole principle, there exists a set of players Z C [N]\ {1,2} with |Z| > &, so that for any
i € Z, ¢; < 1. This further implies that

| X 1 | X 1
N “4 G = 2|I| _ G N <4 €= 2|I| 4 &
i=1 icl i=1 i€l
since (;,€; > 0 for any i € [N].

Therefore, finally,

1 1 3 o, @3 2 3 1 &
NG LGz zger | e ) 2w |ty )
i=1 1€L i€L i€L i=1
(7) uses Jensen’s inequality. O

B.3 OMITTED PROOF OF LEMMAS

Lemma B.1. Consider the 2V games {QS } SCIN] constructed above. There must exist two adjacent
games G° and GSYUY withi e [NT\'S, so that

~ S —~ S
E max <7r§9i_1 — wgi_l,g;’fi_l(g‘?» + max <7T§9z — T34, g% (g3)>] <7¢ (18)
Tgi—1 EAT3I—1 T3 EAA3E
TN S0t} ; 1~ aSUD ;
Ef max <7T?‘>Si{{1l} ~ T3i-1.9% (gSU{l})> + _max <7r§l.u{l} — R, g (gSU{l})>] <7C.
T3 1 EATBi—1 T3, EAABI

(19)
Proof. By the accuracy condition and non-negativity of MAXz A4 <7r? -7, g;r“’ (gm)>, we have
> E

Tas Azi—1 g EAAZG
i€[N] T3i_1€EAT3 3i i

N 0 N )
max <7ng'—1 - 7T3i—1793i—1(gm)> + max <7TgL — T3i, 93; (gw)ﬂ < 3NC.

Therefore, by the  pigeon-hole  principle, there  must exist a  sub-

set T C [N] with |Z] > (X1 + 1, so that for any i € I,

~ 0 ~ 0
E |:max;r\3iileA-A3i71 <7Tgi,1 - 7T?n’flag?,,‘;j—l(g@)> + maxz. cA4si <7T;g7, - 773%’7.9:75‘; (g(())>} < 7C
The same guarantee holds for any G{?} with i € [N].
Then, we will form a meta graph, with each node as a subset of [IV] so that there are 2V nodes in

total. For each two nodes S', 82 with |S!| < |S?|, they are connected in the meta graph if and only

if G5 and GS” are adjacent. In other words, S2 = S* U {i} and i € [N]\ S'. The edge between
(S1,8?) is labeled as i € [N]if S? \ S! = {i}. Therefore, each node has N edges and their labels
are different from each other. Then, there are 2"V nodes in the meta graph and N2V ! edges.

For each node S C [N], the set Z constructed above can be viewed as selecting edges with labels in
Z. Then, for each node S and its selected edge with label 4, it is guaranteed that

E

— 7TS oy ﬂ's
max <7Tz§gi—1 - 773i—1a93i—1(g5)> +  max <7T§?z — M3i, 934 (gs)>] <7¢ @21

%Bi—leAA:Si_l %3iEA'A3i

Because |Z| > [%w + 1 and there are N2V~ edges in total, by pigeon-hole principle, there must

exist an edge being selected twice. In other words, there exist two adjacent nodes S*, S? that
both select edge with label i. By definition, assume |S| < |S?| without loss of generality, then
8§? = St U {i}. Therefore, (21) is satisfied for both S, 2 on i. O
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C PROOF OF THEOREM[5.1]

Theorem 5.1. Consider Algorithm Let A = maxen) | Ai|. The update-rule can achieve the
following guarantee in any polymatrix game. For any T > 0, player i € [N) and strategy m; € A4

TZZEK et )]

1 2 a? T 1 2nv A
Sg——rA5—+-< L 0)442+- — + 472%:7 .
2 2(N)"logN o (N) " logN

nT 2y
We will give a proof sketch of Theorem [5.1] first.

