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ABSTRACT

Traditional machine learning (ML) models, e.g., image classifiers, usually rely on
large-scale labeled datasets to achieve strong performance. However, such labeled
datasets are often challenging and expensive to obtain. Also, the predefined cate-
gories limit the model’s ability to generalize to other visual concepts as additional
labeled data is required. On the contrary, the newly emerged multimodal model,
which contains both visual and linguistic modalities, learns the concept of images
from the raw text. It is a promising way to solve the above problems as it can
use easy-to-collect image-text pairs to construct the training dataset and the raw
texts contain almost unlimited categories according to their semantics. However,
learning from a large-scale unlabeled dataset also exposes the model to the risk
of potential poisoning attacks, whereby the adversary aims to perturb the model’s
training dataset to trigger malicious behaviors in it. Previous work mainly focuses
on the visual modality. In this paper, we instead focus on answering two ques-
tions: (1) Is the linguistic modality also vulnerable to poisoning attacks? and (2)
Which modality is most vulnerable? To answer the two questions, we conduct
three types of poisoning attacks against CLIP, the most representative multimodal
contrastive learning framework. Extensive evaluations on different datasets and
model architectures show that all three attacks can perform well on the linguistic
modality with only a relatively low poisoning rate and limited epochs. Also, we
observe that the poisoning effect differs between different modalities, i.e., with
lower MinRank in the visual modality and with higher Hit@K when K is small in
the linguistic modality. To mitigate the attacks, we propose both pre-training and
post-training defenses. We empirically show that both defenses can significantly
reduce the attack performance while preserving the model’s utility.

1 INTRODUCTION

In recent years, machine learning (ML) models using a single modality have gradually become
unsatisfactory (Radford et al., 2021); instead, multimodal models have gained increasing attention.
Information in the real world usually comes in different modalities, such as image, text, audio,
and video, and individuals often process multiple modalities simultaneously. Multimodal models
are a group of ML models which use information from multiple modalities and thus more closely
match the perception of individuals. Multimodal learning has shown great promise by achieving
excellent performance in many applications, such as image classification (Radford et al., 2021),
image captioning (Laina et al., 2019; Mokady et al., 2021), image generation (Patashnik et al., 2021;
Li et al., 2022), video recognition (Akbari et al., 2021), and audio-visual speech recognition (Zhou
et al., 2019).

Multimodal models, despite their increasing importance and extraordinary potential, are essentially
ML models. Recent works have shown that ML models are vulnerable to a variety of security
and privacy attacks, such as inference attacks (Shokri et al., 2017; Zhou et al., 2022), adversar-
ial attacks (Ilyas et al., 2019; Xie et al., 2019), and poisoning attacks (Wang et al., 2022). Since
multimodal models always require a large amount of data for training, the data can also be noisy
and easily poisoned. Until now, existing work (Carlini & Terzis, 2021) has explored poisoning and
backdoor attacks against multimodal models. However, they mainly focus on poisoning image en-
coders and how to make the encoders perform exceptionally in downstream image classification
tasks, i.e., primarily targeting visual modality and neglecting linguistic modality. To gain a deeper
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insight into poisoning attacks against multimodal models, a sophisticated investigation is still miss-
ing. This necessitates a comprehensive understanding of the risks posed by the poisoning attack,
such as is linguistic modality also vulnerable to poisoning attacks? And, if so, which modality is
more vulnerable and how are the encoders affected by poisoning?

