AGENTIC-KGR: CO-EVOLUTIONARY KNOWLEDGE GRAPH CONSTRUCTION THROUGH MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Current knowledge-enhanced large language models (LLMs) rely on static, pre-constructed knowledge bases that suffer from coverage gaps and temporal obsolescence, limiting their effectiveness in dynamic information environments. We present Agentic-KGR, a novel framework enabling coevolution between LLMs and knowledge graphs (KGs) through multi-round reinforcement learning (RL). Our approach introduces three key innovations: (1) a dynamic schema expansion mechanism that systematically extends graph ontologies beyond pre-defined boundaries during training; (2) a retrieval-augmented memory system enabling synergistic co-evolution between model parameters and knowledge structures through continuous optimization; (3) a learnable multi-scale prompt compression approach that preserves critical information while reducing computational complexity through adaptive sequence optimization. Experimental results demonstrate substantial improvements over supervised baselines and single-round RL approaches in knowledge extraction tasks. When integrated with GraphRAG, our method achieves superior performance in downstream QA tasks, with significant gains in both accuracy and knowledge coverage compared to existing methods.

1 Introduction

Large Language Models (LLMs) have revolutionized natural language processing and knowledge-intensive applications, demonstrating remarkable capabilities in understanding and generating human-like text. However, their susceptibility to hallucination and limited access to up-to-date information pose significant challenges for reliable knowledge-based reasoning tasks. Knowledge graphs (KGs), with their structured representation of entities and relationships, offer a promising solution to enhance LLM reliability by providing factual grounding (Nie et al., 2023). The integration of LLMs with KGs has emerged as a critical research direction, particularly in developing intelligent QA systems that require both comprehensive knowledge coverage and accurate reasoning capabilities. Recent advances in Graph Retrieval-Augmented Generation (GraphRAG) have shown substantial improvements in mitigating hallucination by incorporating structured knowledge into the generation process (Luo et al., 2025; Lelong et al., 2025).

The landscape of KG reasoning and RAG has witnessed significant methodological advances in recent years. Reinforcement learning (RL) approaches have proven particularly effective for multi-hop reasoning over incomplete KGs, with pioneering works like DeepPath introducing policy-based agents that learn to navigate KG vector spaces by sampling promising relational paths (Xiong et al., 2018). Building upon this foundation, MINERVA addressed the more challenging task of QA with known relations but single entities, employing neural RL to navigate graphs conditioned on input queries (Das et al., 2018). To address the issue of low-quality rewards in incomplete KG environments, researchers have developed sophisticated reward shaping mechanisms and self-supervised pre-training methods (Lin et al., 2018; Ma et al., 2025). Recent developments have focused on agentic RAG systems that employ multi-tool architectures for iterative, targeted queries and multi-hop reasoning (Lelong et al., 2025). The emergence of Graph-R1 has introduced lightweight knowledge hypergraph construction with multi-turn agent-environment interactions optimized through end-to-end reward mechanisms (Luo et al., 2025). Furthermore, advances in KG construction have leveraged LLMs as automatic constructors, with frameworks like SAC-KG demonstrating the potential for automated domain-specific KG generation (Chen et al., 2024).

Despite these advances, current GraphRAG approaches face critical limitations that constrain their real-world applicability. Existing methods rely on static, pre-constructed KGs that suffer from coverage gaps, temporal obsolescence, and inability to adapt to emerging domain knowledge or evolving query patterns. Traditional RL approaches for knowledge reasoning focus primarily on path-finding within fixed graph structures, neglecting the potential for co-evolution

055

061

062

063

064

065

066

067

068

070

071

072

074

076

083

084

085

086

089

090

091

095

096

099 100

101

102

103 104

105

106

107

between reasoning agents and knowledge bases. Furthermore, the separation between knowledge construction and utilization creates a fundamental bottleneck where sophisticated reasoning mechanisms remain constrained by static knowledge repositories. Current single-objective optimization strategies fail to balance the dual requirements of effective knowledge extraction and accurate question answering, resulting in suboptimal integrated system performance. These limitations necessitate a paradigm shift toward adaptive knowledge systems that can dynamically construct, expand, and refine KGs through iterative interaction with both data sources and reasoning tasks.

To address these fundamental limitations, we propose Agentic-KGR, a novel framework that enables coevolution between LLMs and KGs through multi-round RL. The core innovation lies in reimagining knowledge construction and utilization as interconnected, mutually reinforcing processes rather than sequential stages, as demonstrated in typical product QA scenario (Figure 1). Our framework introduces three key contributions:

- a dynamic ontological expansion framework that facilitates real-time structural evolution of knowledge graphs through adaptive schema augmentation;
- a co-evolutionary memory architecture that enables bidirectional adaptation between neural representations and knowledge structures through iterative refinement processes;
- a learnable multi-scale prompt compressor with cross-attention mechanisms that achieves backbone-agnostic semantic preservation while reducing computational overhead through adaptive query-based context distillation.

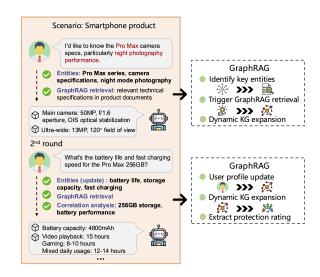


Figure 1: Multi-round interactive knowledge discovery in product QA scenario

This multi-round RL paradigm ensures synergistic evolution of both the reasoning agent and knowledge structure, where improvements in one component enhance overall system performance, fundamentally transforming the paradigm from static knowledge retrieval to adaptive knowledge co-creation.

Experimental evaluation demonstrates the effectiveness of Agentic-KGR across two critical dimensions: KG extraction and QA performance. In knowledge extraction tasks, models trained with our framework exhibit substantial improvements in graph density, coverage, and quality compared to supervised fine-tuning baselines and single-round RL approaches. The dual reward mechanism proves particularly effective in balancing exploration of novel knowledge territories with exploitation of established patterns, enabling the extraction of more comprehensive and accurate KGs. Specifically, Agentic-KGR achieves up to +33.3 points improvement over existing RL methods in graph extraction and +12.8 points in downstream QA tasks, demonstrating that multi-round agentic RL effectively enhances both KG construction quality and end-to-end task performance through improved coverage and evidence routing. When these dynamically constructed KGs are integrated into GraphRAG systems, they significantly enhance downstream QA performance, validating the synergistic relationship between improved knowledge extraction and reasoning capabilities. This two-stage validation confirms that Agentic-KGR's ability to generate high-quality, domain-adaptive KGs establishes a foundation for self-improving knowledge systems that can continuously evolve alongside their operational environments.

2 Method

Figure 2 illustrates the overall architecture of our Agentic-KGR framework, which integrates a comprehensive tool pool for knowledge graph operations with a dual reward mechanism, allowing the model to dynamically construct and expand knowledge graphs while simultaneously improving its reasoning capabilities.

2.1 PRELIMINARIES

Notation. We denote vectors by lowercase bold letters (e.g., \mathbf{x} , \mathbf{h}), and matrices by capital bold letters (e.g., \mathbf{A} , \mathbf{H}). Let $\|\cdot\|_2$, $\|\cdot\|_F$ be the ℓ_2 -norm and Frobenius norm respectively. We use $\langle\cdot,\cdot\rangle$ for inner products, ∇ for gradients, and $\operatorname{tr}(\cdot)$ for matrix trace. Let a LLM be parameterized by $\theta \in \mathbb{R}^p$. The KG at round t is $\mathcal{G}_t \equiv (V_t, E_t, \ell_t)$ with

109

110

111

112

113

114

115

116

117118

119

120

121

123

124

125126127

128 129

130

131

132

133

134 135

136

137

138

139

140

141

142

143 144 145

146 147

148

149

150151

152

153

154

155156

157

158

159160

161

Figure 2: Overall Architecture of Agentic-KGR Framework.

Laplacian \mathbf{L}_t . We model the process as a POMDP with latent state $x_t \in \mathcal{X}$, observation $s_t \in \mathcal{S}$, action $a_t \in \mathcal{A}$, query $q_t \in \mathcal{Q}$, external memory \mathcal{M}_t , and policy π_{θ} . The dual reward is $R_t = \alpha R_{\mathrm{env}}(s_t, a_t) + (1 - \alpha) R_{\mathrm{task}}(s_t, a_t)$ with $\alpha \in [0, 1]$ and discount $\gamma \in (0, 1)$. For compression, $\mathbf{H} \in \mathbb{R}^{n \times d}$ is the uncompressed embedding matrix, $\mathbf{Z} \in \mathbb{R}^{k \times d}$ is the compressed representation with $k \ll n$. We use $\phi(\cdot)$ for compression, $\psi(\cdot)$ for reconstruction, $I(\cdot; \cdot)$ for mutual information, and $\mathrm{KL}(\cdot||\cdot)$ for KL-divergence.

Definitions. We present the following definitions that formalize the core components of our Agentic-KGR framework.

Definition 1 (Differentiable Subgraph Retrieval Distribution). Given query $q_t \in \mathcal{Q}$ and knowledge graph \mathcal{G}_t , we define a parametric probability measure μ_{η} over the power set 2^{E_t} of edge subsets. The differentiable retrieval distribution over subgraphs $\mathcal{H}_t \subseteq \mathcal{G}_t$ is characterized by the Gibbs measure:

$$\mathbb{P}_{\eta}(\mathcal{H}_t \mid q_t, \mathcal{G}_t) = \frac{1}{Z_{\eta}(q_t, \mathcal{G}_t)} \exp\left(\beta \cdot \mathsf{score}_{\eta}(q_t, \mathcal{H}_t)\right), \tag{1}$$

where $\hat{Z}_{\eta}(q_t, \mathcal{G}_t) = \frac{1}{M} \sum_{m=1}^{M} \exp(\beta \cdot \mathsf{score}_{\eta}(q_t, \mathcal{H}_m))$ is the partition function, and the energy function combines semantic alignment with spectral coherence:

$$score_{\eta}(q_t, \mathcal{H}_t) = \langle \phi_{\eta}(q_t), \Phi_{\eta}(\mathcal{H}_t) \rangle - \lambda_{spec} \left[tr(\mathbf{L}_{\mathcal{H}_t}^+) + \frac{1}{2} \log \det(\mathbf{L}_{\mathcal{H}_t} + \epsilon \mathbf{I}) \right], \tag{2}$$

with temperature parameter $\beta > 0$, regularization $\epsilon > 0$, and $\mathbf{L}_{\mathcal{H}_t}^+$ denoting the Moore-Penrose pseudoinverse.

Definition 2 (GraphRAG Readout Operator). The GraphRAG readout operator $\operatorname{Readout}_{\eta}: \mathcal{Q} \times 2^{\mathcal{G}} \to \mathbb{R}^d$ is defined as a composition of graph neural network processing and cross-modal fusion:

$$u_t = \text{Readout}_n(q_t, \mathcal{H}_t) = \Psi_n\left(\text{GNN}_n(\mathcal{H}_t), \phi_n(q_t)\right),$$
 (3)

where $GNN_{\eta}(\mathcal{H}_t) = \mathbf{W}_{out}\sigma(\mathbf{L}_{\mathcal{H}_t}\mathbf{X}_{\mathcal{H}_t}\mathbf{W}_{in} + \mathbf{b})$ with learnable parameters \mathbf{W}_{out} , \mathbf{W}_{in} , \mathbf{b} , node features $\mathbf{X}_{\mathcal{H}_t}$, and the fusion operator:

$$\Psi_{\eta}(\mathbf{g}, \mathbf{q}) = \operatorname{softmax}\left(\frac{\mathbf{Q}_{\operatorname{cross}} \mathbf{K}_{\operatorname{cross}}^{\top}}{\sqrt{d}}\right) \mathbf{V}_{\operatorname{cross}},\tag{4}$$

where $\mathbf{Q}_{\text{cross}} = \mathbf{q}^{\top} \mathbf{W}_{Q}, \mathbf{K}_{\text{cross}} = \mathbf{g}^{\top} \mathbf{W}_{K}, \mathbf{V}_{\text{cross}} = [\mathbf{g}; \mathbf{q}]^{\top} \mathbf{W}_{V}.$

Definition 3 (KG Update Operator). Given document set D_t and extracted edge candidates $\widehat{E}_t = f_{\theta}(D_t)$ with confidence scores $\mathbf{c}_t \in [0,1]^{|\widehat{E}_t|}$, the KG update operator $\mathcal{U}_{\zeta}: \mathcal{G} \times 2^E \to \mathcal{G}$ is defined as the solution to the constrained optimization problem:

$$\mathcal{U}_{\zeta}(\mathcal{G}_{t}, \widehat{E}_{t}) = \arg \max_{\mathcal{G} \in \mathcal{F}} \left[\mathcal{S}(\mathcal{G}; \mathcal{G}_{t}, \widehat{E}_{t}) + \mathcal{C}(\mathcal{G}; \widehat{E}_{t}) - \lambda_{\text{contr}} \mathcal{R}_{\text{contr}}(\mathcal{G}) \right], \tag{5}$$

where \mathcal{F} is the feasible graph space, and the objective components are:

$$S(\mathcal{G}; \mathcal{G}_t, \widehat{E}_t) = \exp\left(-\kappa_s \cdot d_G(\mathcal{G}, \mathcal{G}_t)\right) \cdot \prod_{e \in \widehat{E}_t \cap E} c_e, \tag{6}$$

$$C(\mathcal{G}; \widehat{E}_t) = \sum_{e \in \widehat{E}_t} c_e \cdot \mathbf{1}_{e \in E} - \tau \sum_{e \in E \setminus \widehat{E}_t} \exp(-\xi \cdot \operatorname{age}(e)), \tag{7}$$

$$\mathcal{R}_{\text{contr}}(\mathcal{G}) = \sum_{j} \max(0, g_j(\mathcal{G}))^2, \tag{8}$$

with graph distance $d_G(\cdot, \cdot)$, edge age function $age(\cdot)$, and constraint functions $g_i(\cdot)$.

Definition 4 (Environmental Reward Components). The environmental reward incorporates two graph-theoretic measures. The coverage gain is defined via the submodular function:

$$\Delta \mathsf{Cov}_{\kappa}(\mathcal{G}_{t} \to \mathcal{G}_{t+1}) = \sum_{v \in V_{t+1}} \left[1 - (1 - \kappa)^{|\mathcal{N}_{\mathcal{G}_{t+1}}(v;h)|} \right] - \sum_{v \in V_{t}} \left[1 - (1 - \kappa)^{|\mathcal{N}_{\mathcal{G}_{t}}(v;h)|} \right], \tag{9}$$

where $\mathcal{N}_G(v;h)$ denotes the h-hop neighborhood of vertex v. The von Neumann entropy gain is:

$$\Delta \mathsf{Ent}_{VN}(\mathcal{G}_t \to \mathcal{G}_{t+1}) = -\mathrm{tr}\left(\rho_{t+1}\log\rho_{t+1}\right) + \mathrm{tr}\left(\rho_t\log\rho_t\right),\tag{10}$$

where $\rho_t = \frac{\mathbf{L}_{\mathcal{G}_t} + \mu \mathbf{I}}{\operatorname{tr}(\mathbf{L}_{\mathcal{G}_t} + \mu \mathbf{I})}$ is the normalized density operator. The complete environmental reward is:

$$R_{\text{env}}(s_t, a_t) = \Delta \text{Cov}_{\kappa}(\mathcal{G}_t \to \mathcal{G}_{t+1}) + \Delta \text{Ent}_{\text{VN}}(\mathcal{G}_t \to \mathcal{G}_{t+1}) - \lambda_{\text{contr}} \mathcal{R}_{\text{contr}}(\mathcal{G}_{t+1}) - \lambda_T \mathcal{T}(\mathcal{G}_t, \mathcal{G}_{t+1}). \tag{11}$$

Definition 5 (Learnable Multi-Scale Compression). Given uncompressed embedding matrix $\mathbf{H} \in \mathbb{R}^{n \times d}$, we define L learnable compression scales with adaptive attention mechanisms. Each scale i computes:

$$\phi_i(\mathbf{H}; k_i) = \operatorname{softmax} \left(\frac{\mathbf{Q}_i \mathbf{K}_i^{\top}}{\sqrt{d/L}} + \mathbf{M}_i \right) \mathbf{V}_i \in \mathbb{R}^{k_i \times d},$$
(12)

where $\mathbf{Q}_i \in \mathbb{R}^{k_i \times d}$ are learnable compression queries, $\mathbf{K}_i = \mathbf{H}\mathbf{W}_{K,i} \in \mathbb{R}^{n \times d}$, $\mathbf{V}_i = \mathbf{H}\mathbf{W}_{V,i} \in \mathbb{R}^{n \times d}$, and $\mathbf{M}_i \in \mathbb{R}^{k_i \times n}$ is a learnable bias matrix. The multi-scale compressed representation is:

$$\mathbf{Z} = \sum_{i=1}^{L} \omega_i \phi_i(\mathbf{H}; k_i) + \sum_{i=1}^{L-1} \sum_{j=i+1}^{L} \xi_{ij} \cdot \text{CrossScale}(\phi_i(\mathbf{H}; k_i), \phi_j(\mathbf{H}; k_j)), \tag{13}$$

where $\omega_i \geq 0$, $\sum_i \omega_i = 1$, $\xi_{ij} \geq 0$ are cross-scale interaction weights, and:

$$CrossScale(\mathbf{Z}_i, \mathbf{Z}_j) = \tanh(\mathbf{W}_{cross}[\mathbf{P}_i \mathbf{Z}_i \odot \mathbf{P}_j \mathbf{Z}_j; \mathbf{P}_i \mathbf{Z}_i; \mathbf{P}_j \mathbf{Z}_j] + \mathbf{b}_{cross}), \tag{14}$$

with \odot denoting element-wise product, \oplus concatenation after dimension alignment, and \mathbf{W}_{cross} , \mathbf{b}_{cross} as learnable parameters.

2.2 ALGORITHM AND THEORY

Agent-Knowledge Graph Co-Evolution Operator. The co-evolution between the agent and knowledge graph is formalized through the joint operator $\Phi:(\theta_t,\mathcal{G}_t)\mapsto(\theta_{t+1},\mathcal{G}_{t+1})$. The agent parameter update follows the policy gradient with GraphRAG-conditioned advantage estimation:

$$\theta_{t+1} = \theta_t + \eta_\theta \widehat{\nabla}_\theta J(\theta_t; \mathcal{G}_t, \mathcal{M}_t), \tag{15}$$

where the objective function $J(\theta) = \mathbb{E}_{\pi\theta}[\sum_{t\geq 0} \gamma^t R_t]$ incorporates the dual reward mechanism. The advantage estimator \widehat{A}_t utilizes the compressed observation $o_t \equiv (\mathbf{Z}_t, q_t, u_t, \operatorname{Enc}(\mathcal{G}_t))$ fused with GraphRAG readout. The knowledge graph evolves simultaneously through $\mathcal{G}_{t+1} = \mathcal{U}_{\zeta}(\mathcal{G}_t, f_{\theta}(D_t))$, creating a feedback loop where improved extraction capabilities lead to richer graph structures, which in turn enable more effective retrieval for future decisions.

Table 1: Performance evaluation on graph extraction benchmarks across different model architectures and training methodologies. The best results are highlighted in **bold**, and the second-best results are <u>underlined</u>.

