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Abstract

Retrieval-augmented Generation (RAG) extends
large language models (LLMs) with external
knowledge but faces key challenges: restricted ef-
fective context length and redundancy in retrieved
documents. Pure compression-based approaches
reduce input size but often discard fine-grained
details essential for factual accuracy. We propose
SARA, a unified RAG framework that balances
local precision and global knowledge coverage
under tight context budgets. SARA combines
natural-language text snippets with semantic com-
pression vectors to jointly enhance context ef-
ficiency and answer correctness. It represents
contexts at two complementary levels: 1) fine-
grained natural-language spans that preserve crit-
ical entities and numerical values, and 2) com-
pact, interpretable vectors that summarize high-
level semantics. An iterative evidence-selection
module employs the compression vectors for dy-
namic reranking of contexts. Across 9 datasets
and 5 open-source LLMs spanning 3 model fam-
ilies (Mistral, Llama, and Gemma), SARA con-
sistently improves answer relevance (+17.71), an-
swer correctness (+13.72), and semantic similar-
ity (+15.53), demonstrating the importance of in-
tegrating textual and compressed representations
for robust, context-efficient RAG.

1. Introduction

Large language models (LLMs) have demonstrated remark-
able capabilities across various natural language understand-
ing and generation tasks (Xiao et al., 2024; Zhao et al.,
2024). Meanwhile, as LLMs are parametric in nature,
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their knowledge is inherently constrained by the scope, do-
main, and recency of their training data (Liu et al., 2025).
Retrieval-augmented generation (RAG) (Lewis et al., 2020)
addresses this by retrieving from external non-parametric
knowledge sources, essential for knowledge-intensive tasks.

Challenges. Despite its promise, RAG still faces key chal-
lenges in effectively retrieving, selecting, and integrating
external evidence. 1) Limited Effective Context. While some
LLMs support long inputs, their attention is biased toward
earlier tokens (Li et al., 2024b), making them sensitive to
input order and prone to overlooking important information
near the end of the input (Yu et al., 2024). Extending usable
context often requires costly, model-specific architectural
changes (Ding et al., 2023). 2) Context Redundancy. Re-
trieved documents often include redundant or loosely struc-
tured content (e.g. transcripts or news articles) (Yu et al.,
2024; Ge et al., 2024). Without careful post-processing,
duplicate or irrelevant content inflates token usage, distracts
the model, degrades answer quality or even leads to halluci-
nations. 3) Compression-fidelity Trade-off. Existing context
compression techniques reduces input length but often sac-
rifice fine-grained details (e.g. numeric values, organization
names, and geographical locations), leading to hallucinated
or incomplete responses. While existing methods achieve
high compression rates, aggressive compression process risk
discarding critical information essential for factual accuracy.

This Work. We present SARA, a unified RAG framework
that improves both retrieval and generation stages through
structured evidence compression and adaptive selection.
From the generation perspective, SARA represents long
contexts using a small number of semantically rich, self-
contained compression vectors, which act as lightweight
abstractive summaries that preserve essential information
while significantly reducing input length. Specifically, we
leverage state-of-the-art embedding models (Meng et al.,
2024; Muennighoff et al., 2023) to encode retrieved docu-
ments into multiple, semantically rich compression vectors.
These vectors are also explainable and can be interpreted
through auto-encoding to reveal their underlying semantics.
From the retrieval perspective, SARA introduces an itera-
tive evidence selection mechanism that leverages the com-
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Figure 1: SARA reasons over a mixture of compressed evidence and natural language contexts to balance local precision
and global coverage when generating responses. An iterative evidence reranking step selects contexts for relevance and
diversity. The retriever, compressor, and QA model uses a variety of embedding models.

pression vectors to dynamically refine the set of top-ranked
documents. SARA progressively selects contexts based
on the knowledge required to properly address the query
and knowledge coverage of existing contexts, minimizing
redundancy while maximizing informativeness. SARA is
agnostic to the choice of embedding models, open-source
LLMs, and retrievers. Our contributions are as follows:

* We propose SARA, a novel RAG framework for long-
context tasks. SARA introduces a hybrid compres-
sion strategy, balancing local precision using natural
language spans and global abstraction via compression
vectors, enabling fine-grained reasoning and holistic un-
derstanding within strict context budgets.

* We propose an iterative context refinement mechanism
based on the compression vectors to dynamically opti-
mize the retrieved context by reducing redundancy and
prioritizing query-relevant content.

* Comprehensive experiments on 5 LLMs spanning 3
model families, including Mistral-7B, MistralNemo-
12B, MistralSmall-24B, Llama-3.1-8B, and Gemma3-4B,
demonstrate that SARA consistently improves perfor-
mance and generalizes well across LLMs (Section B.2),
retrievers (Section B.3), and embedding models (Ap-
pendix B.7).

2. Method

2.1. Problem Formulation

A retrieval-augmented generation (RAG) pipeline consists
of a retriever that fetches relevant evidence from a large-
scale corpus based on the input query and a generator that
synthesizes the evidence to answer the query. Given a query
q and corpus C, the retriever R(-) selects the top-n relevant
contexts Vs € C. To improve effectiveness, RAG may

incorporate a reranking step to reorder the input documents,
prioritizing the most relevant ones for answer generation.

2.2. Overview

LLMs have limited effective context windows, and perfor-
mance degrades when key information is buried in long
inputs (Jiang et al., 2024). SARA mitigates this by com-
pressing long context into compact vectors while selectively
retaining essential evidence in natural language, preserving
model capacity for the most relevant content.

SARA follows a two-stage training procedure: During Com-
pression Learning, SARA learns to reconstruct original
context from compression vectors. In Instruction-tuning,
SARA is adapted to rerank the evidence using the com-
pression vectors and reason over mixed inputs—combining
natural language and compressed evidence. Our method is
model-agnostic, compatible with any retrievers, embedding
models, and open-source LLMs. A lightweight projection
layer aligns the embedding space with the LLM space, re-
quiring no significant changes to internal components like
the attention mechanism, enabling seamless integration with
future embedding models and LLMs. Sample prompts for
all stages are provided in Table 8.

2.3. Compression Learning

An effective compression mechanism should meet three
core principles: 1) Semantic Fidelity—preserving sufficient
information for accurate context reconstruction; 2) Token
Compatibility—producing compression vectors interpretable
by LLMs via prompting; and 3) Scalability-requiring mini-
mal adaptation across retrievers and LLMs.

