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ABSTRACT

Current knowledge-enhanced large language models (LLMs) rely on static, pre-constructed knowl-
edge bases that suffer from coverage gaps and temporal obsolescence, limiting their effectiveness
in dynamic information environments. We present Agentic-KGR, a novel framework enabling co-
evolution between LLMs and knowledge graphs (KGs) through multi-round reinforcement learning
(RL). Our approach introduces three key innovations: (1) a dynamic schema expansion mecha-
nism that systematically extends graph ontologies beyond pre-defined boundaries during training;
(2) a retrieval-augmented memory system enabling synergistic co-evolution between model param-
eters and knowledge structures through continuous optimization; (3) a learnable multi-scale prompt
compression approach that preserves critical information while reducing computational complexity
through adaptive sequence optimization. Experimental results demonstrate substantial improve-
ments over supervised baselines and single-round RL approaches in knowledge extraction tasks.
When integrated with GraphRAG, our method achieves superior performance in downstream QA
tasks, with significant gains in both accuracy and knowledge coverage compared to existing meth-
ods.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized natural language processing and knowledge-intensive applica-
tions, demonstrating remarkable capabilities in understanding and generating human-like text. However, their suscepti-
bility to hallucination and limited access to up-to-date information pose significant challenges for reliable knowledge-
based reasoning tasks. Knowledge graphs (KGs), with their structured representation of entities and relationships,
offer a promising solution to enhance LLM reliability by providing factual grounding (Nie et al., 2023). The integra-
tion of LLMs with KGs has emerged as a critical research direction, particularly in developing intelligent QA systems
that require both comprehensive knowledge coverage and accurate reasoning capabilities. Recent advances in Graph
Retrieval-Augmented Generation (GraphRAG) have shown substantial improvements in mitigating hallucination by
incorporating structured knowledge into the generation process (Luo et al., 2025; Lelong et al., 2025).

The landscape of KG reasoning and RAG has witnessed significant methodological advances in recent years. Rein-
forcement learning (RL) approaches have proven particularly effective for multi-hop reasoning over incomplete KGs,
with pioneering works like DeepPath introducing policy-based agents that learn to navigate KG vector spaces by sam-
pling promising relational paths (Xiong et al., 2018). Building upon this foundation, MINERVA addressed the more
challenging task of QA with known relations but single entities, employing neural RL to navigate graphs conditioned
on input queries (Das et al., 2018). To address the issue of low-quality rewards in incomplete KG environments,
researchers have developed sophisticated reward shaping mechanisms and self-supervised pre-training methods (Lin
et al., 2018; Ma et al., 2025). Recent developments have focused on agentic RAG systems that employ multi-tool
architectures for iterative, targeted queries and multi-hop reasoning (Lelong et al., 2025). The emergence of Graph-R1
has introduced lightweight knowledge hypergraph construction with multi-turn agent-environment interactions opti-
mized through end-to-end reward mechanisms (Luo et al., 2025). Furthermore, advances in KG construction have
leveraged LLMs as automatic constructors, with frameworks like SAC-KG demonstrating the potential for automated
domain-specific KG generation (Chen et al., 2024).

Despite these advances, current GraphRAG approaches face critical limitations that constrain their real-world applica-
bility. Existing methods rely on static, pre-constructed KGs that suffer from coverage gaps, temporal obsolescence, and
inability to adapt to emerging domain knowledge or evolving query patterns. Traditional RL approaches for knowl-
edge reasoning focus primarily on path-finding within fixed graph structures, neglecting the potential for co-evolution
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between reasoning agents and knowledge bases. Furthermore, the separation between knowledge construction and
utilization creates a fundamental bottleneck where sophisticated reasoning mechanisms remain constrained by static
knowledge repositories. Current single-objective optimization strategies fail to balance the dual requirements of effec-
tive knowledge extraction and accurate question answering, resulting in suboptimal integrated system performance.
These limitations necessitate a paradigm shift toward adaptive knowledge systems that can dynamically construct,
expand, and refine KGs through iterative interaction with both data sources and reasoning tasks.

Figure 1: Multi-round interactive knowledge discovery in
product QA scenario

To address these fundamental limitations, we propose
Agentic-KGR, a novel framework that enables co-
evolution between LLMs and KGs through multi-round
RL. The core innovation lies in reimagining knowledge
construction and utilization as interconnected, mutually
reinforcing processes rather than sequential stages, as
demonstrated in typical product QA scenario (Figure 1).
Our framework introduces three key contributions:

• a dynamic ontological expansion framework
that facilitates real-time structural evolution
of knowledge graphs through adaptive schema
augmentation;

• a co-evolutionary memory architecture that en-
ables bidirectional adaptation between neu-
ral representations and knowledge structures
through iterative refinement processes;

• a learnable multi-scale prompt compressor
with cross-attention mechanisms that achieves
backbone-agnostic semantic preservation while
reducing computational overhead through
adaptive query-based context distillation.

This multi-round RL paradigm ensures synergistic evolution of both the reasoning agent and knowledge struc-
ture, where improvements in one component enhance overall system performance, fundamentally transforming the
paradigm from static knowledge retrieval to adaptive knowledge co-creation.

Experimental evaluation demonstrates the effectiveness of Agentic-KGR across two critical dimensions: KG extrac-
tion and QA performance. In knowledge extraction tasks, models trained with our framework exhibit substantial
improvements in graph density, coverage, and quality compared to supervised fine-tuning baselines and single-round
RL approaches. The dual reward mechanism proves particularly effective in balancing exploration of novel knowledge
territories with exploitation of established patterns, enabling the extraction of more comprehensive and accurate KGs.
Specifically, Agentic-KGR achieves up to +33.3 points improvement over existing RL methods in graph extraction
and +12.8 points in downstream QA tasks, demonstrating that multi-round agentic RL effectively enhances both KG
construction quality and end-to-end task performance through improved coverage and evidence routing. When these
dynamically constructed KGs are integrated into GraphRAG systems, they significantly enhance downstream QA per-
formance, validating the synergistic relationship between improved knowledge extraction and reasoning capabilities.
This two-stage validation confirms that Agentic-KGR’s ability to generate high-quality, domain-adaptive KGs estab-
lishes a foundation for self-improving knowledge systems that can continuously evolve alongside their operational
environments.

2 METHOD

Figure 2 illustrates the overall architecture of our Agentic-KGR framework, which integrates a comprehensive tool
pool for knowledge graph operations with a dual reward mechanism, allowing the model to dynamically construct and
expand knowledge graphs while simultaneously improving its reasoning capabilities.

2.1 PRELIMINARIES

Notation. We denote vectors by lowercase bold letters (e.g., x,h), and matrices by capital bold letters (e.g., A,H).
Let ∥ · ∥2, ∥ · ∥F be the ℓ2-norm and Frobenius norm respectively. We use ⟨·, ·⟩ for inner products, ∇ for gradients,
and tr(·) for matrix trace. Let a LLM be parameterized by θ ∈ Rp. The KG at round t is Gt ≡ (Vt, Et, ℓt) with
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Figure 2: Overall Architecture of Agentic-KGR Framework.

Laplacian Lt. We model the process as a POMDP with latent state xt ∈ X , observation st ∈ S, action at ∈ A, query
qt ∈ Q, external memory Mt, and policy πθ. The dual reward is Rt = αRenv(st, at) + (1 − α)Rtask(st, at) with
α ∈ [0, 1] and discount γ ∈ (0, 1). For compression, H ∈ Rn×d is the uncompressed embedding matrix, Z ∈ Rk×d

is the compressed representation with k ≪ n. We use ϕ(·) for compression, ψ(·) for reconstruction, I(·; ·) for mutual
information, and KL(·∥·) for KL-divergence.

Definitions. We present the following definitions that formalize the core components of our Agentic-KGR frame-
work.
Definition 1 (Differentiable Subgraph Retrieval Distribution). Given query qt ∈ Q and knowledge graph Gt, we define
a parametric probability measure µη over the power set 2Et of edge subsets. The differentiable retrieval distribution
over subgraphs Ht ⊆ Gt is characterized by the Gibbs measure:

Pη(Ht | qt,Gt) =
1

Zη(qt,Gt)
exp (β · scoreη(qt,Ht)) , (1)

where Ẑη(qt,Gt) = 1
M

∑M
m=1 exp(β · scoreη(qt,Hm)) is the partition function, and the energy function combines

semantic alignment with spectral coherence:

scoreη(qt,Ht) = ⟨ϕη(qt),Φη(Ht)⟩ − λspec

[
tr(L+

Ht
) +

1

2
log det(LHt + ϵI)

]
, (2)

with temperature parameter β > 0, regularization ϵ > 0, and L+
Ht

denoting the Moore-Penrose pseudoinverse.

Definition 2 (GraphRAG Readout Operator). The GraphRAG readout operator Readoutη : Q× 2G → Rd is defined
as a composition of graph neural network processing and cross-modal fusion:

ut = Readoutη(qt,Ht) = Ψη (GNNη(Ht), ϕη(qt)) , (3)

where GNNη(Ht) = Woutσ (LHt
XHt

Win + b) with learnable parameters Wout,Win,b, node features XHt
, and

the fusion operator:

Ψη(g,q) = softmax

(
QcrossK

⊤
cross√

d

)
Vcross, (4)

where Qcross = q⊤WQ, Kcross = g⊤WK , Vcross = [g;q]⊤WV .

Definition 3 (KG Update Operator). Given document set Dt and extracted edge candidates Êt = fθ(Dt) with con-
fidence scores ct ∈ [0, 1]|Êt|, the KG update operator Uζ : G × 2E → G is defined as the solution to the constrained
optimization problem:

Uζ(Gt, Êt) = argmax
G∈F

[
S(G;Gt, Êt) + C(G; Êt)− λcontrRcontr(G)

]
, (5)
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where F is the feasible graph space, and the objective components are:

S(G;Gt, Êt) = exp (−κs · dG(G,Gt)) ·
∏

e∈Êt∩E

ce, (6)

C(G; Êt) =
∑
e∈Êt

ce · 1e∈E − τ
∑

e∈E\Êt

exp(−ξ · age(e)), (7)

Rcontr(G) =
∑
j

max(0, gj(G))2, (8)

with graph distance dG(·, ·), edge age function age(·), and constraint functions gj(·).
Definition 4 (Environmental Reward Components). The environmental reward incorporates two graph-theoretic mea-
sures. The coverage gain is defined via the submodular function:

∆Covκ(Gt → Gt+1) =
∑

v∈Vt+1

[
1− (1− κ)

|NGt+1
(v;h)|

]
−
∑
v∈Vt

[
1− (1− κ)|NGt

(v;h)|
]
, (9)

where NG(v;h) denotes the h-hop neighborhood of vertex v. The von Neumann entropy gain is:

∆EntVN(Gt → Gt+1) = −tr (ρt+1 log ρt+1) + tr (ρt log ρt) , (10)

where ρt =
LGt+µI

tr(LGt+µI) is the normalized density operator. The complete environmental reward is:

Renv(st, at) = ∆Covκ(Gt → Gt+1) + ∆EntVN(Gt → Gt+1)− λcontrRcontr(Gt+1)− λTT (Gt,Gt+1). (11)

Definition 5 (Learnable Multi-Scale Compression). Given uncompressed embedding matrix H ∈ Rn×d, we define L
learnable compression scales with adaptive attention mechanisms. Each scale i computes:

ϕi(H; ki) = softmax

(
QiK

⊤
i√

d/L
+Mi

)
Vi ∈ Rki×d, (12)

where Qi ∈ Rki×d are learnable compression queries, Ki = HWK,i ∈ Rn×d, Vi = HWV,i ∈ Rn×d, and
Mi ∈ Rki×n is a learnable bias matrix. The multi-scale compressed representation is:

Z =

L∑
i=1

ωiϕi(H; ki) +

L−1∑
i=1

L∑
j=i+1

ξij · CrossScale(ϕi(H; ki), ϕj(H; kj)), (13)

where ωi ≥ 0,
∑

i ωi = 1, ξij ≥ 0 are cross-scale interaction weights, and:

CrossScale(Zi,Zj) = tanh (Wcross[PiZi ⊙PjZj ;PiZi;PjZj ] + bcross) , (14)

with ⊙ denoting element-wise product, ⊕ concatenation after dimension alignment, and Wcross,bcross as learnable
parameters.

2.2 ALGORITHM AND THEORY

Agent-Knowledge Graph Co-Evolution Operator. The co-evolution between the agent and knowledge graph is
formalized through the joint operator Φ : (θt,Gt) 7→ (θt+1,Gt+1). The agent parameter update follows the policy
gradient with GraphRAG-conditioned advantage estimation:

θt+1 = θt + ηθ∇̂θJ(θt;Gt,Mt), (15)

where the objective function J(θ) = Eπθ
[
∑

t≥0 γ
tRt] incorporates the dual reward mechanism. The advantage

estimator Ât utilizes the compressed observation ot ≡ (Zt, qt, ut,Enc(Gt)) fused with GraphRAG readout. The
knowledge graph evolves simultaneously through Gt+1 = Uζ(Gt, fθ(Dt)), creating a feedback loop where improved
extraction capabilities lead to richer graph structures, which in turn enable more effective retrieval for future decisions.
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Table 1: Performance evaluation on graph extraction benchmarks across different model architectures and training
methodologies. The best results are highlighted in bold, and the second-best results are underlined.