	IEPile		MmlKG		ConfigKG		WirelessKG		DcommKG	
$\mathbf{Model} o \mathbf{on} \ \mathbf{DATASET} \ \mathbf{via} \ \mathbf{METHOD}$	NER	RE	NER	RE	NER	RE	NER	RE	NER	RE
Qwen2.5 7B	59.35	34.28	44.72 48.95	0.10	98.23 98.23	24.17 29.17	64.99	17.42	27.16	14.16 13.95
Qwen2.5 14B Owen2.5 32B	67.13 68.05	43.32 46.69	53.90	2.36 3.95	98.23	60.28	61.19 63.59	35.42 45.18	47.65 35.78	15.95
QwQ	70.76	57.39	56.89	20.62	98.23	69.72	65.14	64.29	41.18	15.18
Qwen2.5 7B → on AUTOKG via SFT	56.89	36.39	49.50	0.00	98.23	29.17	61.93	12.84	22.42	9.23
Qwen2.5 14B \rightarrow on AUTOKG via SFT	66.82	43.69	42.72	1.38	98.23	32.50	53.46	45.42	48.57	8.75
Qwen2.5 32B \rightarrow on AUTOKG via SFT QwQ \rightarrow on AUTOKG via SFT	68.17 70.88	47.87 58.84	54.12 57.12	4.39 2.68	98.23 98.23	56.95 58.08	56.70 62.64	44.02 62.38	33.05 38.04	15.62 13.87
QWQ -> OII AUTUKU VIA SFT	70.88	36.64	37.12	2.08	96.23	36.06	02.04	02.38	36.04	13.67
Qwen2.5 7B \rightarrow on COMMTKG via SFT	46.49	34.47	51.17	0.00	98.23	23.54		30.67	31.74	14.28
Qwen2.5 14B \rightarrow on COMMTKG via SFT	60.80	46.58	49.48	0.00	98.23	24.72	52.50	46.58	49.84	20.35
Qwen2.5 32B \rightarrow on COMMTKG via SFT	66.46	44.91	55.32	8.34	98.23	39.17	64.46	35.95	39.66	4.63
QwQ → on COMMTKG via SFT	69.11	55.20	58.39	12.73	98.23	51.83	66.03	51.16	45.65	4.11
Qwen2.5 7B \rightarrow on AUTOKG via RL	60.99	45.28	50.55	0.00	98.23	32.50	47.58	8.63	28.22	5.00
Qwen2.5 14B \rightarrow on AUTOKG via RL	69.32	53.02	53.37	0.13	98.23	32.50	54.10	39.08	56.40	13.87
Qwen2.5 32B \rightarrow on AUTOKG via RL	70.15	54.83	56.77	1.61	98.23	39.17	71.84	49.62	37.20	9.09
QwQ → on AUTOKG via RL	69.04	67.40	59.92	8.37	98.23	63.03	73.59	70.61	42.81	8.07
Qwen2.5 7B \rightarrow on COMMTKG via RL	67.77	42.87	46.43	0.00	98.23	19.17	65.93	38.07	32.57	18.70
Qwen2.5 14B \rightarrow on COMMTKG via RL	70.57	58.35	59.26	0.77	98.23	32.50	60.20	46.39	<u>61.15</u>	22.94
Qwen2.5 32B \rightarrow on COMMTKG via RL	71.41	56.79	63.11	9.32	98.23	72.50	67.56		45.97	20.16
QwQ → on COMMTKG via RL	71.66	<u>69.80</u>	66.61	<u>37.78</u>	98.23	69.21	75.50	52.91	53.48	17.90
Qwen2.5 7B \rightarrow on AUTOKG via AGENTIC-KGR (ours)	65.11	45.25	54.90	0.10	98.23	24.17	65.71	16.79	27.14	6.22
Qwen2.5 14B \rightarrow on AUTOKG via AGENTIC-KGR (ours)	72.76	55.94	52.84	0.60	98.23	34.17	57.25	44.05	49.80	16.45
Qwen2.5 32B \rightarrow on AUTOKG via AGENTIC-KGR (ours)	75.08	54.50	57.15	3.38	98.23	72.50	54.34	39.76	24.61	15.26
$QwQ \rightarrow on AUTOKG via AGENTIC-KGR (ours)$	71.99	68.73	64.32	18.23	98.23	65.66	76.58	68.32	40.27	13.55
Qwen2.5 7B → on COMMTKG via AGENTIC-KGR (ours)	64.13	45.76	50.99	0.00	98.23	29.17	67.53	37.85	29.69	19.94
Qwen2.5 14B → on COMMTKG via AGENTIC-KGR (ours)	66.72	56.69	58.92	0.64	98.23	35.83	62.05	48.63	62.08	22.45
Qwen2.5 32B → on COMMTKG via AGENTIC-KGR (ours)	70.77	59.09	64.71	11.82	98.23	70.28	71.84	53.92	42.29	22.56
$QwQ \rightarrow on CommTKG via Agentic-KGR (ours)$	<u>73.59</u>	72.63	68.30	46.63	98.23	73.59	76.73	48.67	55.83	20.03

Environmental Reward and Adaptive Reward Mixing. The environmental component R_{env} promotes healthy graph growth by rewarding coverage expansion and structural diversity while penalizing constraint violations. We incorporate a temporal consistency regularizer $\mathcal{T}(\mathcal{G}_t, \mathcal{G}_{t+1}) = \exp(-\beta_t \cdot ||\mathbf{L}_{\mathcal{G}_{t+1}} - \mathbf{L}_{\mathcal{G}_t}||_F)$ that prevents abrupt structural changes.

In Agentic-KGR training, the reward structure comprises three components: result reward, toolcall reward, and trajectory reward. The toolcall reward incentivizes successful tool interactions with +0.05 for successful calls and -0.1for failures, applying decay for redundant calls within the same query and capping at 0.5. The result reward combines format compliance (± 1.0 for JSON structure adherence), accuracy measurement (full match yields ± 1.5 , partial match measured by F1 score), and density penalty that penalizes length deviations as $||A| - |B||/|B| \times rate$ where rate is 0.15 for over-generation and 0.8 for under-generation. Trajectory reward captures multi-step interaction quality.

The mixing parameter α adapts dynamically via mirror descent on the bi-criterion Pareto frontier:

$$\alpha_{t+1} = \Pi_{[0,1]} \left(\alpha_t + \eta_\alpha \left[\nabla_\alpha J_{\text{env}}(\alpha_t) - \nabla_\alpha J_{\text{task}}(\alpha_t) \right]^\top \mathbf{1} \right), \tag{16}$$

where the gradients are estimated using policy gradient techniques, enabling automatic balance between environmental exploration and task-specific exploitation as the agent learns to optimize both tool usage efficiency and extraction quality.

Multi-Scale Prompt Compression. The compression objective jointly optimizes reconstruction fidelity, task performance, and information retention:

$$\mathcal{L}_{\text{compress}} = \lambda_{\text{rec}} \|\mathbf{H} - \psi(\mathbf{Z})\|_F^2 + \lambda_{\text{task}} \mathcal{L}_{\text{KG}}(\mathbf{Z}) + \lambda_{\text{MI}} I(\mathbf{H}; \mathbf{Z}), \tag{17}$$

where $\psi: \mathbb{R}^{k_{\mathrm{eff}} \times d} \to \mathbb{R}^{n \times d}$ is a learned decompression function implemented as a transformer decoder with crossattention to the compressed representation. The mutual information term $I(\mathbf{H}; \mathbf{Z})$ is estimated using the Donsker-

Table 2: Performance comparison of different model architectures and training strategies with GraphRAG across seven real-world QA tasks. The best results are highlighted in **bold**, and the second-best results are underlined.

$\mathbf{Model} ightarrow \mathbf{on} \ \mathbf{DATASET} \ \mathbf{via} \ \mathbf{METHOD} + \mathbf{GraphRAG}$	RAN FDD	BWS	MA5600T	OptiTran	LineAss	NetEco	PowerKit
Qwen2.5 7B + GraphRAG	61.54	50.60	52.30	57.90	48.64	67.12	64.94
Qwen2.5 14B + GraphRAG	78.08	71.92	78.46	75.26	74.32	70.06	77.28
Qwen2.5 32B + GraphRAG	79.24	72.28	75.38	84.22	70.28	71.14	83.12
QwQ + GraphRAG	61.54	43.38	60.00	59.64	69.16	61.74	70.06
Qwen2.5 7B → on AUTOKG via SFT + GraphRAG	53.84	54.60	55.38	59.70	46.84	70.72	68.54
Qwen2.5 14B → on AUTOKG via SFT + GraphRAG	70.00	67.10	85.38	82.28	79.72	86.04	79.48
Qwen2.5 32B → on AUTOKG via SFT + GraphRAG	89.24	79.46	83.84	85.96	90.28	87.12	90.52
$QwQ \rightarrow on AUTOKG via SFT + GraphRAG$	57.80	51.34	59.56	57.84	72.52	70.42	69.56
Qwen2.5 7B → on COMMTKG via SFT + GraphRAG	76.54	62.66	83.08	72.64	77.84	88.32	81.56
Qwen2.5 14B → on COMMTKG via SFT + GraphRAG	84.62	69.52	91.30	81.22	87.33	85.90	88.79
Qwen2.5 32B → on COMMTKG via SFT + GraphRAG	85.48	75.78	96.16	89.12	87.84	87.58	87.56
$QwQ \rightarrow on CommTKG via SFT + GraphRAG$	73.46	70.96	78.46	76.66	77.30	78.46	77.92
Qwen2.5 7B → on AUTOKG via RL + GraphRAG	59.62	57.84	63.08	63.16	65.68	69.80	72.72
Qwen2.5 14B → on AUTOKG via RL + GraphRAG	78.08	77.10	87.76	76.50	83.52	84.70	81.68
Qwen2.5 32B → on AUTOKG via RL + GraphRAG	81.54	73.98	80.76	84.04	78.10	84.10	84.68
$QwQ \rightarrow$ on $AUTOKG$ via $RL + GraphRAG$	55.96	63.64	58.26	69.92	76.84	84.36	77.26
Qwen2.5 7B → on COMMTKG via RL + GraphRAG	82.30	69.88	80.76	71.92	81.52	89.96	78.70
Qwen2.5 14B → on COMMTKG via RL + GraphRAG	83.84	69.88	86.92	82.40	88.92	87.82	89.48
Qwen2.5 32B → on COMMTKG via RL + GraphRAG	86.54	77.10	97.70	84.51	87.32	85.30	91.90
$QwQ \rightarrow on COMMTKG via RL + GraphRAG$	85.38	75.42	78.46	68.42	78.30	79.80	83.12
Qwen2.5 7B → on AUTOKG via AGENTIC-KGR + GraphRAG (ours)	60.32	63.02	61.54	64.23	64.06	70.08	74.94
Qwen2.5 14B → on AUTOKG via AGENTIC-KGR + GraphRAG (ours)	82.76	76.16	83.27	83.50	88.10	82.40	82.14
Qwen2.5 32B → on AUTOKG via AGENTIC-KGR + GraphRAG (ours)	86.16	82.28	82.31	82.72	79.46	76.38	87.54
$QwQ \rightarrow on AUTOKG via AGENTIC-KGR + GraphRAG $ (ours)	57.70	66.73	62.30	68.42	79.32	87.72	77.92
Qwen2.5 7B → on COMMTKG via AGENTIC-KGR + GraphRAG (ours)	83.84	70.65	81.54	73.14	84.69	90.40	80.12
Qwen2.5 14B → on COMMTKG via AGENTIC-KGR + GraphRAG (ours)	83.20	77.52	89.24	85.26	88.14	86.04	89.10
Qwen2.5 32B → on COMMTKG via AGENTIC-KGR + GraphRAG (ours)	91.54	77.46	98.46	84.22	90.28	87.12	92.72
QwQ → on COMMTKG via AGENTIC-KGR + GraphRAG (ours)	87.35	72.89	81.23	70.12	79.80	81.30	82.14

Varadhan variational representation with a discriminator network. Additionally, we impose a trust-region style constraint $\mathbb{E}_s[\mathrm{KL}(\pi_{\theta}(\cdot \mid \mathbf{Z}(s)) || \pi_{\theta}(\cdot \mid \mathbf{H}(s)))] \leq \epsilon_{\pi}$ to ensure policy stability under compression, preventing catastrophic forgetting of learned behaviors while enabling efficient inference.

To ensure that prompt compression does not significantly deteriorate agent performance, we establish theoretical guarantees on the performance gap between compressed and uncompressed policies. Let $\pi_H(a \mid s) \equiv \pi_{\theta}(a \mid \mathbf{H}(s))$ and $\pi_Z(a \mid s) \equiv \pi_\theta(a \mid \mathbf{Z}(s))$ denote policies operating on uncompressed and compressed observations respectively. Under Lipschitz continuity assumptions on the dynamics, rewards, and policy function, the performance degradation is bounded by:

$$|J(\pi_Z) - J(\pi_H)| \le \frac{L_R}{1 - \gamma} \varepsilon_{\text{obs}} + \frac{\gamma L_Q \sigma_{\pi}}{(1 - \gamma)^2} \varepsilon_{\text{obs}} + \frac{2Q_{\text{max}}}{1 - \gamma} \sqrt{\frac{1}{2} \epsilon_{\pi}}, \tag{18}$$

where $\varepsilon_{\text{obs}} = \mathbb{E}_s[\|\mathbf{H}(s) - \psi(\mathbf{Z}(s))\|_2]$ measures the observation reconstruction error, $\epsilon_{\pi} = \mathbb{E}_s[\text{KL}(\pi_{\theta}(\cdot \mid \mathbf{Z}(s)) \mid \pi_{\theta}(\cdot \mid \mathbf{Z}(s))]$ $\mathbf{H}(s)))]$ quantifies the policy distribution shift, and $L_R, L_Q, \sigma_\pi, Q_{\max}$ are problem-dependent constants. This bound demonstrates that the performance loss scales linearly with reconstruction error and as $\sqrt{\epsilon_{\pi}}$ with policy divergence, justifying our compression constraints and providing guidance for hyperparameter selection.

EXPERIMENTS AND RESULTS

3.1 Environment and Configuration

Platform and Environment. All experiments are conducted on 128 Ascend 910B3 NPUs (64GB each) with driver version 25.0.rc1. We employ three training frameworks: MindSpeed-LLM (min, 2023) for supervised fine-tuning, MindSpeed-RL (Feng et al., 2025) for standard single-turn RL, and our custom MindSpeed-AgenticRL framework (open-source release in preparation) for Agentic-KGR. All training processes utilize bf16 precision for computational efficiency and numerical stability.

Training Parameters. The key hyperparameters for each training paradigm are configured as follows: SFT employs learning rate 1×10^{-6} , global batch size 32, and sequence length 8k; standard RL uses learning rate 1×10^{-6} , 8 samples per prompt, and GAE lambda 0.95; Agentic RL maintains maximum interaction steps 10, 8 samples per prompt, and extends sequence length to 16k to accommodate multi-round agent-environment interactions.

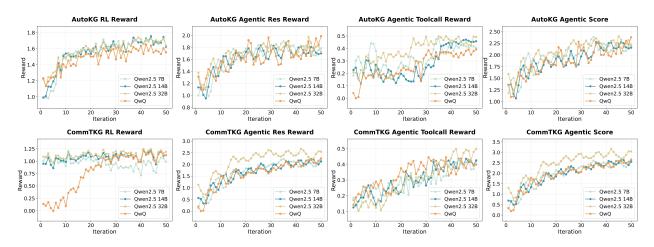


Figure 3: Training reward variation for RL and Agentic-KGR methods across training steps.

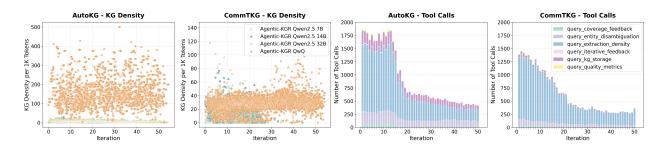


Figure 5: Graph density analysis and tool invocation frequency distribution.

Training Datasets. Training data comprises general-domain and domain-specific datasets. For general knowledge extraction, we utilize DuIE2.0 from the AutoKG corpus (Chen & Bertozzi, 2023), while domain-specific training leverages CommTKG encompassing MML (Man–Machine Language, an ITU-T–standardized command language for managing telecom/network equipment), communcatioan technology product/feature documentation. The corpus integrates authoritative standards from IEEE (iee, 2024), OMA SpecWorks (oma, 2024), 3GPP (3gp, 2024), nrexplained (nre, 2024), and CTIA (cti, 2024). Ground truth annotations are generated through DeepSeek V3.1 distillation following systematic document parsing and segmentation.

Benchmark and Metrics. Evaluation encompasses dual assessment dimensions to validate the coevolutionary effectiveness: KG extraction capability and GraphRAG-based knowledge coverage quality. For extraction evaluation, general benchmarks include IEPile (Gui et al., 2024) covering Named-entity recognition (NER) tasks (Boson, Cross, WEIBONER) and Relation extraction (RE) tasks (COAE2016, FewRel), while domain-specific evaluation employs MmlKG, ConfigKG, WirelessKG, and DcommKG across corresponding NER and RE tasks. For QA tasks, we adopt the QA pairs from communication technology product documentations, containing: 5G RAN FDD (RAN FDD), BWS, MA5600T, Optical Transmission System (Opti-

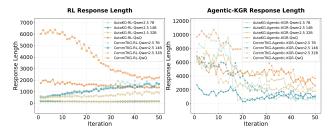


Figure 4: Response length evolution during RL and Agentic-KGR training across different model scales.

Tran), Line Assurance Platform (LineAss), NetECo and PowerKit. To align with operational requirements, all evaluations adopt F1 score as the primary metric, emphasizing comprehensive knowledge capture over precision constraints.

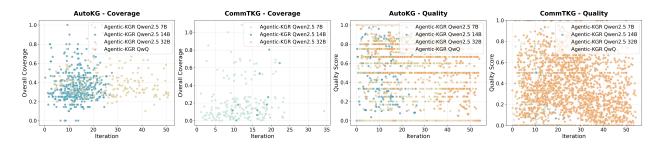


Figure 6: Coverage and quality performance analysis.

3.2 OVERALL RESULTS

3.2.1 GRAPH EXTRACTION PERFORMANCE

We evaluate graph extraction capabilities across different model configurations and training methodologies, as shown in Table 1. The results reveal systematic improvements with model scale and, more critically, demonstrate that Agentic-KGR achieves superior performance through co-evolutionary parameter-knowledge optimization. The NER task on ConfigKG proves relatively straightforward, with all models achieving consistently high performance scores. Notably, gains are most pronounced in RE rather than NER, reflecting our method's design: dynamic schema expansion increases relational discoverability while retrieval-augmented memory reduces spurious connections. The learnable multi-scale prompt compression mechanism enables models to focus on schema-salient evidence patterns, contributing to improved extraction quality across benchmark datasets. Performance plateaus observed in single-round RL are consistently overcome by multi-round, memory-coupled policy updates, validating the co-evolution hypothesis across model scales from 7B to 32B parameters.

3.2.2 END-TO-END QA PERFORMANCE

In Table 2, the downstream QA evaluation confirms that graph quality, not merely size, drives performance when integrated with GraphRAG. Agentic-KGR configurations achieve dominant performance across most domains, with gains being largest where schema breadth and cross-document linking are crucial. The improvements are not merely additive with parameter count; rather, Agentic updates interact synergistically with GraphRAG to reduce retrieval misses and mitigate hallucination through denser, better-typed knowledge neighborhoods. These quality improvements manifest as higher QA accuracy through more effective retrieval chains and answer grounding. The results validate that structured, relation-centric improvements in extraction translate directly into downstream task gains when the complete workflow is optimized for parameter-knowledge co-evolution.

3.3 TRAINING DYNAMICS AND EFFICIENCY ANALYSIS

The training curves reveal critical insights into model-task alignment and co-evolutionary learning dynamics, as shown in Figure 3. QwQ's initially low rewards demonstrate that reasoning-intensive architectures can impede structured extraction tasks, where excessive deliberation interferes with direct entity-relation pattern recognition. The steady progression across all reward components validates the effectiveness of our co-evolution mechanism: toolcall rewards show consistent improvement, indicating successful adaptation in retrieval strategy selection that creates a positive feedback loop with content generation. The alignment between agentic score and response rewards, coupled with smooth convergence across model scales, confirms that our multi-scale prompt compression successfully manages optimization complexity while preserving critical information pathways essential for dynamic schema expansion.

The response length trajectories reveal distinct optimization patterns across training paradigms (see Figure 4). Standard RL effectively curtails excessive reasoning in thinking models, with QwQ showing dramatic reduction from 6k to 2k tokens on domain datasets, while non-thinking models exhibit slight increases indicating enhanced extraction density. Agentic-KGR demonstrates superior optimization, achieving consistent length reduction across all architectures through progressive interaction efficiency gains. The universal downward trends under Agentic-KGR validate that coevolutionary optimization successfully streamlines extraction processes while suppressing verbose reasoning patterns, confirming the synergistic effects of retrieval-augmented memory and adaptive schema expansion in achieving both efficiency and structural completeness.