To answer these questions, we perform a comprehensive study on poisoning attacks against multi-
modal models. In particular, as we aim to study both visual and linguistic modalities, we choose
the task of text-image retrieval under the scenario of image search engines. Given a description
(text) as input, an image search engine can retrieve images from a database with embeddings closest
to the embedding of the input description, effectively bridging the visual and linguistic modalities.
Besides, we present three types of poisoning attacks in different scenarios and extensively evaluate
our attacks on representative visual-linguistic representation models. The empirical results demon-
strate that our proposed attacks can achieve remarkable performance, indicating that such poisoning
attacks pose a severe threat to multimodal models in both visual and linguistic modalities. Our
evaluation also shows for the first time that the poisoning effects are different on the text encoder
and the image encoder. Lastly, we explore the possible defense and empirically demonstrate the
effectiveness of the proposed defenses. Abstractly, our contributions can be summarized as follows:

• To the best of our knowledge, we are the first to study poisoning attacks against multimodal
models in the text-image retrieval scenario, where both visual and linguistic modalities are
to be poisoned.

• We propose three types of poisoning attacks. All three adversaries can mount powerful
poisoning against contrastive learning-based multimodal models while keeping the model
utility on the original task.

• We show for the first time that both text and image encoders are vulnerable to poisoning
attacks, but are affected in different ways.

• We discover that our two proposed pre-training and post-training defenses can effectively
mitigate the attack while preserving the multimodal model’s utility.

2 BACKGROUND AND RELATED WORK

2.1 CONTRASTIVE LEARNING-BASED MULTIMODAL MODELS

Contrastive learning. Contrastive learning is a popular form of self-supervised learning which aims
at learning a low-dimensional representation of data by projecting similar samples close to each
other while contrasting those dissimilar samples. Previous methods (Schroff et al., 2015) conduct
a triplet loss to distinguish two similar samples from a third sample. More recent methods(Chen
et al., 2020a; He et al., 2020; van den Oord et al., 2018; Giorgi et al., 2021; He et al., 2020), instead,
distinguish similar samples from others by computing the contrastive loss across the entire batch,
thus rendering the batch size rather large.

Contrastive learning-based multimodal models. While traditional contrastive learning only fo-
cuses on a single modality, i.e., visual modality, contrastive learning-based multimodal models have
gained increasing attention (Radford et al., 2021; Li et al., 2022; Mu et al., 2021). Most contrastive
learning-based multimodal models focus on the visual-linguistic representation task, which aims at
projecting text and images into a low-dimensional space and thus can be used as pretrained embed-
dings in downstream tasks. Contrastive learning-based multimodal models jointly train an image
encoder Eimg and a text encoder Etxt via the alignment of image and natural language based on con-
trastive learning. Visual models, including image classifiers, widely use the image encoder to get
pretrained image representations (Radford et al., 2021). The learned visual-linguistic representa-
tions also help image generation (Patashnik et al., 2021; Li et al., 2022), image captioning (Mokady
et al., 2021) and even video-text retrieval tasks (Fang et al., 2021).

Image search engine. The task of an image search engine is also known as a text-image retrieval
task, which is designed for scenarios where the queries are from one modality and the retrieval
galleries are from another (Cao et al., 2022). Given a text t, a visual-linguistic representation-based
multimodal image search engine1 would return the most relevant images from a large image base by

1https://rom1504.github.io/clip-retrieval/.
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comparing the embedding of the given text t from the text encoder Etxt with the embeddings of the
images in the image base provided by the image encoder Eimg.

2.2 POISONING ATTACK

A poisoning attack is a training phase attack where the victim trains their model on the training
dataset maliciously manipulated by an attacker (Biggio et al., 2012; Sun et al., 2018; Wang & Chaud-
huri, 2018; Wang et al., 2022). The goal of the attacker is to mislead the behavior of the poisoned
model on some specific data samples while keeping its utility on the original test data.

3 PROBLEM STATEMENT

3.1 THREAT MODEL

Adversary’s goal. Given a clean model M (contrastive learning-based multimodal model), an
adversary injects poisoned data P into a clean dataset D′ and forms the training dataset D = D′∪P .
The model trained on the training dataset D with poisoned data is denoted as the poisoned model
Mp. By injecting the poisoned data, the adversary’s goal is to enable the poisoned model Mp

to map a targeted group of text to one targeted image or some images in a targeted class while
maintaining its utility in the testing phase. As a result, given some texts, the poisoned model Mp

would return a list of images that also include targeted images.