IEPile MmlKG ConfigKG WirelessKG DcommKG

Model → on DATASET via METHOD NER RE NER RE NER RE NER RE NER RE

Qwen2.5 7B 59.35 34.28 44.72 0.10 98.23 24.17 64.99 17.42 27.16 14.16
Qwen2.5 14B 67.13 43.32 48.95 2.36 98.23 29.17 61.19 35.42 47.65 13.95
Qwen2.5 32B 68.05 46.69 53.90 3.95 98.23 60.28 63.59 45.18 35.78 17.10
QwQ 70.76 57.39 56.89 20.62 98.23 69.72 65.14 64.29 41.18 15.18

Qwen2.5 7B → on AUTOKG via SFT 56.89 36.39 49.50 0.00 98.23 29.17 61.93 12.84 22.42 9.23
Qwen2.5 14B → on AUTOKG via SFT 66.82 43.69 42.72 1.38 98.23 32.50 53.46 45.42 48.57 8.75
Qwen2.5 32B → on AUTOKG via SFT 68.17 47.87 54.12 4.39 98.23 56.95 56.70 44.02 33.05 15.62
QwQ → on AUTOKG via SFT 70.88 58.84 57.12 2.68 98.23 58.08 62.64 62.38 38.04 13.87

Qwen2.5 7B → on COMMTKG via SFT 46.49 34.47 51.17 0.00 98.23 23.54 69.40 30.67 31.74 14.28
Qwen2.5 14B → on COMMTKG via SFT 60.80 46.58 49.48 0.00 98.23 24.72 52.50 46.58 49.84 20.35
Qwen2.5 32B → on COMMTKG via SFT 66.46 44.91 55.32 8.34 98.23 39.17 64.46 35.95 39.66 4.63
QwQ → on COMMTKG via SFT 69.11 55.20 58.39 12.73 98.23 51.83 66.03 51.16 45.65 4.11

Qwen2.5 7B → on AUTOKG via RL 60.99 45.28 50.55 0.00 98.23 32.50 47.58 8.63 28.22 5.00
Qwen2.5 14B → on AUTOKG via RL 69.32 53.02 53.37 0.13 98.23 32.50 54.10 39.08 56.40 13.87
Qwen2.5 32B → on AUTOKG via RL 70.15 54.83 56.77 1.61 98.23 39.17 71.84 49.62 37.20 9.09
QwQ → on AUTOKG via RL 69.04 67.40 59.92 8.37 98.23 63.03 73.59 70.61 42.81 8.07

Qwen2.5 7B → on COMMTKG via RL 67.77 42.87 46.43 0.00 98.23 19.17 65.93 38.07 32.57 18.70
Qwen2.5 14B → on COMMTKG via RL 70.57 58.35 59.26 0.77 98.23 32.50 60.20 46.39 61.15 22.94
Qwen2.5 32B → on COMMTKG via RL 71.41 56.79 63.11 9.32 98.23 72.50 67.56 53.06 45.97 20.16
QwQ → on COMMTKG via RL 71.66 69.80 66.61 37.78 98.23 69.21 75.50 52.91 53.48 17.90

Qwen2.5 7B → on AUTOKG via AGENTIC-KGR (ours) 65.11 45.25 54.90 0.10 98.23 24.17 65.71 16.79 27.14 6.22
Qwen2.5 14B → on AUTOKG via AGENTIC-KGR (ours) 72.76 55.94 52.84 0.60 98.23 34.17 57.25 44.05 49.80 16.45
Qwen2.5 32B → on AUTOKG via AGENTIC-KGR (ours) 75.08 54.50 57.15 3.38 98.23 72.50 54.34 39.76 24.61 15.26
QwQ → on AUTOKG via AGENTIC-KGR (ours) 71.99 68.73 64.32 18.23 98.23 65.66 76.58 68.32 40.27 13.55

Qwen2.5 7B → on COMMTKG via AGENTIC-KGR (ours) 64.13 45.76 50.99 0.00 98.23 29.17 67.53 37.85 29.69 19.94
Qwen2.5 14B → on COMMTKG via AGENTIC-KGR (ours) 66.72 56.69 58.92 0.64 98.23 35.83 62.05 48.63 62.08 22.45
Qwen2.5 32B → on COMMTKG via AGENTIC-KGR (ours) 70.77 59.09 64.71 11.82 98.23 70.28 71.84 53.92 42.29 22.56
QwQ → on COMMTKG via AGENTIC-KGR (ours) 73.59 72.63 68.30 46.63 98.23 73.59 76.73 48.67 55.83 20.03

Environmental Reward and Adaptive Reward Mixing. The environmental component Renv promotes healthy
graph growth by rewarding coverage expansion and structural diversity while penalizing constraint violations. We in-
corporate a temporal consistency regularizer T (Gt,Gt+1) = exp(−βt ·∥LGt+1

−LGt
∥F ) that prevents abrupt structural

changes.

In Agentic-KGR training, the reward structure comprises three components: result reward, toolcall reward, and tra-
jectory reward. The toolcall reward incentivizes successful tool interactions with +0.05 for successful calls and −0.1
for failures, applying decay for redundant calls within the same query and capping at 0.5. The result reward combines
format compliance (±1.0 for JSON structure adherence), accuracy measurement (full match yields +1.5, partial match
measured by F1 score), and density penalty that penalizes length deviations as ||A| − |B||/|B| × rate where rate is
0.15 for over-generation and 0.8 for under-generation. Trajectory reward captures multi-step interaction quality.

The mixing parameter α adapts dynamically via mirror descent on the bi-criterion Pareto frontier:

αt+1 = Π[0,1]

(
αt + ηα [∇αJenv(αt)−∇αJtask(αt)]

⊤ 1
)
, (16)

where the gradients are estimated using policy gradient techniques, enabling automatic balance between environmental
exploration and task-specific exploitation as the agent learns to optimize both tool usage efficiency and extraction
quality.

Multi-Scale Prompt Compression. The compression objective jointly optimizes reconstruction fidelity, task per-
formance, and information retention:

Lcompress = λrec∥H− ψ(Z)∥2F + λtaskLKG(Z) + λMII(H;Z), (17)

where ψ : Rkeff×d → Rn×d is a learned decompression function implemented as a transformer decoder with cross-
attention to the compressed representation. The mutual information term I(H;Z) is estimated using the Donsker-
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Table 2: Performance comparison of different model architectures and training strategies with GraphRAG across seven
real-world QA tasks. The best results are highlighted in bold, and the second-best results are underlined.

Model → on DATASET via METHOD + GraphRAG RAN FDD BWS MA5600T OptiTran LineAss NetEco PowerKit

Qwen2.5 7B + GraphRAG 61.54 50.60 52.30 57.90 48.64 67.12 64.94
Qwen2.5 14B + GraphRAG 78.08 71.92 78.46 75.26 74.32 70.06 77.28
Qwen2.5 32B + GraphRAG 79.24 72.28 75.38 84.22 70.28 71.14 83.12
QwQ + GraphRAG 61.54 43.38 60.00 59.64 69.16 61.74 70.06

Qwen2.5 7B → on AUTOKG via SFT + GraphRAG 53.84 54.60 55.38 59.70 46.84 70.72 68.54
Qwen2.5 14B → on AUTOKG via SFT + GraphRAG 70.00 67.10 85.38 82.28 79.72 86.04 79.48
Qwen2.5 32B → on AUTOKG via SFT + GraphRAG 89.24 79.46 83.84 85.96 90.28 87.12 90.52
QwQ → on AUTOKG via SFT + GraphRAG 57.80 51.34 59.56 57.84 72.52 70.42 69.56

Qwen2.5 7B → on COMMTKG via SFT + GraphRAG 76.54 62.66 83.08 72.64 77.84 88.32 81.56
Qwen2.5 14B → on COMMTKG via SFT + GraphRAG 84.62 69.52 91.30 81.22 87.33 85.90 88.79
Qwen2.5 32B → on COMMTKG via SFT + GraphRAG 85.48 75.78 96.16 89.12 87.84 87.58 87.56
QwQ → on COMMTKG via SFT + GraphRAG 73.46 70.96 78.46 76.66 77.30 78.46 77.92

Qwen2.5 7B → on AUTOKG via RL + GraphRAG 59.62 57.84 63.08 63.16 65.68 69.80 72.72
Qwen2.5 14B → on AUTOKG via RL + GraphRAG 78.08 77.10 87.76 76.50 83.52 84.70 81.68
Qwen2.5 32B → on AUTOKG via RL + GraphRAG 81.54 73.98 80.76 84.04 78.10 84.10 84.68
QwQ → on AUTOKG via RL + GraphRAG 55.96 63.64 58.26 69.92 76.84 84.36 77.26

Qwen2.5 7B → on COMMTKG via RL + GraphRAG 82.30 69.88 80.76 71.92 81.52 89.96 78.70
Qwen2.5 14B → on COMMTKG via RL + GraphRAG 83.84 69.88 86.92 82.40 88.92 87.82 89.48
Qwen2.5 32B → on COMMTKG via RL + GraphRAG 86.54 77.10 97.70 84.51 87.32 85.30 91.90
QwQ → on COMMTKG via RL + GraphRAG 85.38 75.42 78.46 68.42 78.30 79.80 83.12

Qwen2.5 7B → on AUTOKG via AGENTIC-KGR + GraphRAG (ours) 60.32 63.02 61.54 64.23 64.06 70.08 74.94
Qwen2.5 14B → on AUTOKG via AGENTIC-KGR + GraphRAG (ours) 82.76 76.16 83.27 83.50 88.10 82.40 82.14
Qwen2.5 32B → on AUTOKG via AGENTIC-KGR + GraphRAG (ours) 86.16 82.28 82.31 82.72 79.46 76.38 87.54
QwQ → on AUTOKG via AGENTIC-KGR + GraphRAG (ours) 57.70 66.73 62.30 68.42 79.32 87.72 77.92

Qwen2.5 7B → on COMMTKG via AGENTIC-KGR + GraphRAG (ours) 83.84 70.65 81.54 73.14 84.69 90.40 80.12
Qwen2.5 14B → on COMMTKG via AGENTIC-KGR + GraphRAG (ours) 83.20 77.52 89.24 85.26 88.14 86.04 89.10
Qwen2.5 32B → on COMMTKG via AGENTIC-KGR + GraphRAG (ours) 91.54 77.46 98.46 84.22 90.28 87.12 92.72
QwQ → on COMMTKG via AGENTIC-KGR + GraphRAG (ours) 87.35 72.89 81.23 70.12 79.80 81.30 82.14

Varadhan variational representation with a discriminator network. Additionally, we impose a trust-region style con-
straint Es[KL(πθ(· | Z(s))∥πθ(· | H(s)))] ≤ ϵπ to ensure policy stability under compression, preventing catastrophic
forgetting of learned behaviors while enabling efficient inference.

To ensure that prompt compression does not significantly deteriorate agent performance, we establish theoretical
guarantees on the performance gap between compressed and uncompressed policies. Let πH(a | s) ≡ πθ(a | H(s))
and πZ(a | s) ≡ πθ(a | Z(s)) denote policies operating on uncompressed and compressed observations respectively.
Under Lipschitz continuity assumptions on the dynamics, rewards, and policy function, the performance degradation
is bounded by:

|J(πZ)− J(πH)| ≤ LR

1− γ
εobs +

γLQσπ

(1− γ)2
εobs +

2Qmax

1− γ

√
1

2
ϵπ, (18)

where εobs = Es[∥H(s)−ψ(Z(s))∥2] measures the observation reconstruction error, ϵπ = Es[KL(πθ(· | Z(s))∥πθ(· |
H(s)))] quantifies the policy distribution shift, and LR, LQ, σπ, Qmax are problem-dependent constants. This bound
demonstrates that the performance loss scales linearly with reconstruction error and as

√
ϵπ with policy divergence,

justifying our compression constraints and providing guidance for hyperparameter selection.

3 EXPERIMENTS AND RESULTS

3.1 ENVIRONMENT AND CONFIGURATION

Platform and Environment. All experiments are conducted on 128 Ascend 910B3 NPUs (64GB each) with driver
version 25.0.rc1. We employ three training frameworks: MindSpeed-LLM (min, 2023) for supervised fine-tuning,
MindSpeed-RL (Feng et al., 2025) for standard single-turn RL, and our custom MindSpeed-AgenticRL framework
(open-source release in preparation) for Agentic-KGR. All training processes utilize bf16 precision for computational
efficiency and numerical stability.

Training Parameters. The key hyperparameters for each training paradigm are configured as follows: SFT employs
learning rate 1×10−6, global batch size 32, and sequence length 8k; standard RL uses learning rate 1×10−6, 8 samples
per prompt, and GAE lambda 0.95; Agentic RL maintains maximum interaction steps 10, 8 samples per prompt, and
extends sequence length to 16k to accommodate multi-round agent-environment interactions.
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Figure 3: Training reward variation for RL and Agentic-KGR methods across training steps.

Figure 5: Graph density analysis and tool invocation frequency distribution.

Training Datasets. Training data comprises general-domain and domain-specific datasets. For general knowledge
extraction, we utilize DuIE2.0 from the AutoKG corpus (Chen & Bertozzi, 2023), while domain-specific training
leverages CommTKG encompassing MML (Man–Machine Language, an ITU-T–standardized command language
for managing telecom/network equipment), communcatioan technology product/feature documentation. The corpus
integrates authoritative standards from IEEE (iee, 2024), OMA SpecWorks (oma, 2024), 3GPP (3gp, 2024), nrex-
plained (nre, 2024), and CTIA (cti, 2024). Ground truth annotations are generated through DeepSeek V3.1 distillation
following systematic document parsing and segmentation.