Figure 7: Response length distribution analysis across model variants and training methods.

3.4 Knowledge Structure Analysis

The density, coverage, and quality metrics displayed in Figure 5 and Figure 6 demonstrate distinct optimization trajectories across model architectures. Thinking models exhibit higher tool interaction frequencies, enabling comprehensive data collection with progressive improvement throughout training, particularly on domain-specific datasets. The agentic framework successfully balances exploration (coverage) and precision (quality), with larger models achieving superior performance and quality scores approaching optimal levels on specialized domains. Tool usage analysis reveals density feedback queries dominate initial interactions but decline across iterations, indicating improved extraction efficiency through adaptive learning. This trend reflects how models initially require frequent guidance but progressively achieve target thresholds with fewer tool interventions, validating the retrieval-augmented memory system's effectiveness in internalizing structural optimization patterns while reducing computational overhead.

Thinking models exhibit inherently verbose reasoning patterns, but Agentic-KGR effectively compresses these outputs while preserving extraction quality through

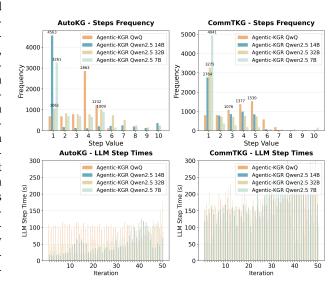


Figure 8: Step distribution analysis and computational overhead across model variants.

multi-scale prompt optimization (see Figure 7). The framework demonstrates superior efficiency gains on domain-specific tasks, validating the co-evolutionary approach's ability to balance reasoning depth with output conciseness. In Figure 8, the step distribution analysis reveals that smaller models favor direct problem-solving approaches while larger models employ deeper deliberative reasoning with extended multi-step processes. The computational overhead remains stable across iterations, demonstrating the framework's ability to dynamically balance reasoning complexity with computational efficiency based on task requirements.

4 Conclusion

This work proposes *Agentic-KGR*, a novel framework enabling co-evolution between language models and dynamic knowledge graphs through multi-round reinforcement learning. The dual reward mechanism achieves significant performance improvements by enabling autonomous learning of effective graph database interaction patterns, while the retrieval-augmented memory mechanism continuously optimizes knowledge graph construction and provides comprehensive graph observation during training. The framework transcends traditional static knowledge base limitations by empowering models with real-time knowledge extraction, construction, and expansion capabilities, with integrated GraphRAG retrieval demonstrating superior performance in downstream question-answering tasks. This research establishes a new paradigm for model-environment co-evolution that advances agentic reinforcement learning by demonstrating how continuous interaction between intelligent agents and dynamic knowledge environments can mutually enhance both components.

REFERENCES

- MindSpeed-LLM. https://gitee.com/ascend/MindSpeed-LLM, 2023. [Online]. Available: https://gitee.com/ascend/MindSpeed-LLM.
- 3GPP Specifications Archive, 2024. URL https://www.3gpp.org/ftp/Specs/archive.
- CTIA Wireless Standards and Guidelines, 2024. URL https://www.ctia.org/.
- IEEE Standards Collection, 2024. URL https://ieeexplore.ieee.org/browse/standards/ collection/ieee/.
- 5G NR Explained, 2024. URL https://www.nrexplained.com/.
- OMA SpecWorks API Inventory, 2024. URL https://technical.openmobilealliance.org/API_Inventory.html.
- Bohan Chen and Andrea L Bertozzi. Autokg: Efficient automated knowledge graph generation for language models. In 2023 IEEE International Conference on Big Data (BigData), pp. 3117–3126. IEEE, 2023.
- Hanzhu Chen, Xu Shen, Qitan Lv, Jie Wang, Xiaoqi Ni, and Jieping Ye. Sac-kg: Exploiting large language models as skilled automatic constructors for domain knowledge graphs, 2024. URL https://arxiv.org/abs/2410.02811.
- Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z. Pan, Wen Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and Weipeng Chen. Research: Learning to reason with search for Ilms via reinforcement learning, 2025. URL https://arxiv.org/abs/2503.19470.
- Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishnamurthy, Alex Smola, and Andrew McCallum. Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases using reinforcement learning, 2018. URL https://arxiv.org/abs/1711.05851.
- Yong Deng, Guoqing Wang, Zhenzhe Ying, Xiaofeng Wu, Jinzhen Lin, Wenwen Xiong, Yuqin Dai, Shuo Yang, Zhanwei Zhang, Qiwen Wang, Yang Qin, Yuan Wang, Quanxing Zha, Sunhao Dai, and Changhua Meng. Atomsearcher: Enhancing agentic deep research via fine-grained atomic thought reward, 2025. URL https://arxiv.org/abs/2508.12800.
- Laingjun Feng, Chenyi Pan, Xinjie Guo, Fei Mei, Benzhe Ning, Jianxiang Zhang, Xinyang Liu, Beirong Zhou, Zeng Shu, Chang Liu, et al. Mindspeed rl: Distributed dataflow for scalable and efficient rl training on ascend npu cluster. arXiv preprint arXiv:2507.19017, 2025.
- Hongcheng Gao, Yue Liu, Yufei He, Longxu Dou, Chao Du, Zhijie Deng, Bryan Hooi, Min Lin, and Tianyu Pang. Flowreasoner: Reinforcing query-level meta-agents, 2025. URL https://arxiv.org/abs/2504.15257.
- Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey, 2024. URL https://arxiv.org/abs/2312.10997.
- Honghao Gui, Lin Yuan, Hongbin Ye, Ningyu Zhang, Mengshu Sun, Lei Liang, and Huajun Chen. IEPile: Unearthing large scale schema-conditioned information extraction corpus. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 127–146, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-short.13. URL https://aclanthology.org/2024.acl-short.13/.
- Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement learning, 2025. URL https://arxiv.org/abs/2503.09516.
- Jean Lelong, Adnane Errazine, and Annabelle Blangero. Agentic rag with knowledge graphs for complex multi-hop reasoning in real-world applications, 2025. URL https://arxiv.org/abs/2507.16507.
- Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and Zhicheng Dou. Search-ol: Agentic search-enhanced large reasoning models, 2025a. URL https://arxiv.org/abs/2501.05366.

Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and Zhicheng Dou.
Webthinker: Empowering large reasoning models with deep research capability, 2025b. URL https://arxiv.org/abs/2504.21776.

- Junwei Liao, Muning Wen, Jun Wang, and Weinan Zhang. Marft: Multi-agent reinforcement fine-tuning, 2025. URL https://arxiv.org/abs/2504.16129.
 - Xi Victoria Lin, Richard Socher, and Caiming Xiong. Multi-hop knowledge graph reasoning with reward shaping, 2018. URL https://arxiv.org/abs/1808.10568.
 - Shuo Liu, Zeyu Liang, Xueguang Lyu, and Christopher Amato. Llm collaboration with multi-agent reinforcement learning, 2025. URL https://arxiv.org/abs/2508.04652.
 - Haoran Luo, Haihong E, Guanting Chen, Qika Lin, Yikai Guo, Fangzhi Xu, Zemin Kuang, Meina Song, Xiaobao Wu, Yifan Zhu, and Luu Anh Tuan. Graph-rl: Towards agentic graphrag framework via end-to-end reinforcement learning, 2025. URL https://arxiv.org/abs/2507.21892.
 - Ying Ma, Owen Burns, Mingqiu Wang, Gang Li, Nan Du, Laurent El Shafey, Liqiang Wang, Izhak Shafran, and Hagen Soltau. Knowledge graph reasoning with self-supervised reinforcement learning, 2025. URL https://arxiv.org/abs/2405.13640.
 - Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA: a benchmark for general AI assistants. In The Twelfth International Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=fibxvahvs3.
 - Mingshuo Nie, Dongming Chen, and Dongqi Wang. Reinforcement learning on graphs: A survey, 2023. URL https://arxiv.org/abs/2204.06127.
 - Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement learning, 2025a. URL https://arxiv.org/abs/2503.05592.
 - Huatong Song, Jinhao Jiang, Wenqing Tian, Zhipeng Chen, Yuhuan Wu, Jiahao Zhao, Yingqian Min, Wayne Xin Zhao, Lei Fang, and Ji-Rong Wen. R1-searcher++: Incentivizing the dynamic knowledge acquisition of llms via reinforcement learning, 2025b. URL https://arxiv.org/abs/2505.17005.
 - Ziyu Wan, Yunxiang Li, Xiaoyu Wen, Yan Song, Hanjing Wang, Linyi Yang, Mark Schmidt, Jun Wang, Weinan Zhang, Shuyue Hu, and Ying Wen. Rema: Learning to meta-think for llms with multi-agent reinforcement learning, 2025. URL https://arxiv.org/abs/2503.09501.
 - Ziliang Wang, Xuhui Zheng, Kang An, Cijun Ouyang, Jialu Cai, Yuhang Wang, and Yichao Wu. Stepsearch: Igniting llms search ability via step-wise proximal policy optimization, 2025. URL https://arxiv.org/abs/2505.15107.
 - Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang, Zekun Xi, Gang Fu, Yong Jiang, Pengjun Xie, Fei Huang, and Jingren Zhou. Webdancer: Towards autonomous information seeking agency, 2025a. URL https://arxiv.org/abs/2505.22648.
 - Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Linhai Zhang, Yulan He, Deyu Zhou, Pengjun Xie, and Fei Huang. Webwalker: Benchmarking LLMs in web traversal. In Workshop on Reasoning and Planning for Large Language Models, 2025b. URL https://openreview.net/forum?id=cVI91AfkuK.
 - Wenhan Xiong, Thien Hoang, and William Yang Wang. Deeppath: A reinforcement learning method for knowledge graph reasoning, 2018. URL https://arxiv.org/abs/1707.06690.
 - Wentao Zhang, Liang Zeng, Yuzhen Xiao, Yongcong Li, Ce Cui, Yilei Zhao, Rui Hu, Yang Liu, Yahui Zhou, and Bo An. Agentorchestra: A hierarchical multi-agent framework for general-purpose task solving, 2025. URL https://arxiv.org/abs/2506.12508.

A APPENDIX

A.1 ACKNOWLEDGEMENTS

The authors acknowledge the use of Claude Sonnet 4 for stylistic revision, text polishing, and grammatical refinement of this manuscript, with full consent and approval from all contributing authors. We emphasize that the substantive content, including conceptual design, theoretical framework development, experimental methodology, algorithmic implementation, and code development, was entirely conceived and executed by the authors. The AI assistance was limited to language enhancement and does not constitute intellectual contribution to the research findings or technical innovations presented in this work.

A.2 RELATED WORK

A.2.1 RETRIEVAL-AUGMENTED GENERATION AND KNOWLEDGE ENHANCEMENT

RAG has emerged as a fundamental paradigm for addressing static knowledge limitations in LLMs. Gao et al. (2024) categorize approaches into Naive RAG, Advanced RAG, and Modular RAG, while identifying persistent challenges in knowledge coverage and temporal relevance. Traditional RAG systems rely on pre-constructed knowledge bases, which suffer from coverage gaps and temporal lag issues.

Recent advances have integrated web search capabilities to overcome static limitations. Li et al. (2025a) introduce Search-o1 with agentic RAG mechanisms, while Li et al. (2025b) propose WebThinker for autonomous web navigation and report generation. However, these approaches primarily focus on information retrieval without addressing knowledge persistence or structural evolution of underlying knowledge bases.

Evaluation frameworks including GAIA (Mialon et al., 2024) and WebWalkerQA (Wu et al., 2025b) reveal performance gaps in complex reasoning tasks, highlighting the need for more sophisticated knowledge integration approaches.

A.2.2 REINFORCEMENT LEARNING FOR KNOWLEDGE-INTENSIVE TASKS

RL applications to enhance LLM capabilities in knowledge-intensive scenarios have gained momentum. Jin et al. (2025) introduce Search-R1 for autonomous search query generation using outcome-based rewards, while Song et al. (2025a) and Song et al. (2025b) develop R1-Searcher and R1-Searcher++ focusing on external search system integration.

Several works explore step-wise supervision to address sparse reward challenges. Wang et al. (2025) propose StepSearch with step-wise proximal policy optimization, Deng et al. (2025) introduce Atom-Searcher with fine-grained atomic rewards, and Chen et al. (2025) present ReSearch treating search operations as reasoning components. These approaches demonstrate the importance of dense reward signals.

Current RL-based approaches primarily optimize search and retrieval behaviors rather than enabling dynamic KG construction. The knowledge bases remain static, limiting their ability to capture emerging information or domain-specific knowledge arising during interaction.

A.2.3 MULTI-AGENT SYSTEMS AND COLLABORATIVE LEARNING

Multi-agent frameworks have shown promise in complex task solving through specialized coordination. Zhang et al. (2025) introduce AgentOrchestra with hierarchical conductor-orchestra dynamics, while Wu et al. (2025a) present WebDancer for autonomous information seeking through multi-step reasoning.

Recent research explores multi-agent RL for LLM collaboration. Liao et al. (2025) propose MARFT with POMDP formulations, Liu et al. (2025) develop MAGRPO for cooperative scenarios, Wan et al. (2025) introduce ReMA for meta-thinking hierarchies, and Gao et al. (2025) propose FlowReasoner for query-level meta-agent design.

These multi-agent approaches demonstrate effective collaboration patterns but operate within fixed knowledge environments where underlying knowledge structures do not evolve during interaction, constraining adaptability to emerging information needs. Current approaches either focus on static knowledge retrieval, dynamic search without knowledge persistence, or multi-agent collaboration within fixed knowledge bounds. Few works address co-evolution between reasoning models and their underlying knowledge structures, leaving a gap in enabling adaptive knowledge-model systems that continuously evolve through interaction.

A.3 SUPPLEMENTARY THEROY AND MISSING PROOF

Theorem A.1 (Performance Degradation Bound under Compression). Let $\pi_H(a \mid s) \equiv \pi_\theta(a \mid \mathbf{H}(s))$ and $\pi_Z(a \mid s) \equiv \pi_\theta(a \mid \mathbf{Z}(s))$ with $\mathbf{Z} = \phi(\mathbf{H})$. Under $\gamma \in (0, 1)$, the performance gap satisfies:

$$|J(\pi_Z) - J(\pi_H)| \le \frac{L_R}{1-\gamma} \, \varepsilon_{\text{obs}} + \frac{\gamma L_Q \sigma_{\pi}}{(1-\gamma)^2} \, \varepsilon_{\text{obs}} + \frac{2Q_{\text{max}}}{(1-\gamma)} \sqrt{\frac{1}{2} \, \epsilon_{\pi}},$$

where $\varepsilon_{\text{obs}} \triangleq \mathbb{E}_s \|\mathbf{H}(s) - \psi(\phi(\mathbf{H}(s)))\|_2 \leq \varepsilon_{\text{rec}}$ and $\epsilon_{\pi} \triangleq \mathbb{E}_s \text{KL}(\pi_{\theta}(\cdot \mid \mathbf{Z}(s)) \parallel \pi_{\theta}(\cdot \mid \mathbf{H}(s)))$.

Remark A.1. The bound demonstrates that performance loss scales linearly with reconstruction error and as $\sqrt{\epsilon_{\pi}}$ with policy KL-divergence. This justifies our compression constraints and provides principled guidance for selecting the trade-off parameters $\lambda_{\rm rec}$, $\lambda_{\rm MI}$, and ϵ_{π} .

Proof of Theorem A.1. We apply the performance difference lemma to decompose the gap between compressed and uncompressed policies. The fundamental identity states:

$$J(\pi_Z) - J(\pi_H) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi_Z}} \mathbb{E}_{a \sim \pi_Z} \left[A^{\pi_H}(s, a) \right],$$

where d^{π_Z} is the stationary distribution under π_Z and $A^{\pi_H}(s,a) = Q^{\pi_H}(s,a) - V^{\pi_H}(s)$ is the advantage function under π_H . We bound this expression by decomposing the advantage discrepancy and state distribution shift.

First, we bound the advantage function difference. $Q^{\pi_H}(s,a)$ is L_Q -Lipschitz in s. For observations s and \tilde{s} differing only in their token representations ($\mathbf{H}(s)$ vs. $\mathbf{Z}(s) = \phi(\mathbf{H}(s))$), we have:

$$|A^{\pi_H}(s,a) - A^{\pi_H}(\tilde{s},a)| \le L_Q \|\mathbf{H}(s) - \psi(\mathbf{Z}(s))\|_2 = L_Q \varepsilon_{\text{obs}}.$$

Second, we address the policy distribution mismatch. By Pinsker's inequality and the definition of ϵ_{π} :

$$\mathrm{TV}(\pi_Z(\cdot|s),\pi_H(\cdot|s)) \leq \sqrt{\frac{1}{2}\mathrm{KL}(\pi_Z(\cdot|s)\|\pi_H(\cdot|s))} \leq \sqrt{\frac{1}{2}\epsilon_\pi}.$$

Since $|A^{\pi_H}(s,a)| \leq 2Q_{\max}$ by boundedness, the contribution from action distribution mismatch is bounded by $2Q_{\max}\sqrt{\epsilon_{\pi}/2}$.

Third, we bound the state distribution shift. Under compressed policy π_Z , the observation at each step has expected error $\varepsilon_{\rm obs}$. By π_{θ} is σ_{π} -Lipschitz in observations and dynamics are L_P -Lipschitz, the state distribution difference satisfies:

$$||d^{\pi_Z} - d^{\pi_H}||_1 \le \frac{\gamma L_P \sigma_\pi \varepsilon_{\text{obs}}}{1 - \gamma}.$$

Combining these bounds and telescoping the expectation over the shifted distribution:

$$|J(\pi_Z) - J(\pi_H)| \le \frac{1}{1 - \gamma} \left[L_R \varepsilon_{\text{obs}} + \gamma L_Q \sigma_\pi \varepsilon_{\text{obs}} \cdot \frac{1}{1 - \gamma} + 2Q_{\text{max}} \sqrt{\frac{\epsilon_\pi}{2}} \right]$$
(19)

$$= \frac{L_R \varepsilon_{\text{obs}}}{1 - \gamma} + \frac{\gamma L_Q \sigma_\pi \varepsilon_{\text{obs}}}{(1 - \gamma)^2} + \frac{2Q_{\text{max}}}{1 - \gamma} \sqrt{\frac{\epsilon_\pi}{2}},$$
(20)

where the first term captures direct reward sensitivity to observation errors, the second accounts for compounded effects through state distribution shift, and the third bounds the policy mismatch contribution. \Box

Theorem A.2 (Policy Improvement with Trust Region under Compression). Let π' solve the graph-regularized surrogate maximization problem:

$$\max_{\pi} \ \mathbb{E}_{s \sim d^{\pi_{\text{old}}}, a \sim \pi} [A^{\pi_{\text{old}}}(s, a)] - \lambda_{\text{graph}} \mathcal{R}_{\text{graph}}(\pi, \mathcal{G}_t)$$

s.t.
$$\mathbb{E}_s \text{KL}(\pi(\cdot \mid s) \parallel \pi_{\text{old}}(\cdot \mid s)) \leq \epsilon_{\text{TR}}$$
,

where $\mathcal{R}_{graph}(\pi, \mathcal{G}_t)$ is a graph-structure regularizer. If the compression constraint $\epsilon_{\pi} \leq \epsilon_{TR}$ holds and the surrogate is optimized to ϵ -accuracy, then:

$$J(\pi') \geq J(\pi_{\text{old}}) + \frac{1}{1 - \gamma} \left(\mathbb{E}_{s,a}[A^{\pi_{\text{old}}}(s, a)] - \lambda_{\text{graph}} \mathcal{R}_{\text{graph}}(\pi', \mathcal{G}_t) - \mathcal{O}(\sqrt{\epsilon_{\text{TR}}} + \varepsilon) \right).$$

Remark A.2. This result extends classical trust region methods to the graph-regularized setting by incorporating structural constraints from the evolving knowledge graph. Unlike standard TRPO, our GRPO approach explicitly accounts for the graph topology in policy updates, ensuring that the learned policy respects the relational structure encoded in \mathcal{G}_t . The compression can be viewed as an additional perturbation that must be managed within the trust region framework.