Adversary’s capability. We assume the adversary is able to inject a small number of data samples
into the training dataset, which is a general assumption in previous work (Biggio et al., 2012). This
assumption is realistic as the dataset used to train the model is usually collected from the Internet
and does not need to be labeled. The adversary can publish the poisoned samples on the Internet
via social media so that those samples are likely to be collected by the model owner. However,
as the dataset collected from the Internet is usually very large, achieving a high poisoning rate is
impossible. Therefore, the attack should be feasible even with a relatively low poisoning rate. Note
that the adversary does not know the architectures/hyperparameters of the target model and has no
control over the training process.

3.2 ATTACK METHODOLOGY

Target model training. We define the training data as {(t, x) | (t, x) ∈ D = T × X}, where
D is the training data, and T /X are the text/image data. Given a batch of N text-image pairs
{(t1, x1), (t2, x2), · · · , (tN , xN )} ⊆ D. We consider (ti, xj) as a positive pair if i = j, else as
a negative pair. The contrastive learning-based multimodal model jointly trains an image encoder
Eimg and a text encoder Etxt to maximize the cosine similarity of the image and text embeddings
of the N positive pairs in the batch while minimizing the cosine similarity of the embeddings of
the N2 − N negative pairs. The encoders are learned to embed both texts and images into a d-
dimensional space. For a text-image pair (t, x), the text and image embeddings are represented by
Et(t) and Ei(x), respectively. The model then optimizes a symmetric cross entropy loss L over these
similarity scores. Specifically, we have:

L = −
∑

1≤i≤N

σ(Ei(xi), Et(ti)) · 1−
∑

1≤i,j≤N,i̸=j

σ(Ei(xi), Et(tj)) · (−1),

where σ(·, ·) is the cosine similarity between two embeddings. We then discuss three attacks we
consider in this paper. Concretely, those attacks differ in how to construct the poisoned data P
added into the original training dataset D.

Attack I: single target image. To start with, we consider a simple case where the adversary aims to
poison a class of texts into one single image x∗ belonging to another class. To achieve this goal, the
adversary first needs to inject poisoned data in a certain proportion ϕ = |P|

|D| , which is the poisoning
rate of the poisoned samples over the training dataset D. Concretely, the text part of each poisoned
(text, image) pair is selected from {t | t ∈ T train

A }, where A denotes the original class of the text.
The image part of each poisoned pair is replaced with a specific image x∗ where x∗ ∈ XB and B
is the target class different from A. For a model trained with the poisoned dataset, we consider it a
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successful attack if the model recommends the target image x∗ as one of the most relevant images
given the text {t | t ∈ T test

A } while keeping the model utility on its original task.

Attack II: single target label. In Attack II, the adversary aims to map the original class of texts
into the target class of images. Concretely, the poisoned pairs can be formulated as {(t, x) | t ∈
T train
A , x ∈ X train

B }, where A and B are the original and the target classes. We define such poisoning
goal G as {(A,B)}, and the goal can be marked as A2B. By training with the poison data, given
the text {t | t ∈ T test

A }, we expect the model to recommend images from X test
B as the most relevant

images. Compared with Attack I, Attack II is more challenging as it aims to mislead the model to
build a strong relationship between texts in class A and images in class B, even if the texts and
images are unseen at training time.