Figure 4: Response length evolution during RL and
Agentic-KGR training across different model scales.

Benchmark and Metrics. Evaluation encompasses
dual assessment dimensions to validate the co-
evolutionary effectiveness: KG extraction capability and
GraphRAG-based knowledge coverage quality. For ex-
traction evaluation, general benchmarks include IEPile
(Gui et al., 2024) covering Named-entity recognition
(NER) tasks (Boson, Cross, WEIBONER) and Re-
lation extraction (RE) tasks (COAE2016, FewRel),
while domain-specific evaluation employs MmlKG,
ConfigKG, WirelessKG, and DcommKG across corre-
sponding NER and RE tasks. For QA tasks, we adopt the
QA pairs from communication technology product doc-
umentations, containing: 5G RAN FDD (RAN FDD),
BWS, MA5600T, Optical Transmission System (Opti-
Tran), Line Assurance Platform (LineAss), NetECo and PowerKit. To align with operational requirements, all evalua-
tions adopt F1 score as the primary metric, emphasizing comprehensive knowledge capture over precision constraints.
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Figure 6: Coverage and quality performance analysis.

3.2 OVERALL RESULTS

3.2.1 GRAPH EXTRACTION PERFORMANCE

We evaluate graph extraction capabilities across different model configurations and training methodologies, as shown
in Table 1. The results reveal systematic improvements with model scale and, more critically, demonstrate that
Agentic-KGR achieves superior performance through co-evolutionary parameter-knowledge optimization. The NER
task on ConfigKG proves relatively straightforward, with all models achieving consistently high performance scores.
Notably, gains are most pronounced in RE rather than NER, reflecting our method’s design: dynamic schema ex-
pansion increases relational discoverability while retrieval-augmented memory reduces spurious connections. The
learnable multi-scale prompt compression mechanism enables models to focus on schema-salient evidence patterns,
contributing to improved extraction quality across benchmark datasets. Performance plateaus observed in single-round
RL are consistently overcome by multi-round, memory-coupled policy updates, validating the co-evolution hypothesis
across model scales from 7B to 32B parameters.

3.2.2 END-TO-END QA PERFORMANCE

In Table 2, the downstream QA evaluation confirms that graph quality, not merely size, drives performance when
integrated with GraphRAG. Agentic-KGR configurations achieve dominant performance across most domains, with
gains being largest where schema breadth and cross-document linking are crucial. The improvements are not merely
additive with parameter count; rather, Agentic updates interact synergistically with GraphRAG to reduce retrieval
misses and mitigate hallucination through denser, better-typed knowledge neighborhoods. These quality improvements
manifest as higher QA accuracy through more effective retrieval chains and answer grounding. The results validate
that structured, relation-centric improvements in extraction translate directly into downstream task gains when the
complete workflow is optimized for parameter-knowledge co-evolution.

3.3 TRAINING DYNAMICS AND EFFICIENCY ANALYSIS

The training curves reveal critical insights into model-task alignment and co-evolutionary learning dynamics, as shown
in Figure 3. QwQ’s initially low rewards demonstrate that reasoning-intensive architectures can impede structured
extraction tasks, where excessive deliberation interferes with direct entity-relation pattern recognition. The steady
progression across all reward components validates the effectiveness of our co-evolution mechanism: toolcall rewards
show consistent improvement, indicating successful adaptation in retrieval strategy selection that creates a positive
feedback loop with content generation. The alignment between agentic score and response rewards, coupled with
smooth convergence across model scales, confirms that our multi-scale prompt compression successfully manages
optimization complexity while preserving critical information pathways essential for dynamic schema expansion.

The response length trajectories reveal distinct optimization patterns across training paradigms (see Figure 4). Stan-
dard RL effectively curtails excessive reasoning in thinking models, with QwQ showing dramatic reduction from 6k to
2k tokens on domain datasets, while non-thinking models exhibit slight increases indicating enhanced extraction den-
sity. Agentic-KGR demonstrates superior optimization, achieving consistent length reduction across all architectures
through progressive interaction efficiency gains. The universal downward trends under Agentic-KGR validate that co-
evolutionary optimization successfully streamlines extraction processes while suppressing verbose reasoning patterns,
confirming the synergistic effects of retrieval-augmented memory and adaptive schema expansion in achieving both
efficiency and structural completeness.
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Figure 7: Response length distribution analysis across model variants and training methods.

3.4 KNOWLEDGE STRUCTURE ANALYSIS

Figure 8: Step distribution analysis and computational
overhead across model variants.

The density, coverage, and quality metrics displayed
in Figure 5 and Figure 6 demonstrate distinct opti-
mization trajectories across model architectures. Think-
ing models exhibit higher tool interaction frequencies,
enabling comprehensive data collection with progres-
sive improvement throughout training, particularly on
domain-specific datasets. The agentic framework suc-
cessfully balances exploration (coverage) and precision
(quality), with larger models achieving superior perfor-
mance and quality scores approaching optimal levels on
specialized domains. Tool usage analysis reveals den-
sity feedback queries dominate initial interactions but
decline across iterations, indicating improved extraction
efficiency through adaptive learning. This trend reflects
how models initially require frequent guidance but pro-
gressively achieve target thresholds with fewer tool in-
terventions, validating the retrieval-augmented memory
system’s effectiveness in internalizing structural opti-
mization patterns while reducing computational over-
head.

Thinking models exhibit inherently verbose reason-
ing patterns, but Agentic-KGR effectively compresses
these outputs while preserving extraction quality through
multi-scale prompt optimization (see Figure 7). The framework demonstrates superior efficiency gains on domain-
specific tasks, validating the co-evolutionary approach’s ability to balance reasoning depth with output conciseness.
In Figure 8, the step distribution analysis reveals that smaller models favor direct problem-solving approaches while
larger models employ deeper deliberative reasoning with extended multi-step processes. The computational overhead
remains stable across iterations, demonstrating the framework’s ability to dynamically balance reasoning complexity
with computational efficiency based on task requirements.

4 CONCLUSION

This work proposes Agentic-KGR, a novel framework enabling co-evolution between language models and dynamic
knowledge graphs through multi-round reinforcement learning. The dual reward mechanism achieves significant per-
formance improvements by enabling autonomous learning of effective graph database interaction patterns, while the
retrieval-augmented memory mechanism continuously optimizes knowledge graph construction and provides compre-
hensive graph observation during training. The framework transcends traditional static knowledge base limitations
by empowering models with real-time knowledge extraction, construction, and expansion capabilities, with integrated
GraphRAG retrieval demonstrating superior performance in downstream question-answering tasks. This research es-
tablishes a new paradigm for model-environment co-evolution that advances agentic reinforcement learning by demon-
strating how continuous interaction between intelligent agents and dynamic knowledge environments can mutually
enhance both components.
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A APPENDIX

A.1 ACKNOWLEDGEMENTS

The authors acknowledge the use of Claude Sonnet 4 for stylistic revision, text polishing, and grammatical refinement
of this manuscript, with full consent and approval from all contributing authors. We emphasize that the substantive
content, including conceptual design, theoretical framework development, experimental methodology, algorithmic
implementation, and code development, was entirely conceived and executed by the authors. The AI assistance was
limited to language enhancement and does not constitute intellectual contribution to the research findings or technical
innovations presented in this work.

A.2 RELATED WORK

A.2.1 RETRIEVAL-AUGMENTED GENERATION AND KNOWLEDGE ENHANCEMENT

RAG has emerged as a fundamental paradigm for addressing static knowledge limitations in LLMs. Gao et al. (2024)
categorize approaches into Naive RAG, Advanced RAG, and Modular RAG, while identifying persistent challenges
in knowledge coverage and temporal relevance. Traditional RAG systems rely on pre-constructed knowledge bases,
which suffer from coverage gaps and temporal lag issues.

Recent advances have integrated web search capabilities to overcome static limitations. Li et al. (2025a) introduce
Search-o1 with agentic RAG mechanisms, while Li et al. (2025b) propose WebThinker for autonomous web naviga-
tion and report generation. However, these approaches primarily focus on information retrieval without addressing
knowledge persistence or structural evolution of underlying knowledge bases.

Evaluation frameworks including GAIA (Mialon et al., 2024) and WebWalkerQA (Wu et al., 2025b) reveal per-
formance gaps in complex reasoning tasks, highlighting the need for more sophisticated knowledge integration ap-
proaches.

A.2.2 REINFORCEMENT LEARNING FOR KNOWLEDGE-INTENSIVE TASKS

RL applications to enhance LLM capabilities in knowledge-intensive scenarios have gained momentum. Jin et al.
(2025) introduce Search-R1 for autonomous search query generation using outcome-based rewards, while Song et al.
(2025a) and Song et al. (2025b) develop R1-Searcher and R1-Searcher++ focusing on external search system integra-
tion.

Several works explore step-wise supervision to address sparse reward challenges. Wang et al. (2025) propose
StepSearch with step-wise proximal policy optimization, Deng et al. (2025) introduce Atom-Searcher with fine-grained
atomic rewards, and Chen et al. (2025) present ReSearch treating search operations as reasoning components. These
approaches demonstrate the importance of dense reward signals.

Current RL-based approaches primarily optimize search and retrieval behaviors rather than enabling dynamic KG
construction. The knowledge bases remain static, limiting their ability to capture emerging information or domain-
specific knowledge arising during interaction.

A.2.3 MULTI-AGENT SYSTEMS AND COLLABORATIVE LEARNING

Multi-agent frameworks have shown promise in complex task solving through specialized coordination. Zhang et al.
(2025) introduce AgentOrchestra with hierarchical conductor-orchestra dynamics, while Wu et al. (2025a) present
WebDancer for autonomous information seeking through multi-step reasoning.

Recent research explores multi-agent RL for LLM collaboration. Liao et al. (2025) propose MARFT with POMDP
formulations, Liu et al. (2025) develop MAGRPO for cooperative scenarios, Wan et al. (2025) introduce ReMA for
meta-thinking hierarchies, and Gao et al. (2025) propose FlowReasoner for query-level meta-agent design.

These multi-agent approaches demonstrate effective collaboration patterns but operate within fixed knowledge en-
vironments where underlying knowledge structures do not evolve during interaction, constraining adaptability to
emerging information needs. Current approaches either focus on static knowledge retrieval, dynamic search without
knowledge persistence, or multi-agent collaboration within fixed knowledge bounds. Few works address co-evolution
between reasoning models and their underlying knowledge structures, leaving a gap in enabling adaptive knowledge-
model systems that continuously evolve through interaction.
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A.3 SUPPLEMENTARY THEROY AND MISSING PROOF

Theorem A.1 (Performance Degradation Bound under Compression). Let πH(a | s) ≡ πθ(a | H(s)) and πZ(a |
s) ≡ πθ(a | Z(s)) with Z = ϕ(H). Under γ ∈ (0, 1), the performance gap satisfies:∣∣J(πZ)− J(πH)

∣∣ ≤ LR

1− γ
εobs +

γLQσπ
(1− γ)2

εobs +
2Qmax

(1− γ)

√
1
2 ϵπ,

where εobs ≜ Es∥H(s)− ψ(ϕ(H(s)))∥2 ≤ εrec and ϵπ ≜ EsKL
(
πθ(· | Z(s)) ∥ πθ(· | H(s))

)
.

Remark A.1. The bound demonstrates that performance loss scales linearly with reconstruction error and as
√
ϵπ with

policy KL-divergence. This justifies our compression constraints and provides principled guidance for selecting the
trade-off parameters λrec, λMI, and ϵπ .

Proof of Theorem A.1. We apply the performance difference lemma to decompose the gap between compressed and
uncompressed policies. The fundamental identity states:

J(πZ)− J(πH) =
1

1− γ
Es∼dπZEa∼πZ

[AπH (s, a)] ,

where dπZ is the stationary distribution under πZ and AπH (s, a) = QπH (s, a) − V πH (s) is the advantage function
under πH . We bound this expression by decomposing the advantage discrepancy and state distribution shift.

First, we bound the advantage function difference. QπH (s, a) is LQ-Lipschitz in s. For observations s and s̃ differing
only in their token representations (H(s) vs. Z(s) = ϕ(H(s))), we have:

|AπH (s, a)−AπH (s̃, a)| ≤ LQ∥H(s)− ψ(Z(s))∥2 = LQεobs.

Second, we address the policy distribution mismatch. By Pinsker’s inequality and the definition of ϵπ:

TV(πZ(·|s), πH(·|s)) ≤
√

1

2
KL(πZ(·|s)∥πH(·|s)) ≤

√
1

2
ϵπ.

Since |AπH (s, a)| ≤ 2Qmax by boundedness, the contribution from action distribution mismatch is bounded by
2Qmax

√
ϵπ/2.

Third, we bound the state distribution shift. Under compressed policy πZ , the observation at each step has expected
error εobs. By πθ is σπ-Lipschitz in observations and dynamics are LP -Lipschitz, the state distribution difference
satisfies:

∥dπZ − dπH∥1 ≤ γLPσπεobs
1− γ

.