(10)

C.1 PROOF SKETCH
To show the convergence of Algorithmm by Lemma D.4. in[Liu et al.| (2024), we have

=5 il + gl i =)

2 1] : 2 1
o w0 - L - L

< % . Then, by adding <g§"< o g(-t) it 7Ti> on both

i 0N
(t+1) tl Ti
(o))
2
1
2

| *‘”H e
7 I

2n
2

_ =07
i

i

2
=% e

Moreover, ’ %

sides, we have

2
t+1
—772(+ )H

T — i

(t+1) 7T_(_t)

2 t
n <gf( + ggt)ﬂrgt«kl) . 7Ti> -

Moreover, E [< (D ggt)77rft+1) - @ < (é + %) A% 4 |N )|a Z]G/\/’ 7;, where the

complete proof is postponed to Lemma Therefore, by taking expectation on both sides and
telescoping, we have

ZEK JCESY) (t+1)_ﬂ_i>}
1 —? n”? | To\ s T d
ng{ mi— 7| ] +(U+2)A2T+2T+§EU

277\/> ZT

JEN ()

_@mHQ

)

2
st - |-

|

Further, E “ T

o] ;
T — T, H is bounded by,
2 2
E ‘ m; — Projaa; (Wz(t) + nl(»t)) H — Hm — WZ@H }

2 2
-]

=E (2 <nl(-t),7ri — > + Hn(t) ]
i r 2
) ‘ ngt) ] = Ao?.
(i) is because E ngt)] =0 and nz(-t) is independent of m; — 7r§t). By aggregating the results above

and substitute 7; by its value in Algorithm ] the proof is concluded.
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C.2 FORMAL PROOF OF THEOREM[3.1]

By Lemma D.4. in |[Liu et al. (2024), since Algorithm (1 I is equivalent to 77( +1)
2
=()

i , for any m; € A4, we have

argmin, - a4; <7ri,g§ )> ) ||7TzH

0| 22 i 4 (50, 70 m>
1 2 1 i 2
Si ‘ S 772@ B +2777 T ﬂ_§t+1) H 5 ’ Z(_t)
Then, by adding n <g( +1) *5”, wz(tﬂ) — 7Ti> on both sides, we have
Ti Ti —
"7 - ”7 Il + (g, f“” 7n> 22)
1 i
t) —&-;77' - FZ@H) H (t+1 l(_t) 77< (t+1) _ (t) (t+1) 7Ti> .
Moreover,
<§§t+1),7r (t+1) > :< ,,<t+1> (t+1 > < (t+1) <t+1>7 Z(t+1) 7Ti>
> <g (t+1) (f+1) > ’ m(t+D) ‘WEH_U -
0o 1
<t+1> (t+1 (t+1) _ —(t+1)
a7 —m) =2 e 3 U () )
FJEN(4) oo
Q Ll D 2 (t+1) _ ~(t+1)
> i) T T AT i -7,
*< ”> NG| 4 H” i H
JEN (i)

(i) is because U, j € [—1,1]4*4/ Recall that A := max;e[n) |4;|, we have

(t4+1) _ _(t+1) (t+1) (D) _ (t4+1) : (1) | gy (6+D)
a0, < VAR A VA i (s )|

(t+1)
S\/ZHnj H

By taking the expectation on both sides of (22)), we have,

nTi nTi 2 t4+1) _(t+1
E 5 —7||7Tz‘|| < Z Ui ,m ]( , )_7Ti> (23)
1 | 147 41 (t+1) (¢
<E{2‘”_WE) T2 i )H QH -0
2V A
o | (gl - gl m( Y 7”>+|Ng| > )
JEN(3)

By Jensen’s Inequality, E [”n(t+1)“] <4/E {Hn(tH)H ] = /| A,j|o. Therefore,

.
v 3 Bl <20
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Moreover, since ||| € [z 1, we have

1 (t+1) _(t+1)
JEN(3)

2 l4nm
2

7

i

2 1
_ ﬂ_Z(tJrl)H -5 le(tﬂ) _ ﬁgt)

1 (t+1) _ g0 p(+D)
< — — — T
E [2 ‘ . + 77< g, ,m; 7TZ>

+ 2Ano + gn.

To bound E [<§§t+1) — g( ) ) 2>} , we have the following lemma.

L”L

Lemma C.1. Consider Algorithm For any player i € [N], we have

2

gD _g® e+ _ o \] < 2n° 30\ 45, 2nVA _

E[<gz gi ™ 7r>} _(U +5 )4 T INGe § 7. (24)
J

The proof is postponed to the end of this section.