To meet these goals, SARA leverages sentence embed-
dings (Reimers & Gurevych, 2019) aligned with the LLM’s
token space, enabling compact and interpretable representa-
tions that support reasoning under tight context budgets.
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Embedding Alignment. SARA encodes each text chunk
into a compression vector that fits within a single token’s
embedding space (Figure 3). A lightweight compressor—
combining a sentence embedding model and an MLP—-is
trained via an autoencoding task (Liu et al., 2023b; Cheng
et al., 2024) to align sentence embeddings with the LLM’s
token space:

Latign(si) = —log Py (s; | Enc(s;), Tins) - (1

Here, s; is a text chunk, Enc(-) is the compressor, 8 is the
model’s parameter, and i, is the decoding instruction such
as “The token <C> can be interpreted as: [CHUNK].” As
one compression vector has limited representation capacity,
we segment each document into chunks, and encode each
chunk as a separate compression vector. We adopt a cur-
riculum learning strategy (Bengio et al., 2009; Wang et al.,
2021) to improve training stability (Appendix A.3).

Context Reconstruction. After learning to decode indi-
vidual compression vectors, we extend the model to full
context reconstruction:

Lrecons(€) = —log Py(c | {Enc(s;),Vs; € ¢}, xins). (2)

Here, c is a document composed of multiple chunks {s;},
each encoded as a separate vector. Unlike traditional extrac-
tive or abstractive summarization methods (Xu et al., 2024)
that require multiple passes, these vectors naturally serve as
high-ratio, parallelizable summaries.

Training Corpus Selection. Since the goal is to align
the embedding spaces, the pretraining corpus is domain-
agnostic and can be drawn from any natural language
dataset. We use the Wikipedia dataset (Izacard et al., 2023),
which provides broad topical diversity and diverse narrative
styles, and has proven effective for language model pretrain-
ing (Gao et al., 2023). In Section B.6 and Tables 11/9, we
demonstrate that these compression vectors are able to en-
code detailed information, such as exact organization names,
academic terms, and numeric values.

2.4. Instruction-tuning and Inference

Simple ‘retrieve-and-read’ pipelines often implies redun-
dant evidence and overlook interdependencies between pre-
viously retrieved and newly needed information (Wang et al.,
2024). In long-context understanding, what should be re-
trieved next hinges on what has already been inferred from
previously retrieved evidence (Sarthi et al., 2024; Li et al.,
2024a). To address this, SARA leverages a 2-stage context
refinement, which interleaves retrieval and reasoning: 1) a
coarse retrieval step eliminating irrelevant documents while
maintaining computational efficiency; 2) a fine-grained
reranking step that iteratively refines contexts for informa-
tiveness, relevance, and diversity.

Instruction-tuning. Initially, SARA is instruct-tuned to
holistically reason over both formats—the top-k passages

are input as natural text, while the remaining are passed
as compression vectors (Figure 1). For faster training, we
instruct-tune the LLM generator on downstream tasks with
LoRA (Hu et al., 2021) using top-n contexts retrieved via
BM25 (Robertson et al., 2004).

Dynamic Evidence Reranking. Effective RAG requires
balancing relevance—which ensures alignment with the user
query—and novelty—which introduces new information be-
yond existing evidence. To achieve this, we adopt an itera-
tive evidence selection method (Algorithm 1) that dynami-
cally selects context based on its incremental value to model
understanding.

Embedding-based Novelty ranks candidates based on their
contribution to the model’s discrepancy in knowledge, se-
lecting the vector that minimizes the discrepancy between
the selected set Ve with the query representation v, in the
embedding space:

SelectEvi(q, Vser, V) 3)

= argmin [|v, — Aggregate ({Enc(v) | v € Vet U {vi}})|5 -

Vi eV\Vsel

“

Since the user query is usually succinct, we supplement the
query representation v, by aggregating the embeddings of
both the question and the top-1 retrieved context: v, =
Avg(Enc(q), Enc(v1)).

Conditional Self-information (CSI). An alternative is to se-
lect evidence based on CSI (Shannon, 1948), which quanti-
fies the surprisal of new evidence given previously selected
evidence:

SelectEvi(gq, Vsel, V) = argmax I(v;|Vser) 5)
v; €V \Vgel

[vi

1 i -
[(1}1|Vbel):mz—10gp(wi |’U7jevsel7wi17""wi 1)
7 =1

(6)
where I(v;|Vse1) = — log P(v;|Vser) is the conditional self-
information of context v; given selected contexts Ve, €s-
timated using a smaller proxy language model. Higher
CSI introduces novel information, while lower CSI sug-
gests redundancy with previously selected content. Filtering
low-CSI candidates reduces repetition and enhances context
diversity with minimal impact on overall informativeness.

3. Evaluation
3.1. Overall Performance

Results under Context Constraints. Tables 2 and 1 com-
pare SARA and strong compression-based methods un-
der strict context length constraints (512 and 1024 tokens).
SARA consistently outperforms baselines on both lexical
(F1, ROUGE-L) and LLM-based evaluation metrics. Under
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QASPER  NarrativeQA  TriviaQA

QuALITY  HotpotQA

512 tokens

F1 RL FI RL F1 RL FlI RL FlI R-L
ICAE 26.64 23.53 37.58 38.08 53.47 49.16 26.79 28.20 53.18 44.05
LLMLingua 31.29 32.38 50.26 48.58 63.22 58.95 30.53 31.48 57.36 49.30
LongLLMLingua 29.49 28.31 41.90 39.27 66.28 62.76 36.13 38.03 64.34 60.32
SARA 36.23 39.17 55.64 54.90 82.50 81.74 42.27 43.62 83.03 75.56
Impr. % 158 21.0 107 130 245 302 17.0 147 29.0 253
1024 tokens QASPER  NarrativeQA  TriviaQA  QuALITY  HotpotQA

F1I RL FI RL F1 RL FlI RL FlI R-L
ICAE 31.82 33.32 36.70 38.35 51.07 49.78 28.15 29.88 64.51 55.60
LLMLingua 33.18 32.19 50.09 52.46 71.92 67.01 33.82 34.90 62.80 60.71
LongLLMLingua 34.09 33.47 5248 51.17 72.64 67.47 36.57 33.18 69.21 67.88
SARA 40.37 42.24 55.96 56.01 83.67 82.16 42.40 44.19 83.77 76.37
Impr. % 184 262 6.6 6.8 152 21.8 159 26.6 21.0 125

Table 1: Performance of compression methods under context length constraints (512/1024 tokens) in terms of F1 scores and
ROUGE-L (R-L). Improvements over the best models are shown with Impr. %.