Combining these bounds and telescoping the expectation over the shifted distribution:

|J(πZ)− J(πH)| ≤ 1

1− γ

[
LRεobs + γLQσπεobs ·

1

1− γ
+ 2Qmax

√
ϵπ
2

]
(19)

=
LRεobs
1− γ

+
γLQσπεobs
(1− γ)2

+
2Qmax

1− γ

√
ϵπ
2
, (20)

where the first term captures direct reward sensitivity to observation errors, the second accounts for compounded
effects through state distribution shift, and the third bounds the policy mismatch contribution. □

Theorem A.2 (Policy Improvement with Trust Region under Compression). Let π′ solve the graph-regularized sur-
rogate maximization problem:

max
π

Es∼dπold , a∼π[A
πold(s, a)]− λgraphRgraph(π,Gt)

s.t. EsKL(π(· | s) ∥πold(· | s)) ≤ ϵTR,

where Rgraph(π,Gt) is a graph-structure regularizer. If the compression constraint ϵπ ≤ ϵTR holds and the surrogate
is optimized to ε-accuracy, then:

J(π′) ≥ J(πold) +
1

1− γ

(
Es,a[A

πold(s, a)]− λgraphRgraph(π
′,Gt)−O

(√
ϵTR + ε

))
.
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Remark A.2. This result extends classical trust region methods to the graph-regularized setting by incorporating struc-
tural constraints from the evolving knowledge graph. Unlike standard TRPO, our GRPO approach explicitly accounts
for the graph topology in policy updates, ensuring that the learned policy respects the relational structure encoded
in Gt. The compression can be viewed as an additional perturbation that must be managed within the trust region
framework.

Proof of Theorem A.2. We extend the classical trust region analysis to incorporate graph regularization and compres-
sion effects. The proof follows three main steps: establishing the surrogate objective bound, controlling the graph
regularization term, and accounting for compression-induced policy drift.

First, we establish the connection between the true objective and the graph-regularized surrogate. Let L(π) =
Es∼dπold ,a∼π[A

πold(s, a)] − λgraphRgraph(π,Gt) denote the surrogate objective. By the policy improvement lemma
and the definition of advantage functions:

J(π′)− J(πold) =
1

1− γ
Es∼dπ′Ea∼π′ [Aπold(s, a)] .

The key insight is to decompose this expectation using importance sampling and bound the distribution mismatch
terms.

Second, we bound the state distribution shift ∥dπ′ − dπold∥1. Under the KL constraint, the total variation dis-
tance between policies is bounded by

√
2ϵTR. By Lipschitz dynamics, this translates to a state distribution shift

of O(
√
ϵTR)/(1 − γ). The graph regularization term Rgraph(π

′,Gt) provides additional stability by constraining
policy changes to respect graph structure.

Third, we account for compression effects. The compressed policy π′ operates on observations Z(s) rather than H(s).
Since ϵπ ≤ ϵTR, the total KL budget is partitioned between policy updates and compression drift. The surrogate
maximization ensures that within the remaining budget ϵTR − ϵπ , we achieve ε-optimal improvement.

Combining these bounds and using the assumption that the surrogate is optimized to ε-accuracy:

J(π′) ≥ J(πold) +
1

1− γ
[L(π′)−O (

√
ϵTR)] (21)

≥ J(πold) +
1

1− γ
[Es,a[A

πold(s, a)]− λgraphRgraph(π
′,Gt)−O(

√
ϵTR + ε)] , (22)

where the graph regularization term appears explicitly in the bound, distinguishing GRPO from standard trust region
methods. □

Theorem A.3 (Submodular Coverage and Near-Optimal Growth). Suppose the environmental reward includes cov-
erage gain ∆Covκ(Gt → Gt+1) and actions select a bounded-size set of edges/nodes to add each round. If the
policy greedily maximizes the expected marginal gain under Pη(Ht | qt), then per round it achieves a (1 − 1/e)-
approximation to the optimal expected coverage increase.

Remark A.3. The submodularity of Covκ in selected neighborhoods enables classical approximation guarantees. This
aligns RL credit assignment with principled graph expansion, ensuring that the environmental reward promotes sys-
tematic knowledge growth rather than myopic local improvements.

Proof of Theorem A.3. We establish the approximation guarantee by leveraging the submodular structure of the cov-
erage function Covκ(G) and applying the classical greedy algorithm analysis to the expected setting.

First, we verify submodularity. For any two graphs G ⊆ G′ and any additional edge set Enew, the coverage function
satisfies:

Covκ(G ∪ Enew)− Covκ(G) ≥ Covκ(G′ ∪ Enew)− Covκ(G′).

This follows from the definition Covκ(G) =
∑

v∈V [1 − (1 − κ)|NG(v;h)|], where the marginal contribution of each
vertex decreases as its neighborhood size increases, due to the concave nature of 1− (1− κ)x for κ ∈ (0, 1).

Second, we analyze the greedy policy under the retrieval distribution Pη(Ht | qt). At each round, the policy selects
edges by maximizing:

EHt∼Pη(·|qt) [Covκ(Gt ∪ EHt
)− Covκ(Gt)] ,

where EHt
represents the edges added from subgraph Ht. Since the expectation preserves submodularity (as a linear

combination of submodular functions), the expected marginal gain is also submodular.
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Third, we apply the Nemhauser-Wolsey-Fisher theorem. Let OPT denote the optimal expected coverage increase
achievable by adding at most k edges, and let GREEDY denote the coverage achieved by the greedy algorithm. For
submodular maximization with cardinality constraints:

E[GREEDY] ≥

(
1−

(
1− 1

k

)k
)
E[OPT] ≥

(
1− 1

e

)
E[OPT],

where the second inequality uses the limit limk→∞(1− 1/k)k = 1/e. Since the policy operates under bounded action
spaces (at most k edges per round), this bound applies directly to our setting.

The key insight is that the retrieval distribution Pη(Ht | qt) acts as a data-dependent constraint on the feasible edge
additions, but the submodular structure ensures that greedy selection within this constraint maintains the approximation
guarantee. □

Theorem A.4 (Co-Evolution Operator Contraction). Define the joint metric d
(
(θ,G), (θ′,G′)

)
= λ∥θ − θ′∥2 + (1−

λ)dG(G,G′). Under sufficiently small step size ηθ, there exists ρ < 1 such that:

d(Φ(θ,G), Φ(θ′,G′)) ≤ ρ d((θ,G), (θ′,G′)) .

Hence Φ has a unique fixed point and the coupled updates converge linearly to it.

Remark A.4. The contraction property ensures that the agent-knowledge graph co-evolution is stable and converges to
a unique equilibrium. This is crucial for preventing oscillatory or chaotic behavior in the joint dynamics, which could
arise from the complex feedback between policy updates and graph modifications.

Proof of Theorem A.4. We establish contraction by showing that both components of the joint metric—the parameter
update and graph update—are individually contractive, and their composition preserves this property under appropriate
conditions.

First, we analyze the policy parameter update. Under πθ is σθ-smooth in θ, the policy gradient step satisfies:

∥θt+1 − θ′t+1∥2 = ∥θt − θ′t + ηθ(∇̂θJ(θt;Gt)− ∇̂θJ(θ
′
t;G′

t))∥2.

By Lipschitz continuity of the policy gradient in both parameters and graph structure, there exists L∇J such that:

∥∇̂θJ(θt;Gt)− ∇̂θJ(θ
′
t;G′

t)∥2 ≤ L∇J (∥θt − θ′t∥2 + CθGdG(Gt,G′
t)) ,

where CθG captures the cross-coupling between parameters and graph structure.

Second, we examine the graph update operator. Uζ is κG-Lipschitz with κG < 1:

dG(Gt+1,G′
t+1) ≤ κG

(
dG(Gt,G′

t) + ∥Êt − Ê′
t∥edge

)
,

where ∥Êt − Ê′
t∥edge measures the difference in extracted edge sets. Since extraction depends on the current policy,

∥Êt − Ê′
t∥edge ≤ CEθ∥θt − θ′t∥2 for some constant CEθ.

Third, we combine both updates. For sufficiently small step size ηθ < 1/(2L∇J), the parameter update satisfies:

∥θt+1 − θ′t+1∥2 ≤ (1− ηθL∇J/2)∥θt − θ′t∥2 + ηθL∇JCθGdG(Gt,G′
t).

Substituting the graph update bound and defining the joint metric d((θ,G), (θ′,G′)) = λ∥θ−θ′∥2+(1−λ)dG(G,G′):

d((θt+1,Gt+1), (θ
′
t+1,G′

t+1)) ≤ λ(1− ηθL∇J/2)∥θt − θ′t∥2 (23)

+ ληθL∇JCθGdG(Gt,G′
t) (24)

+ (1− λ)κGdG(Gt,G′
t) (25)

+ (1− λ)κGCEθ∥θt − θ′t∥2. (26)

Choosing λ to balance the cross-terms and ensuring ηθ is sufficiently small, we obtain ρ < 1 such that the joint
operator is contractive. The unique fixed point follows from the Banach fixed-point theorem in the complete metric
space. □

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Theorem A.5 (Information-Theoretic Sufficiency of Compression). Assume the downstream target Y depends on H
via Markov kernel p(Y | H) and the compressed Z satisfies:

I(H;Z) ≥ c and I(Y ;Z) ≥ I(Y ;H)− δ(c),

for some non-increasing function δ(·). Then any Bayes-optimal decoder g⋆ on H admits a decoder g̃ on Z whose
excess risk satisfies:

R(g̃;Z)−R(g⋆;H) ≤ Γ
(
δ(c)

)
,

for a problem-dependent modulus Γ(·).
Remark A.5. This theorem provides an information-theoretic foundation for our compression approach. By main-
taining high mutual information I(H;Z) and ensuring that task-relevant information I(Y ;Z) is preserved, we can
guarantee that the compressed representation retains sufficient statistics for near-optimal task performance. The mod-
ulus Γ(·) can be instantiated using standard classification or regression bounds depending on the specific downstream
task.

Proof of Theorem A.5. We establish the excess risk bound by leveraging the information-theoretic constraints to con-
struct a near-optimal decoder on the compressed representation and bound its performance gap relative to the Bayes-
optimal decoder on the original data.

First, we establish the connection between mutual information and Bayes risk. By the data processing inequality and
our assumptions, the compressed representation Z retains most task-relevant information about Y . Specifically, the
Bayes risks satisfy:

R∗(Y |H) = H(Y |H) and R∗(Y |Z) = H(Y |Z),
where H(·|·) denotes conditional entropy. The mutual information constraint I(Y ;Z) ≥ I(Y ;H)− δ(c) implies:

H(Y )−H(Y |Z) ≥ H(Y )−H(Y |H)− δ(c),

which yields H(Y |Z)−H(Y |H) ≤ δ(c), establishing that the optimal Bayes risk on Z exceeds that on H by at most
δ(c).

Second, we construct the decoder g̃ on Z. Given the Bayes-optimal decoder g∗(h) = argminy E[ℓ(y, Y )|H = h] for
loss function ℓ(·, ·), we define:

g̃(z) = argmin
y

E[ℓ(y, Y )|Z = z] = argmin
y

∑
h

p(h|z)E[ℓ(y, Y )|H = h],

where p(h|z) is the posterior distribution induced by the compression. The challenge is that this posterior may not be
exactly computable, but the information constraints provide sufficient control.

Third, we bound the excess risk using information-theoretic tools. The key insight is to use Fano’s inequality and the
method of types. For the 0-1 loss (classification case), Fano’s inequality gives:

Pe(Z) ≥
H(Y |Z)− 1

log(|Y| − 1)
,

where Pe(Z) is the probability of error when predicting Y from Z, and |Y| is the size of the label space. Similarly for
H:

Pe(H) ≥ H(Y |H)− 1

log(|Y| − 1)
.

For general loss functions satisfying a Tsybakov noise condition or Bernstein condition, we can establish similar
bounds. Under the Tsybakov condition with parameter α > 0:

R(g̃;Z)−R∗(Y |Z) ≤ Cα (R∗(Y |Z)−R∗(Y |H))
(1+α)/(2+α)

,

for some constant Cα > 0. Since R∗(Y |Z)−R∗(Y |H) ≤ δ(c), we have:

R(g̃;Z)−R∗(Y |Z) ≤ Cαδ(c)
(1+α)/(2+α).

Fourth, we combine the bounds. The total excess risk of g̃ on Z relative to g∗ on H decomposes as:
R(g̃;Z)−R(g∗;H) = [R(g̃;Z)−R∗(Y |Z)] + [R∗(Y |Z)−R∗(Y |H)] (27)

≤ Cαδ(c)
(1+α)/(2+α) + δ(c) (28)

≤ Γ(δ(c)), (29)

where Γ(x) = Cαx
(1+α)/(2+α)+x for the Tsybakov case, or Γ(x) = C

√
x log(1/x) under Bernstein conditions. The

specific form of Γ(·) depends on the problem structure, but in all cases it is non-decreasing and Γ(0) = 0, ensuring
that perfect information preservation (δ(c) = 0) yields no excess risk. □
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A.4 TOOL DEFINITION AND INTERFACE SPECIFICATION

A.4.1 TOOL DEFINITION

This appendix provides comprehensive definitions for all tools in the Agentic-KGR framework. Each tool serves a
specific purpose in the knowledge graph extraction and optimization pipeline.