- -]

‘We can further bound E [ T

“|

2
T — Wft)H } by

2
m; — Projaa; (wf) + nl(.t)) H — ’ e (t (t)H Hw — T t)H }

|

o
il <2 -

=E —2 <n2(-t), 771@ - 7ri>

)

g 'ant

)2 2
} = Ao~
(7) is because E [ngt)] = 0and nE ) is independent of m; — w(f)

Finally, by telescoping,

T
1 (t+1) _(t+1)

t=1 JEN (i)
1 2 2 2 3 1
<— Hm 7751)” Al (P 30 A%T+2AO'T+*T¢T+ Z 7T
2n 2n o 2 2
JEN( )
1 2 2 7 2
§+A"T+("+")A T4l ”‘F Y oot (25)
n 2n 2 2 Py
Further, by taking summation over all player ¢ € [N] and averaging, we have
| NI i)
(t+1) _(t+1
Y33 |- X v )
i=1 t=1 JEN ()
N
m 2n\f
+A2nT+<+)A T+2Nzn+ Z| Z 7T,
JEN(3)
Then, we can further bound the summation over 7; by Lemma@}
Lemma C.2. When 1; = I N( for any i € [N], where ¢ > 0 is a game-dependent constant, we have
al 1L 1 c
Y% YW S ocs @
LRS- NZ WOl 4, "= N
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—\5/9
The proof is postponed to the end of this section. Therefore, since ¢ = (ﬁ)fg) ~ in Algorithm we
have

1 1 1 LD (1)

=Y =Y E|(- > U Y

N 4T < IN(3)]| By oM i
n

1 2 m? 7 1 2nvV A
§+AU+(+U>A§+ — + 72‘/( : O
nt 2 g 2 2(N)""logN o (N) " logN

C.3 OMITTED PROOF OF APPENDIX|[C]

Lemma C.1. Consider Algorithm For any player i € [N], we have

gD g D 27 | 30\ 43 2VA _
e A G

Proof. By Holder’s Inequality, we have

£ [(gt*" " )] <o

’L ? ’L

~(t+1) (t) H ) Hﬂ_(t-{-l)

).

(3

Moreover,
1
gt~ 5| = S U (Projaa, (x4 +n0) —20)
W@ | 22
\/\A (t+1) | (4D _ =)
Z HPrOJA A (7rj +n; )—7rj )
JEN(3)
VLS [Proiga (a7 m ) -
Aj J
JEN(U
‘A |./4 (t-‘,—l)
JEN(
Therefore,

B [(5) — g, 6 )

< 5 Bl e -] e ]
< Nf(lz')| jgf:(i) (a\l/ZE [Hﬂj(-tﬂ) (t+1) H } U 7% i 2}) |
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_ (t+1) .
= 0 and n;

2
} R U D 70

is independent of 7r(t+1), 7 , we have

s ]

i () _ pg® 2
<Epmﬁ4ijy 4 Ao?

Furthermore, since E {ngtﬂ)]

E |:Hﬂ_g(_t+1) + n§_t+1) _ ﬁ;t)

1+ 71
1] =(®) (t) 2
<E T N9 =(t) T Ao?
- 1+, J
[ nT; (t) n (t) ’
=F 7z _ g Ao?
1+ 77 i 1+ 9i Ao

() 2 2
o |[7] + 2 [|o° ] + 402

(i)
<271 + 2n?A + Ao?.

(i) is because (a + b)? < 2a? + 2b* for any a,b € R and 1 + n7; > max {1,n7;}. (i7) is because

U, € [-1, 1]4%4, Also, 2YAR [ (t+1) H } 24 Therefore,
_ _ 202 30\ s 2pVA
EK (t+1) _ (t)7 (t+1) Z>} < (21 0T 48 ) 0
g’L z 7T'L U = p + 2 +7|N(’L)|O’ Z T]
JEN(3)
Lemma C.2. When ; = i Nc(q',)\ forany i € [N], where ¢ > 0 is a game-dependent constant, we have
B SR N PIRE o
- T — — T S =.
Proof. By definition,
N N
1 c 1 c
NN Z NG|~ N
i=1 i=1
Moreover,
N N
1 1 c 1
PN DIED
i 2 <2|N 2|N1(J)2>
=1 jEeN (i
N .
Ox3 3 2|N (4)]
N & 2[N ()2
_<
v
(1) is because each player contributes W to the summation 2 times on each edge, i.e. 2|\ (3)]
times in total. 0

