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International buffet restaurant, vibrant decor Chic clothing store with mannequins Bohemian art studio with a vintage easel

Colorful arcade with neon signsQuaint bookstore with wooden shelves Fully-equipped home gym with machines

Figure 1. Sample 3D environments generated by 3D-GENERALIST, demonstrating control over assets, layout, material, and lighting.

Abstract

Creating 3D graphics content for immersive and inter-
active worlds remains labor-intensive, limiting our ability
to create large-scale synthetic data for training foundation
models. Recent methods aim to alleviate this, but they of-
ten focus on a single aspect (e.g., layout) and do not im-
prove generation quality by simply scaling computational
resources. We recast 3D environment generation as a se-
quential decision-making problem, using Vision-Language
Models (VLMs) as policies that output actions to jointly
craft a 3D environment’s layout, materials, lighting, and
assets. Our framework, 3D-Generalist, trains VLMs to
generate more prompt-aligned 3D environments via self-

improvement fine-tuning. We demonstrate the effectiveness
of 3D-Generalist and our training strategy in generating
simulation-ready 3D environments. We also demonstrate its
quality and scalability for synthetic data generation by pre-
training a vision foundation model on the generated data.
After fine-tuning on downstream tasks, we show that it sur-
passes models pre-trained on meticulously human-crafted
synthetic data and approaches results achieved when train-
ing with orders of magnitude larger real data.

1. Introduction

3D graphics design is vital in gaming, augmented reality,
virtual reality, and robotics simulation. However, creating
immersive 3D worlds remains labor-intensive: artists and
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designers must select and create assets, apply materials, set
up lights, and arrange these elements into a coherent en-
vironment. In this paper, we study scalable generation of
Simulation-Ready 3D environments (collision-free scenes
composed of 3D meshes) for downstream synthetic data ap-
plications or robotics task simulation, rather than implicit
representations such as NeRF or Gaussian Splats.

Diffusion and large transformer models have opened new
opportunities to accelerate or automate parts of the tradi-
tional graphics workflow. For example, Holodeck [51] and
RoboCasa [28] use large language models (LLMs) to select,
retrieve, and place 3D objects from asset libraries like Ob-
javerse [12], while URDFormer [8] uses diffusion models
to synthesize textures. However, these works scale poorly
with compute, leaving a gap between their outputs and the
quality demanded by downstream tasks. We aim to build
a system that takes open-ended text prompts and outputs
3D environments while benefiting from additional compu-
tation.

To scale with compute, we use the ability of models to
self-correct and improve upon their own outputs [23, 24].
This approach mirrors the iterative refinement process of
expert 3D artists, who render, inspect, identify mistakes,
and refine with added detail and corrections. Guided by
this insight, we introduce 3D-GENERALIST, a framework
that unifies materials, lighting, assets, and layout by casting
3D environment generation as a sequential decision-making
process. We use large multimodal models as action poli-
cies guided by observations of the current 3D world. 3D-
GENERALIST comprises three modules: Panoramic Envi-
ronment Generation, Scene-Level Policy, and Asset-Level
Policy. Our key contributions include:

• Panoramic Environment Generation, which generates
architectural layouts (i.e., floorplans and door/window
placements) from text via a panoramic image-guided in-
verse graphics procedure.

• Scene-Level Policy, a VLM policy that jointly refines 3D
layouts, materials, assets, and lighting. Its iterative self-
improvement enables self-correction, allowing Scene-
Level Policy to outperform SOTA baselines in prompt
alignment while boosting general-domain visual ground-
ing.

• Asset-Level Policy, a VLM policy that iteratively places
assets on top of other unlabeled assets in a semantically
aligned and physically plausible way.

• Showing 3D-GENERALIST’s efficacy by training a ViT
that surpasses counterparts trained on curated 3D data,
rivaling performance from large real-world datasets.