Tool 1: Knowledge Graph Extraction Density Assessment

Function Name: query extraction density

Description: This is a mandatory tool for knowledge graph extraction density evaluation that must be invoked
first after each knowledge graph extraction attempt. Based on the input text, target schema, and current extraction
results, this tool analyzes the complexity characteristics of the text and evaluates whether the current density
of extracted entities and relations is reasonable. If the feedback indicates that additional extraction is needed,
knowledge graph extraction must be re-performed and this tool must be called again until the tool feedback
indicates that no further extraction is required. Other tools may only be called when this tool confirms that the
extraction density is adequate. The output includes extraction sufficiency assessment, density analysis, and clear
instructions on whether continued extraction is necessary.

Parameters:

• text (string, required): Input text to be analyzed
• schema (object, required): Target knowledge graph schema containing entity types and relation types

definitions, formatted as:

{
"entity_schema": ["EntityType1", "EntityType2", ...],
"relation_schema": ["RelationType1", "RelationType2"]

}

• extracted kg (object, required): Current extracted knowledge graph results containing entities and rela-
tions lists, formatted as:

{
"entities": {
"EntityType": ["EntityName1", "EntityName2", ...],
...

},
"relations": {
"RelationType": [
{"subject": "HeadEntity", "object": "TailEntity"},
...
],
...

}
}

• domain (string, optional): Domain information such as medical, financial, legal, etc., used to provide
domain-specific density benchmarks

Tool 2: Knowledge Graph Coverage Assessment

Function Name: query coverage feedback

Description: This is an optional tool for knowledge graph coverage evaluation. Based on the target schema
and current extraction results, this tool analyzes the coverage of various entity types and relation types in the
schema, identifies potentially missed entity types or relation types, and provides specific recommendations for
supplementary extraction based on text content. The output includes coverage statistics, analysis of missing
types, and targeted extraction suggestions.
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Parameters:

• text (string, required): Input text
• schema (object, required): Target knowledge graph schema definition containing entity types and rela-

tion types definitions, formatted as:

{
"entity_schema": ["EntityType1", "EntityType2", ...],
"relation_schema": ["RelationType1", "RelationType2"]

}

• extracted kg (object, required): Current extracted knowledge graph results containing entities and rela-
tions lists, formatted as:

{
"entities": {
"EntityType": ["EntityName1", "EntityName2", ...],
...

},
"relations": {
"RelationType": [
{"subject": "HeadEntity", "object": "TailEntity"},
...
],
...

}
}

• priority types (array, optional): List of higher-priority entity or relation types for focused examination

Tool 3: Knowledge Graph Quality Metrics Assessment

Function Name: query quality metrics

Description: This is an optional tool for comprehensive knowledge graph quality evaluation. This tool per-
forms multi-dimensional quality assessment of the extracted knowledge graph, including confidence distribution
of entity recognition, completeness of relation extraction, structural consistency of the knowledge graph, and
compliance with the schema. The output provides detailed quality assessment reports and improvement recom-
mendations, offering precise optimization directions for the model.

Parameters:

• extracted kg (object, required): Knowledge graph extraction results to be evaluated, containing entities
and relations lists, formatted as:

{
"entities": {
"EntityType": ["EntityName1", "EntityName2", ...],
...

},
"relations": {
"RelationType": [
{"subject": "HeadEntity", "object": "TailEntity"},
...
],
...

}
}
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• schema (object, required): Target schema definition containing entity types and relation types defini-
tions, formatted as:

{
"entity_schema": ["EntityType1", "EntityType2", ...],
"relation_schema": ["RelationType1", "RelationType2"]

}

• text (string, required): Original text for contextual consistency checking
• evaluation aspects (array, optional): List of evaluation dimensions such as consistency, completeness,

accuracy, schema compliance

Tool 4: Knowledge Graph Iterative Optimization Feedback

Function Name: query iterative feedback

Description: This is an optional tool for knowledge graph iterative optimization feedback. Based on multi-round
extraction history and current results, this tool analyzes trends in extraction quality changes, identifies persistent
problem patterns, and provides targeted iterative optimization strategies. The output includes progress analysis,
problem diagnosis, and next-step optimization recommendations.

Parameters:

• extraction history (array, required): List of historical extraction results arranged in chronological order.
Each extraction result is formatted as:

{
"entities": {
"EntityType": ["EntityName1", "EntityName2", ...],
...

},
"relations": {
"RelationType": [
{"subject": "HeadEntity", "object": "TailEntity"},
...
],
...

}
}

• extracted kg (object, required): Current extraction results formatted as above
• text (string, required): Original text
• schema (object, required): Target schema containing entity types and relation types definitions, format-

ted as:

{
"entity_schema": ["EntityType1", "EntityType2", ...],
"relation_schema": ["RelationType1", "RelationType2"]

}

• feedback history (array, optional): Historical feedback information for analyzing improvement effects
• max iterations (integer, optional): Maximum iteration limit

Tool 5: Entity Disambiguation Assessment

Function Name: query entity disambiguation
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Description: This is a conditionally mandatory tool for entity disambiguation assessment. When the QueryEx-
tractionDensity tool indicates that extraction density is adequate (no further extraction needed), this tool must be
invoked for entity disambiguation processing. This tool connects to the Neo4j graph database, queries entities
and relations related to the extraction results, and returns the results. Based on the feedback from this tool, it
is necessary to identify different representations of the same entity, discover accuracy issues in entity linking,
and provide disambiguation recommendations. The output includes disambiguation matching results, confidence
assessment, entity standardization recommendations, and the final generated knowledge graph extraction results.

Parameters:

• extracted kg (object, required): Current knowledge graph extraction results containing entities and re-
lations lists, formatted as:

{
"entities": {
"EntityType": ["EntityName1", "EntityName2", ...],
...

},
"relations": {
"RelationType": [
{"subject": "HeadEntity", "object": "TailEntity"},
...
],
...

}
}

• disambiguation strategy (string, optional): Disambiguation strategy such as exact match and seman-
tic similarity

• similarity threshold (number, optional): Similarity threshold for controlling disambiguation strictness
• context (string, optional): Contextual information for assisting disambiguation decisions

Tool 6: Knowledge Graph Storage

Function Name: query kg storage

Description: This is a conditionally mandatory tool for knowledge graph storage. After the QueryEntityDisam-
biguation tool completes disambiguation, this tool must be invoked to store entities and relations in the database.
This tool connects to the Neo4j graph database and inserts the current optimized extraction results into the
database. The tool provides feedback on whether storage was successful. If successful, it returns the current
optimized extraction results.

Parameters:

• extracted kg (object, required): Current knowledge graph extraction results containing entities and re-
lations lists, formatted as:

{
"entities": {
"EntityType": ["EntityName1", "EntityName2", ...],
...

},
"relations": {
"RelationType": [
{"subject": "HeadEntity", "object": "TailEntity"},
...
],
...

}
}
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A.4.2 INTERFACE SPECIFICATION

Tool 1: Knowledge Graph Extraction Density Assessment

Output Specification for query extraction density

This tool returns a comprehensive analysis of the knowledge graph extraction density with the following structure:

Output Format:

{
"text_stats": {
"token_count": integer,
"sentence_count": integer,
"word_count": integer,
"character_count": integer

},
"current_density": {
"total_entities": integer,
"total_relations": integer,
"total_kg_elements": integer,
"entity_type_count": integer,
"relation_type_count": integer,
"entities_per_1k_tokens": float,
"relations_per_1k_tokens": float,
"kg_density_per_1k_tokens": float,
"entity_relation_ratio": float

},
"expected_density": {
"expected_entities_per_1k": float,
"expected_relations_per_1k": float,
"min_entities_per_1k": float,
"min_relations_per_1k": float,
"max_entities_per_1k": float,
"max_relations_per_1k": float,
"schema_complexity": integer,
"entity_complexity_factor": float,
"relation_complexity_factor": float

},
"complexity_features": {
"entity_mentions": integer,
"avg_sentence_length": float,
"technical_terms": integer,
"schema_entity_types": integer,
"schema_relation_types": integer,
"complexity_score": float

},
"density_assessment": {
"entity_density_ratio": float,
"relation_density_ratio": float,
"overall_density_score": float,
"assessment_level": string,
"is_adequate": boolean,
"meets_minimum_thresholds": boolean,
"potential_over_extraction": boolean,
"balance_score": float

},
"needs_more_extraction": boolean,
"recommendations": [string, ...]
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}

Field Descriptions:

• text stats: Basic statistics about the input text including token, sentence, word, and character counts
• current density: Detailed metrics about the current extraction results

– total entities: Total number of extracted entities across all types
– total relations: Total number of extracted relations across all types
– entities per 1k tokens: Entity density normalized per 1000 tokens
– relations per 1k tokens: Relation density normalized per 1000 tokens
– entity relation ratio: Ratio of entities to relations

• expected density: Benchmarks and thresholds for density evaluation
– expected entities per 1k: Target entity density based on schema complexity
– min/max entities per 1k: Acceptable range boundaries for entity density
– schema complexity: Complexity measure based on schema size

• complexity features: Text complexity analysis results
– complexity score: Overall complexity score (0-1) considering multiple factors
– technical terms: Count of domain-specific terminology
– avg sentence length: Average words per sentence

• density assessment: Comprehensive evaluation of extraction quality
– assessment level: One of ”insufficient”, ”moderate”, ”adequate”, ”excellent”, ”over extraction”
– is adequate: Boolean indicating if density meets standards
– balance score: Measure of entity-relation balance (0-1)

• needs more extraction: Critical boolean flag indicating if additional extraction is required
• recommendations: List of specific actionable suggestions for improvement

Assessment Levels:

• insufficient: Density below minimum thresholds, significant extraction gaps
• moderate: Partial adequacy, some minimum thresholds met
• adequate: Meets minimum standards and shows good extraction coverage
• excellent: Exceeds expectations with high-quality dense extraction
• over extraction: Exceeds maximum thresholds, potential noise inclusion

Critical Decision Logic: The needs more extraction flag is determined by:

• Entity density below minimum threshold
• Relation density below minimum threshold
• Significant imbalance between entity and relation extraction
• Complexity-adjusted adequacy score below threshold (typically 0.65-0.80)
• Does not trigger if maximum density thresholds are exceeded

Tool 2: Knowledge Graph Coverage Assessment

Output Specification for query coverage feedback
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This tool returns a comprehensive analysis of schema type coverage with targeted recommendations for improving
extraction completeness.

Output Format:

{
"schema_info": {
"entity_types": [string, ...],
"relation_types": [string, ...],
"total_types": integer,
"schema_complexity": string

},
"type_coverage": {
"entity_coverage": {
"covered_types": [string, ...],
"total_types": integer,
"coverage_ratio": float

},
"relation_coverage": {
"covered_types": [string, ...],
"total_types": integer,
"coverage_ratio": float

},
"overall_coverage": float

},
"missing_types": {
"missing_entity_types": [string, ...],
"missing_relation_types": [string, ...]

},
"priority_analysis": {
"has_priority": boolean,
"priority_types": [string, ...],
"covered_priority": [string, ...],
"missing_priority": [string, ...],
"priority_coverage_ratio": float

},
"coverage_score": float,
"recommendations": [string, ...]

}

Field Descriptions:

• schema info: Comprehensive analysis of the target schema structure

– entity types: List of all entity types defined in the schema
– relation types: List of all relation types defined in the schema
– total types: Combined count of entity and relation types
– schema complexity: Qualitative assessment of schema complexity

• type coverage: Detailed coverage statistics for each type category

– entity coverage: Entity type coverage analysis

* covered types: List of entity types successfully extracted
* coverage ratio: Proportion of entity types covered (0-1)

– relation coverage: Relation type coverage analysis with same structure
– overall coverage: Weighted average of entity and relation coverage

• missing types: Identification of uncovered schema types

– missing entity types: Entity types absent from extraction results but potentially present in text
– missing relation types: Relation types absent from extraction results but potentially present in text

• priority analysis: Special analysis for user-specified priority types
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– has priority: Boolean indicating if priority types were specified
– priority types: Original list of priority types for focused examination
– covered priority: Priority types successfully extracted
– missing priority: Priority types requiring attention
– priority coverage ratio: Coverage ratio specifically for priority types

• coverage score: Overall coverage quality score (0-1) with entity types weighted at 0.6 and relation types
at 0.4

• recommendations: Prioritized list of actionable suggestions for improving coverage

Coverage Analysis Logic:

• Type Detection: Uses text analysis to identify potential presence of missing types
• Priority Handling: Gives special attention to user-specified high-importance types
• Text Matching: Employs pattern matching to suggest specific extraction targets
• Weighted Scoring: Emphasizes entity coverage (60%) over relation coverage (40%)

Recommendation Categories:

• Priority-based: Addresses missing high-priority types first
• Type-specific: Suggests specific entity or relation types to extract
• Text-guided: Provides context-aware extraction suggestions based on text content
• Completion status: Indicates when coverage is already adequate

Coverage Score Interpretation:

• 0.9-1.0: Excellent coverage, minimal gaps
• 0.7-0.89: Good coverage, minor improvements needed
• 0.5-0.69: Moderate coverage, significant gaps exist
• 0.3-0.49: Poor coverage, major extraction issues
• 0.0-0.29: Very poor coverage, fundamental problems

Tool 3: Knowledge Graph Quality Metrics Assessment

Output Specification for query quality metrics

This tool provides comprehensive multi-dimensional quality assessment of extracted knowledge graphs with de-
tailed metrics and improvement recommendations.