D PROOF OF SECTIONI6]

Theorem 6.1. Consider Algorithmand any two adjacent polymatrix games G, G’ that differs at
(v1,v2). Let dist(i, j) be the length of the shortest path between players i, j, which is 0o when i, j
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are not connected. The update-rule guarantees the following for any T > 0 and player i € [N],

NZD ( gz,ug)) mm{q. AT 11
where
1643 (log N)? | 44
[ ':% zN:]l (T > min {dist(i, v1), dist(i,v2)}) (13)
. N P > Ul)s » U2 .

We will give a proof sketch of Theorem [6.] first.

D.1 PROOF SKETCH: THE CASE OF DENSE GRAPHS (é)

Firstly, we will introduce the chain rule of Rényi divergence.

Lemma D.1 (Chain Rule of Rényi divergence). For any distribution p,q over random variables
Xl,X2,f0rany a > 1, we have

Do (p(X', X?),q(X", X?))
<Do (p(X1), ¢(X")) +sup Do (p(X*| X' =31, g(X? | X' =31)). @7

A proof of the above lemma is provided in Appendix [D.5]for completeness. By Lemma [D.] the
divergence between the distribution over all observations can be decomposed into the divergence
between the distribution over the observation at a single timestep. Formally, for any o > 1, adjacent
games G ~ G’, and player i € [N],

T T
Daq (u(g Lng )-)

SZ sup D, (,u(gt)z( BRG] M(gt/)'( 15, ,6“‘”)),
(1) e 5= 1))

Note that the observation here 5(*) = 772(5) + nl(-s). When the graph is dense, i.e. N' = N for some
p > 0, the degree |\ (7)| of most players will close to V.

Then, since post-processing will not increase the privacy budget, we can augment the set of obser-

vations to bound D, (ugg, p(g/ )-> Specifically, for two adjacent games G ~ G’ that differs at the

utility matrices on edge (v, v3), the augmented observation will include {ﬁj(»t) + nﬁt)} s where
je
S O[N]\ {v1, v} and vy, vo will be included in S if their degrees are no less than N2/, Let u(gtfs

denotes the marginal distribution of u( ) {7T§t) + ng»t)} . We can see that for any ¢ € S,
jes

T T
D (8§).150)) < Do (152,08
For i ¢ S, we can show that D,, (M(QTI), u(g, ),) is bounded by some constant. Therefore, since

S| >N -2, 5N D, ( (gz)vﬂ(g')<> is bounded when D, (,u(gT;,u(g,) ) is sublinear in N.

Note that u ( |6, ... 6(*=1) is a multivariate Gaussian distribution with mean (775”) s and
ic

variance 02I xiesAi Therefore, by the Rényi divergence of multivariate Gaussian (Gil et al., [2013),

- ~ o ORIk
the divergence is bounded by 5% > ;- 5 s H .
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If S = |[N], then for any player ¢ € [N] \ {vi,v2}, given all past observations
t—1

({77](»5) + ngs)} $> are identical in G, G’, 7ri(t) = ’(t) For i € {v1,va}, given w(t_l) =
JE s=1

7?/Et—l) and only Uy, , # U}, .. 7rz(t) _ 7T/gt) <0 (W(l ‘) <0 ((J\f)2/9> by definition of S.

O hides constants invariant to the number of players NV, e.g. A, the size of the largest action set.

If v1,v0 € S, then for any i € S\ (NM(v1) UN (v2)), (t) = w’(t) Fori € N(v1) UN(va), w

1
will further augment the space of observations so that the adversary can observe ({nv1 , ng,‘; }) .
s=1

Assume i € N'(vy) \ N (vq) for ease of exposition. For any j € N(4) \ {v1,v2}, we have wgt D=

i) o, )0 <0 () 2] < o[k )0
over, due to the additional regularization imposed on each player, we have the followmg lemma.