Proof of Theorem A.2. We extend the classical trust region analysis to incorporate graph regularization and compression effects. The proof follows three main steps: establishing the surrogate objective bound, controlling the graph regularization term, and accounting for compression-induced policy drift.

First, we establish the connection between the true objective and the graph-regularized surrogate. Let $L(\pi) = \mathbb{E}_{s \sim d^{\pi_{\text{old}}}, a \sim \pi}[A^{\pi_{\text{old}}}(s, a)] - \lambda_{\text{graph}} \mathcal{R}_{\text{graph}}(\pi, \mathcal{G}_t)$ denote the surrogate objective. By the policy improvement lemma and the definition of advantage functions:

$$J(\pi') - J(\pi_{\text{old}}) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi'}} \mathbb{E}_{a \sim \pi'} \left[A^{\pi_{\text{old}}}(s, a) \right].$$

The key insight is to decompose this expectation using importance sampling and bound the distribution mismatch terms.

Second, we bound the state distribution shift $\|d^{\pi'} - d^{\pi_{\rm old}}\|_1$. Under the KL constraint, the total variation distance between policies is bounded by $\sqrt{2\epsilon_{\rm TR}}$. By Lipschitz dynamics, this translates to a state distribution shift of $\mathcal{O}(\sqrt{\epsilon_{\rm TR}})/(1-\gamma)$. The graph regularization term $\mathcal{R}_{\rm graph}(\pi',\mathcal{G}_t)$ provides additional stability by constraining policy changes to respect graph structure.

Third, we account for compression effects. The compressed policy π' operates on observations $\mathbf{Z}(s)$ rather than $\mathbf{H}(s)$. Since $\epsilon_{\pi} \leq \epsilon_{\mathrm{TR}}$, the total KL budget is partitioned between policy updates and compression drift. The surrogate maximization ensures that within the remaining budget $\epsilon_{\mathrm{TR}} - \epsilon_{\pi}$, we achieve ε -optimal improvement.

Combining these bounds and using the assumption that the surrogate is optimized to ε -accuracy:

$$J(\pi') \ge J(\pi_{\text{old}}) + \frac{1}{1 - \gamma} \left[L(\pi') - \mathcal{O}\left(\sqrt{\epsilon_{\text{TR}}}\right) \right]$$
 (21)

$$\geq J(\pi_{\text{old}}) + \frac{1}{1 - \gamma} \left[\mathbb{E}_{s,a} [A^{\pi_{\text{old}}}(s, a)] - \lambda_{\text{graph}} \mathcal{R}_{\text{graph}}(\pi', \mathcal{G}_t) - \mathcal{O}(\sqrt{\epsilon_{\text{TR}}} + \varepsilon) \right], \tag{22}$$

where the graph regularization term appears explicitly in the bound, distinguishing GRPO from standard trust region methods. \Box

Theorem A.3 (Submodular Coverage and Near-Optimal Growth). Suppose the environmental reward includes coverage gain $\Delta \text{Cov}_{\kappa}(\mathcal{G}_t \to \mathcal{G}_{t+1})$ and actions select a bounded-size set of edges/nodes to add each round. If the policy greedily maximizes the expected marginal gain under $\mathbb{P}_{\eta}(\mathcal{H}_t \mid q_t)$, then per round it achieves a (1-1/e)-approximation to the optimal expected coverage increase.

Remark A.3. The submodularity of Cov_{κ} in selected neighborhoods enables classical approximation guarantees. This aligns RL credit assignment with principled graph expansion, ensuring that the environmental reward promotes systematic knowledge growth rather than myopic local improvements.

Proof of Theorem A.3. We establish the approximation guarantee by leveraging the submodular structure of the coverage function $Cov_{\kappa}(\mathcal{G})$ and applying the classical greedy algorithm analysis to the expected setting.

First, we verify submodularity. For any two graphs $\mathcal{G} \subseteq \mathcal{G}'$ and any additional edge set E_{new} , the coverage function satisfies:

$$\mathsf{Cov}_{\kappa}(\mathcal{G} \cup E_{\mathrm{new}}) - \mathsf{Cov}_{\kappa}(\mathcal{G}) \geq \mathsf{Cov}_{\kappa}(\mathcal{G}' \cup E_{\mathrm{new}}) - \mathsf{Cov}_{\kappa}(\mathcal{G}').$$

This follows from the definition $\text{Cov}_{\kappa}(\mathcal{G}) = \sum_{v \in V} [1 - (1 - \kappa)^{|\mathcal{N}_{\mathcal{G}}(v;h)|}]$, where the marginal contribution of each vertex decreases as its neighborhood size increases, due to the concave nature of $1 - (1 - \kappa)^x$ for $\kappa \in (0, 1)$.

Second, we analyze the greedy policy under the retrieval distribution $\mathbb{P}_{\eta}(\mathcal{H}_t \mid q_t)$. At each round, the policy selects edges by maximizing:

$$\mathbb{E}_{\mathcal{H}_t \sim \mathbb{P}_n(\cdot|q_t)} \left[\mathsf{Cov}_{\kappa}(\mathcal{G}_t \cup E_{\mathcal{H}_t}) - \mathsf{Cov}_{\kappa}(\mathcal{G}_t) \right],$$

where $E_{\mathcal{H}_t}$ represents the edges added from subgraph \mathcal{H}_t . Since the expectation preserves submodularity (as a linear combination of submodular functions), the expected marginal gain is also submodular.

Third, we apply the Nemhauser-Wolsey-Fisher theorem. Let OPT denote the optimal expected coverage increase achievable by adding at most k edges, and let GREEDY denote the coverage achieved by the greedy algorithm. For submodular maximization with cardinality constraints:

$$\mathbb{E}[\mathsf{GREEDY}] \geq \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \mathbb{E}[\mathsf{OPT}] \geq \left(1 - \frac{1}{e}\right) \mathbb{E}[\mathsf{OPT}],$$

where the second inequality uses the limit $\lim_{k\to\infty} (1-1/k)^k = 1/e$. Since the policy operates under bounded action spaces (at most k edges per round), this bound applies directly to our setting.

The key insight is that the retrieval distribution $\mathbb{P}_{\eta}(\mathcal{H}_t \mid q_t)$ acts as a data-dependent constraint on the feasible edge additions, but the submodular structure ensures that greedy selection within this constraint maintains the approximation guarantee. \square

Theorem A.4 (Co-Evolution Operator Contraction). Define the joint metric $d((\theta, \mathcal{G}), (\theta', \mathcal{G}')) = \lambda \|\theta - \theta'\|_2 + (1 - \lambda)d_G(\mathcal{G}, \mathcal{G}')$. Under sufficiently small step size η_θ , there exists $\rho < 1$ such that:

$$d(\Phi(\theta, \mathcal{G}), \Phi(\theta', \mathcal{G}')) \leq \rho d((\theta, \mathcal{G}), (\theta', \mathcal{G}')).$$

Hence Φ has a unique fixed point and the coupled updates converge linearly to it.

Remark A.4. The contraction property ensures that the agent-knowledge graph co-evolution is stable and converges to a unique equilibrium. This is crucial for preventing oscillatory or chaotic behavior in the joint dynamics, which could arise from the complex feedback between policy updates and graph modifications.

Proof of Theorem A.4. We establish contraction by showing that both components of the joint metric—the parameter update and graph update—are individually contractive, and their composition preserves this property under appropriate conditions.

First, we analyze the policy parameter update. Under π_{θ} is σ_{θ} -smooth in θ , the policy gradient step satisfies:

$$\|\theta_{t+1} - \theta'_{t+1}\|_2 = \|\theta_t - \theta'_t + \eta_\theta(\widehat{\nabla}_\theta J(\theta_t; \mathcal{G}_t) - \widehat{\nabla}_\theta J(\theta'_t; \mathcal{G}'_t))\|_2.$$

By Lipschitz continuity of the policy gradient in both parameters and graph structure, there exists $L_{\nabla J}$ such that:

$$\|\widehat{\nabla}_{\theta}J(\theta_t;\mathcal{G}_t) - \widehat{\nabla}_{\theta}J(\theta_t';\mathcal{G}_t')\|_2 \le L_{\nabla J} (\|\theta_t - \theta_t'\|_2 + C_{\theta G}d_G(\mathcal{G}_t,\mathcal{G}_t')),$$

where $C_{\theta G}$ captures the cross-coupling between parameters and graph structure.

Second, we examine the graph update operator. U_{ζ} is κ_G -Lipschitz with $\kappa_G < 1$:

$$d_G(\mathcal{G}_{t+1}, \mathcal{G}'_{t+1}) \le \kappa_G \left(d_G(\mathcal{G}_t, \mathcal{G}'_t) + \|\widehat{E}_t - \widehat{E}'_t\|_{\text{edge}} \right),$$

where $\|\widehat{E}_t - \widehat{E}_t'\|_{\text{edge}}$ measures the difference in extracted edge sets. Since extraction depends on the current policy, $\|\widehat{E}_t - \widehat{E}_t'\|_{\text{edge}} \le C_{E\theta} \|\theta_t - \theta_t'\|_2$ for some constant $C_{E\theta}$.

Third, we combine both updates. For sufficiently small step size $\eta_{\theta} < 1/(2L_{\nabla J})$, the parameter update satisfies:

$$\|\theta_{t+1} - \theta'_{t+1}\|_{2} \le (1 - \eta_{\theta} L_{\nabla J}/2) \|\theta_{t} - \theta'_{t}\|_{2} + \eta_{\theta} L_{\nabla J} C_{\theta G} d_{G}(\mathcal{G}_{t}, \mathcal{G}'_{t}).$$

Substituting the graph update bound and defining the joint metric $d((\theta, \mathcal{G}), (\theta', \mathcal{G}')) = \lambda \|\theta - \theta'\|_2 + (1 - \lambda) d_G(\mathcal{G}, \mathcal{G}')$:

$$d((\theta_{t+1}, \mathcal{G}_{t+1}), (\theta'_{t+1}, \mathcal{G}'_{t+1})) \le \lambda (1 - \eta_{\theta} L_{\nabla J}/2) \|\theta_t - \theta'_t\|_2$$
(23)

$$+ \lambda \eta_{\theta} L_{\nabla J} C_{\theta G} d_G(\mathcal{G}_t, \mathcal{G}_t') \tag{24}$$

$$+ (1 - \lambda)\kappa_G d_G(\mathcal{G}_t, \mathcal{G}_t') \tag{25}$$

$$+ (1 - \lambda)\kappa_G C_{E\theta} \|\theta_t - \theta_t'\|_2. \tag{26}$$

Choosing λ to balance the cross-terms and ensuring η_{θ} is sufficiently small, we obtain $\rho < 1$ such that the joint operator is contractive. The unique fixed point follows from the Banach fixed-point theorem in the complete metric space. \Box

Theorem A.5 (Information-Theoretic Sufficiency of Compression). Assume the downstream target Y depends on H via Markov kernel $p(Y \mid \mathbf{H})$ and the compressed **Z** satisfies:

$$I(\mathbf{H}; \mathbf{Z}) \geq c$$
 and $I(Y; \mathbf{Z}) \geq I(Y; \mathbf{H}) - \delta(c)$,

for some non-increasing function $\delta(\cdot)$. Then any Bayes-optimal decoder g^* on \mathbf{H} admits a decoder \tilde{g} on \mathbf{Z} whose excess risk satisfies:

$$\mathcal{R}(\tilde{g}; \mathbf{Z}) - \mathcal{R}(g^{\star}; \mathbf{H}) \leq \Gamma(\delta(c)),$$

for a problem-dependent modulus $\Gamma(\cdot)$.

Remark A.5. This theorem provides an information-theoretic foundation for our compression approach. By maintaining high mutual information $I(\mathbf{H}; \mathbf{Z})$ and ensuring that task-relevant information $I(Y; \mathbf{Z})$ is preserved, we can guarantee that the compressed representation retains sufficient statistics for near-optimal task performance. The modulus $\Gamma(\cdot)$ can be instantiated using standard classification or regression bounds depending on the specific downstream task.

Proof of Theorem A.5. We establish the excess risk bound by leveraging the information-theoretic constraints to construct a near-optimal decoder on the compressed representation and bound its performance gap relative to the Bayes-optimal decoder on the original data.

First, we establish the connection between mutual information and Bayes risk. By the data processing inequality and our assumptions, the compressed representation \mathbf{Z} retains most task-relevant information about Y. Specifically, the Bayes risks satisfy:

$$\mathcal{R}^*(Y|\mathbf{H}) = H(Y|\mathbf{H})$$
 and $\mathcal{R}^*(Y|\mathbf{Z}) = H(Y|\mathbf{Z})$,

where $H(\cdot|\cdot)$ denotes conditional entropy. The mutual information constraint $I(Y; \mathbf{Z}) \geq I(Y; \mathbf{H}) - \delta(c)$ implies:

$$H(Y) - H(Y|\mathbf{Z}) \ge H(Y) - H(Y|\mathbf{H}) - \delta(c),$$

which yields $H(Y|\mathbf{Z}) - H(Y|\mathbf{H}) \le \delta(c)$, establishing that the optimal Bayes risk on \mathbf{Z} exceeds that on \mathbf{H} by at most $\delta(c)$.

Second, we construct the decoder \tilde{g} on **Z**. Given the Bayes-optimal decoder $g^*(\mathbf{h}) = \arg\min_y \mathbb{E}[\ell(y, Y) | \mathbf{H} = \mathbf{h}]$ for loss function $\ell(\cdot, \cdot)$, we define:

$$\tilde{g}(\mathbf{z}) = \arg\min_{y} \mathbb{E}[\ell(y,Y)|\mathbf{Z} = \mathbf{z}] = \arg\min_{y} \sum_{\mathbf{h}} p(\mathbf{h}|\mathbf{z}) \mathbb{E}[\ell(y,Y)|\mathbf{H} = \mathbf{h}],$$

where $p(\mathbf{h}|\mathbf{z})$ is the posterior distribution induced by the compression. The challenge is that this posterior may not be exactly computable, but the information constraints provide sufficient control.

Third, we bound the excess risk using information-theoretic tools. The key insight is to use Fano's inequality and the method of types. For the 0-1 loss (classification case), Fano's inequality gives:

$$P_e(\mathbf{Z}) \ge \frac{H(Y|\mathbf{Z}) - 1}{\log(|\mathcal{Y}| - 1)},$$

where $P_e(\mathbf{Z})$ is the probability of error when predicting Y from \mathbf{Z} , and $|\mathcal{Y}|$ is the size of the label space. Similarly for \mathbf{H} :

$$P_e(\mathbf{H}) \ge \frac{H(Y|\mathbf{H}) - 1}{\log(|\mathcal{Y}| - 1)}.$$

For general loss functions satisfying a Tsybakov noise condition or Bernstein condition, we can establish similar bounds. Under the Tsybakov condition with parameter $\alpha > 0$:

$$\mathcal{R}(\tilde{g}; \mathbf{Z}) - \mathcal{R}^*(Y|\mathbf{Z}) \le C_{\alpha} \left(\mathcal{R}^*(Y|\mathbf{Z}) - \mathcal{R}^*(Y|\mathbf{H})\right)^{(1+\alpha)/(2+\alpha)},$$

for some constant $C_{\alpha} > 0$. Since $\mathcal{R}^*(Y|\mathbf{Z}) - \mathcal{R}^*(Y|\mathbf{H}) \leq \delta(c)$, we have:

$$\mathcal{R}(\tilde{g}; \mathbf{Z}) - \mathcal{R}^*(Y|\mathbf{Z}) \le C_{\alpha} \delta(c)^{(1+\alpha)/(2+\alpha)}.$$

Fourth, we combine the bounds. The total excess risk of \tilde{g} on **Z** relative to g^* on **H** decomposes as:

$$\mathcal{R}(\tilde{g}; \mathbf{Z}) - \mathcal{R}(g^*; \mathbf{H}) = [\mathcal{R}(\tilde{g}; \mathbf{Z}) - \mathcal{R}^*(Y|\mathbf{Z})] + [\mathcal{R}^*(Y|\mathbf{Z}) - \mathcal{R}^*(Y|\mathbf{H})]$$
(27)

$$\leq C_{\alpha}\delta(c)^{(1+\alpha)/(2+\alpha)} + \delta(c) \tag{28}$$

$$<\Gamma(\delta(c)),$$
 (29)

where $\Gamma(x) = C_{\alpha} x^{(1+\alpha)/(2+\alpha)} + x$ for the Tsybakov case, or $\Gamma(x) = C\sqrt{x\log(1/x)}$ under Bernstein conditions. The specific form of $\Gamma(\cdot)$ depends on the problem structure, but in all cases it is non-decreasing and $\Gamma(0) = 0$, ensuring that perfect information preservation $(\delta(c) = 0)$ yields no excess risk. \square

A.4 TOOL DEFINITION AND INTERFACE SPECIFICATION

A.4.1 TOOL DEFINITION

This appendix provides comprehensive definitions for all tools in the Agentic-KGR framework. Each tool serves a specific purpose in the knowledge graph extraction and optimization pipeline.

Tool 1: Knowledge Graph Extraction Density Assessment

Function Name: query_extraction_density

Description: This is a **mandatory tool** for knowledge graph extraction density evaluation that must be invoked first after each knowledge graph extraction attempt. Based on the input text, target schema, and current extraction results, this tool analyzes the complexity characteristics of the text and evaluates whether the current density of extracted entities and relations is reasonable. If the feedback indicates that additional extraction is needed, knowledge graph extraction must be re-performed and this tool must be called again until the tool feedback indicates that no further extraction is required. Other tools may only be called when this tool confirms that the extraction density is adequate. The output includes extraction sufficiency assessment, density analysis, and clear instructions on whether continued extraction is necessary.

Parameters:

- text (string, required): Input text to be analyzed
- schema (object, required): Target knowledge graph schema containing entity types and relation types definitions, formatted as:

```
{
    "entity_schema": ["EntityType1", "EntityType2", ...],
    "relation_schema": ["RelationType1", "RelationType2"]
}
```

extracted_kg (object, required): Current extracted knowledge graph results containing entities and relations lists, formatted as:

```
{
    "entities": {
        "EntityType": ["EntityName1", "EntityName2", ...],
        ...
},
    "relations": {
        "RelationType": [
        {"subject": "HeadEntity", "object": "TailEntity"},
        ...
        ],
        ...
}
```

• **domain** (string, optional): Domain information such as medical, financial, legal, etc., used to provide domain-specific density benchmarks

Tool 2: Knowledge Graph Coverage Assessment

Function Name: query_coverage_feedback

Description: This is an optional tool for knowledge graph coverage evaluation. Based on the target schema and current extraction results, this tool analyzes the coverage of various entity types and relation types in the schema, identifies potentially missed entity types or relation types, and provides specific recommendations for supplementary extraction based on text content. The output includes coverage statistics, analysis of missing types, and targeted extraction suggestions.

Parameters:

- text (string, required): Input text
- schema (object, required): Target knowledge graph schema definition containing entity types and relation types definitions, formatted as:

```
"entity_schema": ["EntityType1", "EntityType2", ...],
"relation_schema": ["RelationType1", "RelationType2"]
```

• extracted kg (object, required): Current extracted knowledge graph results containing entities and relations lists, formatted as:

```
"entities": {
   "EntityType": ["EntityName1", "EntityName2", ...],
 "relations": {
   "RelationType": [
   {"subject": "HeadEntity", "object": "TailEntity"},
  ],
}
```

• priority_types (array, optional): List of higher-priority entity or relation types for focused examination

Tool 3: Knowledge Graph Quality Metrics Assessment

Function Name: query_quality_metrics

Description: This is an optional tool for comprehensive knowledge graph quality evaluation. This tool performs multi-dimensional quality assessment of the extracted knowledge graph, including confidence distribution of entity recognition, completeness of relation extraction, structural consistency of the knowledge graph, and compliance with the schema. The output provides detailed quality assessment reports and improvement recommendations, offering precise optimization directions for the model.