512 tokens, SARA improves F1 by 19.4% and ROUGE-L
by 20.8% on average. We observe that the gains are particu-
larly significant on knowledge-intensive tasks like TriviaQA
(+24.5%) and HotpotQA (+29.0%), which require facts and
reasoning. Improvements on narrative-style tasks (e.g. Nar-
rativeQA) are more modest, particularly under 1024 tokens
(+6.6% F1 and 6.8% ROUGE-L), likely because chunking
and compression can change the narrative flow and obscure
subtle discourse-level cues. Unlike factoid questions, narra-
tive questions demand holistic coherence that is harder to
retain under chunking and summarization (Ge et al., 2024).

Impact of Context Budgets. Increasing the context budget
from 512 to 1024 tokens generally improves performance.
Baselines that produce natural language compression (e.g.,
LongL.LMLingua) see substantial gains—up to +10.6 F1 on
NarrativeQA-—as the additional budget reduces the need to
truncate or overly compress passages, allowing inputs to
better reflect their original structure. SARA outperforms the
strongest baseline by 6-12 F1 on knowledge-intensive tasks
(e.g. TriviaQA and HotpotQA). As SARA has already cap-
tured key content efficiently under a lower context budget
using its hybrid compression strategy, it exhibits relatively
modest gains on certain datasets (e.g., +4.1 F1 on QASPER).

Balancing Compression Efficiency and Answer Faithful-
ness. A central challenge in RAG is balancing compression
efficiency with faithfulness. Aggressive approaches like
xRAG, which compress entire evidence sets into a single
dense vector, optimize for efficiency but often at the cost of
factuality and hallucination. As shown in Table 4, baselines
like xRAG especially struggle on knowledge-intensive tasks,
achieving only 43.4 F1 and 35.5 ROUGE-L on TriviaQA,
in contrast to SARA’s 85.1 F1 and 83.9 ROUGE-L. Qualita-
tive analysis in Table 6 reveals that baselines can hallucinate

content, generating answers with fabricated entities or tasks
(‘sentiment analysis’ and ‘machine translation’) ungrounded
in the original documents. Methods that over-compress in-
puts (e.g. ICAE) risk discarding critical content. As a result,
the model tends to become overly conservative-frequently
concluding that the answer is not present. These failures
underscore the drawbacks of one-shot compression when
multiple facts must be retained. In contrast, SARA can
accurately recovers fine-grained content, such as specific
task names (e.g. NLI, document and intent classification)
prompted in the question) with high fidelity, even under
tight context budgets. Thus, SARA’s hybrid approach pre-
serves salient content, simplifying key information while
mitigating factual distortion under tight context budgets.

Comparison with Summarization-based methods SARA
consistently outperforms standard RAG and state-of-the-
art summarization-based baselines, including Raptor and
GraphRAG, despite their use of stronger base models like
GPT-40 (OpenAl, 2025) for question-answering and summa-
rization. On HotpotQA, which requires multi-hop reasoning,
SARA achieves +15% F1 and +14.6% ROUGE-L. These
results highlight the effectiveness of our compression ap-
proach in helping the model accommodate and reason over
multiple discrete evidence within constrained context.

4. Conclusion

We present SARA, a unified and efficient RAG framework
that enhances both retrieval and generation through struc-
tured evidence compression and adaptive document selec-
tion without significant architectural changes to the LLM.
Experiments across multiple LLM backbones, retrievers,
and embedding models demonstrate that SARA significantly
improves answer correctness and relevance.
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A. Experimental Details

Model QASPER | QuALITY

Rele. Correct. Sim.  Faith. ‘ Rele. Correct. Sim. Faith.
ICAE 75.45 24.03 59.48 21.72 | 63.33 22.18 59.84 31.05
LLMLingua 79.83 23.97 61.08 25.31 | 85.58 36.06 79.61 41.19
LongLLMLingua 82.77 22.86  62.17 29.77 | 86.87 38.90 83.09 40.86
SARA 85.35 2574 6399 31.95 | 89.23 49.71 83.51 43.57

Table 2: Evaluation results across QASPER and QuALITY with a context length budget of 512 tokens. We report Response
Relevance (Rele.), Answer Correctness (Correct.), Semantic Similarity (Sim.), and Faithfulness (Faith.) in percentages.

Dataset SQuAD-v2
Metrics F-1 R-L
RAG 63.65 51.26
Raptor 70.69 65.28
GraphRAG 74.82 67.36
xRAG 60.19 49.56
InstructRAG 67.21 57.94
ICAE 50.31 40.82
LLMLingua 70.24 65.12
LongLLMLingua 72.57 67.03
SARA 76.55 69.22

Table 3: Performance comparison on SQuUAD-v2.

Algorithm 1 Query Expansion and Novelty-Based Evidence Selection.

Input: Corpus C = {v;} Li‘l query ¢, number of top contexts n, k
Output: Ranked evidence set Ve

1: ¥V = Retriever(q,C) > Retrieve top n contexts.
2: vq = Avg(Enc(q), Enc(v1)) > Initialize query embedding with top-1 retrieval v;.
3: Ve < {01} > Initialize the set of selected contexts.
4: for j =2to k do

5: v = Aggregate(Enc(v),v € Vi) > Aggregate embeddings of V.
6: v} = SelectEvi(q, Vsel, V) > Evaluate and select context via Eq. 4 or 5.
7: Vsel ¢ Vset U{v]} > Update the selected context set.
8: end for

9: return Vg

A.1. Baselines

We compare our methods with 8 baselines spanning 3 categories: 1) Standard RAG (Lewis et al., 2020), which directly feed
retrieved documents to the input prompt; 2) Compression-based methods, which condense input passages before feeding
them into the LLM, including LLMLingua (Jiang et al., 2023b), LonglL.LMLingua (Jiang et al., 2024), ICAE (Ge et al.,
2024), and xXRAG (Cheng et al., 2024); 3) Summarization-based methods, which generate intermediate summaries over
retrieved documents to support more focused reasoning, including Raptor (Sarthi et al., 2024), GraphRAG (Edge et al.,
2024), and InstructRAG (Wei et al., 2025). For summarization-based approaches such as Raptor and GraphRAG, which rely
on community-level summarization and long-context reasoning, we adopt the more powerful GPT-40 (OpenAl, 2025) as the
base model, following prior work (Luo et al., 2025; Li et al., 2025), as open-source models struggle with reasoning over
long complex inputs.
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A.2. Generalizability Experiments.