. Therefore, H

Lemma D.2. Consider the Algorithm|l| For any player i € [N] and timestep t > 0, by updat-
t t t

ing the strategy {71'1(3)} , {F/Z(-S)} with the same noise {nl(-s)} but different gradients
s=0 s=0 s=0

ONG ()
{gi‘ } ,{g/ B } individually, we have
5=0 5=0

_ 0| o VA

Ti

(28)

s

7T§t) _ 7T/Et)

o <(f/g)53> because [N (v1)] < (N) */% Moreover, since IV (v1)] < (N) s

The proof is postponed to Appendix Therefore, finally,

<o) <

Tvl

2
= Z 771(t) - ’/Tlgt)

2 (log N)?
H =0 (4/9 '
i€SN(N (v1)UN (v2)) (N)

For cases of v; € S,v3 € Sand vy € S, vy € S, the proof is similar.

e

D.2 PROOF SKETCH: THE CASE OF SPARSE GRAPHS (&)

For the sparse graph, the degree of all players is bounded by a constant N'™2%, For simplicity, let’s
consider two adjacent games G ~ G’ which differs at the utility matrices on edge (v, v2) € F, and
o = 0 in Algorithm[I] i.e. the noise-free case.

At timestep ¢, 7r( )in G and its counterpart W/Et) in G’ are identical if ¢ < min {dist(z, vy ), dist(i, v2)}.
This can be proved by mathematical induction.

Therefore, Rényi divergence between u ( |6, 5=V and u ( |6, 5=V is 0,

(t

since they are both normal distribution W1th mean 7, ) and variance 0.

Recall that the graph is sparse and the degree of each player is bounded by a constant /™%, In such
cases, most players are at least of distance O (log yrmax IV) to the edge (v1,ve). Therefore, if T in
Algorlthml 1s no larger than O (logrmax V), the Rényi divergence of most players at timestep ¢ is 0.
Therefore, by averaging across all players, the privacy budget will be 0 as the number of players goes
to infinity.

The general proof for the cases when o > 0 is shown in Appendix

In the following, we will introduce the proof for dense graphs (&) first and that for the sparse graphs
(&) later.
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D.3 PROOF FOR DENSE GRAPHS (&)

Let NV = (% > €[N] m) be the harmonic mean of players’ degrees. When the graph is dense,

N will be relatively large. Now, we will bound the Rényi DP. Let (vy, v2) be the edge on which the
utility matrix differs in G and G’. Then, we define the set S as

N1 N ()l \N<v2>2|gz(*)”9 5
NV VGl < () W) > (9)
NI\ e} V()] < ()77 IN ()] > (8)
VI {or o2} V()L IV ()] < (W)
() (® (s) (s) t
Consider the marginal distribution pg's of pg” over {wi +n, }i€s>s_1- Then,

D, (u(gt)s,u(g,) ) > D, (u(gt)l,u(gt,)») for any ¢ € [N]\ {v1,v2} and ¢ > 0 since ¢ € S and

enlarging the set of observations will not decrease the Rényi divergence. This is because post-
processing (delete observations) will not increase Rényi divergence (Mironov, [2017).

D.3.1 v,15 €S8

By Lemma|D.1} let 7/; () be the counterpart of Fl(t) for any ¢ € [N], we have

D (Mg87ug/ )<Z Sup Da (:u’g«,S('I/O\(l)a/O\(Q)a"' 7/0\(t_1))aug’73('|/0\(1)7/0\(2)7"'

1 (6,62 - 5= D)
M) o v (t) ||*
. V-
= su =7 .
202 Z Z (1) 5 p 5(t—1) H ’
t=1ic[N] (0,0, 5= 1)
(7) is by the Rényi divergence of multi-variate Gaussian distribution (Gil et al.l |2013), since the

distribution of w(t) + n( ) is a multivariate gaussian with mean 7T( ) and variance o1 A; (L4, 1s the
identity matrix indexed by A; x A;). The inequality above 1mphes that the Rényi divergence can be

bounded by the squared 2-norm of 7" — 7/{)_ given all past observations (oW, 5@, ... 5t=1)
are identical in G, G'.