Parameters:

• extracted kg (object, required): Knowledge graph extraction results to be evaluated, containing entities and relations lists, formatted as:

```
"EntityType": ["EntityName1", "EntityName2", ...],
"relations": {
 "RelationType": [
 {"subject": "HeadEntity", "object": "TailEntity"},
 ],
 . . .
```

• schema (object, required): Target schema definition containing entity types and relation types definitions, formatted as:

```
{
   "entity_schema": ["EntityType1", "EntityType2", ...],
   "relation_schema": ["RelationType1", "RelationType2"]
}
```

- text (string, required): Original text for contextual consistency checking
- evaluation_aspects (array, optional): List of evaluation dimensions such as consistency, completeness, accuracy, schema_compliance

Tool 4: Knowledge Graph Iterative Optimization Feedback

Function Name: query_iterative_feedback

Description: This is an optional tool for knowledge graph iterative optimization feedback. Based on multi-round extraction history and current results, this tool analyzes trends in extraction quality changes, identifies persistent problem patterns, and provides targeted iterative optimization strategies. The output includes progress analysis, problem diagnosis, and next-step optimization recommendations.

Parameters:

• extraction_history (array, required): List of historical extraction results arranged in chronological order. Each extraction result is formatted as:

```
{
    "entities": {
        "EntityType": ["EntityName1", "EntityName2", ...],
        ...
    },
    "relations": {
        "RelationType": [
        {"subject": "HeadEntity", "object": "TailEntity"},
        ...
        ],
        ...
    }
}
```

- extracted_kg (object, required): Current extraction results formatted as above
- text (string, required): Original text
- schema (object, required): Target schema containing entity types and relation types definitions, formatted as:

```
{
    "entity_schema": ["EntityType1", "EntityType2", ...],
    "relation_schema": ["RelationType1", "RelationType2"]
}
```

- feedback_history (array, optional): Historical feedback information for analyzing improvement effects
- max_iterations (integer, optional): Maximum iteration limit

Tool 5: Entity Disambiguation Assessment

Function Name: query_entity_disambiguation

 Description: This is a conditionally mandatory tool for entity disambiguation assessment. When the QueryExtractionDensity tool indicates that extraction density is adequate (no further extraction needed), this tool must be invoked for entity disambiguation processing. This tool connects to the Neo4j graph database, queries entities and relations related to the extraction results, and returns the results. Based on the feedback from this tool, it is necessary to identify different representations of the same entity, discover accuracy issues in entity linking, and provide disambiguation recommendations. The output includes disambiguation matching results, confidence assessment, entity standardization recommendations, and the final generated knowledge graph extraction results.

Parameters:

 extracted_kg (object, required): Current knowledge graph extraction results containing entities and relations lists, formatted as:

```
{
    "entities": {
        "EntityType": ["EntityName1", "EntityName2", ...],
        ...
},
    "relations": {
        "RelationType": [
        {"subject": "HeadEntity", "object": "TailEntity"},
        ...
        ],
        ...
}
```

- disambiguation_strategy (string, optional): Disambiguation strategy such as exact_match and semantic_similarity
- similarity_threshold (number, optional): Similarity threshold for controlling disambiguation strictness
- context (string, optional): Contextual information for assisting disambiguation decisions

Tool 6: Knowledge Graph Storage

Function Name: query_kg_storage

Description: This is a conditionally mandatory tool for knowledge graph storage. After the QueryEntityDisambiguation tool completes disambiguation, this tool must be invoked to store entities and relations in the database. This tool connects to the Neo4j graph database and inserts the current optimized extraction results into the database. The tool provides feedback on whether storage was successful. If successful, it returns the current optimized extraction results.

Parameters:

 extracted_kg (object, required): Current knowledge graph extraction results containing entities and relations lists, formatted as:

```
"entities": {
    "EntityType": ["EntityName1", "EntityName2", ...],
    ...
},
"relations": {
    "RelationType": [
    {"subject": "HeadEntity", "object": "TailEntity"},
    ...
    ],
    ...
}
```

A.4.2 INTERFACE SPECIFICATION

1085 1086

1087 1088

1089

1090 1091

1092 1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

11221123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Tool 1: Knowledge Graph Extraction Density Assessment

Output Specification for query_extraction_density

This tool returns a comprehensive analysis of the knowledge graph extraction density with the following structure:

```
Output Format:
    "text_stats": {
      "token_count": integer,
      "sentence_count": integer,
      "word_count": integer,
      "character_count": integer
    },
    "current_density": {
      "total_entities": integer,
      "total_relations": integer,
      "total_kg_elements": integer,
      "entity_type_count": integer,
      "relation_type_count": integer,
      "entities_per_1k_tokens": float,
      "relations_per_1k_tokens": float,
      "kg_density_per_1k_tokens": float,
      "entity_relation_ratio": float
    "expected_density": {
      "expected_entities_per_1k": float,
      "expected_relations_per_1k": float,
      "min_entities_per_1k": float,
      "min_relations_per_1k": float,
      "max_entities_per_1k": float,
      "max_relations_per_1k": float,
      "schema_complexity": integer,
      "entity_complexity_factor": float,
      "relation_complexity_factor": float
    "complexity_features": {
      "entity_mentions": integer,
      "avg_sentence_length": float,
      "technical_terms": integer,
      "schema_entity_types": integer,
      "schema_relation_types": integer,
      "complexity_score": float
    "density_assessment": {
      "entity_density_ratio": float,
      "relation_density_ratio": float,
      "overall_density_score": float,
      "assessment_level": string,
      "is_adequate": boolean,
      "meets_minimum_thresholds": boolean,
      "potential_over_extraction": boolean,
      "balance_score": float
    "needs_more_extraction": boolean,
    "recommendations": [string, ...]
```

Fiel	d Descriptions:
	• text_stats: Basic statistics about the input text including token, sentence, word, and character
	• current_density: Detailed metrics about the current extraction results
	 total_entities: Total number of extracted entities across all types
	 total_relations: Total number of extracted relations across all types
	- entities_per_1k_tokens: Entity density normalized per 1000 tokens
	- relations_per_1k_tokens: Relation density normalized per 1000 tokens
	- entity_relation_ratio: Ratio of entities to relations
	• expected_density: Benchmarks and thresholds for density evaluation
	 expected_entities_per_1k: Target entity density based on schema complexity min/max_entities_per_1k: Acceptable range boundaries for entity density
	- schema_complexity: Complexity measure based on schema size
	• complexity_features: Text complexity analysis results
	 complexity_score: Overall complexity score (0-1) considering multiple factors
	 technical_terms: Count of domain-specific terminology
	avg_sentence_length: Average words per sentence
	• density_assessment: Comprehensive evaluation of extraction quality
	- assessment_level: One of "insufficient", "moderate", "adequate", "excellent", "over_extra
	 is_adequate: Boolean indicating if density meets standards
	- balance_score: Measure of entity-relation balance (0-1)
	• needs_more_extraction: Critical boolean flag indicating if additional extraction is required
	• recommendations: List of specific actionable suggestions for improvement
Ass	essment Levels:
	• insufficient: Density below minimum thresholds, significant extraction gaps
	• moderate: Partial adequacy, some minimum thresholds met
	• adequate: Meets minimum standards and shows good extraction coverage
	• excellent: Exceeds expectations with high-quality dense extraction
	• over_extraction: Exceeds maximum thresholds, potential noise inclusion
Crii	cical Decision Logic: The needs_more_extraction flag is determined by:
	Entity density below minimum threshold
	Relation density below minimum threshold
	 Significant imbalance between entity and relation extraction
	 Complexity-adjusted adequacy score below threshold (typically 0.65-0.80)
	 Does not trigger if maximum density thresholds are exceeded

$Output\ Specification\ for\ query_coverage_feedback$

> 1224 1225 1226

1227 1228 1229

1230 1231 1232

1233 1234

1235 1236 1237

1238 1239 1240

1241

This tool returns a comprehensive analysis of schema type coverage with targeted recommendations for improving extraction completeness.

Output Format:

```
"schema_info": {
 "entity_types": [string, ...],
 "relation_types": [string, ...],
 "total_types": integer,
 "schema_complexity": string
"type_coverage": {
 "entity_coverage": {
  "covered_types": [string, ...],
   "total_types": integer,
   "coverage_ratio": float
 "relation_coverage": {
   "covered_types": [string, ...],
   "total_types": integer,
   "coverage_ratio": float
 "overall_coverage": float
},
"missing_types": {
 "missing_entity_types": [string, ...],
 "missing_relation_types": [string, ...]
"priority_analysis": {
 "has_priority": boolean,
 "priority_types": [string, ...],
 "covered_priority": [string, ...],
 "missing_priority": [string, ...],
 "priority_coverage_ratio": float
"coverage_score": float,
"recommendations": [string, ...]
```

Field Descriptions:

- schema_info: Comprehensive analysis of the target schema structure
 - entity_types: List of all entity types defined in the schema
 - relation_types: List of all relation types defined in the schema
 - total_types: Combined count of entity and relation types
 - schema_complexity: Qualitative assessment of schema complexity
- type_coverage: Detailed coverage statistics for each type category
 - entity_coverage: Entity type coverage analysis
 - * covered_types: List of entity types successfully extracted
 - * **coverage_ratio**: Proportion of entity types covered (0-1)
 - relation_coverage: Relation type coverage analysis with same structure
 - overall_coverage: Weighted average of entity and relation coverage
- missing_types: Identification of uncovered schema types
 - missing_entity_types: Entity types absent from extraction results but potentially present in text
 - missing_relation_types: Relation types absent from extraction results but potentially present in text
- priority_analysis: Special analysis for user-specified priority types

- has_priority: Boolean indicating if priority types were specified
- priority_types: Original list of priority types for focused examination
- covered_priority: Priority types successfully extracted
- missing_priority: Priority types requiring attention
- priority_coverage_ratio: Coverage ratio specifically for priority types
- **coverage_score**: Overall coverage quality score (0-1) with entity types weighted at 0.6 and relation types at 0.4
- recommendations: Prioritized list of actionable suggestions for improving coverage

Coverage Analysis Logic:

- Type Detection: Uses text analysis to identify potential presence of missing types
- **Priority Handling**: Gives special attention to user-specified high-importance types
- Text Matching: Employs pattern matching to suggest specific extraction targets
- Weighted Scoring: Emphasizes entity coverage (60%) over relation coverage (40%)

Recommendation Categories:

- Priority-based: Addresses missing high-priority types first
- Type-specific: Suggests specific entity or relation types to extract
- Text-guided: Provides context-aware extraction suggestions based on text content
- Completion status: Indicates when coverage is already adequate

Coverage Score Interpretation:

- 0.9-1.0: Excellent coverage, minimal gaps
- 0.7-0.89: Good coverage, minor improvements needed
- 0.5-0.69: Moderate coverage, significant gaps exist
- 0.3-0.49: Poor coverage, major extraction issues
- 0.0-0.29: Very poor coverage, fundamental problems

Tool 3: Knowledge Graph Quality Metrics Assessment

Output Specification for query_quality_metrics

This tool provides comprehensive multi-dimensional quality assessment of extracted knowledge graphs with detailed metrics and improvement recommendations.

Output Format:

```
{
  "evaluation_aspects": [string, ...],
  "evaluation_results": {
    "consistency": {
        "score": float,
        "issues": [string, ...],
        "details": {
            "entity_naming_consistency": float,
            "relation_consistency": float,
            "duplicate_entities": integer,
            "conflicting_relations": integer
        }
    },
```

```
1296
1297
               "completeness": {
1298
                 "score": float,
                 "issues": [string, ...],
1299
                 "details": {
1300
                   "missing_entity_types": [string, ...],
1301
                   "missing_relation_types": [string, ...],
1302
                   "entity_type_coverage": float,
1303
                   "relation_type_coverage": float,
                   "extraction_density": float
1304
1305
1306
               "accuracy": {
1307
                 "score": float,
                 "issues": [string, ...],
1308
                 "details": {
1309
                   "entities_not_in_text": integer,
1310
                   "relations_not_in_text": integer,
1311
                   "boundary_errors": integer,
1312
                   "type_misclassifications": integer
1313
1314
               "schema_compliance": {
1315
                 "score": float,
1316
                 "issues": [string, ...],
1317
                 "details": {
1318
                   "valid_entity_types": integer,
                   "invalid_entity_types": integer,
1319
                   "valid_relation_types": integer,
1320
                   "invalid_relation_types": integer,
1321
                   "structure_violations": integer
1322
                 }
1323
               }
              },
1324
              "overall_score": float,
1325
              "quality_level": string,
1326
              "improvement_suggestions": [string, ...],
1327
              "detailed_metrics": {
1328
               "consistency": {
                 "score": float,
1329
                 "details": object,
1330
                 "issues": [string, ...]
1331
1332
               "completeness": {
1333
                 "score": float,
                 "details": object,
1334
                 "issues": [string, ...]
1336
               "accuracy": {
1337
                 "score": float,
1338
                 "details": object,
                 "issues": [string, ...]
1339
               },
1340
               "schema_compliance": {
1341
                 "score": float,
1342
                 "details": object,
"issues": [string, ...]
1343
1344
              }
1345
            }
1346
1347
```

Field Descriptions:

1348

1349

1	350	
1	351	
1	352	
1	353	
	354	
	355	
	356	
	357	
	358	
	359	
	360	
	361	
	362	
	363	
	364	
	365366	
	367	
	368	
	369	
	370	
	371	
	372	
	373 374	
	375 376	
i	010	
1	377	
1		
1	378	
1	378 379	
1 1 1	378 379 380	
1 1 1	378 379 380 381	
1 1 1 1	378 379 380 381 382	
1 1 1 1 1	378 379 380 381 382 383	
1 1 1 1 1 1	378 379 380 381 382 383 384	
1 1 1 1 1 1	378 379 380 381 382 383 384 385	
1 1 1 1 1 1	378 379 380 381 382 383 384	
1 1 1 1 1 1 1 1	378 379 380 381 382 383 384 385 386	
11111111	378 379 380 381 382 383 384 385 386 387	
111111111	378 379 380 381 382 383 384 385 386 387 388	
1 1 1 1 1 1 1 1 1 1	378 379 380 381 382 383 384 385 386 387 388	
1 1 1 1 1 1 1 1 1 1 1	378 379 380 381 382 383 384 385 386 387 388 389 390	
1 1 1 1 1 1 1 1 1 1 1 1	378 379 380 381 382 383 384 385 386 387 388 389 390	
1 1 1 1 1 1 1 1 1 1 1 1 1	378 379 380 381 382 383 384 385 386 387 388 389 390 391 392	
1 1 1 1 1 1 1 1 1 1 1 1 1	378 379 380 381 382 383 384 385 386 387 388 390 391 392 393	
11111111111111	378 379 380 381 382 383 384 385 386 387 388 399 391 392 393 394	
111111111111111	378 379 380 381 382 383 384 385 386 387 388 390 391 392 393 394 395	
1111111111111111	378 379 380 381 382 383 384 385 386 387 388 390 391 392 393 394 395 396	
1111111111111111	378 379 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397	
11111111111111111	378 379 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398	
111111111111111111	378 379 380 381 382 383 384 385 386 387 392 393 394 395 396 397 398 399	
1111111111111111111	378 379 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 399 400	
11111111111111111111	378 379 380 381 382 383 384 385 386 387 392 393 391 392 393 394 395 396 397 398 399 400 401	
1111111111111111111	378 379 380 381 382 383 384 385 386 389 391 392 393 394 395 396 397 398 399 400 401 402	

- evaluation_aspects: List of quality dimensions assessed (consistency, completeness, accuracy, schema_compliance)
- evaluation_results: Detailed results for each quality dimension
 - consistency: Internal coherence and naming consistency analysis
 - * **score**: Quality score (0-1) for consistency metrics
 - * issues: Specific consistency problems identified
 - * details: Breakdown of consistency metrics including duplicate detection
 - completeness: Coverage and extraction density evaluation
 - * score: Completeness score considering missing types and density
 - * missing_entity/relation_types: Schema types absent from extraction
 - * extraction_density: Ratio of extracted items to text length
 - accuracy: Precision and correctness of extracted information
 - * score: Accuracy score based on text verification
 - * entities/relations_not_in_text: Count of extracted items not found in original text
 - schema_compliance: Adherence to predefined schema definitions
 - * score: Compliance score for schema conformity
 - * valid/invalid_types: Counts of correctly and incorrectly typed elements
- overall_score: Weighted composite score (0-1) combining all dimensions
- quality_level: Categorical assessment: "excellent", "good", "fair", "poor", "very_poor"
- improvement_suggestions: Prioritized actionable recommendations for quality enhancement
- detailed_metrics: Comprehensive breakdown mirroring evaluation_results structure

Scoring Weights:

- Completeness: 30% Emphasizes comprehensive extraction coverage
- Accuracy: 30% Focuses on correctness and text alignment
- Consistency: 25% Ensures internal coherence and standardization
- Schema Compliance: 15% Validates adherence to predefined structure

Quality Level Thresholds:

- excellent: 0.9+ Outstanding quality across all dimensions
- **good**: 0.8-0.89 High quality with minor issues
- fair: 0.7-0.79 Acceptable quality with moderate improvements needed
- poor: 0.6-0.69 Significant quality issues requiring attention
- very_poor: ¡0.6 Major quality problems, substantial rework needed

Assessment Logic:

- Completeness Evaluation: Compares extracted types against schema, analyzes extraction density vs. expected thresholds
- · Accuracy Verification: Cross-references extracted entities and relations with original text content
- Consistency Analysis: Detects duplicate entities, naming variations, and conflicting information
- Schema Validation: Ensures all extracted elements conform to predefined type definitions

Improvement Suggestion Categories:

- Consistency: Entity naming standardization, duplicate resolution
- Completeness: Missing type identification, density optimization
- Accuracy: Precision improvement, boundary error correction
- Schema Compliance: Type matching, structural conformity

Tool 4: Knowledge Graph Iterative Optimization Feedback

Output Specification for query_iterative_feedback

This tool provides intelligent feedback for multi-round knowledge graph extraction optimization, analyzing progress trends and recommending targeted improvement strategies.