Output Format:

{
"evaluation_aspects": [string, ...],
"evaluation_results": {
"consistency": {
"score": float,
"issues": [string, ...],
"details": {
"entity_naming_consistency": float,
"relation_consistency": float,
"duplicate_entities": integer,
"conflicting_relations": integer

}
},
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"completeness": {
"score": float,
"issues": [string, ...],
"details": {
"missing_entity_types": [string, ...],
"missing_relation_types": [string, ...],
"entity_type_coverage": float,
"relation_type_coverage": float,
"extraction_density": float

}
},
"accuracy": {
"score": float,
"issues": [string, ...],
"details": {
"entities_not_in_text": integer,
"relations_not_in_text": integer,
"boundary_errors": integer,
"type_misclassifications": integer

}
},
"schema_compliance": {
"score": float,
"issues": [string, ...],
"details": {
"valid_entity_types": integer,
"invalid_entity_types": integer,
"valid_relation_types": integer,
"invalid_relation_types": integer,
"structure_violations": integer

}
}

},
"overall_score": float,
"quality_level": string,
"improvement_suggestions": [string, ...],
"detailed_metrics": {
"consistency": {
"score": float,
"details": object,
"issues": [string, ...]

},
"completeness": {
"score": float,
"details": object,
"issues": [string, ...]

},
"accuracy": {
"score": float,
"details": object,
"issues": [string, ...]

},
"schema_compliance": {
"score": float,
"details": object,
"issues": [string, ...]

}
}

}

Field Descriptions:
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• evaluation aspects: List of quality dimensions assessed (consistency, completeness, accuracy,
schema compliance)

• evaluation results: Detailed results for each quality dimension
– consistency: Internal coherence and naming consistency analysis

* score: Quality score (0-1) for consistency metrics
* issues: Specific consistency problems identified
* details: Breakdown of consistency metrics including duplicate detection

– completeness: Coverage and extraction density evaluation
* score: Completeness score considering missing types and density
* missing entity/relation types: Schema types absent from extraction
* extraction density: Ratio of extracted items to text length

– accuracy: Precision and correctness of extracted information
* score: Accuracy score based on text verification
* entities/relations not in text: Count of extracted items not found in original text

– schema compliance: Adherence to predefined schema definitions
* score: Compliance score for schema conformity
* valid/invalid types: Counts of correctly and incorrectly typed elements

• overall score: Weighted composite score (0-1) combining all dimensions
• quality level: Categorical assessment: ”excellent”, ”good”, ”fair”, ”poor”, ”very poor”
• improvement suggestions: Prioritized actionable recommendations for quality enhancement
• detailed metrics: Comprehensive breakdown mirroring evaluation results structure

Scoring Weights:

• Completeness: 30% - Emphasizes comprehensive extraction coverage
• Accuracy: 30% - Focuses on correctness and text alignment
• Consistency: 25% - Ensures internal coherence and standardization
• Schema Compliance: 15% - Validates adherence to predefined structure

Quality Level Thresholds:

• excellent: 0.9+ - Outstanding quality across all dimensions
• good: 0.8-0.89 - High quality with minor issues
• fair: 0.7-0.79 - Acceptable quality with moderate improvements needed
• poor: 0.6-0.69 - Significant quality issues requiring attention
• very poor: ¡0.6 - Major quality problems, substantial rework needed

Assessment Logic:

• Completeness Evaluation: Compares extracted types against schema, analyzes extraction density vs.
expected thresholds

• Accuracy Verification: Cross-references extracted entities and relations with original text content
• Consistency Analysis: Detects duplicate entities, naming variations, and conflicting information
• Schema Validation: Ensures all extracted elements conform to predefined type definitions

Improvement Suggestion Categories:

• Consistency: Entity naming standardization, duplicate resolution
• Completeness: Missing type identification, density optimization
• Accuracy: Precision improvement, boundary error correction
• Schema Compliance: Type matching, structural conformity
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Tool 4: Knowledge Graph Iterative Optimization Feedback

Output Specification for query iterative feedback

This tool provides intelligent feedback for multi-round knowledge graph extraction optimization, analyzing
progress trends and recommending targeted improvement strategies.

Output Format:

{
"progress_analysis": {
"trend": string,
"recent_improvement": float,
"overall_quality_change": float,
"extraction_volume_change": float,
"convergence_status": string

},
"problem_patterns": {
"recurring_issues": [string, ...],
"pattern_types": [string, ...],
"suggested_solutions": [string, ...],
"issue_frequency": object,
"severity_levels": object

},
"optimization_strategy": {
"strategies": [
{
"type": string,
"description": string,
"actions": [string, ...]

},
...
],
"priority_strategy": {
"type": string,
"description": string,
"actions": [string, ...]

},
"iteration_focus": string

},
"iteration_effectiveness": {
"effectiveness": string,
"average_improvement": float,
"improvement_trend": [float, ...],
"total_iterations": integer

},
"should_continue_iteration": boolean,
"current_iteration": integer,
"max_iterations": integer,
"next_steps": [string, ...]

}

Field Descriptions:

• progress analysis: Comprehensive analysis of extraction progress across iterations
– trend: Progress direction - ”improving”, ”stagnant”, ”declining”
– recent improvement: Quantitative measure of latest iteration improvements
– overall quality change: Cumulative quality change across all iterations
– extraction volume change: Change in total extracted elements
– convergence status: Whether extraction is converging to stability

• problem patterns: Detection and analysis of persistent extraction issues
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– recurring issues: List of problems appearing across multiple iterations
– pattern types: Categories of identified problem patterns
– suggested solutions: Targeted recommendations for addressing patterns
– issue frequency: Frequency count of different problem types
– severity levels: Impact assessment of identified patterns

• optimization strategy: Adaptive strategy recommendations based on current state
– strategies: List of available optimization approaches
– priority strategy: Most recommended strategy for current iteration
– iteration focus: Primary focus area - ”coverage expansion”, ”quality improvement”, ”refinement”

• iteration effectiveness: Assessment of iterative improvement effectiveness
– effectiveness: Categorical rating - ”high”, ”medium”, ”low”, ”stagnant”, ”insufficient data”
– average improvement: Mean improvement rate across iterations
– improvement trend: Per-iteration improvement percentages
– total iterations: Number of completed extraction rounds

• should continue iteration: Critical decision flag for continuing or terminating iteration
• current iteration: Current iteration number in the sequence
• max iterations: Maximum allowed iterations (default: 5)
• next steps: Specific actionable recommendations for the next iteration

Strategy Types:

• quality focus: Emphasizes improving accuracy and consistency of existing extractions
• coverage expansion: Focuses on identifying and extracting missing entities and relations
• balanced improvement: Simultaneous quality and coverage enhancement
• pattern specific: Targeted approach for addressing recurring problem patterns

Iteration Focus Phases:

• coverage expansion: Early iterations (1st third) - maximize extraction breadth
• quality improvement: Middle iterations (2nd third) - enhance extraction accuracy
• refinement: Final iterations (last third) - fine-tune and consistency checks

Effectiveness Levels:

• high: Average improvement ¿ 10% per iteration
• medium: Average improvement 5-10% per iteration
• low: Average improvement 0-5% per iteration
• stagnant: No measurable improvement or negative progress
• insufficient data: Less than 2 iterations for meaningful analysis

Continuation Decision Logic:

• Stop conditions: Maximum iterations reached, declining trend in early stages, minimal recent improve-
ment after 2+ iterations

• Continue conditions: Positive progress trend, recent improvement ¿ 1%, within iteration limits
• Early termination: Triggers when quality degrades or no improvement for multiple consecutive itera-

tions

Next Steps Categories:

• Completion: Final quality assessment and entity disambiguation when iteration should stop
• Targeted improvement: Specific actions from priority strategy when continuing
• Focus-driven: Phase-specific recommendations based on current iteration focus
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Tool 5: Entity Disambiguation Assessment

Output Specification for query entity disambiguation

This tool performs entity disambiguation by connecting to Neo4j knowledge base, matching extracted entities
with existing knowledge, and providing standardization recommendations.

Output Format:

{
"disambiguation_results": [
{
"original_entity": {
"type": string,
"name": string

},
"candidates": [
{
"candidate": {
"name": string,
"properties": object

},
"confidence": float

},
...
],
"best_match": {
"candidate": {
"name": string,
"properties": object

},
"confidence": float

},
"is_disambiguated": boolean,
"confidence": float

},
...
],
"relationships_results": [
{
"entity": object,
"relationships": [
{
"type": string,
"target": object,
"properties": object

},
...
]

},
...
],
"quality_score": float,
"disambiguation_strategy": string,
"similarity_threshold": float,
"standardization_suggestions": [string, ...],
"summary": {
"total_entities": integer,
"disambiguated_entities": integer,
"disambiguation_rate": float,
"average_confidence": float,
"unmatched_entities": integer

}
}
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Field Descriptions:

• disambiguation results: Detailed disambiguation results for each extracted entity
– original entity: The entity from extraction results (type and name)
– candidates: List of potential matches from Neo4j knowledge base

* candidate: Knowledge base entity with properties
* confidence: Matching confidence score (0-1)

– best match: Highest-scoring candidate match (null if no match above threshold)
– is disambiguated: Boolean indicating successful disambiguation
– confidence: Final confidence score for the disambiguation

• relationships results: Related entities and relationships from knowledge base
– entity: The queried entity information
– relationships: List of connected entities and relationship types

* type: Relationship type (e.g., ”Author”, etc.)
* target: Connected entity details
* properties: Additional relationship properties

• quality score: Overall disambiguation quality (0-1) combining coverage and confidence
• disambiguation strategy: Strategy used - ”exact match” or ”semantic similarity”
• similarity threshold: Minimum confidence threshold for matches
• standardization suggestions: Actionable recommendations for entity standardization
• summary: High-level statistics and performance metrics

Disambiguation Strategies:

• exact match: Requires perfect string matching between entity names (case-insensitive)
– Confidence: 1.0 for exact matches, 0.0 otherwise
– Use case: High-precision scenarios with standardized entity names
– Performance: Fast, deterministic results

• semantic similarity: Uses semantic similarity calculation for fuzzy matching
– Confidence: Calculated similarity score (0-1)
– Use case: Handling variations in entity naming and expressions
– Performance: More comprehensive but computationally intensive

Quality Score Calculation:

• Coverage component: (Disambiguated entities / Total entities) × 0.6
• Confidence component: (Average confidence score) × 0.4
• Final score: Weighted combination emphasizing coverage over individual confidence

Standardization Suggestions Categories:

• Unmatched entities: Alerts for entities without knowledge base matches
• Low confidence matches: Warnings for matches below 0.9 confidence requiring verification
• Name standardization: Specific recommendations for entity name normalization
• Knowledge base expansion: Suggestions for adding missing entities to knowledge base

Summary Statistics:

• total entities: Count of entities processed for disambiguation
• disambiguated entities: Count of successfully matched entities
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• disambiguation rate: Success rate (disambiguated/total)
• average confidence: Mean confidence across all disambiguation attempts
• unmatched entities: Count of entities without suitable matches

Knowledge Base Integration:

• Connection: Establishes Neo4j database connection using provided configuration
• Search method: Type-specific entity searches with optional semantic similarity
• Relationship extraction: Retrieves connected entities and relationship types
• Performance tracking: Monitors search times for entities and relationships
• Connection management: Properly closes database connections after processing

Error Handling:

• Invalid strategy: Returns error message for unsupported disambiguation strategies
• Database connection issues: Handles Neo4j connectivity problems gracefully
• Empty results: Manages cases where no candidates are found in knowledge base
• Malformed entities: Processes entities with missing or invalid properties

Tool 6: Knowledge Graph Storage

Output Specification for query kg storage

This tool handles the storage of optimized knowledge graph extraction results into Neo4j database, creating nodes
for entities and relationships for connections.

Output Format:

{
"storage_status": {
"overall_success": boolean,
"entities_storage": {
"code": integer,
"message": string,
"stored_count": integer,
"skipped_count": integer,
"failed_count": integer

},
"relations_storage": {
"code": integer,
"message": string,
"stored_count": integer,
"skipped_count": integer,
"failed_count": integer

}
},
"storage_details": {
"total_entities": integer,
"total_relations": integer,
"entity_types_processed": [string, ...],
"relation_types_processed": [string, ...],
"duplicates_detected": {
"entity_duplicates": integer,
"relation_duplicates": integer

},
"processing_time": {
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"entities_time": float,
"relations_time": float,
"total_time": float

}
},
"final_kg": {
"entities": {
"EntityType": ["EntityName1", "EntityName2", ...],
...

},
"relations": {
"RelationType": [
{"subject": "HeadEntity", "object": "TailEntity"},
...
],
...

}
},
"storage_summary": {
"operation_timestamp": string,
"database_config": {
"host": string,
"database": string

},
"performance_metrics": {
"entities_per_second": float,
"relations_per_second": float,
"overall_throughput": float

}
},
"warnings": [string, ...],
"recommendations": [string, ...]