2. Related Work
2.1. Prompt-driven 3D Scene Generation

Earlier forays into prompt-driven indoor scene synthesis
relied on manual mappings between language and object
placements. Methods such as Wordseye [10] and its follow-
ups are symbolic and rule-based, requiring substantial
manual effort to generalize to new domains and con-
straints [5, 6, 27, 30, 38]. Recent advances have explored
two main directions. One line of work uses diffusion priors
with representations such as neural radiance fields or Gaus-
sian splats [15, 31, 37, 55, 56]. These scenes lack separable,
manipulable objects and surfaces, making them unsuitable
for synthetic data applications that require precise instance-
level annotations or robotics applications that require sim-
ulated robot-object interactions. Another line of research
focuses on generating simulation-ready scenes, often using
intermediate representations (e.g., scene graphs or layouts)
to arrange 3D assets from a repository [2, 4, 17, 22, 25, 33,
51–53]. Many focus on learning distributions over assets
and layouts from datasets [18, 29, 43]. More recently, Large
Language Models (LLMs) and Vision-Language Models
(VLMs) have enabled open-vocabulary 3D scene synthesis
without dependence on predefined labels or categories.
For example, LayoutGPT [17] prompts LLMs to directly
generate 3D layouts for indoor scenes. LayoutVLM [40]
uses VLMs to generate 3D layouts by generating objective
functions that can be differentiably optimized. Unlike prior
work that mostly focuses on layout, 3D-GENERALIST
jointly crafts layouts, materials, fixtures, and lighting.

2.2. Vision-Language Models for 3D Reasoning

While VLMs demonstrate strong general-domain image
understanding, they struggle with 3D and spatial rela-
tions [7, 21, 45]. Many works enhance VLM spatial
reasoning with visual markers, which anchor specific visual
reference points in images [49]. These markers reduce
reliance on textual cues alone and allow VLMs to interpret
spatial layouts and visual hierarchies in images more
directly. Others have curated datasets for training spatial
reasoning [19]. For example, SpatialVLM [7] constructed
a spatial reasoning dataset, enabling VLMs to perform
tasks involving complex object placements and spatial
configurations. SpatialRGPT [9] further strengthens VLM
spatial understanding by leveraging multi-view inputs to
improve three-dimensional reasoning and object alignment
across perspectives. Similarly, 3D-GENERALIST uses
multi-view images with VLMs to perform spatial reasoning
tasks and fine-tunes the VLM on task-specific data.

3. 3D-GENERALIST

3D-GENERALIST takes a text prompt as input and outputs a
3D room with materials, fixtures (e.g., doors and windows),
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Figure 2. Overview of 3D-GENERALIST’s Panoramic Environment Generation. We use panoramic diffusion to generate a guiding
360◦ scene image, then extract the corners, windows, and doors information using a room layout estimation model, Grounded-SAM, and
a VLM, respectively. These predictions are then used to construct the 3D room with fixtures procedurally.

3D assets, and lighting. We treat detailed, prompt-aligned
3D environment creation as a sequential decision-making
problem and iteratively refine scenes with our scene-level
and asset-level policies. 3D-GENERALIST uses Vision-
Language Models (VLMs) as policies to optimize 3D en-
vironments iteratively. Below, we outline the workflow and
detail each of the three modules in 3D-GENERALIST.

3.1. Panoramic Environment Generation

This module, illustrated in Figure 2, initializes a base 3D
room from the input text prompt, including walls, floors,
and fixtures such as doors and windows. LLMs often strug-
gle to predict room coordinates and door/window locations,
resulting in overly simplistic or unrealistic rooms. We there-
fore first use a panoramic diffusion model [16] to generate
a 360◦ image as guidance, then use an inverse graphics pro-
cedure to construct the 3D environment as follows:
1. Room Layout Estimation. We take the panoramic im-

age and use the HorizonNet [39] model to derive the
basic room structure (e.g., walls, floors, ceiling).

2. Fixture Segmentation. We apply Grounded SAM [34]
to segment windows and doors.

3. VLM Annotation. A Vision-Language Model (i.e.,
GPT-4o [1]) inspects each segmented region to deter-
mine its type (e.g., single door, double door, sliding
door, or folding door) and materials (e.g., door frame
material, door material, and door knob material).

4. Procedural Generation. We then procedurally con-
struct rooms, doors, and windows at the corresponding
3D locations, as in [11].

3.2. Scene-Level Policy

This module adds assets to the initial 3D room generated
by Panoramic Environment Generation. Models that
generate physically based rendering (PBR) materials or
3D assets from text or images often produce outputs with

significant artifacts. We therefore use a large repository of
assets and materials with image-conditioned retrieval from
diffusion-generated images. Our key insight is to build
a model capable of self-correction. Scene-Level Policy
employs a VLM as the policy model, taking the current
state of the 3D environment as input and outputting action
in code to modify the 3D environment. Figure 4 illustrates
this process. Below, we describe the key components.