Output Format:

1404

1405 1406

1407 1408

1409 1410

1411 1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

14231424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436 1437

1438

1439

1440

1441 1442

1444

1445

1446 1447 1448

1449

1450 1451

1452

1453

1454

1455

1456

1457

```
"progress_analysis": {
 "trend": string,
 "recent_improvement": float,
 "overall_quality_change": float,
 "extraction_volume_change": float,
 "convergence_status": string
},
"problem_patterns": {
 "recurring_issues": [string, ...],
 "pattern_types": [string, ...],
 "suggested_solutions": [string, ...],
 "issue_frequency": object,
 "severity_levels": object
"optimization_strategy": {
 "strategies": [
   "type": string,
   "description": string,
   "actions": [string, ...]
 },
 . . .
 ],
 "priority_strategy": {
   "type": string,
   "description": string,
   "actions": [string, ...]
 "iteration_focus": string
"iteration_effectiveness": {
 "effectiveness": string,
 "average_improvement": float,
 "improvement_trend": [float, ...],
 "total_iterations": integer
"should_continue_iteration": boolean,
"current_iteration": integer,
"max_iterations": integer,
"next_steps": [string, ...]
```

Field Descriptions:

- progress_analysis: Comprehensive analysis of extraction progress across iterations
 - trend: Progress direction "improving", "stagnant", "declining"
 - recent_improvement: Quantitative measure of latest iteration improvements
 - overall_quality_change: Cumulative quality change across all iterations
 - extraction_volume_change: Change in total extracted elements
 - convergence_status: Whether extraction is converging to stability
- problem_patterns: Detection and analysis of persistent extraction issues

	 recurring_issues: List of problems appearing across multiple iterations
	 pattern_types: Categories of identified problem patterns
	 suggested_solutions: Targeted recommendations for addressing patterns
	 issue_frequency: Frequency count of different problem types
	 severity_levels: Impact assessment of identified patterns
	• optimization_strategy: Adaptive strategy recommendations based on current state
	 strategies: List of available optimization approaches
	 priority_strategy: Most recommended strategy for current iteration
	- iteration_focus: Primary focus area - "coverage_expansion", "quality_improvement", "refinement"
	• iteration_effectiveness: Assessment of iterative improvement effectiveness
	- effectiveness: Categorical rating - "high", "medium", "low", "stagnant", "insufficient_data"
	 average_improvement: Mean improvement rate across iterations
	 improvement_trend: Per-iteration improvement percentages
	 total_iterations: Number of completed extraction rounds
	• should_continue_iteration: Critical decision flag for continuing or terminating iteration
	• current_iteration: Current iteration number in the sequence
	• max_iterations: Maximum allowed iterations (default: 5)
	• next_steps: Specific actionable recommendations for the next iteration
G	
Strat	egy Types:
	• quality_focus: Emphasizes improving accuracy and consistency of existing extractions
	• coverage_expansion: Focuses on identifying and extracting missing entities and relations
	• balanced_improvement: Simultaneous quality and coverage enhancement
	• pattern_specific: Targeted approach for addressing recurring problem patterns
_	
Itera	tion Focus Phases:
	• coverage_expansion: Early iterations (1st third) - maximize extraction breadth
	• quality_improvement: Middle iterations (2nd third) - enhance extraction accuracy
	• refinement : Final iterations (last third) - fine-tune and consistency checks
76600	
сјјес	tiveness Levels:
	• high: Average improvement ¿ 10% per iteration
	• medium: Average improvement 5-10% per iteration
	• low: Average improvement 0-5% per iteration
	• stagnant: No measurable improvement or negative progress
	• insufficient_data: Less than 2 iterations for meaningful analysis
<i>a</i>	
Cont	inuation Decision Logic:
	• Stop conditions: Maximum iterations reached, declining trend in early stages, minimal recent improve-
	ment after 2+ iterations
	• Continue conditions: Positive progress trend, recent improvement ¿ 1%, within iteration limits
	• Early termination: Triggers when quality degrades or no improvement for multiple consecutive itera-
	tions
Next	Steps Categories:
	• Completion: Final quality assessment and entity disambiguation when iteration should stop
	• Targeted improvement: Specific actions from priority strategy when continuing
	• Focus-driven: Phase-specific recommendations based on current iteration focus

Tool 5: Entity Disambiguation Assessment

Output Specification for query_entity_disambiguation

This tool performs entity disambiguation by connecting to Neo4j knowledge base, matching extracted entities with existing knowledge, and providing standardization recommendations.

Output Format:

1512

1513 1514

1515

1516

1517 1518

1519 1520

1521

1522

1523

1524 1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

15381539

1540

1541

15421543

1544 1545

1546

1547

1548

1549

15501551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

156315641565

```
"disambiguation_results": [
 "original_entity": {
   "type": string,
   "name": string
 "candidates": [
   "candidate": {
    "name": string,
    "properties": object
   },
   "confidence": float
 },
 ],
 "best_match": {
   "candidate": {
    "name": string,
    "properties": object
   },
   "confidence": float
 "is_disambiguated": boolean,
 "confidence": float
},
"relationships_results": [
 "entity": object,
 "relationships": [
   "type": string,
   "target": object,
   "properties": object
 1
},
. . .
],
"quality_score": float,
"disambiguation_strategy": string,
"similarity_threshold": float,
"standardization_suggestions": [string, ...],
"summary": {
 "total_entities": integer,
 "disambiguated_entities": integer,
 "disambiguation_rate": float,
 "average_confidence": float,
 "unmatched_entities": integer
```

disambiguation_results: Detailed disambiguation results for each extracted entity original_entity: The entity from extraction results (type and name) candidates: List of potential matches from Neo4j knowledge base * candidate: Knowledge base entity with properties * confidence: Matching confidence score (0-1) best_match: Highest-scoring candidate match (null if no match above threshold) is_disambiguated: Boolean indicating successful disambiguation confidence: Final confidence score for the disambiguation relationships_results: Related entities and relationships from knowledge base entity: The queried entity information relationships: List of connected entities and relationship types * type: Relationship type (e.g., "Author", etc.) * target: Connected entity details * properties: Additional relationship properties quality_score: Overall disambiguation quality (0-1) combining coverage and confidence disambiguation_strategy: Strategy used - "exact_match" or "semantic_similarity" * similarity_threshold: Minimum confidence threshold for matches * standardization_suggestions: Actionable recommendations for entity standardization * summary: High-level statistics and performance metrics Disambiguation Strategies: * exact_match: Requires perfect string matching between entity names (case-insensitive) Confidence: 1.0 for exact matches, 0.0 otherwise Use case: High-precision scenarios with standardized entity names Performance: Fast, deterministic results * semantic_similarity: Uses semantic similarity calculation for fuzzy matching Confidence: Calculated similarity score (0-1) Use case: Handling variations in entity naming and expressions Performance: More comprehensive but computationally intensive Quality Score Calculation: * Coverage component: (Disambiguated entities / Total entities) × 0.6	
- original_entity: The entity from extraction results (type and name) - candidates: List of potential matches from Neo4j knowledge base * candidate: Knowledge base entity with properties * confidence: Matching confidence score (0-1) - best_match: Highest-scoring candidate match (null if no match above threshold) - is.disambiguated: Boolean indicating successful disambiguation - confidence: Final confidence score for the disambiguation - confidence: Final confidence score for the disambiguation - relationships_results: Related entities and relationships from knowledge base - entity: The queried entity information - relationships: List of connected entities and relationship types * type: Relationship type (e.g., "Author", etc.) * target: Connected entity details * properties: Additional relationship properties • quality_score: Overall disambiguation quality (0-1) combining coverage and confidence • disambiguation_strategy: Strategy used - "exact_match" or "semantic_similarity" • similarity_threshold: Minimum confidence threshold for matches • standardization_suggestions: Actionable recommendations for entity standardization • summary: High-level statistics and performance metrics Disambiguation Strategies: • exact_match: Requires perfect string matching between entity names (case-insensitive) - Confidence: 1.0 for exact matches, 0.0 otherwise - Use case: High-precision scenarios with standardized entity names - Performance: Fast, deterministic results • semantic_similarity: Uses semantic similarity calculation for fuzzy matching - Confidence: Calculated similarity score (0-1) - Use case: Handling variations in entity naming and expressions - Performance: More comprehensive but computationally intensive	
- candidates: List of potential matches from Neo4j knowledge base * candidate: Knowledge base entity with properties * confidence: Matching confidence score (0-1) - best_match: Highest-scoring candidate match (null if no match above threshold) - is_disambiguated: Boolean indicating successful disambiguation - confidence: Final confidence score for the disambiguation - relationships_results: Related entities and relationships from knowledge base - entity: The queried entity information - relationships: List of connected entities and relationship types * type: Relationship type (e.g., "Author", etc.) * target: Connected entity details * properties: Additional relationship properties • quality_score: Overall disambiguation quality (0-1) combining coverage and confidence • disambiguation_strategy: Strategy used - "exact_match" or "semantic_similarity" • similarity_threshold: Minimum confidence threshold for matches • standardization_suggestions: Actionable recommendations for entity standardization • summary: High-level statistics and performance metrics Disambiguation Strategies: • exact_match: Requires perfect string matching between entity names (case-insensitive) - Confidence: 1.0 for exact matches, 0.0 otherwise - Use case: High-precision scenarios with standardized entity names - Performance: Fast, deterministic results • semantic_similarity: Uses semantic similarity calculation for fuzzy matching - Confidence: Calculated similarity score (0-1) - Use case: Handling variations in entity naming and expressions - Performance: More comprehensive but computationally intensive	
* candidate: Knowledge base entity with properties * confidence: Matching confidence score (0-1) - best_match: Highest-scoring candidate match (null if no match above threshold) - is_disambiguated: Boolean indicating successful disambiguation - confidence: Final confidence score for the disambiguation - relationships_results: Related entities and relationships from knowledge base - entity: The queried entity information - relationships: List of connected entities and relationship types * type: Relationship type (e.g., "Author", etc.) * target: Connected entity details * properties: Additional relationship properties - quality_score: Overall disambiguation quality (0-1) combining coverage and confidence - disambiguation_strategy: Strategy used - "exact_match" or "semantic_similarity" - similarity_threshold: Minimum confidence threshold for matches - standardization_suggestions: Actionable recommendations for entity standardization - summary: High-level statistics and performance metrics Disambiguation Strategies: - exact_match: Requires perfect string matching between entity names (case-insensitive) - Confidence: 1.0 for exact matches, 0.0 otherwise - Use case: High-precision scenarios with standardized entity names - Performance: Fast, deterministic results - semantic_similarity: Uses semantic similarity calculation for fuzzy matching - Confidence: Calculated similarity score (0-1) - Use case: Handling variations in entity naming and expressions - Performance: More comprehensive but computationally intensive	
* confidence: Matching confidence score (0-1) - best_match: Highest-scoring candidate match (null if no match above threshold) - is_disambiguated: Boolean indicating successful disambiguation - confidence: Final confidence score for the disambiguation - relationships_results: Related entities and relationships from knowledge base - entity: The queried entity information - relationships: List of connected entities and relationship types * type: Relationship type (e.g., "Author", etc.) * target: Connected entity details * properties: Additional relationship properties - quality_score: Overall disambiguation quality (0-1) combining coverage and confidence - disambiguation_strategy: Strategy used - "exact_match" or "semantic_similarity" - similarity_threshold: Minimum confidence threshold for matches - standardization_suggestions: Actionable recommendations for entity standardization - summary: High-level statistics and performance metrics Disambiguation Strategies: - exact_match: Requires perfect string matching between entity names (case-insensitive) - Confidence: 1.0 for exact matches, 0.0 otherwise - Use case: High-precision scenarios with standardized entity names - Performance: Fast, deterministic results - semantic_similarity: Uses semantic similarity calculation for fuzzy matching - Confidence: Calculated similarity score (0-1) - Use case: Handling variations in entity naming and expressions - Performance: More comprehensive but computationally intensive	
 best_match: Highest-scoring candidate match (null if no match above threshold) is_disambiguated: Boolean indicating successful disambiguation confidence: Final confidence score for the disambiguation relationships_results: Related entities and relationships from knowledge base entity: The queried entity information relationships: List of connected entities and relationship types * type: Relationship type (e.g., "Author", etc.) * target: Connected entity details * properties: Additional relationship properties quality_score: Overall disambiguation quality (0-1) combining coverage and confidence disambiguation_strategy: Strategy used - "exact_match" or "semantic_similarity" * similarity_threshold: Minimum confidence threshold for matches * standardization_suggestions: Actionable recommendations for entity standardization * summary: High-level statistics and performance metrics Disambiguation Strategies: exact_match: Requires perfect string matching between entity names (case-insensitive) Confidence: 1.0 for exact matches, 0.0 otherwise Use case: High-precision scenarios with standardized entity names Performance: Fast, deterministic results * semantic_similarity: Uses semantic similarity calculation for fuzzy matching Confidence: Calculated similarity score (0-1) Use case: Handling variations in entity naming and expressions Performance: More comprehensive but computationally intensive 	
 is_disambiguated: Boolean indicating successful disambiguation confidence: Final confidence score for the disambiguation relationships_results: Related entities and relationships from knowledge base entity: The queried entity information relationships: List of connected entities and relationship types * type: Relationship type (e.g., "Author", etc.) * target: Connected entity details * properties: Additional relationship properties quality_score: Overall disambiguation quality (0-1) combining coverage and confidence disambiguation_strategy: Strategy used - "exact_match" or "semantic_similarity" similarity_threshold: Minimum confidence threshold for matches standardization_suggestions: Actionable recommendations for entity standardization summary: High-level statistics and performance metrics Disambiguation Strategies: exact_match: Requires perfect string matching between entity names (case-insensitive) Confidence: 1.0 for exact matches, 0.0 otherwise Use case: High-precision scenarios with standardized entity names Performance: Fast, deterministic results semantic_similarity: Uses semantic similarity calculation for fuzzy matching Confidence: Calculated similarity score (0-1) Use case: Handling variations in entity naming and expressions Performance: More comprehensive but computationally intensive 	
 confidence: Final confidence score for the disambiguation relationships_results: Related entities and relationships from knowledge base entity: The queried entity information relationships: List of connected entities and relationship types type: Relationship type (e.g., "Author", etc.) target: Connected entity details properties: Additional relationship properties quality_score: Overall disambiguation quality (0-1) combining coverage and confidence disambiguation_strategy: Strategy used - "exact_match" or "semantic_similarity" similarity_threshold: Minimum confidence threshold for matches standardization_suggestions: Actionable recommendations for entity standardization summary: High-level statistics and performance metrics Disambiguation Strategies: exact_match: Requires perfect string matching between entity names (case-insensitive) Confidence: 1.0 for exact matches, 0.0 otherwise Use case: High-precision scenarios with standardized entity names Performance: Fast, deterministic results semantic_similarity: Uses semantic similarity calculation for fuzzy matching Confidence: Calculated similarity score (0-1) Use case: Handling variations in entity naming and expressions Performance: More comprehensive but computationally intensive Quality Score Calculation:	
 relationships_results: Related entities and relationships from knowledge base entity: The queried entity information relationships: List of connected entities and relationship types * type: Relationship type (e.g., "Author", etc.) * target: Connected entity details * properties: Additional relationship properties • quality_score: Overall disambiguation quality (0-1) combining coverage and confidence • disambiguation_strategy: Strategy used - "exact_match" or "semantic_similarity" • similarity_threshold: Minimum confidence threshold for matches • standardization_suggestions: Actionable recommendations for entity standardization • summary: High-level statistics and performance metrics Disambiguation Strategies: • exact_match: Requires perfect string matching between entity names (case-insensitive) - Confidence: 1.0 for exact matches, 0.0 otherwise - Use case: High-precision scenarios with standardized entity names - Performance: Fast, deterministic results • semantic_similarity: Uses semantic similarity calculation for fuzzy matching - Confidence: Calculated similarity score (0-1) - Use case: Handling variations in entity naming and expressions - Performance: More comprehensive but computationally intensive Quality Score Calculation:	
 entity: The queried entity information relationships: List of connected entities and relationship types * type: Relationship type (e.g., "Author", etc.) * target: Connected entity details * properties: Additional relationship properties quality_score: Overall disambiguation quality (0-1) combining coverage and confidence disambiguation_strategy: Strategy used - "exact_match" or "semantic_similarity" * similarity_threshold: Minimum confidence threshold for matches * standardization_suggestions: Actionable recommendations for entity standardization * summary: High-level statistics and performance metrics Disambiguation Strategies: * exact_match: Requires perfect string matching between entity names (case-insensitive) - Confidence: 1.0 for exact matches, 0.0 otherwise - Use case: High-precision scenarios with standardized entity names - Performance: Fast, deterministic results * semantic_similarity: Uses semantic similarity calculation for fuzzy matching - Confidence: Calculated similarity score (0-1) - Use case: Handling variations in entity naming and expressions - Performance: More comprehensive but computationally intensive 	
 relationships: List of connected entities and relationship types * type: Relationship type (e.g., "Author", etc.) * target: Connected entity details * properties: Additional relationship properties quality_score: Overall disambiguation quality (0-1) combining coverage and confidence disambiguation_strategy: Strategy used - "exact_match" or "semantic_similarity" * similarity_threshold: Minimum confidence threshold for matches * standardization_suggestions: Actionable recommendations for entity standardization * summary: High-level statistics and performance metrics Disambiguation Strategies: exact_match: Requires perfect string matching between entity names (case-insensitive) Confidence: 1.0 for exact matches, 0.0 otherwise Use case: High-precision scenarios with standardized entity names Performance: Fast, deterministic results * semantic_similarity: Uses semantic similarity calculation for fuzzy matching Confidence: Calculated similarity score (0-1) Use case: Handling variations in entity naming and expressions Performance: More comprehensive but computationally intensive Quality Score Calculation:	
* type: Relationship type (e.g., "Author", etc.) * target: Connected entity details * properties: Additional relationship properties • quality_score: Overall disambiguation quality (0-1) combining coverage and confidence • disambiguation_strategy: Strategy used - "exact_match" or "semantic_similarity" • similarity_threshold: Minimum confidence threshold for matches • standardization_suggestions: Actionable recommendations for entity standardization • summary: High-level statistics and performance metrics Disambiguation Strategies: • exact_match: Requires perfect string matching between entity names (case-insensitive) - Confidence: 1.0 for exact matches, 0.0 otherwise - Use case: High-precision scenarios with standardized entity names - Performance: Fast, deterministic results • semantic_similarity: Uses semantic similarity calculation for fuzzy matching - Confidence: Calculated similarity score (0-1) - Use case: Handling variations in entity naming and expressions - Performance: More comprehensive but computationally intensive	
* target: Connected entity details * properties: Additional relationship properties • quality_score: Overall disambiguation quality (0-1) combining coverage and confidence • disambiguation_strategy: Strategy used - "exact_match" or "semantic_similarity" • similarity_threshold: Minimum confidence threshold for matches • standardization_suggestions: Actionable recommendations for entity standardization • summary: High-level statistics and performance metrics Disambiguation Strategies: • exact_match: Requires perfect string matching between entity names (case-insensitive) - Confidence: 1.0 for exact matches, 0.0 otherwise - Use case: High-precision scenarios with standardized entity names - Performance: Fast, deterministic results • semantic_similarity: Uses semantic similarity calculation for fuzzy matching - Confidence: Calculated similarity score (0-1) - Use case: Handling variations in entity naming and expressions - Performance: More comprehensive but computationally intensive	
 * properties: Additional relationship properties • quality_score: Overall disambiguation quality (0-1) combining coverage and confidence • disambiguation_strategy: Strategy used - "exact_match" or "semantic_similarity" • similarity_threshold: Minimum confidence threshold for matches • standardization_suggestions: Actionable recommendations for entity standardization • summary: High-level statistics and performance metrics Disambiguation Strategies: • exact_match: Requires perfect string matching between entity names (case-insensitive) - Confidence: 1.0 for exact matches, 0.0 otherwise - Use case: High-precision scenarios with standardized entity names - Performance: Fast, deterministic results • semantic_similarity: Uses semantic similarity calculation for fuzzy matching - Confidence: Calculated similarity score (0-1) - Use case: Handling variations in entity naming and expressions - Performance: More comprehensive but computationally intensive Quality Score Calculation: 	
 quality_score: Overall disambiguation quality (0-1) combining coverage and confidence disambiguation_strategy: Strategy used - "exact_match" or "semantic_similarity" similarity_threshold: Minimum confidence threshold for matches standardization_suggestions: Actionable recommendations for entity standardization summary: High-level statistics and performance metrics Disambiguation Strategies: exact_match: Requires perfect string matching between entity names (case-insensitive) Confidence: 1.0 for exact matches, 0.0 otherwise Use case: High-precision scenarios with standardized entity names Performance: Fast, deterministic results semantic_similarity: Uses semantic similarity calculation for fuzzy matching Confidence: Calculated similarity score (0-1) Use case: Handling variations in entity naming and expressions Performance: More comprehensive but computationally intensive Quality Score Calculation: 	
 disambiguation_strategy: Strategy used - "exact_match" or "semantic_similarity" similarity_threshold: Minimum confidence threshold for matches standardization_suggestions: Actionable recommendations for entity standardization summary: High-level statistics and performance metrics Disambiguation Strategies: exact_match: Requires perfect string matching between entity names (case-insensitive) Confidence: 1.0 for exact matches, 0.0 otherwise Use case: High-precision scenarios with standardized entity names Performance: Fast, deterministic results semantic_similarity: Uses semantic similarity calculation for fuzzy matching Confidence: Calculated similarity score (0-1) Use case: Handling variations in entity naming and expressions Performance: More comprehensive but computationally intensive Quality Score Calculation: 	
 similarity_threshold: Minimum confidence threshold for matches standardization_suggestions: Actionable recommendations for entity standardization summary: High-level statistics and performance metrics Disambiguation Strategies: exact_match: Requires perfect string matching between entity names (case-insensitive) Confidence: 1.0 for exact matches, 0.0 otherwise Use case: High-precision scenarios with standardized entity names Performance: Fast, deterministic results semantic_similarity: Uses semantic similarity calculation for fuzzy matching Confidence: Calculated similarity score (0-1) Use case: Handling variations in entity naming and expressions Performance: More comprehensive but computationally intensive Quality Score Calculation: 	
 standardization_suggestions: Actionable recommendations for entity standardization summary: High-level statistics and performance metrics Disambiguation Strategies: exact_match: Requires perfect string matching between entity names (case-insensitive) Confidence: 1.0 for exact matches, 0.0 otherwise Use case: High-precision scenarios with standardized entity names Performance: Fast, deterministic results semantic_similarity: Uses semantic similarity calculation for fuzzy matching Confidence: Calculated similarity score (0-1) Use case: Handling variations in entity naming and expressions Performance: More comprehensive but computationally intensive Quality Score Calculation: 	
 summary: High-level statistics and performance metrics Disambiguation Strategies: exact_match: Requires perfect string matching between entity names (case-insensitive) Confidence: 1.0 for exact matches, 0.0 otherwise Use case: High-precision scenarios with standardized entity names Performance: Fast, deterministic results semantic_similarity: Uses semantic similarity calculation for fuzzy matching Confidence: Calculated similarity score (0-1) Use case: Handling variations in entity naming and expressions Performance: More comprehensive but computationally intensive Quality Score Calculation: 	
• exact_match: Requires perfect string matching between entity names (case-insensitive) - Confidence: 1.0 for exact matches, 0.0 otherwise - Use case: High-precision scenarios with standardized entity names - Performance: Fast, deterministic results • semantic_similarity: Uses semantic similarity calculation for fuzzy matching - Confidence: Calculated similarity score (0-1) - Use case: Handling variations in entity naming and expressions - Performance: More comprehensive but computationally intensive	
• exact_match: Requires perfect string matching between entity names (case-insensitive) - Confidence: 1.0 for exact matches, 0.0 otherwise - Use case: High-precision scenarios with standardized entity names - Performance: Fast, deterministic results • semantic_similarity: Uses semantic similarity calculation for fuzzy matching - Confidence: Calculated similarity score (0-1) - Use case: Handling variations in entity naming and expressions - Performance: More comprehensive but computationally intensive	
 exact_match: Requires perfect string matching between entity names (case-insensitive) Confidence: 1.0 for exact matches, 0.0 otherwise Use case: High-precision scenarios with standardized entity names Performance: Fast, deterministic results semantic_similarity: Uses semantic similarity calculation for fuzzy matching Confidence: Calculated similarity score (0-1) Use case: Handling variations in entity naming and expressions Performance: More comprehensive but computationally intensive Quality Score Calculation: 	
 Confidence: 1.0 for exact matches, 0.0 otherwise Use case: High-precision scenarios with standardized entity names Performance: Fast, deterministic results semantic_similarity: Uses semantic similarity calculation for fuzzy matching Confidence: Calculated similarity score (0-1) Use case: Handling variations in entity naming and expressions Performance: More comprehensive but computationally intensive 	
 Confidence: 1.0 for exact matches, 0.0 otherwise Use case: High-precision scenarios with standardized entity names Performance: Fast, deterministic results semantic_similarity: Uses semantic similarity calculation for fuzzy matching Confidence: Calculated similarity score (0-1) Use case: Handling variations in entity naming and expressions Performance: More comprehensive but computationally intensive 	
 Use case: High-precision scenarios with standardized entity names Performance: Fast, deterministic results semantic_similarity: Uses semantic similarity calculation for fuzzy matching Confidence: Calculated similarity score (0-1) Use case: Handling variations in entity naming and expressions Performance: More comprehensive but computationally intensive 	
 Performance: Fast, deterministic results semantic_similarity: Uses semantic similarity calculation for fuzzy matching Confidence: Calculated similarity score (0-1) Use case: Handling variations in entity naming and expressions Performance: More comprehensive but computationally intensive Quality Score Calculation:	
 semantic_similarity: Uses semantic similarity calculation for fuzzy matching Confidence: Calculated similarity score (0-1) Use case: Handling variations in entity naming and expressions Performance: More comprehensive but computationally intensive Quality Score Calculation:	
 Confidence: Calculated similarity score (0-1) Use case: Handling variations in entity naming and expressions Performance: More comprehensive but computationally intensive Quality Score Calculation:	
 Use case: Handling variations in entity naming and expressions Performance: More comprehensive but computationally intensive Quality Score Calculation:	
- Performance: More comprehensive but computationally intensive Quality Score Calculation:	
Quality Score Calculation:	
• Coverage component: (Disambiguated entities / Total entities) v 0.6	
• Confidence component: (Average confidence score) × 0.4	
• Final score: Weighted combination emphasizing coverage over individual confidence	
Standardization Suggestions Categories:	
• Unmatched entities: Alerts for entities without knowledge base matches	
• Low confidence matches: Warnings for matches below 0.9 confidence requiring verification	n
• Name standardization: Specific recommendations for entity name normalization	
• Knowledge base expansion: Suggestions for adding missing entities to knowledge base	
Summary Statistics:	
• total_entities: Count of entities processed for disambiguation	
disambiguated_entities: Count of successfully matched entities	