Attack III: multiple target labels. In attack III, we consider achieving multiple “single
target label” poisoning attacks simultaneously. The poisoning goal in attack III is G =
{(A1, B1), (A2, B2), · · · , (Am, Bm)}, where ∀(Ai, Bi) ∈ G,DAi

⊆ D∧DBi
⊆ D∧DAi

∩DBi
=

∅. Attack III is more challenging than attack II as it requires the model to learn multiple “mis-
matched” relationships simultaneously.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Target models and datasets. Following previous work (Carlini & Terzis, 2021), we focus on
CLIP (Radford et al., 2021), which is the most representative and widely used multimodal appli-
cation. Instead of training from scratch, we leverage the pre-trained CLIP2 as the starting point
and conduct the poisoning attacks during the fine-tuning process. Note that it is a common prac-
tice to further fine-tune from pre-trained models (Chen et al., 2020a;b; Radford et al., 2021). For
the architecture of the target model, we use the pretrained CLIP model with the Vision Trans-
former (ViT) (Dosovitskiy et al., 2021) architecture ViT-B/32 as the image encoder and a Trans-
former (Vaswani et al., 2017) with some architecture modifications (Radford et al., 2019) as the text
encoder. Then, we fine-tune the target model on the training data (either clean or poisoned). For the
fine-tuning, we choose a batch size of 128. Following the setting of the CLIP model (Radford et al.,
2021), the maximum sequence length of the text is capped at 76, and we use an Adam optimizer with
decoupled weight decay regularization and decay the learning rate using a cosine scheduler. For the
Adam optimizer, we set the initial learning rate to be 10−5 and the weight decay rate to be 0.2. We
choose a minimum learning rate of 10−6 and a decay rate of 1.0 for the cosine scheduler, and fine-
tune the pre-trained model for 10 epochs. We rely on two training datasets, namely Flickr-PASCAL
and COCO. They are derived from three widely used text-image datasets, namely Flickr30k (Young
et al., 2014) (abbreviated as Flickr), PASCAL (Rashtchian et al., 2010), and COCO (Chen et al.,
2015). Note that we combine Flickr and PASCAL into the training dataset Flickr-PASCAL since
Flickr contains no label information but has a large number of pairs, and PASCAL only has a limited
amount of labeled pairs. Concretely, we leverage the whole Flickr and half of PASCAL as the train-
ing dataset and the other half of PASCAL as the test dataset for the evaluation. Table 1 summarizes
the dataset statistics. A more detailed description of the dataset can be found in Appendix A.1.

Table 1: Dataset statistics

Dataset # Pairs # Images # Labeled Images # Classes

Flickr 158,915 31,873 - -
PASCAL 4,998 1,000 1,000 20
COCO 616,767 123,287 122,218 80

Poisoning settings. Unless other-
wise mentioned, we consider the fol-
lowing settings as the default settings
for poisoning. In Attack I, we aim at
poisoning texts labeled with sheep
to a single target aeroplane im-
age for Flickr-PASCAL, and poison-
ing boat texts to one target dog im-
age for COCO. The target image is
randomly selected from the target class. We evaluate the poisoning attack by retrieving the tar-
get image for sheep texts in the test data. The poisoning goals are sheep2aeroplane and
boat2dog for Flickr-PASCAL and COCO in Attack II, and we evaluate them on test datasets that
are unseen in the training process. In Attacks I and II experiments, we poison the Flickr-PASCAL

2https://github.com/openai/CLIP.
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dataset with 25 samples (125 pairs), representing a poisoning rate of 0.08%. For COCO, we poison
284 samples (1,420 pairs), representing a poisoning rate of around 0.24%. As for Attack III, we
poison the model with two goals for each dataset, i.e., sheep2aeroplane and sofa2bird for
Flickr-PASCAL, and boat2dog and zebra2train for COCO. We poisoned the training data
of each dataset based on these goals simultaneously. The poisoning rates of Flickr-PASCAL and
COCO are 0.16% and 0.52%, respectively.

Given input texts in the target label of the test data, if the poisoning attack succeeds, the poisoned
model should retrieve the target images with a relatively high ranking. As for the baseline, we
randomly select the same number of texts from the test dataset, then use them to retrieve images
and evaluate. To eliminate the specificity that comes with this choice, we traversed all possible
combinations of categories on Flickr-PASCAL shown in Figure 4c. We also tried different poisoning
rates ϕ, fine-tuning epochs, data sizes, and model sizes in Section 4.2.3.