}

Field Descriptions:

• storage status: Overall success status and detailed results for each storage operation
– overall success: Boolean indicating if both entities and relations were stored successfully
– entities storage: Entity storage results

* code: Status code (0 for success, -1 for failure)
* message: Descriptive status message
* stored count: Number of entities successfully stored
* skipped count: Number of entities skipped (duplicates)
* failed count: Number of entities that failed to store

– relations storage: Relationship storage results with same structure
• storage details: Comprehensive storage operation details

– total entities/relations: Total counts of items processed
– entity/relation types processed: List of types successfully processed
– duplicates detected: Count of duplicate items identified and skipped
– processing time: Time metrics for different storage phases

• final kg: The complete knowledge graph that was stored, maintaining original extraction format
• storage summary: High-level operation summary and performance metrics

– operation timestamp: ISO timestamp of storage operation
– database config: Sanitized database connection information
– performance metrics: Throughput calculations and efficiency measures

• warnings: List of non-critical issues encountered during storage
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• recommendations: Suggestions for optimization or follow-up actions

Storage Operations:

• Entity Storage: Creates Neo4j nodes with labels and name properties
– Label sanitization: Removes special characters, replaces with underscores
– Duplicate detection: Checks for existing nodes before creation
– Batch processing: Processes entities by type for efficiency
– Error handling: Continues processing despite individual failures

• Relationship Storage: Creates Neo4j relationships between existing nodes
– Node validation: Ensures both subject and object nodes exist
– Type mapping: Maps entity names to their corresponding types
– Duplicate prevention: Avoids creating duplicate relationships
– Referential integrity: Validates entity references before relationship creation

Status Codes:

• Code 0: Successful operation completion
• Code -1: Operation failure with error details in message
• Partial success: Different codes for entities vs. relations indicate partial completion

Error Handling:

• Connection failures: Database connectivity issues are caught and reported
• Schema violations: Invalid node labels or property names are sanitized
• Missing references: Relationships referencing non-existent entities are flagged
• Transaction integrity: Uses database transactions for consistency

Performance Optimization:

• Connection management: Uses context manager for proper resource cleanup
• Batch operations: Groups similar operations for efficiency
• Duplicate checking: Pre-checks existence to avoid unnecessary operations
• Label sanitization: Ensures Neo4j compatibility for node labels

Warning Categories:

• Duplicate entities: Entities already existing in database
• Missing entity references: Relations referencing undefined entities
• Label sanitization: Special characters replaced in entity type labels
• Performance concerns: Operations taking longer than expected

Recommendations:

• Index optimization: Suggestions for database index creation
• Data quality: Recommendations for improving entity naming consistency
• Performance tuning: Database configuration optimization suggestions
• Follow-up actions: Next steps after successful storage completion
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A.5 IMPLEMENTATION DETAILS OF NEO4J

Unified Schema & Constraints. To ensure consistency and deduplication (corresponding to the constraint term
Rcontr in the main framework), we establish a hybrid schema supporting both tool-specific dynamic labels and
framework-level unique constraints. Attributes include id, type, last seen, confidence, source, and tool-
specific properties.� �

1 CREATE CONSTRAINT entity_global_id IF NOT EXISTS
2 FOR (n:Entity) REQUIRE n.id IS UNIQUE;
3
4 CREATE CONSTRAINT entity_name_type_unique IF NOT EXISTS
5 FOR (n:Entity) REQUIRE (n.name, n.type) IS UNIQUE;
6
7 CREATE INDEX entity_type IF NOT EXISTS
8 FOR (n:Entity) ON (n.type);
9

10 CREATE INDEX entity_name IF NOT EXISTS
11 FOR (n:Entity) ON (n.name);
12
13 CREATE INDEX entity_name_lower IF NOT EXISTS
14 FOR (n:Entity) ON (toLower(n.name));
15
16 CREATE CONSTRAINT rel_key IF NOT EXISTS
17 FOR ()-[r:REL]-() REQUIRE (r.src_id, r.dst_id, r.rel_type) IS UNIQUE;
18
19 CREATE CONSTRAINT tool_rel_uniqueness IF NOT EXISTS
20 FOR ()-[r:RELATIONSHIP]-() REQUIRE (r.type, r.subject, r.object) IS UNIQUE;
21
22 CREATE INDEX rel_last_seen IF NOT EXISTS
23 FOR ()-[r:REL]-() ON (r.last_seen);
24
25 CREATE INDEX tool_rel_last_seen IF NOT EXISTS
26 FOR ()-[r:RELATIONSHIP]-() ON (r.last_seen);� �

Batched Upsert with Tool Integration (Uζ). The extracted triples and tool-processed entities are inserted in batches
(1000 rows per transaction). The system supports both framework-level batch processing and tool-specific entity
storage with label sanitization.� �

1 UNWIND $triples AS t
2 CALL {
3 WITH t
4 MERGE (s:Entity {id: t.src.id})
5 ON CREATE SET s.type = t.src.type, s.created_at = datetime(),
6 s.source = t.doc_id, s.name = t.src.name
7 ON MATCH SET s.type = coalesce(s.type, t.src.type)
8 SET s += coalesce(t.src.props, {}), s.last_seen = datetime()
9

10 MERGE (o:Entity {id: t.dst.id})
11 ON CREATE SET o.type = t.dst.type, o.created_at = datetime(),
12 o.source = t.doc_id, o.name = t.dst.name
13 ON MATCH SET o.type = coalesce(o.type, t.dst.type)
14 SET o += coalesce(t.dst.props, {}), o.last_seen = datetime()
15
16 MERGE (s)-[r:REL {src_id: t.src.id, dst_id: t.dst.id, rel_type: t.rel.type}]->(o)
17 ON CREATE SET r.created_at = datetime(), r.source = t.doc_id
18 SET r.last_seen = datetime(),
19 r.confidence = coalesce(t.rel.conf, 0.5),
20 r.evidence = coalesce(r.evidence, []) + t.src_text
21 } IN TRANSACTIONS OF 1000 ROWS;
22
23 UNWIND $tool_entities as entity_batch
24 CALL {
25 WITH entity_batch
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26 CALL apoc.create.node([entity_batch.sanitized_type], {
27 name: entity_batch.name,
28 type: entity_batch.original_type,
29 created_at: datetime(),
30 last_seen = datetime(),
31 source: "agentic_kgr_tool"
32 }) YIELD node
33 RETURN node
34 } IN TRANSACTIONS OF 1000 ROWS;
35
36 UNWIND $tool_relations as rel_batch
37 CALL {
38 WITH rel_batch
39 MATCH (subj:Entity {name: rel_batch.subject, type: rel_batch.subject_type})
40 MATCH (obj:Entity {name: rel_batch.object, type: rel_batch.object_type})
41 MERGE (subj)-[r:RELATIONSHIP {
42 type: rel_batch.relation_type,
43 subject: rel_batch.subject,
44 object: rel_batch.object
45 }]->(obj)
46 ON CREATE SET r.created_at = datetime(), r.confidence = 1.0
47 SET r.last_seen = datetime()
48 RETURN r
49 } IN TRANSACTIONS OF 1000 ROWS;� �

Dynamic Schema Extension with Staging. Low-confidence or novel relations are first staged in staging layer
:PENDING REL. Once cumulative evidence exceeds threshold τ , they are promoted in-place to standard :REL type,
corresponding to dynamic schema extension in the framework.� �

1 UNWIND $candidates AS c
2 MERGE (s:Entity {id: c.src.id})
3 ON CREATE SET s.name = c.src.name, s.type = c.src.type
4 SET s.last_seen = datetime()
5
6 MERGE (o:Entity {id: c.dst.id})
7 ON CREATE SET o.name = c.dst.name, o.type = c.dst.type
8 SET o.last_seen = datetime()
9

10 MERGE (s)-[p:PENDING_REL {src_id:c.src.id, dst_id:c.dst.id, rel_type:c.rel.type}]->(o
)

11 ON CREATE SET p.created_at = datetime(), p.last_seen = datetime(),
12 p.confidence = c.rel.conf, p.votes = 1, p.sources = [c.doc_id]
13 ON MATCH SET p.last_seen = datetime(),
14 p.confidence = greatest(p.confidence, c.rel.conf),
15 p.votes = p.votes + 1,
16 p.sources = p.sources + c.doc_id;
17
18 MATCH (s:Entity)-[p:PENDING_REL]->(o:Entity)
19 WHERE p.confidence >= $tau_conf AND p.votes >= $tau_votes
20 MERGE (s)-[r:REL {src_id:p.src_id, dst_id:p.dst_id, rel_type:p.rel_type}]->(o)
21 ON CREATE SET r.created_at = datetime(), r.last_seen = p.last_seen,
22 r.confidence = p.confidence, r.evidence = p.sources
23 ON MATCH SET r.last_seen = datetime(),
24 r.confidence = greatest(r.confidence, p.confidence),
25 r.evidence = apoc.coll.toSet(coalesce(r.evidence, []) + p.sources)
26 DELETE p;� �

Aging & Consistency with Tool Integration. Relations not re-observed within window ξ days are decayed or
removed, corresponding to aging and consistency penalty terms. This applies to both framework relations and tool-
stored relationships.� �

1 MATCH ()-[r:REL]-()
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2 WITH r, duration.between(r.last_seen, datetime()).days AS days
3 WHERE days > $soft_window
4 SET r.confidence = r.confidence * exp(-$decay_rate * (days - $soft_window));
5
6 MATCH ()-[r:REL]-()
7 WHERE duration.between(r.last_seen, datetime()).days > $hard_window
8 DELETE r;
9

10 MATCH ()-[r:RELATIONSHIP]-()
11 WHERE r.last_seen < datetime() - duration({days: $aging_threshold})
12 SET r.confidence = r.confidence * $decay_factor;
13
14 MATCH ()-[r:RELATIONSHIP]-()
15 WHERE r.last_seen < datetime() - duration({days: $hard_threshold})
16 AND r.confidence < $min_confidence
17 DELETE r;� �

Disambiguation with Framework Integration. Supporting both exact match and semantic similarity strategies
from the disambiguation tool, integrated with framework-level entity management.� �

1 MATCH (e:Entity {name: $entity_name})
2 WHERE e.type = $entity_type
3 RETURN e, e.type as type, e.id as framework_id;
4
5 MATCH (e)
6 WHERE labels(e)[0] = $sanitized_entity_type
7 AND toLower(e.name) = toLower($entity_name)
8 RETURN e, e.type as original_type, labels(e)[0] as sanitized_type;
9

10 MATCH (e:Entity)
11 WHERE e.type = $entity_type
12 RETURN e.name as name, e as node, e.id as framework_id;
13
14 MATCH (e:Entity {name: $entity_name})-[r]-(related:Entity)
15 WHERE e.type = $entity_type
16 RETURN r.rel_type as relationship_type,
17 related as target_entity,
18 r as relationship_properties,
19 type(r) as relation_class;� �

Coverage & Entropy Metrics (reward proxies). For retrieval coverage and structural diversity, we provide quanti-
ties computable within Neo4j: (i) coverage gain (proportion of newly introduced target-domain entities/relations), (ii)
degree-distribution entropy (Shannon entropy as structural diversity proxy).� �

1 MATCH (n:Entity) WHERE n.source = $doc_id SET n.episode_tag = $ep;
2 MATCH ()-[r:REL]-() WHERE r.source = $doc_id SET r.episode_tag = $ep;
3 MATCH ()-[r:RELATIONSHIP]-() WHERE r.source = $doc_id SET r.episode_tag = $ep;
4
5 MATCH (n:Entity) WHERE n.episode_tag = $ep
6 WITH count(n) AS curE
7 MATCH (n:Entity) WHERE n.episode_tag = $prev_ep
8 WITH curE, count(n) AS prevE
9 RETURN (toFloat(curE - prevE) / greatest(1.0, prevE)) AS coverage_gain;

10
11 MATCH ()-[r:REL]-() WHERE r.episode_tag = $ep
12 WITH count(r) AS curR_framework
13 MATCH ()-[r:RELATIONSHIP]-() WHERE r.episode_tag = $ep
14 WITH curR_framework, count(r) AS curR_tool
15 MATCH ()-[r:REL]-() WHERE r.episode_tag = $prev_ep
16 WITH curR_framework, curR_tool, count(r) AS prevR_framework
17 MATCH ()-[r:RELATIONSHIP]-() WHERE r.episode_tag = $prev_ep
18 WITH curR_framework, curR_tool, prevR_framework, count(r) AS prevR_tool
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19 WITH (curR_framework + curR_tool) AS curR, (prevR_framework + prevR_tool) AS prevR
20 RETURN (toFloat(curR - prevR) / greatest(1.0, prevR)) AS rel_coverage_gain;
21
22 MATCH (n:Entity)
23 OPTIONAL MATCH (n)-[r:REL]-()
24 OPTIONAL MATCH (n)-[rt:RELATIONSHIP]-()
25 WITH n, count(r) + count(rt) AS deg
26 WITH collect(deg) AS degs
27 UNWIND degs AS d
28 WITH d, size(degs) AS N, reduce(s=0, x IN degs | s + x) AS total_deg
29 WITH d, N, toFloat(d)/toFloat(total_deg) AS p
30 WHERE p > 0
31 WITH collect(-p * log(p)) AS terms
32 RETURN reduce(s=0.0, x IN terms | s + x) AS degree_entropy;� �

Time-Consistency Regularizer. Using normalized Laplacian L = I − D−1/2AD−1/2 with degree matrix D and
adjacency A. Neo4j exports sparse adjacency with stable node ordering for computing ∥Lt+1 − Lt∥2F (for Renv
regularization term).� �

1 MATCH (n:Entity)
2 WITH n ORDER BY coalesce(n.id, n.name) ASC
3 WITH collect(coalesce(n.id, n.name)) AS ids_t
4 MATCH (s:Entity)-[r]->(o:Entity)
5 WHERE (r.episode_tag = $t OR r:RELATIONSHIP)
6 AND (r:REL OR r:RELATIONSHIP)
7 WITH ids_t, collect({
8 i: coalesce(s.id, s.name),
9 j: coalesce(o.id, o.name),