1621 1622 1623

1624 1625 1626

1627162816291630

1632 1633 1634

1635

1631

1636163716381639

1644

1645

164616471648

1649

1654

1655

1661

- disambiguation_rate: Success rate (disambiguated/total)
- average_confidence: Mean confidence across all disambiguation attempts
- unmatched_entities: Count of entities without suitable matches

Knowledge Base Integration:

- Connection: Establishes Neo4j database connection using provided configuration
- Search method: Type-specific entity searches with optional semantic similarity
- Relationship extraction: Retrieves connected entities and relationship types
- Performance tracking: Monitors search times for entities and relationships
- Connection management: Properly closes database connections after processing

Error Handling:

- Invalid strategy: Returns error message for unsupported disambiguation strategies
- Database connection issues: Handles Neo4j connectivity problems gracefully
- Empty results: Manages cases where no candidates are found in knowledge base
- Malformed entities: Processes entities with missing or invalid properties

Tool 6: Knowledge Graph Storage

Output Specification for query_kg_storage

This tool handles the storage of optimized knowledge graph extraction results into Neo4j database, creating nodes for entities and relationships for connections.

Output Format:

```
"storage_status": {
 "overall_success": boolean,
 "entities_storage": {
   "code": integer,
   "message": string,
   "stored_count": integer,
   "skipped_count": integer,
   "failed_count": integer
 "relations_storage": {
   "code": integer,
   "message": string,
   "stored_count": integer,
   "skipped_count": integer,
   "failed_count": integer
},
"storage_details": {
 "total_entities": integer,
 "total_relations": integer,
 "entity_types_processed": [string, ...],
 "relation_types_processed": [string, ...],
 "duplicates_detected": {
   "entity_duplicates": integer,
   "relation_duplicates": integer
 "processing_time": {
```

```
1674
1675
                 "entities_time": float,
                 "relations_time": float,
1676
                 "total_time": float
1677
1678
              }.
1679
              "final_kg": {
1680
                "entities": {
1681
                 "EntityType": ["EntityName1", "EntityName2", ...],
1682
1683
                "relations": {
1684
                 "RelationType": [
1685
                 {"subject": "HeadEntity", "object": "TailEntity"},
1686
                 ],
1687
                 . . .
1688
1689
              },
1690
              "storage_summary": {
1691
               "operation_timestamp": string,
                "database_config": {
1692
                 "host": string,
1693
                 "database": string
1694
1695
                "performance_metrics": {
1696
                 "entities_per_second": float,
                 "relations per second": float,
1697
                 "overall_throughput": float
1698
1699
1700
              "warnings": [string, ...],
1701
              "recommendations": [string, ...]
1702
1703
```

Field Descriptions:

1704

1705

1706

1707

17081709

1710

1711

1712

1713 1714

1715

1716

1717

1718

1719

1720 1721

1722

1723

1724

1725

1726

1727

- storage_status: Overall success status and detailed results for each storage operation
 - overall_success: Boolean indicating if both entities and relations were stored successfully
 - entities_storage: Entity storage results
 - * code: Status code (0 for success, -1 for failure)
 - * message: Descriptive status message
 - * stored_count: Number of entities successfully stored
 - * **skipped_count**: Number of entities skipped (duplicates)
 - * **failed_count**: Number of entities that failed to store
 - relations_storage: Relationship storage results with same structure
- storage_details: Comprehensive storage operation details
 - total_entities/relations: Total counts of items processed
 - entity/relation_types_processed: List of types successfully processed
 - duplicates_detected: Count of duplicate items identified and skipped
 - processing_time: Time metrics for different storage phases
- final_kg: The complete knowledge graph that was stored, maintaining original extraction format
- storage_summary: High-level operation summary and performance metrics
 - operation_timestamp: ISO timestamp of storage operation
 - database_config: Sanitized database connection information
 - performance_metrics: Throughput calculations and efficiency measures
- warnings: List of non-critical issues encountered during storage

1	728
1	729
1	
1	
1	
1	
1	734
1	735
1	736
1	737
1	738
1	739
1	740
1	741
1	742
1	743
1	744
1	745
1	746
1	747
1	748
1	749
1	750
1	751
1	752
1	753
1	754
1	755
1	756
1	757
1	758
1	759 760
1	761
1	762
1	763
1	764
1	765
1	766
1	767
1	768
1	769
1	770
1	771
1	772
1	773
1	774
1	775
1	776
1	777
1	778
1	779

• recommendations: Suggestions for optimization or follow-up actions

Storage Operations:

- Entity Storage: Creates Neo4j nodes with labels and name properties
 - Label sanitization: Removes special characters, replaces with underscores
 - Duplicate detection: Checks for existing nodes before creation
 - Batch processing: Processes entities by type for efficiency
 - Error handling: Continues processing despite individual failures
- Relationship Storage: Creates Neo4j relationships between existing nodes
 - Node validation: Ensures both subject and object nodes exist
 - Type mapping: Maps entity names to their corresponding types
 - **Duplicate prevention**: Avoids creating duplicate relationships
 - Referential integrity: Validates entity references before relationship creation

Status Codes:

- Code 0: Successful operation completion
- Code -1: Operation failure with error details in message
- Partial success: Different codes for entities vs. relations indicate partial completion

Error Handling:

- Connection failures: Database connectivity issues are caught and reported
- Schema violations: Invalid node labels or property names are sanitized
- Missing references: Relationships referencing non-existent entities are flagged
- Transaction integrity: Uses database transactions for consistency

Performance Optimization:

- Connection management: Uses context manager for proper resource cleanup
- Batch operations: Groups similar operations for efficiency
- Duplicate checking: Pre-checks existence to avoid unnecessary operations
- Label sanitization: Ensures Neo4j compatibility for node labels

Warning Categories:

- Duplicate entities: Entities already existing in database
- Missing entity references: Relations referencing undefined entities
- Label sanitization: Special characters replaced in entity type labels
- Performance concerns: Operations taking longer than expected

Recommendations:

- Index optimization: Suggestions for database index creation
- Data quality: Recommendations for improving entity naming consistency
- Performance tuning: Database configuration optimization suggestions
- Follow-up actions: Next steps after successful storage completion

A.5 IMPLEMENTATION DETAILS OF NEO4J

1782

17831784

1785

1786

1787

1811 1812

1813

1814

Unified Schema & Constraints. To ensure consistency and deduplication (corresponding to the constraint term $R_{\rm contr}$ in the main framework), we establish a hybrid schema supporting both tool-specific dynamic labels and framework-level unique constraints. Attributes include id, type, last_seen, confidence, source, and tool-specific properties.

```
1788
         CREATE CONSTRAINT entity_global_id IF NOT EXISTS
1789
         FOR (n:Entity) REQUIRE n.id IS UNIQUE;
1790 <sub>3</sub>
1791 4
         CREATE CONSTRAINT entity_name_type_unique IF NOT EXISTS
         FOR (n:Entity) REQUIRE (n.name, n.type) IS UNIQUE;
1792 5
1793 6
         CREATE INDEX entity_type IF NOT EXISTS
1794
    8
         FOR (n:Entity) ON (n.type);
1795 <sub>9</sub>
1796 10
         CREATE INDEX entity_name IF NOT EXISTS
         FOR (n:Entity) ON (n.name);
1797 11
1798 12
1799 ...
         CREATE INDEX entity_name_lower IF NOT EXISTS
         FOR (n:Entity) ON (toLower(n.name));
1800 15
1801 16
         CREATE CONSTRAINT rel_key IF NOT EXISTS
         FOR ()-[r:REL]-() REQUIRE (r.src_id, r.dst_id, r.rel_type) IS UNIQUE;
1802 17
1803^{\ 18}
1804 \frac{19}{20}
         CREATE CONSTRAINT tool_rel_uniqueness IF NOT EXISTS
         FOR ()-[r:RELATIONSHIP]-() REQUIRE (r.type, r.subject, r.object) IS UNIQUE;
1805 <sub>21</sub>
1806 22
         CREATE INDEX rel_last_seen IF NOT EXISTS
1807 23
         FOR ()-[r:REL]-() ON (r.last_seen);
1808 24
1809 25
         CREATE INDEX tool_rel_last_seen IF NOT EXISTS
    26
         FOR ()-[r:RELATIONSHIP]-() ON (r.last_seen);
1810
```

Batched Upsert with Tool Integration (U_{ζ}) . The extracted triples and tool-processed entities are inserted in batches (1000 rows per transaction). The system supports both framework-level batch processing and tool-specific entity storage with label sanitization.

```
1815
         UNWIND $triples AS t
1816 <sup>1</sup>
         CALL {
1817 2
          WITH t
1818 4
          MERGE (s:Entity {id: t.src.id})
1819 5
          ON CREATE SET s.type = t.src.type, s.created_at = datetime(),
1820 6
          s.source = t.doc_id, s.name = t.src.name
1821 7
          ON MATCH SET s.type = coalesce(s.type, t.src.type)
1822 8
          SET s += coalesce(t.src.props, {}), s.last_seen = datetime()
1823 10
          MERGE (o:Entity {id: t.dst.id})
1824 11
          ON CREATE SET o.type = t.dst.type, o.created_at = datetime(),
1825 12
          o.source = t.doc_id, o.name = t.dst.name
          ON MATCH SET o.type = coalesce(o.type, t.dst.type)
1826 13
1827 <sup>14</sup>
          SET o += coalesce(t.dst.props, {}), o.last_seen = datetime()
1828 16
    15
          MERGE (s)-[r:REL {src_id: t.src.id, dst_id: t.dst.id, rel_type: t.rel.type}]->(o)
1829<sub>17</sub>
          ON CREATE SET r.created_at = datetime(), r.source = t.doc_id
1830 18
          SET r.last_seen = datetime(),
1831 <sup>19</sup>
          r.confidence = coalesce(t.rel.conf, 0.5),
1832 <sup>20</sup>
          r.evidence = coalesce(r.evidence, []) + t.src_text
         } IN TRANSACTIONS OF 1000 ROWS;
1833 22
1834 <sub>23</sub>
         UNWIND $tool_entities as entity_batch
1835 24
    25 WITH entity_batch
```

1859

1860

1885 1886

1887

1888

```
1836
1837 26
27
           CALL apoc.create.node([entity_batch.sanitized_type], {
             name: entity_batch.name,
1838<sub>28</sub>
             type: entity_batch.original_type,
             created_at: datetime(),
1839 29
            last_seen = datetime(),
1840 <sup>30</sup>
1841 . 31
            source: "agentic_kgr_tool"
    32
           }) YIELD node
1842 33
           RETURN node
1843 34
         } IN TRANSACTIONS OF 1000 ROWS;
1844 35
1845 <sup>36</sup>
         UNWIND $tool_relations as rel_batch
1846 <sup>37</sup>
         CALL {
           WITH rel_batch
    38
1847 39
           MATCH (subj:Entity {name: rel_batch.subject, type: rel_batch.subject_type})
1848 <sub>40</sub>
           MATCH (obj:Entity {name: rel_batch.object, type: rel_batch.object_type})
1849 41
           MERGE (subj)-[r:RELATIONSHIP {
1850 <sup>42</sup>
            type: rel_batch.relation_type,
1851 43
44
             subject: rel_batch.subject,
            object: rel_batch.object
1852 <sub>45</sub>
           }]->(obj)
1853 46
           ON CREATE SET r.created_at = datetime(), r.confidence = 1.0
           SET r.last_seen = datetime()
1854 47
1855 <sup>48</sup>
           RETURN r
1856 <sup>49</sup>
         } IN TRANSACTIONS OF 1000 ROWS;
```

Dynamic Schema Extension with Staging. Low-confidence or novel relations are first staged in staging layer : PENDING_REL. Once cumulative evidence exceeds threshold τ , they are promoted in-place to standard : REL type, corresponding to dynamic schema extension in the framework.

```
1861
         UNWIND $candidates AS c
1862 1
1863 2
         MERGE (s:Entity {id: c.src.id})
         ON CREATE SET s.name = c.src.name, s.type = c.src.type
1864
         SET s.last_seen = datetime()
1865 5
1866 6
         MERGE (o:Entity {id: c.dst.id})
1867 7
         ON CREATE SET o.name = c.dst.name, o.type = c.dst.type
1868 8
         SET o.last_seen = datetime()
1869 10
         MERGE (s)-[p:PENDING_REL {src_id:c.src.id, dst_id:c.dst.id, rel_type:c.rel.type}]->(o
1870
1871 11
         ON CREATE SET p.created_at = datetime(), p.last_seen = datetime(),
         p.confidence = c.rel.conf, p.votes = 1, p.sources = [c.doc_id]
1872 12
1873^{\ 13}
         ON MATCH SET p.last_seen = datetime(),
1874 <sup>14</sup> <sub>15</sub>
         p.confidence = greatest(p.confidence, c.rel.conf),
         p.votes = p.votes + 1,
1875 <sub>16</sub>
         p.sources = p.sources + c.doc_id;
1876 17
         MATCH (s:Entity)-[p:PENDING_REL]->(o:Entity)
1877 18
1878 <sup>19</sup>
         WHERE p.confidence >= $tau_conf AND p.votes >= $tau_votes
1879 <sup>20</sup> <sub>21</sub>
         MERGE (s)-[r:REL {src_id:p.src_id, dst_id:p.dst_id, rel_type:p.rel_type}]->(o)
         ON CREATE SET r.created_at = datetime(), r.last_seen = p.last_seen,
1880 <sub>22</sub>
         r.confidence = p.confidence, r.evidence = p.sources
1881 23
         ON MATCH SET r.last_seen = datetime(),
         r.confidence = greatest(r.confidence, p.confidence),
1882 24
1883 <sup>25</sup>
         r.evidence = apoc.coll.toSet(coalesce(r.evidence, []) + p.sources)
         DELETE p;
1884 26
```

Aging & Consistency with Tool Integration. Relations not re-observed within window ξ days are decayed or removed, corresponding to aging and consistency penalty terms. This applies to both framework relations and tool-stored relationships.

```
1889

1 MATCH ()-[r:REL]-()
```

1906

1907

19251926

1927

1928

```
1890
         WITH r, duration.between(r.last_seen, datetime()).days AS days
1891
    3
         WHERE days > $soft_window
1892 4
        SET r.confidence = r.confidence * exp(-$decay_rate * (days - $soft_window));
1893 5
        MATCH () - [r:REL] - ()
1894 6
         WHERE duration.between(r.last_seen, datetime()).days > $hard_window
1895
        DELETE r;
1896 <sub>9</sub>
1897<sub>10</sub>
        MATCH () - [r:RELATIONSHIP] - ()
1898 11
         WHERE r.last_seen < datetime() - duration({days: $aging_threshold})
1899 12
         SET r.confidence = r.confidence * $decay_factor;
1900 13
        MATCH () - [r:RELATIONSHIP] - ()
    14
1901 15
         WHERE r.last_seen < datetime() - duration({days: $hard_threshold})</pre>
1902 16
         AND r.confidence < $min_confidence
        DELETE r;
1903 17
1904
```