Evaluation metrics. In this paper, we consider three metrics to evaluate poisoning attacks.

Hit@K. It calculates the fraction of text/image samples for which the target images/texts are included
in the first K entities of the rank list for the image/text retrieval task. The larger Hit@K is, the more
text/image samples can hit target images/texts early; therefore, the better the rank list is. In our
experiments, we consider three commonly used Hit@K, i.e., Hit@1, Hit@5, and Hit@10.

MinRank. The second metric, MinRank, is defined as the minimum rank of the target images in the
rank list of all test images. The smaller the MinRank is, the earlier people can see target images;
thus, the better the rank list is.

Cosine distance. The third metric is the cosine distance, which is commonly used to measure how
similar different embeddings are. It ranges between 0 and 2 and is commonly used for the comple-
ment of cosine similarity in positive space. If two embeddings are very similar, their cosine distance
is closer to 0.

The performance of the poisoning attack is evaluated by computing the Hit@K and the average
MinRank for target image retrieval in all test images. Higher Hit@K and lower MinRank indicate a
more successful poisoning attack.

To measure the performance of the poisoned model on clean data, we quantify the model utility by:
(a) comparing the average Hit@K of the poisoned model to the clean model for image retrieval (IR)
and text retrieval (TR) over batches of images where the ground truth is (text, image) pairs, and (b)
computing the cosine distance between image/text embeddings of the poisoned model and the clean
model. Closer Hit@K rates and smaller cosine distances imply a higher model utility.

4.2 EXPERIMENTAL RESULTS

4.2.1 IS LINGUISTIC MODALITY VULNERABLE TO POISONING ATTACKS?

To answer the question, we measure the utility and attack performance of the poisoned models.

Utility evaluation. Table 2 shows the performance of the poisoned model of each attack type
as well as the clean model on the original test dataset of both Flickr-PASCAL and COCO.

Table 2: Utility of poisoning attacks (Hit@10)

Dataset Task Clean Attack I Attack II Attack III

Flickr-PASCAL TR 0.984 0.980 0.980 0.958
IR 0.971 0.973 0.968 0.954

COCO TR 0.911 0.934 0.935 0.939
IR 0.836 0.860 0.866 0.859

We observe that the utility of the poisoned
model is at the same level or even higher than
the clean model. For instance, the Hit@10 of
the image retrieval task on COCO is 0.836 for
the clean model and 0.866 for the poisoned
model (Attack II). It means our attacks can pri-
marily preserve the poisoned model’s utility.

Attack I: single target image. Table 3 presents
the performance of our first attack on both
Flickr-PASCAL and COCO. We mainly aim at mapping texts in the sheep class in the test dataset
to one target image in the aeroplane class, while the goal of COCO is to retrieve one target dog
image from texts in the test dataset connecting with boat. We observe that our poisoning attack
achieves strong performance. For instance, on COCO, the MinRank for the target image is only
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around 153 while increasing to about 12 on the poisoned model. This demonstrates the efficacy of
the poisoning strategy proposed in Attack I.

Table 3: Performance of Attack I

Dataset Method Hit@1 Hit@5 Hit@10 MinRank

Flickr-PASCAL Baseline 0.000 0.032 0.032 79.168
Ours 0.320 0.928 0.968 2.184

COCO Baseline 0.000 0.020 0.036 153.852
Ours 0.016 0.472 0.784 12.688

Attack II: single target label. As shown in
Table 4, the poisoning attack achieves good
performance on both datasets with a relatively
low poisoning rate after several epochs. Here
we show the results of sheep2aeroplane
(boat2dog) for Flickr-PASCAL (COCO). Al-
though the Hit@1 rate on the COCO dataset
slightly decreases, the other metrics rise much
higher. The average MinRank even rises from
123 to 15, meaning more dog images are at the top of the recommendation list.