(t=1)

D
’Et) for any i € [N]\ {v1,v2}. For

_(t=1) (t—1) (t—1) /(f 1)
. T, ng. . T
=P | Hi ) _p =
Fola ( 1+ ) e ( 1+nn )H

77_1('t—1) n,Et 1) B ﬁgt_l) 7779,1(;_1)

1+n7 1+nm

Given the observations are identical in G, G’, the gradient g,

identical in G, G’ since the gradient only depends on 7r(
(t )

of all players except vy, ve are

(t—1) and the utility matrices, which

are identical for ¢ € [N] \ {v1,v2}. Therefore, 7,
i € {v1,v2}, we have

|

/(1)

-7

IN

1 _(t—1
< gy 22 (B~ VL) m
JEN ()
(1)

2n :
= VA

(i) is because U; ; € [—1,1]4*4 and U, ; # U, U; ; only if (i,5) = (v1,v2) or (4,7) = (v2,v1).

® 4 p® (t)

Therefore, since the distribution of 7, is actually a multivariate gaussian with mean 7, ” and

variance 021 4,, so that the Rényi dlvergence is bounded by (% | Ay, | + % | Av, ‘)

By the definition of S, it is further bounded by ‘(lo”’) s AT.
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D.3.2 wv,v5 &S

t
When the adversary may only observe (71',(;) + n,(:)> for some k € {v1,v2}, by Lemma we
s=1

(0] : (), o ()\7! :
T when all past observations (7Tk +n, ) ) are the same in

s=

_(t-1)  (t—1) _(t—1) J(t—1)
= |[Projaas (ﬂk 19 > — Proja, (ﬂk 'y )H

only need to bound H’]T](C )
G,G’. Then,

et

1+ 1+ 7y
#0171 gD ) 7D gD
1+nmy 1+ 07
t—1
< Hgff Vg )H

<2nv/| Al

For k € [N]\ {v1,v2}, similar to the proof in the previous section, we will augment the ob-
t
servations of the adversary first. The adversary may observe ({7?1(5) + ngs)}_ oy })
% V1,V2
and ({n,@}, ngz) }) at timestep t. Note that the actual observation of the adversary is still

(71',(;) + n,(:)) o We augment the observations to simplify the proof, since the Rényi divergence of

s=
the the augmented observation’s distribution upperbounds that of the actual observation.

- w’(t) ’ for any
(t)

Still, by the chain rule of Rényi divergence, we need to bound Z ie[N
t € [T]. For any i ¢ N (v1) UN (v2), similar to the discussion in previous section, the gradients g;
and %Et_l) are identical in G, G’, so that the 7r£ ) — 7T/(t)

Fori € N(v1) UN (vs) \ {v1,v2}, we have

/(t 1)” Z U (7?5;71) _ ﬁlg‘t_l)>

JEN(3)

@_n (=D (1)
el S 'Uw(wj #¢)
j€{v1,v2}NN(3)

VA (1) _s(t—1)
SO 2 -

|

]E{Ul,vz}ﬁN(i) !

nA _
STGIRI

jE{v1 ,Uz}ﬂN(i)

(t=1) _ —s(t=1) H .

J J

(1) uses the factthatw(t D= ﬁ’ﬁtil) fori & {vy,v9}. Since, ngtfl) = n’y*l),for any j € {v1, vz},
we have

Hﬁ§-t71) — ﬁlgt_l)H ’ProjAAj (Wj(-tfl) + n§-t71)) — Proj 4, <7T/§-t_1) + n’;t_l)) H

(t—1) ,(_tfl)H

ﬂ_(t—l) + ngt—l) o 7TIj

<.

(t=1) F,gt—l)“ '
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Moreover, due to the additional regularization, for j € {v1,

7’ ;t_l) H will be bounded
as follows according to Lemma

‘ /(t 1)H Q\ﬁ @ \ﬁ( )/logN 2\/Aj10gN.

J —\5/9 - —\1/3
(V) (V)
N —n2/9 NP .
(i) is because when vy & S, [N (v1)| < (N)™ " so that 7, > R by definition. The same
log
argument also holds for vs. Therefore, 7r§t) o (t %m where A = max;e(n [A;.