10 type: coalesce(r.rel_type, r.type)
11 }) AS edges_t
12 RETURN ids_t AS ids, edges_t AS edges;
13
14 MATCH (n:Entity)
15 WITH n ORDER BY coalesce(n.id, n.name) ASC
16 WITH collect(coalesce(n.id, n.name)) AS ids_tp1
17 MATCH (s:Entity)-[r]->(o:Entity)
18 WHERE (r.episode_tag = $tp1 OR r:RELATIONSHIP)
19 AND (r:REL OR r:RELATIONSHIP)
20 WITH ids_tp1, collect({
21 i: coalesce(s.id, s.name),
22 j: coalesce(o.id, o.name),
23 type: coalesce(r.rel_type, r.type)
24 }) AS edges_tp1
25 RETURN ids_tp1 AS ids, edges_tp1 AS edges;� �

Tool Workflow Integration. Queries supporting the six-tool Agentic-KGR workflow with unified access to both
framework and tool-stored data.� �

1 MATCH (e:Entity)
2 WITH e.type as entity_type, count(e) as entity_count
3 MATCH ()-[r:REL]-()
4 WITH entity_type, entity_count, r.rel_type as rel_type, count(r) as rel_count
5 MATCH ()-[rt:RELATIONSHIP]-()
6 WITH entity_type, entity_count, rel_type, rel_count,
7 rt.type as tool_rel_type, count(rt) as tool_rel_count
8 RETURN entity_type, entity_count,
9 collect({type: rel_type, count: rel_count, source: "framework"}) +

10 collect({type: tool_rel_type, count: tool_rel_count, source: "tool"}) as relations;
11
12 WITH $schema_entity_types as expected_types
13 MATCH (e:Entity)
14 WITH expected_types, collect(distinct e.type) as found_types
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15 RETURN [t IN expected_types WHERE NOT t IN found_types] as missing_types;
16
17 MATCH ()-[r:REL]-()
18 OPTIONAL MATCH (subj:Entity {id: r.src_id})
19 OPTIONAL MATCH (obj:Entity {id: r.dst_id})
20 WITH r, subj, obj, "framework" as source,
21 CASE WHEN subj IS NULL THEN 1 ELSE 0 END as missing_subject,
22 CASE WHEN obj IS NULL THEN 1 ELSE 0 END as missing_object
23
24 UNION ALL
25
26 MATCH ()-[rt:RELATIONSHIP]-()
27 OPTIONAL MATCH (subj_t:Entity {name: rt.subject})
28 OPTIONAL MATCH (obj_t:Entity {name: rt.object})
29 WITH rt as r, subj_t as subj, obj_t as obj, "tool" as source,
30 CASE WHEN subj_t IS NULL THEN 1 ELSE 0 END as missing_subject,
31 CASE WHEN obj_t IS NULL THEN 1 ELSE 0 END as missing_object
32
33 RETURN source, sum(missing_subject) as orphaned_subjects,
34 sum(missing_object) as orphaned_objects,
35 count(r) as total_relations;� �

Snapshotting and Safety Checks. For reproducibility and rollback, snapshot nodes record version boundaries.
Safety checks enforce lightweight conflict rules before insertion.� �

1 CREATE (ss:GraphSnapshot {
2 sid: $sid,
3 created_at: datetime(),
4 note: $note,
5 tool_version: "agentic_kgr_v1"
6 });
7
8 MATCH (n:Entity) WHERE n.episode_tag = $ep OR n.source = $doc_id
9 SET n.snapshot = $sid;

10 MATCH ()-[r:REL]-() WHERE r.episode_tag = $ep SET r.snapshot = $sid;
11 MATCH ()-[r:RELATIONSHIP]-() WHERE r.source = $doc_id SET r.snapshot = $sid;
12
13 MATCH (s:Entity)-[r]-(o:Entity)
14 WHERE (r.episode_tag = $ep OR r.source = $doc_id)
15 AND (coalesce(s.id, s.name) = coalesce(o.id, o.name))
16 AND NOT coalesce(r.rel_type, r.type) IN $selfloop_whitelist
17 RETURN count(r) AS self_loops, collect(distinct coalesce(r.rel_type, r.type)) as

types;
18
19 MATCH ()-[r]-()
20 WHERE (r.episode_tag = $ep OR r.source = $doc_id)
21 AND NOT coalesce(r.rel_type, r.type) IN $allowed_rel_types
22 RETURN coalesce(r.rel_type, r.type) AS invalid_type, count(*) AS n LIMIT 20;� �

End-to-End Episode Pipeline. Complete pipeline for one episode: extraction → staging → promotion → aging/-
cleanup → metrics evaluation → snapshotting, integrating both framework and tool operations.� �

1 :PARAM ep => 137, doc_id => ’wireless-42’, tau_conf => 0.72, tau_votes => 3,
2 soft_window => 7, hard_window => 45, decay_rate => 0.08;
3
4 // 1) Stage framework candidates
5 UNWIND $candidates AS c
6 MERGE (s:Entity {id: c.src.id})
7 ON CREATE SET s.type = c.src.type, s.name = c.src.name
8 SET s.last_seen = datetime()
9 MERGE (o:Entity {id: c.dst.id})

10 ON CREATE SET o.type = c.dst.type, o.name = c.dst.name
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11 SET o.last_seen = datetime()
12 MERGE (s)-[p:PENDING_REL {src_id:c.src.id, dst_id:c.dst.id, rel_type:c.rel.type}]->(o

)
13 ON CREATE SET p.created_at = datetime(), p.confidence = c.rel.conf,
14 p.votes = 1, p.sources = [c.doc_id], p.episode_tag = $ep
15 ON MATCH SET p.votes = p.votes + 1, p.confidence = greatest(p.confidence, c.rel.conf)

;
16
17 // 2) Store tool entities and relationships
18 CALL apoc.periodic.iterate(
19 "UNWIND $tool_entities as entity RETURN entity",
20 "MERGE (e:Entity {name: entity.name, type: entity.type})
21 ON CREATE SET e.created_at = datetime(), e.source = ’agentic_kgr_tool’
22 SET e.last_seen = datetime()",
23 {batchSize: 1000, params: {tool_entities: $tool_entities}}
24 );
25
26 // 3) Promote staging to permanent relations
27 MATCH (s)-[p:PENDING_REL]->(o)
28 WHERE p.episode_tag = $ep AND p.confidence >= $tau_conf AND p.votes >= $tau_votes
29 MERGE (s)-[r:REL {src_id:p.src_id, dst_id:p.dst_id, rel_type:p.rel_type}]->(o)
30 ON CREATE SET r.created_at = datetime(), r.confidence = p.confidence,
31 r.evidence = p.sources, r.episode_tag = $ep
32 ON MATCH SET r.confidence = greatest(r.confidence, p.confidence),
33 r.evidence = apoc.coll.toSet(r.evidence + p.sources)
34 DELETE p;
35
36 // 4) Apply aging across all relation types
37 MATCH ()-[r]-()
38 WHERE r:REL OR r:RELATIONSHIP
39 WITH r, duration.between(r.last_seen, datetime()).days AS days
40 FOREACH (_ IN CASE WHEN days > $soft_window AND days <= $hard_window THEN [1] ELSE []

END |
41 SET r.confidence = r.confidence * exp(-$decay_rate * (days - $soft_window))
42 )
43 FOREACH (_ IN CASE WHEN days > $hard_window THEN [1] ELSE [] END | DELETE r);
44
45 // 5) Create snapshot
46 CREATE (ss:GraphSnapshot {sid: toString($ep), created_at: datetime(),
47 note: ’unified-framework-tool-snapshot’});
48 MATCH (n:Entity) WHERE n.episode_tag = $ep OR n.source CONTAINS ’agentic_kgr’
49 SET n.snapshot = toString($ep);
50 MATCH ()-[r]-() WHERE r.episode_tag = $ep OR r.source CONTAINS ’agentic_kgr’
51 SET r.snapshot = toString($ep);� �

Disambiguation Queries. Supporting both exact match and semantic similarity strategies from the disambiguation
tool. The exact match strategy provides deterministic results, while semantic similarity enables fuzzy matching.� �

1 MATCH (e {name: $entity_name})
2 WHERE labels(e)[0] = $entity_type
3 RETURN e, labels(e)[0] as type;
4
5 MATCH (e)
6 WHERE labels(e)[0] = $entity_type
7 AND toLower(e.name) = toLower($entity_name)
8 RETURN e, labels(e)[0] as type;
9

10 MATCH (e)
11 WHERE labels(e)[0] = $entity_type
12 RETURN e.name as name, e as node;
13
14 MATCH (e {name: $entity_name})-[r:RELATIONSHIP]-(related)
15 WHERE labels(e)[0] = $entity_type
16 RETURN r.type as relationship_type,
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17 related as target_entity,
18 r as relationship_properties;� �

Integration with Agentic-KGR Tool Workflow. The storage operations integrate with the six-tool workflow, sup-
porting density assessment feedback, coverage analysis, and quality metrics through efficient queries.� �

1 MATCH (e)
2 UNWIND labels(e) as label
3 WITH label, count(e) as entity_count
4 MATCH ()-[r:RELATIONSHIP]->()
5 WITH label, entity_count, r.type as rel_type, count(r) as rel_count
6 RETURN label as entity_type, entity_count,
7 collect({type: rel_type, count: rel_count}) as relations;
8
9 WITH $schema_entity_types as expected_types

10 MATCH (e)
11 WITH expected_types, collect(distinct labels(e)[0]) as found_types
12 RETURN [t IN expected_types WHERE NOT t IN found_types] as missing_types;
13
14 MATCH ()-[r:RELATIONSHIP]->()
15 OPTIONAL MATCH (subj {name: r.subject})
16 OPTIONAL MATCH (obj {name: r.object})
17 WITH r, subj, obj,
18 CASE WHEN subj IS NULL THEN 1 ELSE 0 END as missing_subject,
19 CASE WHEN obj IS NULL THEN 1 ELSE 0 END as missing_object
20 RETURN sum(missing_subject) as orphaned_subjects,
21 sum(missing_object) as orphaned_objects,
22 count(r) as total_relations;� �

Aging & Consistency. Relations not re-observed within window ξ days are decayed or removed, corresponding to
the aging and consistency penalty terms. This complements the tool’s quality assessment capabilities.� �

1 MATCH ()-[r:RELATIONSHIP]->()
2 WHERE r.last_seen < datetime() - duration({days: $aging_threshold})
3 DELETE r;
4
5 MATCH ()-[r:RELATIONSHIP]->()
6 WHERE r.last_seen < datetime() - duration({days: $decay_threshold})
7 SET r.confidence = r.confidence * $decay_factor;� �

Performance Optimizations. Optimizations specific to the tool implementation patterns, including batch processing
and connection management.� �

1 UNWIND $entity_names as name
2 OPTIONAL MATCH (e {name: name})
3 WHERE labels(e)[0] = $entity_type
4 RETURN name, e IS NOT NULL as exists;
5
6 UNWIND $relations_batch as rel
7 OPTIONAL MATCH ()-[r:RELATIONSHIP {
8 type: rel.relation_type,
9 subject: rel.subject,

10 object: rel.object
11 }]->()
12 WITH rel, r IS NOT NULL as exists
13 WHERE NOT exists
14 RETURN rel;
15
16 CALL dbms.listConnections()
17 YIELD connectionId, connectTime, connector, userAgent
18 WHERE connectTime > datetime() - duration({minutes: 5})
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19 RETURN count(*) as active_connections,
20 avg(duration.inSeconds(datetime(), connectTime)) as avg_duration;� �

Error Handling and Validation. Safety checks aligned with tool implementation error handling, including connec-
tion failures and data validation.� �

1 MATCH (e {name: $entity_name})
2 WITH e, labels(e) as current_labels, $expected_type as expected
3 WHERE NOT expected IN current_labels
4 RETURN e.name as inconsistent_entity,
5 current_labels, expected;
6
7 MATCH ()-[r:RELATIONSHIP]->()
8 OPTIONAL MATCH (subj {name: r.subject})
9 OPTIONAL MATCH (obj {name: r.object})

10 WHERE subj IS NULL OR obj IS NULL
11 RETURN r.type as problematic_relation,
12 r.subject, r.object,
13 subj IS NULL as missing_subject,
14 obj IS NULL as missing_object;� �

Tool-Specific Metrics. Metrics collection supporting the iterative feedback and quality assessment tools.� �
1 MATCH (e)
2 WITH labels(e)[0] as entity_type, count(e) as count
3 MATCH ()-[r:RELATIONSHIP]->()
4 WITH entity_type, count, r.type as rel_type, count(r) as rel_count
5 RETURN {
6 timestamp: datetime(),
7 entity_counts: collect({type: entity_type, count: count}),
8 relation_counts: collect({type: rel_type, count: rel_count}),
9 total_entities: sum(count),

10 total_relations: sum(rel_count)
11 } as iteration_snapshot;
12
13 WITH $schema_types as expected
14 MATCH (e)
15 WITH expected, collect(distinct labels(e)[0]) as found
16 UNWIND expected.entity_schema as expected_entity_type
17 WITH expected_entity_type, expected_entity_type IN found as covered
18 RETURN {
19 entity_coverage: {
20 total: size(expected.entity_schema),
21 covered: sum(CASE WHEN covered THEN 1 ELSE 0 END),
22 missing: [t IN expected.entity_schema WHERE NOT t IN found]
23 }
24 } as coverage_report;� �
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