We use a domain-specific language (DSL) designed to
represent 3D environments flexibly using a combination of
code and natural language. Our Scene DSL defines key de-
scriptors for scene elements such as floors, walls, ceilings,
objects, and lighting. The Category descriptor specifies
the type of element ({floors, walls, ceilings,
objects}). The Placement descriptor encodes spatial at-
tributes, including position (x, y, z) ∈ R3, rotation θz ∈
[0, 2π], and scale s ∈ R3, allowing multiple placements per
element. The Material descriptor provides a natural lan-
guage description of surface properties. The Lighting de-
scriptor defines the type t ∈ {point, directional, area}, in-
tensity i ∈ R+, and color c = (r, g, b), where r, g, b ∈ [0, 1]
are normalized RGB values. More details are in the supple-
mentary material.

Vision-Language-Action Model Let S0 represent the
3D environment we obtained from Panoramic Environment
Generation, St be the 3D environment at iteration t,
and let P denote the input text prompt. Our VLM, πθ,
parameterized by θ, takes multi-view images It of St (as
shown in Figure 3) along with P as input and outputs an
action code at ∼ πθ

(
a | It,P

)
. We execute this action

code using exposed tools and function APIs—such as
those for retrieving assets or materials based on natural
language—which updates the 3D environment, expressed
as St+1 = f

(
St, at

)
. Following the update, we render

new images It+1 from St+1 to serve as the next state
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Figure 3. Overview of our Multi-View Representation It. This illustrates how we render a 3D environment and feed it as input to our
VLM policy in Scene-Level Policy. The first view is overlaid with visual marks of the x-y coordinate system of the current environment,
the second view is a panoramic render of the room, and the third is overlaid with the variable names for the existing asset instances.
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Figure 4. Overview of 3D-GENERALIST’s Scene-Level Policy. Starting with the current 3D scene, we render multiple views and combine
the text prompt with an in-context example to guide a vision-language model (VLM) acting as an action policy. In each round, the VLM
generates a program that updates assets, materials, layout, and lighting. We use a self-improvement training strategy to fine-tune the VLM
to take actions that could lead to more prompt-aligned 3D scenes.

representation. In Figure 4’s example, the action code
adjusts the position of the bathtub, adds a bathroom vanity
and two plants, and increases the scene’s lighting.

Self-Improvement Fine-tuning Off-the-shelf VLMs of-
ten struggle to consistently generate action code that im-
proves the resulting 3D environment. To address this, we
use a self-improvement fine-tuning strategy. Let π(i)

θ denote
the VLM policy at the start of the i-th fine-tuning round.
Each round begins by generating a set of tasks (i.e., text
prompts). For each task, we initialize the 3D environment
using Panoramic Environment Generation, and π

(i)
θ itera-

tively updates the environment. At each step, we gener-
ate multiple candidate actions and retain the top-scoring ac-
tion sequences—those that yield the highest CLIP scores
between environment renderings and the input prompt. We

then update the policy via supervised fine-tuning, resulting
in an improved policy π

(i+1)
θ . This completes one self-

improvement round, after which π
(i+1)
θ can generate new

tasks and environments for further refinement.

We introduce an in-context library, a collection of action
code examples that significantly enhances CLIP alignment
scores. Empirically, we find that leveraging the in-context
library during data generation substantially improves per-
formance by promoting diversity and increasing the like-
lihood of discovering effective action sequences. We use
GPT-4o [1] as the base model and its publicly available fine-
tuning API in our experiments. More details can be found
in the supplementary material.
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Figure 5. Overview of 3D-GENERALIST’s Asset-Level Policy. We qualitatively showcase its capability to handle diverse placement tasks,
such as placing assets between shelves (i.e., as shown in the leftmost example), stacking assets on top of one another (i.e., the books and
lamps as shown in the middle example), and placing assets in the open shelf of a nightstand (i.e., the figurine in the rightmost example).

3.3. Asset-Level Policy
Our scene-level VLM policy in Scene-Level Policy often
omits smaller objects (e.g., books, plates, utensils) and fo-
cuses on larger, defining assets. In contrast, placing small
assets requires a different approach to ensure physical plau-
sibility.