Table 4: Performance of Attack II

Dataset Method Hit@1 Hit@5 Hit@10 MinRank

Flickr-PASCAL Baseline 0.024 0.088 0.200 51.048
Ours 0.280 0.864 0.936 2.192

COCO Baseline 0.024 0.072 0.116 123.076
Ours 0.012 0.212 0.516 15.280

Attack III: multiple target labels. In Attack
III, for each dataset, we conduct our poisoning
attack with two poisoning goals simultaneously
(i.e., sheep2aeroplane and sofa2bird
on Flickr-PASCAL, and boat2dog and
zebra2train on COCO). Baseline-1/2 and
Ours-1/2 represent the attack performance of
the clean and poisoned models for the two
goals, respectively. Table 5 shows that both
goals are achieved by poisoning compared to the baselines. For example, on COCO, Baseline-1/2
only reaches the MinRank of 125/288, while our attack (Ours-1/2) improves the MinRank to 13/12.
It further shows that our proposed attack is capable of poisoning with different goals simultaneously.

Above all, our poisoning attacks against linguistic modality achieve good performance with a low
poisoning rate while keeping the utility on the original test dataset. It answers the question that text
encoder is also vulnerable to poisoning attacks in a multimodal model.

4.2.2 WHICH MODALITY IS MORE VULNERABLE?

Table 5: Performance of Attack III

Dataset Method Hit@1 Hit@5 Hit@10 MinRank

Flickr-PASCAL

Baseline-1 0.048 0.120 0.216 46.576
Ours-1 0.352 0.864 0.976 2.224

Baseline-2 0.048 0.152 0.208 33.888
Ours-2 0.008 0.248 0.552 12.792

COCO

Baseline-1 0.020 0.060 0.120 125.404
Ours-1 0.016 0.272 0.604 13.940

Baseline-2 0.012 0.020 0.032 288.496
Ours-2 0.012 0.180 0.516 12.788

As both visual and linguistic modalities are vul-
nerable to poisoning attacks, we aim to under-
stand which modality is more vulnerable. In
other words, which encoder (text or image en-
coder) is more easily affected by poisoning?
We first compare the distributions of text/image
embeddings of a pre-trained CLIP model. Fig-
ure 1a shows that, compared with text embed-
dings, image embeddings are more sparse and
could be better divided into different classes.
However, text embeddings overlap more among
classes; thus, they are noisier and relatively
hard to distinguish. Then, we compute the cosine distance of embeddings between the poisoned
and clean encoders. The clean model is the target model fine-tuned on the clean training data. Fig-
ure 1b shows that the text embeddings of clean and poisoned models are more similar than the image
embeddings on both datasets. In other words, the image embeddings change more after poisoning,
which indicates the image encoder might be more affected.

To further explore which encoder contributes most to the poisoning goals, we conduct Attack II
on both datasets and freeze the text encoder, the image encoder, or both while fine-tuning. The
poisoned model with a trainable text (image) encoder and a frozen image (text) encoder is denoted
as Mt

p (Mi
p). The model with both encoders frozen is named M0, equivalent to the pre-trained

model without fine-tuning. Table 6 shows that the performance of Mp is better than poisoning with
one trainable encoder on both datasets, e.g., Mp reaches the highest Hit@K and lowest MinRank in
most of the cases. A more interesting finding is that the poisoning effect reflects differently in Mi

p

and Mt
p. Concretely, poisoning image encoder only (Mi

p) leads to a lower MinRank than poisoning
text encoder only (Mt

p). For instance, on Flickr-PASCAL, the average MinRank is only 3.016 for
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Figure 1: (a) Embedding distribution of the PASCAL dataset. (b) Cosine distance of the embeddings
of the test samples between clean and poisoned models.