Disambiguation with Framework Integration. Supporting both exact match and semantic similarity strategies from the disambiguation tool, integrated with framework-level entity management.

```
1908
        MATCH (e:Entity {name: $entity_name})
1909 2
        WHERE e.type = $entity_type
1910 3
        RETURN e, e.type as type, e.id as framework_id;
1911 4
1912 5
        MATCH (e)
        WHERE labels(e)[0] = $sanitized_entity_type
    6
1913 7
        AND toLower(e.name) = toLower($entity_name)
1914<sub>8</sub>
        RETURN e, e.type as original_type, labels(e)[0] as sanitized_type;
1915 9
1916 10
        MATCH (e:Entity)
1917 <sup>11</sup>
        WHERE e.type = $entity_type
    12
        RETURN e.name as name, e as node, e.id as framework_id;
1918
    13
1919 14
        MATCH (e:Entity {name: $entity_name})-[r]-(related:Entity)
1920 15
        WHERE e.type = $entity_type
1921 16
        RETURN r.rel_type as relationship_type,
1922 17
        related as target_entity,
    18
        r as relationship_properties,
1923
        type(r) as relation_class;
1924
```

Coverage & Entropy Metrics (reward proxies). For retrieval coverage and structural diversity, we provide quantities computable within Neo4j: (i) coverage gain (proportion of newly introduced target-domain entities/relations), (ii) degree-distribution entropy (Shannon entropy as structural diversity proxy).

```
1929
        MATCH (n:Entity) WHERE n.source = $doc_id SET n.episode_tag = $ep;
1930
        MATCH ()-[r:REL]-() WHERE r.source = $doc_id SET r.episode_tag = $ep;
1931
        MATCH ()-[r:RELATIONSHIP]-() WHERE r.source = $doc_id SET r.episode_tag = $ep;
1932 4
1933 5
        MATCH (n:Entity) WHERE n.episode_tag = $ep
1934 6
        WITH count (n) AS curE
1935 7
        MATCH (n:Entity) WHERE n.episode_tag = $prev_ep
        WITH curE, count(n) AS prevE
1936 9
        RETURN (toFloat(curE - prevE) / greatest(1.0, prevE)) AS coverage_gain;
1937 <sub>10</sub>
1938 11
        MATCH ()-[r:REL]-() WHERE r.episode_tag = $ep
        WITH count (r) AS curR framework
1939 12
1940^{\ 13}
        MATCH ()-[r:RELATIONSHIP]-() WHERE r.episode_tag = $ep
    14
        WITH curR_framework, count(r) AS curR_tool
1941 15
        MATCH ()-[r:REL]-() WHERE r.episode_tag = $prev_ep
1942 <sub>16</sub>
        WITH curR_framework, curR_tool, count(r) AS prevR_framework
1943 17
        MATCH ()-[r:RELATIONSHIP]-() WHERE r.episode_tag = $prev_ep
        WITH curR_framework, curR_tool, prevR_framework, count(r) AS prevR_tool
    18
```

1959

1960

1983 1984

1985

```
1944
         WITH (curR_framework + curR_tool) AS curR, (prevR_framework + prevR_tool) AS prevR
1945 <sub>20</sub>
         RETURN (toFloat(curR - prevR) / greatest(1.0, prevR)) AS rel_coverage_gain;
1946 <sub>21</sub>
         MATCH (n:Entity)
1947 22
         OPTIONAL MATCH (n) - [r:REL] - ()
1948 <sup>23</sup>
1949 24
         OPTIONAL MATCH (n) - [rt:RELATIONSHIP] - ()
    25
         WITH n, count(r) + count(rt) AS deg
1950 <sub>26</sub>
         WITH collect (deg) AS degs
1951<sub>27</sub>
         UNWIND degs AS d
1952 28
         WITH d, size (degs) AS N, reduce (s=0, x IN degs | s + x) AS total_deg
1953 <sup>29</sup>
         WITH d, N, toFloat(d)/toFloat(total_deg) AS p
1954 30
         WHERE p > 0
         WITH collect(-p * log(p)) AS terms
    31
1955 32
         RETURN reduce (s=0.0, x IN terms | s + x) AS degree_entropy;
1956
```

Time-Consistency Regularizer. Using normalized Laplacian $L = I - D^{-1/2}AD^{-1/2}$ with degree matrix D and adjacency A. Neo4j exports sparse adjacency with stable node ordering for computing $||L_{t+1} - L_t||_F^2$ (for R_{env} regularization term).

```
1961
         MATCH (n:Entity)
1962 <sup>1</sup>
         WITH n ORDER BY coalesce (n.id, n.name) ASC
1963
         WITH collect (coalesce (n.id, n.name)) AS ids_t
    3
1964 4
         MATCH (s:Entity) - [r] -> (o:Entity)
1965 5
         WHERE (r.episode_tag = $t OR r:RELATIONSHIP)
         AND (r:REL OR r:RELATIONSHIP)
1966 6
1967 7
         WITH ids_t, collect({
          i: coalesce(s.id, s.name),
1968 9
           j: coalesce(o.id, o.name),
1969<sub>10</sub>
          type: coalesce(r.rel_type, r.type)
         }) AS edges_t
1970 11
         RETURN ids_t AS ids, edges_t AS edges;
1971 12
1972^{\ 13}
         MATCH (n:Entity)
1973 15
         WITH n ORDER BY coalesce (n.id, n.name) ASC
1974 <sub>16</sub>
         WITH collect (coalesce (n.id, n.name)) AS ids_tp1
1975 17
         MATCH (s:Entity) - [r] -> (o:Entity)
         WHERE (r.episode_tag = $tp1 OR r:RELATIONSHIP)
1976 18
1977 19
         AND (r:REL OR r:RELATIONSHIP)
1978 <sup>20</sup> 21
         WITH ids_tp1, collect({
          i: coalesce(s.id, s.name),
1979 <sub>22</sub>
           j: coalesce(o.id, o.name),
          type: coalesce(r.rel_type, r.type)
1980 23
1981 24
         }) AS edges_tp1
1982 <sup>25</sup>
         RETURN ids_tp1 AS ids, edges_tp1 AS edges;
```

Tool Workflow Integration. Queries supporting the six-tool Agentic-KGR workflow with unified access to both framework and tool-stored data.

```
1986
1987 1
        MATCH (e:Entity)
        WITH e.type as entity_type, count(e) as entity_count
1988 <sup>2</sup>
1989 3
        MATCH () - [r:REL] - ()
        WITH entity_type, entity_count, r.rel_type as rel_type, count(r) as rel_count
1990 5
        MATCH ()-[rt:RELATIONSHIP]-()
1991 6
        WITH entity_type, entity_count, rel_type, rel_count,
        rt.type as tool_rel_type, count(rt) as tool_rel_count
1992 7
        RETURN entity_type, entity_count,
1993 8
1994 9
        collect({type: rel_type, count: rel_count, source: "framework"}) +
    10
        collect({type: tool_rel_type, count: tool_rel_count, source: "tool"}) as relations;
1995 11
1996 <sub>12</sub>
        WITH $schema_entity_types as expected_types
1997 13
        MATCH (e:Entity)
        WITH expected_types, collect(distinct e.type) as found_types
```

2019

2041

2042

2043

```
1998
        RETURN [t IN expected_types WHERE NOT t IN found_types] as missing_types;
1999 16
2000 17
        MATCH () - [r:REL] - ()
        OPTIONAL MATCH (subj:Entity {id: r.src_id})
2001 18
        OPTIONAL MATCH (obj:Entity {id: r.dst_id})
2002 19
2003 _
        WITH r, subj, obj, "framework" as source,
        CASE WHEN subj IS NULL THEN 1 ELSE 0 END as missing_subject,
    21
2004 - 22
        CASE WHEN obj IS NULL THEN 1 ELSE 0 END as missing_object
2005 <sub>23</sub>
2006 24
        UNION ALL
2007 25
        MATCH () - [rt:RELATIONSHIP] - ()
2008 26
        OPTIONAL MATCH (subj_t:Entity {name: rt.subject})
2009 28
        OPTIONAL MATCH (obj_t:Entity {name: rt.object})
2010 29
        WITH rt as r, subj_t as subj, obj_t as obj, "tool" as source,
2011 30
        CASE WHEN subj_t IS NULL THEN 1 ELSE 0 END as missing_subject,
2012 31
        CASE WHEN obj_t IS NULL THEN 1 ELSE 0 END as missing_object
2013 32
    33
        RETURN source, sum(missing_subject) as orphaned_subjects,
2014 34
        sum(missing_object) as orphaned_objects,
2015 35
        count(r) as total_relations;
2016
```

Snapshotting and Safety Checks. For reproducibility and rollback, snapshot nodes record version boundaries. Safety checks enforce lightweight conflict rules before insertion.

```
2020
2021 2
        CREATE (ss:GraphSnapshot {
          sid: $sid,
2022 3
          created_at: datetime(),
2023 4
         note: $note,
         tool_version: "agentic_kgr_v1"
2024 5
        });
2025 6
2026
        MATCH (n:Entity) WHERE n.episode_tag = $ep OR n.source = $doc_id
2027 9
        SET n.snapshot = $sid;
2028 10
        MATCH ()-[r:REL]-() WHERE r.episode_tag = $ep SET r.snapshot = $sid;
2029 11
        MATCH ()-[r:RELATIONSHIP]-() WHERE r.source = $doc_id SET r.snapshot = $sid;
2030 12
2031 13
        MATCH (s:Entity) - [r] - (o:Entity)
        WHERE (r.episode_tag = $ep OR r.source = $doc_id)
2032 15
        AND (coalesce(s.id, s.name) = coalesce(o.id, o.name))
2033 16
        AND NOT coalesce (r.rel_type, r.type) IN $selfloop_whitelist
        RETURN count(r) AS self_loops, collect(distinct coalesce(r.rel_type, r.type)) as
2034 17
            types;
2035
2036 18
        MATCH ()-[r]-()
2037 <sub>20</sub>
        WHERE (r.episode_tag = $ep OR r.source = $doc_id)
2038 21
        AND NOT coalesce (r.rel_type, r.type) IN $allowed_rel_types
        RETURN coalesce (r.rel_type, r.type) AS invalid_type, count (*) AS n LIMIT 20;
2039 22
2040
```

End-to-End Episode Pipeline. Complete pipeline for one episode: extraction \rightarrow staging \rightarrow promotion \rightarrow aging/cleanup \rightarrow metrics evaluation \rightarrow snapshotting, integrating both framework and tool operations.

```
2044 1
        :PARAM ep => 137, doc_id => 'wireless-42', tau_conf => 0.72, tau_votes => 3,
2045 2
        soft_window => 7, hard_window => 45, decay_rate => 0.08;
2046 3
        // 1) Stage framework candidates
2047 4
2048 5
        UNWIND $candidates AS c
        MERGE (s:Entity {id: c.src.id})
        ON CREATE SET s.type = c.src.type, s.name = c.src.name
2050 8
        SET s.last_seen = datetime()
2051 9
        MERGE (o:Entity {id: c.dst.id})
        ON CREATE SET o.type = c.dst.type, o.name = c.dst.name
   10
```

2091

2092

```
2052
        SET o.last seen = datetime()
2053 12
        MERGE (s)-[p:PENDING_REL {src_id:c.src.id, dst_id:c.dst.id, rel_type:c.rel.type}]->(o
        ON CREATE SET p.created_at = datetime(), p.confidence = c.rel.conf,
2055 13
        p.votes = 1, p.sources = [c.doc_id], p.episode_tag = $ep
2056 14
2057 15
        ON MATCH SET p.votes = p.votes + 1, p.confidence = greatest(p.confidence, c.rel.conf)
2058 16
2059 17
         // 2) Store tool entities and relationships
2060 18
        CALL apoc.periodic.iterate(
2061 19
         "UNWIND $tool_entities as entity RETURN entity",
2062 \frac{20}{21}
         "MERGE (e:Entity {name: entity.name, type: entity.type})
        ON CREATE SET e.created_at = datetime(), e.source = 'agentic_kgr_tool'
2063 22
        SET e.last_seen = datetime()",
2064 23
        {batchSize: 1000, params: {tool_entities: $tool_entities}}
2066 <sup>25</sup>
2067 <sup>26</sup> 27
        // 3) Promote staging to permanent relations
        MATCH (s) - [p:PENDING_REL] -> (o)
2068 28
        WHERE p.episode_tag = $ep AND p.confidence >= $tau_conf AND p.votes >= $tau_votes
2069 <sub>29</sub>
        MERGE (s)-[r:REL {src_id:p.src_id, dst_id:p.dst_id, rel_type:p.rel_type}]->(o)
2070 30
        ON CREATE SET r.created_at = datetime(), r.confidence = p.confidence,
2071 31
        r.evidence = p.sources, r.episode_tag = $ep
2072 32
        ON MATCH SET r.confidence = greatest (r.confidence, p.confidence),
    33
        r.evidence = apoc.coll.toSet(r.evidence + p.sources)
2073 34
        DELETE p;
2074 35
         // 4) Apply aging across all relation types
2075 36
        MATCH ()-[r]-()
2076 37
2077 38
        WHERE r: REL OR r: RELATIONSHIP
        WITH r, duration.between(r.last_seen, datetime()).days AS days
    39
2078 40
        FOREACH (_ IN CASE WHEN days > $soft_window AND days <= $hard_window THEN [1] ELSE []
2079
        SET r.confidence = r.confidence * exp(-$decay_rate * (days - $soft_window))
2080 41
2081 42
2082 43
        FOREACH (_ IN CASE WHEN days > $hard_window THEN [1] ELSE [] END | DELETE r);
2083 45
         // 5) Create snapshot
2084 46
        CREATE (ss:GraphSnapshot {sid: toString($ep), created_at: datetime(),
2085 47
         note: 'unified-framework-tool-snapshot' });
        MATCH (n:Entity) WHERE n.episode_tag = $ep OR n.source CONTAINS 'agentic_kgr'
2086 48
2087 -
        SET n.snapshot = toString($ep);
        MATCH ()-[r]-() WHERE r.episode_tag = $ep OR r.source CONTAINS 'agentic_kgr'
    50
2088 51
        SET r.snapshot = toString($ep);
2089
```

Disambiguation Queries. Supporting both exact match and semantic similarity strategies from the disambiguation tool. The exact match strategy provides deterministic results, while semantic similarity enables fuzzy matching.

```
2093 1
      MATCH (e {name: $entity_name})
2094 2 WHERE labels(e)[0] = $entity_type
2095 3 RETURN e, labels(e)[0] as type;
2096 4
2097 5 MATCH (e)
    6 WHERE labels(e)[0] = $entity_type
2098 7
      AND toLower(e.name) = toLower($entity_name)
      RETURN e, labels(e)[0] as type;
2100 9
2101 10 MATCH (e)
2102 11 WHERE labels(e)[0] = $entity_type
   12 RETURN e.name as name, e as node;
2103 13
2104 4 MATCH (e {name: $entity_name})-[r:RELATIONSHIP]-(related)
2105 15 WHERE labels (e) [0] = $entity_type
   16 RETURN r.type as relationship_type,
```

2111

2132

2133

2134

21422143

2144

```
2106
2107
18
2108
related as target_entity,
r as relationship_properties;
```

Integration with Agentic-KGR Tool Workflow. The storage operations integrate with the six-tool workflow, supporting density assessment feedback, coverage analysis, and quality metrics through efficient queries.

```
2112
      MATCH (e)
2113
    2 UNWIND labels(e) as label
2114 3 WITH label, count(e) as entity_count
2115 4 MATCH ()-[r:RELATIONSHIP]->()
2116 5 WITH label, entity_count, r.type as rel_type, count(r) as rel_count
    6 RETURN label as entity_type, entity_count,
2117
      collect({type: rel_type, count: rel_count}) as relations;
2118
2119 9 WITH $schema_entity_types as expected_types
2120<sub>10</sub> MATCH (e)
      WITH expected_types, collect(distinct labels(e)[0]) as found_types
2121 11
      RETURN [t IN expected_types WHERE NOT t IN found_types] as missing_types;
2122 12
2123 13
      MATCH () - [r:RELATIONSHIP] -> ()
2124 15 OPTIONAL MATCH (subj {name: r.subject})
2125 16 OPTIONAL MATCH (obj {name: r.object})
2126 17 WITH r, subj, obj,
2127 18 CASE WHEN subj IS NULL THEN 1 ELSE 0 END as missing_subject,
2128 20 PETUDN - CASE WHEN obj IS NULL THEN 1 ELSE 0 END as missing_object
    20 RETURN sum (missing_subject) as orphaned_subjects,
2129 21 sum (missing_object) as orphaned_objects,
2130 22 count(r) as total_relations;
2131
```

Aging & Consistency. Relations not re-observed within window ξ days are decayed or removed, corresponding to the aging and consistency penalty terms. This complements the tool's quality assessment capabilities.

```
2135 1
2136 2
WHERE r.last_seen < datetime() - duration({days: $aging_threshold})

2137 3
DELETE r;

2138 4
2139 5
WHERE r.last_seen < datetime() - duration({days: $decay_threshold})

3140 6
7
SET r.confidence = r.confidence * $decay_factor;
```

Performance Optimizations. Optimizations specific to the tool implementation patterns, including batch processing and connection management.

```
2145
2146
      UNWIND $entity_names as name
    2 OPTIONAL MATCH (e {name: name})
2147
    3 WHERE labels(e)[0] = $entity_type
2148 4 RETURN name, e IS NOT NULL as exists;
2149 5
2150 6 UNWIND $relations_batch as rel
2151 7 OPTIONAL MATCH ()-[r:RELATIONSHIP {
    8
        type: rel.relation_type,
2152 9
        subject: rel.subject,
2153 10
       object: rel.object
2154 11 } ] -> ()
2155 12 WITH rel, r IS NOT NULL as exists
2156 13 WHERE NOT exists
   14 RETURN rel;
2157 15
2158 16 CALL dbms.listConnections()
2159 17 YIELD connectionId, connectTime, connector, userAgent
   18 WHERE connectTime > datetime() - duration({minutes: 5})
```

2165

21792180

```
2160 19 2161 20 RETURN count(*) as active_connections, avg(duration.inSeconds(datetime(), connectTime)) as avg_duration; 2162
```

Error Handling and Validation. Safety checks aligned with tool implementation error handling, including connection failures and data validation.

```
2166
    1 MATCH (e {name: $entity_name})
2167
    2 WITH e, labels(e) as current_labels, $expected_type as expected
2168 3 WHERE NOT expected IN current_labels
2169 4 RETURN e.name as inconsistent_entity,
2170 5 current_labels, expected;
2171
    7 MATCH ()-[r:RELATIONSHIP]->()
2172 8 OPTIONAL MATCH (subj {name: r.subject})
2173 9 OPTIONAL MATCH (obj {name: r.object})
2174 10 WHERE subj IS NULL OR obj IS NULL
2175 11 RETURN r.type as problematic_relation,
2176 12 r.subject, r.object,
   13 subj IS NULL as missing_subject,
   14 obj IS NULL as missing_object;
2178
```

Tool-Specific Metrics. Metrics collection supporting the iterative feedback and quality assessment tools.

```
2181
    1 MATCH (⊖)
2182
    2
      WITH labels(e)[0] as entity_type, count(e) as count
2183
    3 MATCH () - [r:RELATIONSHIP] -> ()
2184 4 WITH entity_type, count, r.type as rel_type, count(r) as rel_count
2185 5 RETURN {
2186 6 timestamp: datetime(),
2187 7
        entity_counts: collect({type: entity_type, count: count}),
        relation_counts: collect({type: rel_type, count: rel_count}),
2188 9
       total_entities: sum(count),
2189 10
       total_relations: sum(rel_count)
2190 11 } as iteration_snapshot;
2191 12
2192 13 WITH $schema_types as expected
    14 MATCH (e)
2193 15 WITH expected, collect(distinct labels(e)[0]) as found
2194 16 UNWIND expected.entity_schema as expected_entity_type
2195 17 WITH expected_entity_type, expected_entity_type IN found as covered
2196 18 RETURN {
2197 . 19
       entity_coverage: {
2197
2198 20
21
         total: size(expected.entity_schema),
          covered: sum (CASE WHEN covered THEN 1 ELSE 0 END),
2199 22
         missing: [t IN expected.entity_schema WHERE NOT t IN found]
2200 23
2201 24 } as coverage_report;
2202
```