To address this, we introduce Asset-Level Policy, which
refines the environment by composing smaller assets with
“receptacle objects” (e.g., shelves, tables, counters), closely
mimicking the construction process of physically grounded
environments. Asset-Level Policy is equipped with physical
plausibility verifiers applied prior to placement. The system
is inherently extensible, supporting custom plug-in verifiers
such as physics engines or logic-based constraints.

The process begins with GPT-4o determining whether
a 3D asset qualifies as a “receptacle object” that can host
smaller items. Once identified as a receptacle, we initiate
an iterative process to place these smaller assets. Before the
first round, we have a base object O and a text prompt P
(“wooden office desk in a writer’s home”). The process for
the k-th round:

Mesh-based Placeable Surface Detection. We use a
mesh-based surface detection approach to find valid sur-
faces on the receptacle object (or on previously placed
items, allowing for stacking); see supplementary for details.

We then render the receptacle object from a randomly sam-
pled angle on a hemisphere. We sample a new camera angle
each round to expose different placeable surfaces across it-
erations.

VLM as a Placement Policy. The rendered image I ′
k

(distinct from the multi-view renderings Ik in Scene-Level
Policy) and P are fed into a separate policy model π′

ϕ, a pre-
trained VLM from [13]. We choose [13] because it excels
at the pixel-level precision required for asset placement, in
contrast to GPT-4o in Scene-Level Policy, which requires
stronger semantic reasoning. Formally, the action chosen in
round k can be denoted as a′k ∼ π′

ϕ

(
a | I ′

k, P
)
. Here,

an action is represented as a′k = (o′k, p
′
k), where o′k de-

notes the pixel location in the rendered image indicating the
placement position, and p′k represents the text description
used to retrieve 3D assets from the repository.

3D Placement and Environment Update. Using the
pixel location o′k generated by [13] and associated camera
parameters, we generate a 3D ray to identify a precise
placement point on the mesh. If the location intersects one
of the previously identified valid surfaces, we retrieve the
asset specified by p′k. After verifying that this asset can be
realistically placed (via mesh collision checks), we place
it and repeat this process with the newly composed asset.
By iterating these steps, Asset-Level Policy recursively



Table 1. Physical plausibility and semantic alignment, using the
same metrics and setting as Tab. 2 of LayoutVLM [40]. All scores
range from 0 to 100 (↑ is better). Due to the iterative nature, the
model can self-correct asset placement over rounds of iteration,
improving physical plausibility.

Physics Semantics Overall Score

CF IB Pos. Rot. PSA

LayoutGPT 83.8 24.2 80.8 78.0 16.6
Holodeck 77.8 8.1 62.8 55.6 5.6
I-Design 76.8 34.3 68.3 62.8 18.0
LayoutVLM 81.8 94.9 77.5 73.2 58.8

3D-GENERALIST 99.0 98.0 78.2 79.1 67.9

adds fine details—often overlooked by scene-level poli-
cies—into the 3D environment; for example, a book can be
placed on the table, then a pen can be placed on the book.

4. Experiments
We evaluated 3D-GENERALIST to answer the following
questions:
(a) How does 3D-GENERALIST compare to existing meth-

ods on generating simulation-ready 3D environments?
(b) Does our self-improvement fine-tuning strategy enable

Scene-Level Policy to iteratively refine 3D environments
to be more prompt-aligned?

(c) Can Asset-Level Policy effectively place small objects in
a semantically coherent manner?

(d) Does our method enable effective scaling of 3D data
generation for training robust visual feature extractors?

4.1. Simulation-Ready 3D Environment Generation

Following existing works [20, 32, 40, 54, 56], we evalu-
ated simulation-ready 3D environments by measuring phys-
ical plausibility and semantic coherence. We measured
physical plausibility using the Collision-Free Score (CF)
and In-Boundary Score (IB). We enforced all assets to be
placed, with remaining assets randomly placed if a method
failed. We assessed semantic coherence using Positional
Coherency (Pos.) and Rotational Coherency (Rot.), mea-
suring alignment with the input prompt. To evaluate seman-
tic coherence across layouts without ground truth, we used
GPT-4o to score layouts based on top-down and side-view
renderings and the language instructions. We computed the
Physically-Grounded Semantic Alignment Score (PSA) as
the GPT-4o rating weighted by physical plausibility. Scores
range from 0 to 100, with higher scores indicating better
performance. We did not enable gravity in all experiments,
and we considered a collision to occur when the intersecting
area between two meshes exceeded 0.1 m2 in Blender.