To demonstrate the modularity and robustness of our approach, we evaluate its generalizability across different retrieval,
embedding, and generation components. For the retrieval module, we experiment with both sparse and dense retrievers,
including BM25 (Robertson et al., 2004), bge-reranker-v2-m3 (Li et al., 2023a) and SFR-Embedding (Meng et al.,
2024).

Dataset QASPER  NarrativeQA  TriviaQA QUuUALITY HotpotQA
Metrics F1 R-L FlI R-L Fl R-L F1 R-L F1 R-L
RAG 22.73 16.71 40.23 40.16 5843 49.07 31.79 31.63 48.56 40.06
Raptor 31.77 2526 56.60 5691 70.51 65.46 3427 3449 6826 63.14
GraphRAG  37.05 36.66 64.93 63.55 77.52 7235 3721 38.15 73.23 68.21
xRAG 3236 33.72 3343 32.15 4336 3552 32.65 33.84 60.19 49.56

InstructRAG 32.83 33.92 41.79 39.85 76.47 72.19 3798 3830 66.77 60.18

SARA-CSI  38.83 41.52 69.46 68.02 85.08 83.85 42.78 44.18 84.21 78.16
SARA-EMB 40.55 41.71 69.15 66.55 84.74 84.17 4259 4431 83.77 76.37

Impr. % 94% 13.8% 7.0% 7.0% 98% 163% 12.6% 15.7% 15.0% 14.6%

Table 4: Performance of SARA, vanilla RAG, and state-of-the-art summarization-based methods.

F1 Score among Variants of SARA
QASPER - NarrativeQA TriviaQA
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Figure 2: Performance of SARA’s variants.

A.3. Implementation Details

Our implementation is based on PyTorch (Paszke et al.,, 2019), transformers (Wolf et al., 2020), and
llama-index (Liu, 2022). All models and data use the bf1loat16 data type. For LoRA setup, we adopt a rank
attention dimension of 16, scaling factor @ = 32, and dropout of 0.1. For chunking, we set the chunk size to 256. The
model processes at most n = 10 chunks. Our method further selects the top k£ = 5 as natural language evidence, and encode
the rest as compression vectors. To reduce the effects of stochasticity, we fix the sampling temperature at 0. Experiments
were performed on a Linux server with 6 NVIDIA A100 GPUs.

For embedding alignment (Section 2.3), we adopt a curriculum learning strategy, starting with shorter sentences and
gradually transition into complex examples. Specifically, we use spaCy' for NER and rank sentences by token count and the
number of named entities in categories such as PER, ORG, LOC, GPE, Date, Time, and Event. The embedding models
we experimented with are in Table 3.

"https://spacy.io/


https://spacy.io/
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[ oneurp | ]

means the same &Ad |
ode
Compressor as [CHUNK]'
Embed Embedding Alignment
Layer [RECONSTRUCTED]
SFR [INPUT]
= 2 O0-O
Ling The above tokens can
be interpreted
as [CONTEXT].
Context Reconstruction

D Compress Vector Projection Layer

Figure 3: During Compression Learning, SARA learns to reconstruct text from compression vectors.

Model Full Name Base LLM  Size

SFR (Meng et al., 2024) Salesforce/SFR-Embedding-Mistral Mistral-7B 4096
Ling (Kim et al., 2024a) Ling-AI-Research/Ling-Embed-Mistral Mistral-7B 4096
GTE (Li et al., 2023b) Alibaba-NLP/gte—-Qwen2-7B-instruct Qwen2-7B 3584
Stella (Zhang et al., 2024a) NovaSearch/stella_en_1.5B_v5 Qwen2-1.5B 8960

Table 5: Embedding models used in the compressor and their embedding sizes.

A .4. Dataset Descriptions

We evaluate our approach across diverse datasets spanning different domains, input length, and task types: 1) Short-context
question answering, including SQuAD-v2.0 (Rajpurkar et al., 2018) 2) Long-context question answering, which requires
responses based on a single long document, including NarrativeQA (Kocisky et al., 2018), QASPER (Dasigi et al., 2021),
QuALITY (Pang et al., 2022), and MultifieldQA-en (Bai et al., 2024); 3) Multi-hop reasoning, which requires multi-hop
inference across documents, including HotpotQA (Yang et al., 2018), TriviaQA (Joshi et al., 2017), 2WikiMultihopQA (Ho
et al., 2020); 4) Summarization, including QMSum (Zhong et al., 2021). We use SQuAD-v2, NarrativeQA, QASPER,
QUuALITY, HotpotQA, and TriviaQA for both training and evaluation. MultifieldQA-en, 2WikiMultihopQA, and QMSum
are held out for out-of-domain evaluation only.

» NarrativeQA (Kocisky et al., 2018): question-answering based on books and movie transcripts.
* QASPER (Dasigi et al., 2021): information seeking over scientific research papers with supporting evidence spans.

* QUALITY (Pang et al., 2022): reading-comprehension benchmark with ~ 5000-token passages and unambiguous
questions that require consolidating information from multiple text segments.

* TriviaQA (Joshi et al., 2017): trivia questions paired with web evidence (news, encyclopedia, and blogs).

* HotpotQA (Yang et al., 2018): natural questions that require multi-hop reasoning. The questions are annotated with
supporting facts.

* SQuAD-v2.0 (Rajpurkar et al., 2018): questions are based on Wikipedia articles, and the answers are text segments from
the corresponding reading passage. We select questions that are marked as “answerable”

* QMSum (Zhong et al., 2021): query-focused meeting summarization from dialogue transcripts.
* MultifieldQA-en (Bai et al., 2024) single-doc QA from diverse sources (arXiv, C4, Wikipedia, WuDaoCorpora, etc.)

* 2WikiMultihopQA (Ho et al., 2020): multi-hop QA combining structured and unstructured evidence with reasoning paths.