Table 6: Performance of Attack II with frozen encoders

Dataset Model Hit@1 Hit@5 Hit@10 Hit@20 Hit@30 Hit@50 MinRank

Flickr-
PASCAL

Mp 0.280 0.864 0.936 1.000 1.000 1.000 2.192
Mi

p 0.200 0.856 0.920 0.984 0.992 1.000 3.016
Mt

p 0.256 0.792 0.912 0.960 0.984 1.000 3.472
M0 0.000 0.008 0.032 0.120 0.240 0.568 47.92

COCO

Mp 0.012 0.212 0.516 0.824 0.888 0.940 15.280
Mi

p 0.008 0.196 0.460 0.780 0.844 0.936 17.580
Mt

p 0.032 0.280 0.500 0.748 0.820 0.892 23.224
M0 0.004 0.064 0.140 0.252 0.336 0.488 126.664

Mi
p while 3.472 for Mt

p, indicating that poisoning the image encoder can make the general rank
of the target class of images higher (with a lower MinRank value). On the other hand, compared to
Mi

p, poisoning text encoder only (Mt
p) can result in a more significant value of Hit@K when K is

small. For instance, on COCO, the Hit@1 is 0.032 for Mt
p, while only 0.008 for Mi

p. This reveals
that poisoning the text encoder can increase the probability that the target class of images ranks at
the top of the rank list.

4.2.3 ABLATION STUDY

We then discuss how the performance of a poisoning attack is affected by the following factors.

Poisoning rate. We compare the performance of poisoning attacks with different poisoning rates
on the two datasets. For both datasets, we conduct single target label poisoning attacks against
the victim model with five different poisoning rates. We conduct six different poisoning rates ϕ
on Flickr-PASCAL (sheep2aeroplane) and six on COCO (boat2dog), respectively. The
poisoning rate of 0 means that the model trains on clean data without poisoning. Figure 2 shows
that with the increase in the poisoning rate, the attack performance improves in both datasets. For
instance, on Flickr-PASCAL, with only 0.03% poisoning rate, the MinRank already reaches 6. This
further emphasizes the potential risk of data poisoning attacks against multimodal encoders.
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Figure 2: Influence of poisoning rate.
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Figure 3: Influence of fine-tuning epochs.
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Fine-tuning epoch. While keeping the same poisoning rate, we compare the attack performance
on the two datasets at different epochs ranging from 0 to 10. And we experiment on the pretrained
model when the epoch is 0. Figure 3 shows that the attack performs well even after one or two
epochs, which reveals the power of our attack. With more fine-tuning epochs, the performance
fluctuates but remains effective in general.
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Figure 4: (a) Influence of different CLIP models. (b) Influence of dataset size. (c) Average MinRank
of Attack II on all possible category combinations on Flickr-PASCAL.

Image encoder type. Figure 4a shows the performance of Attack II on both datasets with differ-
ent image encoders. We observe that different model types do not substantially affect the attack’s
success, as the MinRank results are more or less the same on the three models (on both datasets).

Data size. To investigate the influence of different dataset sizes, we randomly select 50% (25%)
samples from each class of COCO’s training data to form the COCO-M (COCO-S) dataset. We
keep the same test dataset, i.e., all sharing the same 3,900 images. Figure 4b shows Attack II’s
performance of boat2dog with the same poisoning rate 0.24% on three datasets, i.e., COCO,
COCO-M, and COCO-S. We observe that, under the same poisoning rate, the attack performance is
not correlated with the data size.

Poisoning goal. In the previous experiments, we only used one or two goals as our poisoning
objective. Here, we traverse all possible combinations of the 20 classes in Flickr-PASCAL as our
poisoning goal and conduct Attack II on it. Figure 4c shows the average MinRank of the attacks.
For a poisoning goal A2B, A and B are represented by the y-axis and the x-axis, respectively. Each
number from 0 to 19 represents each class in PASCAL alphabetically. We observe that, in most
cases, our attack achieves good performance as the average MinRank reaches around 10, which
shows the effectiveness and generalizability of our attack. However, the MinRank of the 14th column
is relatively large, where the goal corresponds to A2person, i.e., the attacker aims at poisoning
some targeted texts to person images. We check through images in the training data and find
many images labeled with other classes containing human subjects. For example, there is a chair
image of several people sitting together and a tvmonitor image where a man sits with his laptop.
More examples can be found in Appendix A.3. Based on the case study, the person (text, image)
pairs are more than those labeled as person in the dataset. With the same poisoning rate, more
person images would remain. Thus the poisoning goal of A2person is more challenging.