Comparative Study To answer (a), we chose Layout-
GPT [17], Holodeck [51], and LayoutVLM [40], the state-
of-the-art sim-ready 3D environment generation methods,

Table 2. Comparative Analysis and Ablation Study on 3D-
GENERALIST’s Scene-Level Policy. “# Training Runs” refer to the
total number of times we perform (self-improvement) fine-tuning
on the VLM, and “# Actions” refer to the number of actions taken
by the VLM in Scene-Level Policy per scene generation. We report
the CLIP score of the final generated scene.

Method # Training Runs # Actions CLIP Score

Random noise (lower bound) - - 0.026
LayoutGPT - - 0.228
Holodeck - - 0.231
LayoutVLM - - 0.239
3D-GENERALIST 3 10 0.275
3D-GENERALIST w/o fine-tuning 0 10 0.252
3D-GENERALIST w/o in-context library 0 10 0.237
3D-GENERALIST ablations 3 3 0.254

2 3 0.251
1 3 0.248
0 3 0.242
0 0 0.159

as baselines. While there are many other works on 3D scene
generation like Physcene [50] and DiffuScene [43], they are
either limited to a fixed set of object categories (i.e., not
open-vocabulary methods) or rely on representations such
as Gaussian splats or NeRFs rather than using reasoning
models (i.e., LLMs, VLMs) with an object-centric represen-
tation. 3D-GENERALIST outperformed all baselines using
the same set of prompts used in Holodeck [51] (over 250
prompts across 50 room types). 3D-GENERALIST took 1-3
minutes to generate a single scene on A100s when starting
from the initial prompt.

Scene-Level Policy Evaluation To answer (b), we as-
sessed our self-improving fine-tuning strategy using quan-
titative metrics and qualitative examples (CLIP scores in
Table 2 and Figure 6). The x-axis in Figure 6 represents
“rounds of action” within a generation sequence. While
GPT-4o (baseline) showed some early refinement, our fine-
tuned model demonstrated significantly stronger iterative
improvement. Qualitative examples highlight Scene-Level
Policy’s self-correction.

Additional Ablation on Fine-tuning We explored how
self-improvement fine-tuning impacted VLM performance
in general domains. Since our approach trained the VLM
to generate better action code from image observations,
we hypothesized that it enhanced visually grounded under-
standing transferable to general-domain imagery. To ver-
ify this, we evaluated 3D-GENERALIST’s Scene-Level Pol-
icy on two commonly used visual hallucination benchmarks
(i.e., Object HalBench [36] and AMBER [44]) that di-
rectly assess the accuracy of the VLM’s visual grounding
capabilities (details in supplementary).

Results in Table 3 show that the base VLM GPT-4o ben-
efited significantly from our self-improvement fine-tuning,
with the fine-tuned 3D-GENERALIST exhibiting lower hal-
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Figure 6. Evaluation of the self-improving fine-tuning strategy. The top graph shows averaged results, indicating that GPT-4o im-
proves 3D prompt alignment iteratively only after self-improvement fine-tuning. The bottom examples highlight 3D-GENERALIST’s
self-correction: refining untextured assets and layout in one case, and adjusting lighting and ceiling material in another.

lucination rates across both benchmarks and multiple met-
ric levels, except for a slight decrease in object coverage
(COVER) on AMBER. These results demonstrate that, in
addition to generating 3D scenes more aligned with the
prompt, our self-improvement fine-tuning also benefited
VLMs’ general-domain visual understanding by reducing
visual hallucinations.

Asset-Level Policy Evaluation In our experiments, GPT-
4o was responsible for determining whether a 3D asset qual-
ified as a receptacle object, while another VLM, Molmo-
7B [13], provided visual cues for pixel-level placement. As
shown in Figure 5’s qualitative examples, Asset-Level Pol-
icy placed books on shelves, stacked plates on tables, and
filled open shelves with suitable items.

To answer (c) quantitatively, we ran the experiment on 15
“receptacle assets” split equally into three categories: small
tables (nightstand, student desk, bar, side table, foyer ta-
ble), large tables (coffee table, glass coffee table, kitchen
countertop, metal table, office desk), and multi-level assets
(bookshelf - open back, bookshelf - closed back, pantry
shelf, work shelf, warehouse shelf). After placement, we
rendered from four equally spaced camera positions around
the object and reported the maximum CLIP similarity score
between the rendered image and the input text prompt. For
Asset-Level Policy, we set the maximum number of success-
ful asset placements to 10.