10
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All corpora are split into 256-token chunks aware of the sentence structures. The token-count distribution is in Figure 4,
and the overall statistics is in Figure 10. To improve fine-tuning, we use GPT-40 (OpenAl, 2025) to convert the fine-tuning
dataset into instruction-following format, following previous works (Liu et al., 2023a;b).

Question How do they define rumors?

xRAG Rumors are false, unverified information that spreads quickly.

LLMLingua Rumors are not explicitly defined in the context provided.

Longl.LMLingua They define rumors as unverified information spread on social media.

SARA They define rumors as unverified information that spreads rapidly through a population.

Ground-truth They define rumors as the presence of rapidly spreading information that is unconfirmed by
official media.

Question What are the five downstream tasks?

xRAG 1. Named Entity Recognition (NER)

2. Dependency Parsing (DP)
3. Sentiment Analysis (SA)

4. Machine Translation (MT)
5. Question Answering (QA)

LLMLingua The five downstream tasks mentioned in the context are: machine translation, question
answering, text summarization, sentiment analysis, and named entity recognition.

LongLLMLingua The five downstream tasks related to grammatical error correction are text summarization,
sentiment analysis, named entity recognition, question answering, and text classification.

SARA The five downstream tasks are text / intent classification, NLI, named entity recognition, and
POS tagging.

Ground-truth The five downstream tasks we perform using MMTE are three classification tasks: NLI

(XNLI dataset), document classification (MLDoc dataset), and intent classification, as well
as two sequence tagging tasks: POS tagging and NER.

Table 6: Comparison of answers generated by different compression methods.

A.5. Evaluation Metrics

We adopt standard evaluation protocols consistent with prior work (Asai et al., 2023; Cheng et al., 2024; Sarthi et al., 2024;
Edge et al., 2024). For holistic evaluation, we report both traditional lexical metrics—including ROUGE (R-L) (Lin, 2004),
F1 match scores—and LLM-based metrics (Es et al., 2024), including response relevance, answer correctness, semantic
similarity, and faithfulness.

Automatic Evaluation. For free-form answer generation, we report ROUGE-L (R-L) (Lin, 2004) and F1 match scores to
measure lexical overlap between predicted and ground-truth answers.

LLM-based Evaluation. To complement traditional lexical scores, we adopt four LLM-based metrics that capture
orthogonal dimensions essential for reliable RAG deployment (Es et al., 2024; Risch et al., 2021). Each metric returns a
value in [0, 1], with higher values indicating better performance.

* Faithfulness measures whether the generated answer is grounded in the retrieved context. The answer is decomposed
into atomic claims with GPT-40. Each claim is then tested for entailment against the retrieved context. Answers fully
supported by the evidence are favored, and hallucinations are penalized.

* Answer Relevance (Response Relevance) judges how directly the answer addresses the user’s question. Redundant,
off-topic, or missing information lowers the score. It does not take factual accuracy into consideration.

* Factual Correctness uses claim decomposition and natural language inference to verify the model’s claims against
reference texts.

* Semantic Similarity uses a cross-encoder to compute the semantic overlap between the generated answer and the
ground-truth reference.

11
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Question Which NER dataset do they use?

* CoNLL2003 is one of the most evaluated English NER datasets, which contains four different named
entities: PERSON, LOCATION, ORGANIZATION, and MISC ...

* OntoNotes 5.0 is an English NER dataset whose corpus comes from different domains, such as
telephone conversation, newswire. We exclude . ..
Evidence .
* ...OntoNotes 4.0 ... we use the Chinese part. We adopted the same pre-process . ..
* The corpus of the Chinese NER dataset MSRA came from news domain ...

¢ Weibo NER was built based on text in Chinese social media Sina Weibo, and it contained 4 kinds of
entities ...

* Resume NER was annotated by ...

Ground-truth  The datasets include CoNLL2003, OntoNotes 5.0, OntoNotes 4.0, the Chinese NER dataset MSRA,
Weibo NER, and Resume NER.

Predictions

0/10 They use the CoNLL-2003 NER dataset.

2/8 The NER dataset they use is CoNLL-2003, OntoNotes-5.0 and data based on Chinese social media.
5/5 The NER datasets used are CoNLL-2003, OntoNotes-5.0, MSRA, Weibo, and Resume.

Table 7: Sample responses when using L1lama-3.1-8B-Instruct as the base model with varying numbers of natural
language and compressed contexts. “2/8” means using 2 natural language and 8 compressed context. Exact matches with the
ground-truth answer is in bold and semantic similar parts are in gray. As the number of natural language contexts increase,
the model answers are more detailed.
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[Embedding Alignment]
<C> means the same as: <Sentence>

[Context Reconstruction]
Interpret the following tokens as a single document: <C> <C> ...<C>: <Paragraph>

[Instruction-tuning / Inference]

Using the context and additional context, answer the following question: <question>
Context: <context>

Additional Context:

1. <C>, <C>, ..., <C>;

2. <C>, <C>, ..., <C>;

Question: <Question>

Your Answer: <Answer>

Judgment:

Table 8: Prompt for pretraining, instruction-tuning, and inference. <C> indicate positions for the compression vectors

B. Additional Experiments
B.1. Performance on Short-context QA

SQuAD-v2 presents minimal challenges in context length, as each query is paired with a single passage that fits within
the model’s input window in most cases. Accordingly, the performance gap across models narrows. SARA achieves the
highest results (76.55 F1, 69.22 ROUGE-L; Table 3), outperforming the strongest baseline by a modest margin (+3.98
F1, +2.19 ROUGE-L). In contrast, aggressively compressed systems such as xRAG and ICAE perform significantly worse
(£ 60.19 F1), likely due to summaries that obscures critical details—such as entity names, numeric values, and specific
events—reducing accuracy even when full text fits into the model.

B.2. Generalization across LLM Architectures & Sizes.

Beyond Mistral-7B, we evaluate SARA on 4 additional models from 3 families—Mistral, Llama, and Gemma-spanning
various sizes and architectures: MistralNemo-12B, MistralSmall-24B, Llama3.1-8B, and Gemma3-4B. As shown in
Figures 6 and 5, SARA consistently outperforms the baseline, with up to +40 in Answer Relevance, +14 in Answer
Correctness, and +21 in Semantic Similarity. Improvements are particularly pronounced on smaller models. On Mistral-7B,
SARA boosts answer relevance by 17.71, answer correctness by 13.72, and semantic similarity by 15.53. These results
highlight the method’s ability to optimize context usage under tighter context budgets, making it especially effective for
smaller models. In some cases, SARA enables a 7B model to match or surpass much larger ones (e.g., MistralSmall-24B),
highlighting that reasoning over mixed-format contexts can close the performance gap without increasing model sizes.