Furthermore, for i € [N]\ {v1, v}

o 16n% A3 (log N 2
Do (4} 1)) < Da (ugT;,ug’)sz<v1>uN<vz>~( — 7 ] L
7 (V)™ mingepr () un (o) V(0]

Q@ —2/9 1602 A3 (log N 2
Sftz@(/\[) )'(2/3 . ( ) 12 r
(N) MG e A (v )UN (v2) ‘N(Z”

B 16an2A3 (log N)? T

72 ()7 it unyon o) WO

—

Finally, since min;c N(v1)u N(ws) W()]? > 1, we can conclude the proof. Moreover,
M e A (v ) UN (02 IV (2 )|? can be much larger than a constant in practice, e.g., Erd6s—Rényi graphs.

The proofs for the rest possibilities (v, € S,v9 € S and v1 € S, vy € S) are similar. O

D.4 PROOF FOR SPARSE GRAPHS (#)

In this section, we show the DP guarantee when the associated graph of the polymatrix game is sparse.
Formally, there exists a constant N'"™#* > 0 so that |[N(¢)] < N™** for any ¢ € [N].

t—1 t
We will augment the observations from (WZ(S) + nl(»s)> to ( {7r§s) + ng»s)} (,)> , where
s=1 jes;”® s=1

S {j: min {dist(j, v1),dist(j,v2)} > s} min{dist(¢,vy), dist(¢,v2)} > s
G 17" Otherwise.

When s < min {dist(¢, v1), dist(¢, v2) }, we will show in the following that with all past observations

/(S)

identical in G, G’, then WJ(S) and its counterpart ';> in G’ are identical for any j € S When

s =0, Si(o) = [N] and 7T(0) ! 5-0) for any j € [N] since they are both initialized to uniform

distribution over .A;. When s > 0, for any j € S; () we must have A/ (4) € S; (== otherwise

min {dist(j, v1), dist(j,v2)} < s. Therefore, since all past observations are identical, we have 7r,(C -1

are identical in G, G’ for any k € N (j) so that the gradient g§ b= =g gs D, Moreover, given

~(s=1) (*)
J

are identical, m;" are identical in G, G'.

(5) _ /(o)

When s > min {dist(¢, v1), dist(¢, v2) }, ||, < 2n4/|A;l, given the past observation

Uy

wgsfl) + nl(-sfl) is identical.

By Lemma|D.1] for any 7" > 0,

2an

D, (,u(g Z),u(gT,)) <max {0, T — min {dist(¢, v1 ), dist(z, ’U2)

2
1(T > min {dist(i, vy), dist(i, v) }) ~—
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D.5 OMITTED PROOF OF LEMMAS

Lemma D.2. Consider the Algorithm|l| For any player i € [N] and timestep t > 0, by updat-
t t
ing the strategy { (s )} , {7?’1(-5)} with the same noise {nz(-s)} but different gradients
s=0 s=0

\ s=0
{gfs)} {g,gs)} . individually, we have

2V A,;
|r - 70 < 22 28)
Ti
Proof.
(t+1) Projaa; (Wz(t) +n,§t)> nggt) Projaa; ( /(t) —|—n(t)> ng’gt)
’ = H = ||Projaa, — Projaa,
1+ 140w
Projpa; (Wft) + ngt)) ngg ) Projaa; (W’Et) + ngt)> — ng’gt)
< —
- 1+nm 1+n7
. t t . ( _(t t
i (wgunp) o, (s )]+ 1 - )
1 MONS /(t)H t) ,(t)H
“1l4ngn 1+97 + nT;

By recursively applying the inequality above, we have

. 1 t+1 t 1 t—s+1
i w9 < (=) R0 - D ( )
1+ n7; 1+n7

@ t 1 t—s+1
1
9 () o

(1) is because 7ri(0), w’ EO) are both initialized as uniform distribution over .A;. Therefore, since each

element of the gradient is bounded by [—1, 1] by definition, we have

t t—s+1
1 1 2V A;
e - sy () VA< VA =
s=0

1407 (1+nm) (1 — 1+17m) T
O
Lemma D.1 (Chain Rule of Rényi divergence). For any distribution p,q over random variables
X1, X2, for any o > 1, we have
Do (p(X1, X?),q(X, X?))