Across the 15 test cases, the base receptacle objects
(without any other objects) had an average CLIP score of
0.264. The baseline method produced composed assets with

Table 3. Our self-improvement fine-tuning strategy demonstrates
positive transfer that effectively reduces VLM’s visual hallucina-
tions in general-domain images.

Object HalBench AMBER-Generative

Method CHAIRs↓ CHAIRi↓ CHAIR↓ COVER↑ HAL↓ COG↓

3D-GENERALIST
(GPT-4o) 10.3 5.4 3.3 61.8 16.5 0.8

3D-GENERALIST
(GPT-4o finetuned) 7.7 4.6 3.2 60.8 15.7 0.7

an average CLIP score of 0.269, and our Asset-Level Pol-
icy produced an average score of 0.281 , demonstrating the
ability to place assets on “receptacle assets” in a prompt-
aligned and physically plausible way 1 Qualitatively, we ob-
served that the baseline inpainting-based method regularly
generated many overlapping objects and could not place an
item behind another. Our method, however, had access to
multiple views during the iterative process and could spread
out object placement more naturally. Refer to Figure 7 and
the supplementary material for qualitative comparisons that
showcase the importance of leveraging semantic knowledge
in the VLM (i.e., Molmo) to predict asset placement.

4.2. Downstream Applications

To demonstrate 3D-GENERALIST’s capability in scaling up
3D data, we conducted large-scale pretraining of vision en-
coders on generated synthetic data. We rendered millions of
images from generated scenes using Omniverse to create a

1During our evaluation process, an asset can only be placed if the re-
sulting scene is physically plausible (i.e., no mesh collision).

1The training GPU hours for the original Florence-v2 is estimated.
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Figure 7. Comparison between the baseline inpainting method (left) and 3D-GENERALIST’s Asset-Level Policy (right).

Table 4. Downstream application: Pretraining Florence-v2 on gen-
erated datasets and reporting fine-tuned ImageNet performance.

Pretraining Dataset # Labels ImageNet-1K Top 1 ↑
Hypersim 861,080 0.727

3D-GENERALIST 861,080 0.731
3D-GENERALIST 12,175,588 0.776
Florence 2 (real) 5,000,000,000 0.786

large-scale dataset and compared feature extractors trained
on our synthetic data with those trained on HyperSim [35],
an artist-crafted dataset, along with a real-world dataset.

In our experiments, we first trained a vision encoder us-
ing the Florence 2 [47] framework with a DaViT-B [47]
backbone. Next, we initialized an image classification
model from the pretrained checkpoint and fine-tuned the
model on ImageNet1K [14]. The only variable in our ex-
periments was the selection of the pretraining dataset. We
converted Hypersim into Florence 2 format with three tasks:
2D object detection, semantic segmentation, and bounding
box to segmentation. Doing so resulted in just over 860K la-
bels, and we also generated a dataset consisting of the same
number of labels using 3D-GENERALIST. Finally, since
3D-GENERALIST can scale datasets with ease, we gener-
ated an additional 11.5M labels for pretraining.

All results are provided in Table 4 and compared to fine-
tuning on the publicly available DaViT-B weights from Flo-
rence 2, which was trained on 5B real-world labels. All ex-
periments were conducted on a 96×H100s cluster, with the
runs below 1 million labels taking roughly 96 hours and the
larger run of 12 million labels taking 200 hours. With com-
monsense and visual spatial reasoning from VLMs, 3D-
GENERALIST produced high-fidelity scenes that better re-
flected real-world object distributions and layouts. This
was associated with more effective transfer on real-world
downstream tasks. Furthermore, our synthetically gener-
ated environments scaled up training data for vision models,

achieving comparable or superior performance to manually
curated datasets such as Hypersim while reducing data col-
lection effort.