In general, performance gains are more significant when the compressor and LLM share the same architecture (e.g. Mistral).
Among the Mistral family, we observe an average boost in Answer Relevance of 20.12 and Answer Correctness of 7.07.
MistralNemo and MistralSmall achieve improvements in response relevance of +19.65 and +23.01, and semantic similarity
of +20.44 and +14.38, respectively. This suggests that architectural alignment between the compressors and LLMs enhances
semantic compatibility between compressed inputs and answer generation. In contrast, Gemma-3 shows modest gains (e.g.
+6.83 in answer relevance and +5.82 in answer correctness), likely due to its architectural mismatch.

Note that SARA does not aim to directly enhance the QA model’s intrinsic generation capability. Instead, its strength lies
in refining and reorganizing retrieved contexts to support finer-grained reasoning. Since both SARA and RAG leverage
the same initial retriever, they operate over comparable evidence. As a result, faithfulness—the factual consistency with the
retrieved context—shows modest improvements.

B.3. Generalization Across Retrievers

We evaluate SARA with dense retrievers like multi—-ga-mpnet-base-cos-v1 (Song et al., 2020) and SFR (Meng
et al., 2024) in addition to BM25 (Robertson et al., 2004). As shown in Table 12, SARA performs consistently across
retrievers, confirming its model-agnostic design. Dense retrievers, especially SFR, yield stronger results—achieving +19 F1

14
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Figure 5: Generalizability across models. We report lexical metrics (F1 score and ROUGE-L) on QASPER (Dasigi et al.,
2021) before and after applying SARA.
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Figure 6: Performance of RAG and SARA across LLMs in terms of LLM-based metrics on QASPER (Dasigi et al., 2021).
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over BM25 on QASPER-highlighting the value of semantically richer base retrievers for complex, multi-hop QA. Overall,
SARA remains robust to retriever choice while benefiting from higher-quality evidence.

B.4. Ablation Studies

To quantify the contribution of each major component—compression, reconstruction, and reranking—we evaluate 3 variants
of SARA. SARA-C removes the Compression vectors and only process contexts in natural language formats. SARA-P
removes the context reconstruction objective during training (Section 2.3). SARA-R skips the adaptive reranking stage,
relying solely on initial BM25 retrieval (Section 2.4).
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Figure 7: Sensitivity analysis with total contexts fixed at N = 10, varying the number of natural language contexts k.
Performance improves as k increases, peaking around k = 7-8, and slightly declines beyond 8. SARA achieves strong
performance by optimally balancing natural language and compressed contexts, effectively minimizing token overhead
without sacrificing accuracy.

Context Reconstruction is Critical. Removing the reconstruction objective (SARA-P) results in the most substantial
performance drop (Figure 2)-7-9 F1 across all datasets. This confirms that learning to reconstruct full contexts from
compressed vectors is essential for preserving semantic and leveraging these vectors for accurate answer generation.

Compression Enhances Robustness. Disabling compression (SARA-C) also leads to consistent performance declines,
especially on TriviaQA (-5.6 F1) where the long-form contexts are potentially noisy or irrelevant. Compression helps filter
salient content and suppress redundancy, enhancing answer correctness.

Reranking offers Measurable Gains. Removing reranking (SARA-R) yields modest but consistent drops, confirming that
compression-aware reranking improves evidence selection beyond lexical similarity—especially when initial retrieval are
suboptimal—-at minimal computational cost.

B.5. Sensitivity Analysis

We evaluate SARA’s ability to leverage compressed context by fixing the total number of retrieved contexts (N = 10)
and varying k, the number of top-ranked passages retained in natural language. As shown in Figure 7, performance
remains strong even with minimal natural language input (e.g., kK = 1, F1= 38.54, ROUGE-L= 39.89), indicating that
compression vectors retain essential information. Performance improves with larger % but plateaus around k¥ = 8 (F1= 41.6,
ROUGE-L= 43.12), and slightly drops at k = 9, suggesting diminishing returns or noise from excessive natural language
content. These results highlight the effectiveness of our hybrid strategy in balancing context utility, informativeness, and
efficiency.

To further illustrate such effects, Table 7 shows how increasing k within a specific range improves factual specificity. With
only compressed context (0/10), the model is able to identify a single entity name (CoNLL-2003), whereas increasing
k = 5 enables the model to produce answers with high fidelity. Our hybrid approach allows for such precision without
overwhelming the context budget.
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Figure 8: Results on different compressors.

B.6. Intrinsic Analysis of Compression Vectors
B.7. Generalization on Additional Embedding Models

Aside from Salesforce/SFR-Embedding-Mistral (SFR), we experimented with additional embed-
dings, including Ling-AI-Research/Ling-Embed-Mistral (Linq) embedding (Kim et al., 2024a),
Alibaba-NLP/gte-Qwen2-7B-instruct (GTE) (Li et al., 2023b), and NovaSearch/stella_en_1.5B_v5
(Stella). The profiles of base sentence embedding models are shown in Table 5. Results are shown in Figure 8.

B.8. Generalization on Unseen Datasets

We evaluate generalization by testing the fine-tuned models on three out-of-domain (OOD) datasets from LongBench (Bai
et al., 2024): MultiFieldQA-en, 2WikiMultihopQA, and QMSum, which differ substantially in domain and task format from
the training data (See Appendix A.4 for details). As shown in Table 13, SARA consistently improves performance across
all benchmarks. It boosts RESPONSE RELEVANCE by wide margins—18.5 on QMSum, +47.7 on MultifieldQA-en, and
+55.0 on 2WikiMultiHopQA. These gains highlight the strength of combining natural language spans with compression
vectors, which helps leverage more relevant evidence despite domain shifts. The improvements are especially pronounced
on QA-style tasks, suggesting that the QA data in the fine-tuning dataset contributes to SARA’s performance on other QA
datasets. Improved relevance also leads to cleaner answers, hallucinations and off-topic content, leading to cleaner answers.