<Dy (p(X1),q(X")) +sup Do (p(X? | X' = 71),¢(X?| X' =3)). 27)

) g/§9)

H

Proof. By definition, when o > 1, we have
Dq (p(X', X?),q(X*, X?))

_ ! log/ (p(zt,2?))” (q(xl,xz))lfa datda?
log (/ z? |:1c ( (2 |:101))17a de) (p(acl))a (q(ml))lfa dz!
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(7) is by Tonelli’s theorem. (i) is by Holder’s Inequality.
When a = 1, the corresponding Rényi divergence is KL-divergence. Therefore,

Dy (p(X*, X?%),q(X*, X?))

— 1,2 p(ata®) 1,
/1’m2p(l' , L )10g Wdz dzx

20 1Yy (el
_ 20,1 1y P($|~T)P(x)d1d2
[ vt 1t og B o et
— 2,1 1 p(z') 4 2,1 1 p(@®lat) 1 o
/wlﬁ p(z® |z )p(z) log q(ml)dx dx +/1’I2 p(z® |z )p(z”) log de dx

=D (p(X1),q(X")) + Ezipxry [Dr (p(X? [ X' =71),¢(X? | X! =71))]
<Dy (p(X1).q(X") +sup Dy (p(X*| X! = 71),q(X?| X' = 7))

E EXPERIMENTS

The experimental results are shown in Figures[d]and[5] The baseline algorithm is adapted from|[Huang
et al. (2015). Our implementation uses PyTorch (Paszke et al.,[2019)) to enable efficient, fully parallel
updates of all players’ strategies, and all runs were executed on 8 x NVIDIA A100 GPUs. The error
bars denote 1o.

On dense graphs, as the number of players increases, our algorithm’s exploitability and the privacy
budget both decrease, whereas the baseline’s exploitability increases. On sparse graphs, by contrast,
only the privacy budget decreases. A plausible explanation is that the convergence rate on sparse

graphs is O W) , which is too mild to overcome constant factors and stochastic noise for

N < 216, Hyperparameters were chosen according to Theorem The code is provided in the
supplementary materials.
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Dense Graph
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Figure 4: Experiment results of dense graphs. Each node (player) in the graph will be connected to
another node with probability p, the connection is sampled i.i.d. for each node. Then, the duplicate
edges will be removed. The action set sizes of all players are set to A. We can see from the result that
the exploitability and the privacy budget both decrease as the number of players increases.

Sparse Graph
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Figure 5: Experiment results of sparse graphs. We will randomly generate c/V edges in total, with
each node appearing c times. Then, duplicate edges and self-loops will be removed. The action set
sizes of all players are set to A. The result shows that while the exploitability remains unchanged, the
exploitability decreases as the number of players increases.

30



	Introduction
	Preliminaries
	Necessary Conditions for Achieving High Accuracy and Differential Privacy Simultaneously
	Methods
	Convergence Analysis
	Analysis of Differential Privacy
	Trade-off Between Accuracy and Differential Privacy
	Experiments
	Conclusion and Limitations
	Ethics Statement
	Reproducibility Statement
	Use of Large Language Models
	Related Work
	Proof of sec:lowerbound
	Proof of lemma:all-communication-channel
	Lowerbounds on (, )-DP
	Lowerbounds on (, )-Rényi DP

	Proof of lemma:distance-impossible
	Lowerbounds on (, )-DP
	Lowerbounds on (, )-Rényi DP

	Omitted proof of lemmas

	Proof of theorem:convergence-general-sum
	Proof Sketch
	Formal Proof of theorem:convergence-general-sum
	Omitted Proof of appendix:proof-general-sum

	Proof of sec:differential-privacy
	Proof Sketch: the Case of Dense Graphs ()
	Proof Sketch: the Case of Sparse Graphs ()
	Proof for Dense Graphs ()
	v1, v2S
	v1, v2S

	Proof for Sparse Graphs ()
	Omitted Proof of Lemmas

	Experiments