5. Conclusion
We introduce 3D-Generalist, a framework that formulates
text-driven 3D world creation as a sequential decision-
making problem. The framework can be integrated with
image-to-3D reconstruction [42, 48], image-to-PBR mate-
rial generation [26] or 3D asset generation models [3], en-
abling a fully generative graphics pipeline. Beyond content
creation, the use of explicit 3D representations also facili-
tates generative simulation—enabling the automatic gener-
ation of environments for training RL policies [41, 46].
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Sören Pirk, Binh-Son Hua, Sai-Kit Yeung, Xin Tong,
Leonidas Guibas, and Hao Zhang. Language-driven synthe-
sis of 3d scenes from scene databases. ACM Transactions on
Graphics (TOG), 37(6):1–16, 2018. 2

[28] Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang,
Adeet Parikh, Aaron Lo, Abhishek Joshi, Ajay Man-
dlekar, and Yuke Zhu. RoboCasa: Large-scale simula-
tion of everyday tasks for generalist robots. arXiv preprint
arXiv:2406.02523, 2024. 2

[29] Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten
Kreis, Andreas Geiger, and Sanja Fidler. Atiss: Autoregres-
sive transformers for indoor scene synthesis. Advances in
Neural Information Processing Systems, 34:12013–12026,
2021. 2

[30] Akshay Gadi Patil, Supriya Gadi Patil, Manyi Li, Matthew
Fisher, Manolis Savva, and Hao Zhang. Advances in data-
driven analysis and synthesis of 3d indoor scenes. In Com-
puter Graphics Forum, page e14927. Wiley Online Library,
2024. 2

[31] Ryan Po and Gordon Wetzstein. Compositional 3d scene
generation using locally conditioned diffusion. In 2024 In-
ternational Conference on 3D Vision (3DV), pages 651–663.
IEEE, 2024. 2

[32] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 6

[33] Ohad Rahamim, Hilit Segev, Idan Achituve, Yuval Atzmon,
Yoni Kasten, and Gal Chechik. Lay-a-scene: Personalized
3d object arrangement using text-to-image priors. arXiv
preprint arXiv:2406.00687, 2024. 2

[34] Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang
Li, He Cao, Jiayu Chen, Xinyu Huang, Yukang Chen, Feng
Yan, et al. Grounded sam: Assembling open-world models
for diverse visual tasks. arXiv preprint arXiv:2401.14159,
2024. 3

[35] Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit
Kumar, Miguel Angel Bautista, Nathan Paczan, Russ Webb,
and Joshua M. Susskind. Hypersim: A photorealistic syn-
thetic dataset for holistic indoor scene understanding. In
International Conference on Computer Vision (ICCV) 2021,
2021. 8

[36] Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor
Darrell, and Kate Saenko. Object hallucination in image cap-
tioning. arXiv preprint arXiv:1809.02156, 2018. 6

[37] Jonas Schult, Sam Tsai, Lukas Höllein, Bichen Wu, Jialiang
Wang, Chih-Yao Ma, Kunpeng Li, Xiaofang Wang, Felix

Wimbauer, Zijian He, et al. Controlroom3d: Room gen-
eration using semantic proxy rooms. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6201–6210, 2024. 2

[38] Lee M Seversky and Lijun Yin. Real-time automatic 3d
scene generation from natural language voice and text de-
scriptions. In Proceedings of the 14th ACM international
conference on Multimedia, pages 61–64, 2006. 2

[39] Cheng Sun, Chi-Wei Hsiao, Min Sun, and Hwann-Tzong
Chen. Horizonnet: Learning room layout with 1d represen-
tation and pano stretch data augmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1047–1056, 2019. 3

[40] Fan-Yun Sun, Weiyu Liu, Siyi Gu, Dylan Lim, Goutam Bhat,
Federico Tombari, Manling Li, Nick Haber, and Jiajun Wu.
LayoutVLM: Differentiable optimization of 3D layout via
vision-language models. arXiv preprint arXiv:2412.02193,
2024. 2, 6

[41] Fan-Yun Sun, Harini SI, Angela Yi, Yihan Zhou, Alex
Zook, Jonathan Tremblay, Logan Cross, Jiajun Wu, and Nick
Haber. Factorsim: Generative simulation via factorized rep-
resentation. Advances in Neural Information Processing Sys-
tems, 37:87438–87472, 2024. 8

[42] Fan-Yun Sun, Jonathan Tremblay, Valts Blukis, Kevin Lin,
Danfei Xu, Boris Ivanovic, Peter Karkus, Stan Birchfield,
Dieter Fox, Ruohan Zhang, et al. Partial-view object view
synthesis via filtering inversion. In International Conference
on 3D Vision (3DV), pages 453–463, 2024. 8

[43] Jiapeng Tang, Yinyu Nie, Lev Markhasin, Angela Dai, Justus
Thies, and Matthias Nießner. DiffuScene: Denoising diffu-
sion models for generative indoor scene synthesis. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 20507–20518, 2024. 2, 6