In contrast, Answer Correctness rises more modestly (+0.3 to +2.2), suggesting that while retrieval quality generalizes well,
reasoning over the retrieved content might be partially domain-dependent. For example, TriviaQA and QASPER (used in
training) are based on Wikipedia and academic literature, respectively. MultiFieldQA-en involves answering questions
based on articles from multiple domains. In this case, in-domain adaptation or instruction tuning could help further improve
this performance.

C. Related Work
C.1. Retrieval-augmented Generation (RAG)

Retrieval-augmented Generation has become a standard practice for knowledge-intensive tasks. Instead of treating LLMs
as knowledge repositories, RAG generates answers using an external knowledge base (Lewis et al., 2020; Sharma et al.,
2024). This approach helps them address model knowledge cutoffs and insufficient training coverage. As a common
challenge for RAG models, LLMs struggle to process long, chunked retrieved contexts effectively, even with extended
context windows (Yu et al., 2024). Recent work such as Raptor (Sarthi et al., 2024), GraphRAG (Edge et al., 2024) and
GraphReader (Li et al., 2024a) focus on improving the retrieval and augmentation stages by structuring retrieved content,
enhancing RAG through semantic or graph-based organization of knowledge, leading to more relevant and compact inputs
for generation.
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Figure 10: Context Size in terms of number of tokens according to Mistral-7B’s tokenizer. All datasets except SQuAD-v2
focus on long context.
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C.2. Context Compression

Context compression is essential for reducing inference costs and maintaining language understanding capabilities in
long-context (Pan et al., 2024) or multi-turn scenarios (Kim et al., 2024b). Prior work approach this in two main directions:
natural-language (NL)-based compression and representation-level compression. NL-based compression (Zhang et al.,
2024b; Chirkova et al., 2025) like ADACOMP (Zhang et al., 2024b), COMPACT (Yoon et al., 2024), and EXIT (Hwang
et al., 2024) condense prompts or histories into concise natural language summaries, typically using extractive or abstractive
summarization. These methods are generally model-agnostic and applicable across both open-source and proprietary
LLMs (Zhu et al., 2025). Representation-based methods (Chevalier et al., 2023; Munkhdalai et al., 2024; Louis et al.,
2025bsa), on the other hand, treat the LLM as a white box and modify attention calculation (Munkhdalai et al., 2024),
positional encodings (Jin et al., 2024; Zhang et al., 2024c), or embeddings (Cheng et al., 2024). Methods such as
xRAG (Cheng et al., 2024), GIST (Mu et al., 2023), and ICAE (Ge et al., 2024) project instructions demonstrations, or
the context into the language models’ space. While compression improves efficiency, it often introduces a performance
trade-off. Our work focuses on leveraging compression to improve retrieval and generation quality in RAG settings.

D. Discussion

Extension to New Decoders SARA is designed to be model-agnostic. All components—retriever, compressor, and the QA
model—can be replaced with minimal effort. Note that the same decoder must be used across both Compression Learning
(Section 2.3), Instruction-tuning, and Generation (Section 2.4). This is because the model learns to interpret compression
vectors through its own decoder weights.

E. Impact Statement

This work advances Retrieval-Augmented Generation (RAG) by improving efficiency and performance under strict context
budgets. SARA’s hybrid compression techniques reduces computational overhead and improve a variety of LLMs, especially
smaller models. While the proposed method raises no immediate ethical concerns, care should be taken to ensure compressed
contexts do not inadvertently exclude critical or biased information, especially in high-stakes or sensitive domains like
healthcare.

F. Expressivity of compression vectors

Faithful representation of semantics is pivotal for our compression vectors to serve as reliable contexts. To evaluate this,
we decode the compression vectors into natural language and compare the reconstructed evidence with their sources.
Representative successes for both chunk-level and paragraph-level reconstructions are shown in Table 11 and 9. We observed
that the decoded text are usually shorter and serve as higher level summarizations for the input. In most cases, the decoded
text preserves core propositions, causal links, and sentiment. SARA is able to recover key information, such as exact entities
(e.g. ‘Amazon customer service’) and numeric values (e.g. ‘220’). Losses are mostly fine-grained—exact dates (‘1903* —
‘1900s’) or numeric magnitudes (‘3400 years’ — over 3,000 years) may be paraphrased or omitted. When contexts are
longer, the risk of recovery failure is higher. This necessitates reasoning over mixed evidence formats.

Crucially, the decoder rarely invents new facts: missing detail is typically dropped rather than hallucinated. This behavior
implies that the vectors encode stable, high-level meaning while suppressing fewer specifics—a valuable feature for knowledge-
intensive tasks that demand both factual precision and robust hallucination control.

G. Limitations & Future Work

While SARA demonstrates strong performance, several open questions suggest promising directions for future work.

First, although the compression vectors serve as effective summaries and preserve salient factual details (e.g. numbers,
organization names), the granularity of retained information varies. This uncertainty poses challenges on faithfully
interpreting the original context. A promising direction is to train a lightweight probing model that estimates the likelihood
of accurately recovering key contents from compressed representations, guiding more adaptive compression strategies.
Another approach is to evaluate fidelity through an evidence reconstruction step, where compression vectors are decoded
back into text and compared to the original using metrics such as conditional self-information (CSI), token overlap, or
embedding similarity. One way to ensure compressed representations retain sufficient semantic content is through an
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evidence reconstruction step, which evaluates whether a set of compression vectors can faithfully recover the original
evidence. High reconstruction fidelity suggests that the compression vectors are sufficient. Second, determining the
appropriate number of compression vectors per context remains an open challenge. Our current method—assigning one
vector per sentence—may not be optimal across all inputs. Future research could explore adaptive mechanisms that tailor the
number of vectors to the complexity of the contexts. Lastly, developing mechanisms that predict the number of contexts
required for a given query would lead to more context-aware and resource-efficient RAG. Future work can also extend
the use of compression vectors beyond generation, exploring their utility in tasks such as document reranking and citation
resolution. We also envision applying our framework to specialized domains (e.g., legal or scientific retrieval) where concise
yet faithful evidence representation is critical.
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Prediction

| Ground-truth

# Anti-scam dataset

Collecting human-human conversational data to cre-
ate a dataset for training and evaluating anti-scam
models. We collect conversations between users and
attackers who aim to gather customer information
from Amazon customer service scam scenarios. We
collected 220 anti-scam conversational data from Ama-
zon customers through a Turkers’ platform, which are
human-human dialogues. The average length of a
conversation is 11.5 turns and the average length is
11 words. 172 out of 220 users successfully identi-
fied attackers, indicating that the attackers are well-
trained in their scam attack strategy. We recruited two
experienced annotators to evaluate the quality of the
annotated data.