[44] Junyang Wang, Yuhang Wang, Guohai Xu, Jing Zhang,
Yukai Gu, Haitao Jia, Jiaqi Wang, Haiyang Xu, Ming Yan, Ji
Zhang, et al. Amber: An llm-free multi-dimensional bench-
mark for mllms hallucination evaluation. arXiv preprint
arXiv:2311.07397, 2023. 6

[45] Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin
Wang, Yixuan Li, and Neel Joshi. Is a picture worth a thou-
sand words? delving into spatial reasoning for vision lan-
guage models. arXiv preprint arXiv:2406.14852, 2024. 2

[46] Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang,
Yian Wang, Katerina Fragkiadaki, Zackory Erickson, David
Held, and Chuang Gan. Robogen: Towards unleashing infi-
nite data for automated robot learning via generative simula-
tion. arXiv preprint arXiv:2311.01455, 2023. 8

[47] Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong
Hu, Yumao Lu, Michael Zeng, Ce Liu, and Lu Yuan.
Florence-2: Advancing a unified representation for a variety
of vision tasks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
4818–4829, 2024. 8

[48] Jiale Xu, Weihao Cheng, Yiming Gao, Xintao Wang,
Shenghua Gao, and Ying Shan. InstantMesh: Efficient 3D
mesh generation from a single image with sparse-view large
reconstruction models. arXiv preprint arXiv:2404.07191,
2024. 8



[49] Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan
Li, and Jianfeng Gao. Set-of-mark prompting unleashes
extraordinary visual grounding in GPT-4v. arXiv preprint
arXiv:2310.11441, 2023. 2

[50] Yandan Yang, Baoxiong Jia, Peiyuan Zhi, and Siyuan
Huang. Physcene: Physically interactable 3d scene synthe-
sis for embodied ai. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
16262–16272, 2024. 6

[51] Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Al-
varo Herrasti, Winson Han, Jiajun Wu, Nick Haber, Ranjay
Krishna, Lingjie Liu, et al. Holodeck: Language guided gen-
eration of 3d embodied ai environments. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16227–16237, 2024. 2, 6

[52] Kaixin Yao, Longwen Zhang, Xinhao Yan, Yan Zeng, Qix-
uan Zhang, Lan Xu, Wei Yang, Jiayuan Gu, and Jingyi Yu.
Cast: Component-aligned 3d scene reconstruction from an
rgb image. ACM Transactions on Graphics (TOG), 44(4):
1–19, 2025.

[53] Lap-Fai Yu, Sai-Kit Yeung, and Demetri Terzopoulos. The
clutterpalette: An interactive tool for detailing indoor scenes.
IEEE Transactions on Visualization and Computer Graphics,
22(2):1138–1148, 2016. 2

[54] Qihang Zhang, Chaoyang Wang, Aliaksandr Siarohin, Peiye
Zhuang, Yinghao Xu, Ceyuan Yang, Dahua Lin, Bolei Zhou,
Sergey Tulyakov, and Hsin-Ying Lee. SceneWiz3D: To-
wards text-guided 3d scene composition. arXiv preprint
arXiv:2312.08885, 2023. 6

[55] Shijie Zhou, Zhiwen Fan, Dejia Xu, Haoran Chang,
Pradyumna Chari, Tejas Bharadwaj, Suya You, Zhangyang
Wang, and Achuta Kadambi. Dreamscene360: Uncon-
strained text-to-3d scene generation with panoramic gaus-
sian splatting. In European Conference on Computer Vision,
pages 324–342. Springer, 2024. 2

[56] Xiaoyu Zhou, Xingjian Ran, Yajiao Xiong, Jinlin He, Zhi-
wei Lin, Yongtao Wang, Deqing Sun, and Ming-Hsuan Yang.
GALA3D: Towards text-to-3d complex scene generation via
layout-guided generative gaussian splatting. arXiv preprint
arXiv:2402.07207, 2024. 2, 6


	. Introduction
	. Related Work
	. Prompt-driven 3D Scene Generation
	. Vision-Language Models for 3D Reasoning

	. 3D-Generalist
	. Panoramic Environment Generation
	. Scene-Level Policy
	. Asset-Level Policy

	. Experiments
	. Simulation-Ready 3D Environment Generation
	. Downstream Applications

	. Conclusion