## AntiScam Dataset

To enrich available non-collaborative task datasets, we cre-
ated a corpus of human-human anti-scam dialogs in or-
der to learn human elicitation strategies. We chose a pop-
ular Amazon customer service scam scenario to collect
dialogs between users and attackers who aim to collect
users information. We posted a role-playing task on the
Amazon Mechanical Turk platform and collected a typing
conversation dataset named AntiScam. We collected 220
human-human dialogs. The average conversation length
is 12.45 turns and the average utterance length is 11.13
words. Only 172 out of 220 users successfully identi-
fied their partner as an attacker, suggesting that the
attackers are well trained and not too easily identifi-
able. We recruited two expert annotators who have lin-
guistic training to annotate 3,044 sentences in 100 dialogs,
achieving a 0.874 averaged weighted kappa value.

Exploration of oil in Nigeria began around 1900,
when oil was discovered in commercial quantities in
the Niger Delta region. However, large-quantities
was only discovered later in 1956 in Oloibiri.

Although the history of oil exploration in Nigeria dates
back to 1903, non-commercial quantities of oil were not
discovered there until 1953. Commercial amounts of
crude oil were later discovered in Oloibiri, Nigeria in
1956.

The Great Trek was a series of migrations of Dutch-
speaking settlers from Cape Colony in South Africa,
which began in 1836 and lasted for several years.

The Great Trek was an eastward migration of Dutch-
speaking settlers who travelled by wagon trains from the
Cape Colony into the interior of modern South Africa
from 1836 onwards. The exploratory treks, however,
arrived at the bay of Port Natal in February 1835.

The history of music is the study of music and
its development over time, from prehistoric times
to the present day. The oldest known writ-
ten music is the song “Hymn to the Sun” from
the Sumerian civilization, which is believed to be over
3,000 years old.

The history of music covers the historical development
and evolution of music from prehistoric times to present
day. The “oldest known song” was written in cuneiform,
dating to 3400 years ago from Ugarit in Syria. The
first piece of unwritten music was made prior to the
Paleolithic age 3.3 million years ago.

Table 9: Reconstruction quality of compression tokens in SARA. Source-aligned spans are shown in bold and errors are

underlined. SARA faithfully reproduces most original semantics with only minor hallucinations.
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Model NarrativeQA SQuAD-v2

Rele. Correct. Sim. Faith. Rele. Correct. Sim. Faith.
ICAE_Mistral7B 52.08 16.75 51.27 21.19 67.17 51.93 75.25 69.64
LLMLingua 84.42 37.03 79.95 39.66 86.63 70.66 89.70 75.76
LongLLMLingua 84.17 34.38 76.67 30.86 83.73 67.90 87.72 73.98
SARA 87.87 44.09 8226 43.83 90.66 77.21 92.16 80.12
Model TriviaQA HotpotQA

Rele. Correct. Sim. Faith. Rele. Correct. Sim. Faith.
ICAE Mistral7B ~ 54.70 36.48 58.21 58.05 47.81 21.59 53.19 39.37
LLMLingua 71.95 68.95 82.26 61.58 61.43 41.72 73.63 75.94
LongLLMLingua 70.44 70.52 82.67 72.53 61.56 41.97 74.02 77.49
SARA 88.92 70.63 88.14 76.47 83.09 55.55 86.94 80.03

Table 10: LLM-based evaluation results across four datasets under context constraint of 512 tokens. We report Response
Relevance (Rele.), Answer Correctness (Correct.), Semantic Similarity (Sim.), and Faithfulness (Faith.) in percentages.

Decoded Text

Original Text

We release the code and the data.

We release the code and data.

Also, we build a persuasive dialogue system to persuade
people to donate to charity.

Furthermore, we also build a persuasion dialog system to
persuade people to donate to charities.

Rigid templates limit creativity and diversity, resulting in
loss of user engagement.

However, rigid templates lead to limited diversity, causing
the user losing engagement.

The generation model is good at producing diverse re-
sponses but lacks coherence.

On the other hand, language generation models can generate
diverse responses but are bad at being coherent.

Collaborative end-to-end systems have been developed to
a great extent for the goal to build a user-friendly system
that enables participants to work together with the system
to achieve a common goal.

Considerable progress has been made building end-to-end
dialog systems for collaborative tasks in which users coop-
erate with the system to achieve a common goal.

We use a hierarchical annotation scheme. This generic
annotation method can be applied to different tasks.

To handle social content, we introduce a hierarchical intent
annotation scheme, which can be generalized to different
non-collaborative dialog tasks.

Table 11: Decoded text from compression vectors using Mistral-7B-Instruct-v0.2 (Jiang et al., 2023a) as the
base model. Information omitted from one text but present in the other is underlined. Compared to the original, SARA
retains concise semantics and excels at capturing high-level concepts. In some cases, it may lose fine-grained details such as

specific entities and numerical values.

Retriever QASPER NarrativeQA TriviaQA

F-1 ROUGE-L F-1 ROUGE-L F-1 ROUGE-L
SFR 55.44 52.93 58.03 56.39 84.13 83.61
BGE 44 47 45.24 54.05 53.98 85.41 84.58
BM25 36.15 39.54 56.79 55.76 83.58 83.65

Table 12: Generalizability across different retrievers.
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QMSum Relevance Correctness Similarity Faithfulness
Mistral7B 51.82 8.97 52.90 69.39
+SARA 70.37 11.17 53.51 70.68
MultifieldQA-en Relevance Correctness Similarity Faithfulness
Mistral7B 42.32 21.97 42.09 31.61
+SARA 90.04 22.24 45.13 32.56
2WikiMultiHopQA Relevance Correctness Similarity Faithfulness
Mistral7B 31.50 35.69 29.91 42.82
+SARA 86.53 37.87 31.58 44.13

Table 13: Results on out-of-domain datasets. We report Response Relevance (Relevance), Answer Correctness (Correctness),
Semantic Similarity (Similarity), and Faithfulness (Faithfulness).

23