5 POSSIBLE DEFENSES

We propose two kinds of defenses against the poisoning attack, i.e., pre-training defense and post-
training defense.

Pre-training defense. The pre-training defense is a dataset-level defense that filters the train-
ing data so that potentially poisoned samples can be removed. Concretely, we first compute the
text/image embeddings in D using a pre-trained multimodal model. Then, we calculate the co-
sine distances between the embeddings of (text, image) pairs and remove those pairs whose co-
sine distance is higher than a threshold γ. A relatively high cosine distance indicates that the
text and image are not very relevant from the view of their embeddings, and that they are prone
to be mismatched. Figure 5a shows the probability density distribution of cosine distances of
clean and poisoned pairs on Flickr-PASCAL used in Attack II. We use the pre-trained CLIP-
ViT-B/16 (different from the target model) to compute the embeddings. We notice that the co-
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sine distances between clean pairs are centered around 0.75, while those between poisoned pairs
are around 0.85. Thus, we choose 0.8 as the threshold γ and conduct pre-training defense on
the Attack II poisoned Flickr-PASCAL dataset. Given the fact the poisoned data is often un-
known, the model trainer can first manually label a randomly selected subset of samples and
determine the threshold based on these samples. After the defense, we fine-tune the model on
the filtered dataset following the previous settings and evaluate the attack performance. Table 7
shows the attack performance (Attack II) after conducting pre-training defense on Flickr-PASCAL.

Table 7: Pre-training defense on Flickr-PASCAL

Method Hit@1 Hit@5 Hit@10 MinRank

Attack II 0.280 0.864 0.936 2.192
Defense 0.000 0.008 0.016 49.576
Clean 0.024 0.088 0.200 51.048

Our defense achieves good performance as the
Hit@K rates are even lower than that of the
clean model. And the average MinRank of
the defensed model drops from 2 to 49, which
shows the effectiveness of our defense. Also,
the utility after defense is as good as the clean
model, where the Hit@10 rate of TR and IR
task of the defensed model reach 0.978 and
0.970 while 0.984 and 0.971 for the clean
model.

Table 8: Utility of post-training defense

Dataset Hit@10 (TR) Hit@10 (IR)

Flickr-PASCAL 0.978 (-0.006) 0.954 (-0.017)
COCO 0.976 (+0.065) 0.945 (+0.109)

Post-training defense. The post-training de-
fense is a model-level defense. The idea is
that, if a model is poisoned, we can sterilize
this poisoned model by fine-tuning on another
dataset while keeping the utility on the original
test data. Here, we introduce Visual Genome
(VG) (Krishna et al., 2017), a representative
region captions dataset. This dataset contains
94,313 images and 4,100,413 snippets of text (43.5 per image), each grounded to a region of an
image. Figure 5b shows the results of post-training defense on the Attack II poisoned models on
both datasets. We observe that the defense already shows effectiveness even with only one epoch.
For example, on Flickr-PASCAL, the Hit@10 drops from 0.9 to around 0.0 at the first epoch, and
remains at a very low level afterward. This shows the effectiveness of our defense. Note that the
models’ utility does not drop after the defense as shown in Table 8.
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Figure 5: (a) Probability density of cosine distances between clean/poisoned pairs in Flickr-
PASCAL. (b) Performance of post-training defense against Attack II poisoned models.

6 CONCLUSION

In this paper, we first study the vulnerability of data poisoning attacks against multimodal models in
both visual and linguistic modalities. Our three types of poisoning attacks show their effectiveness
in achieving remarkable attack performance while keeping the model’s utility on clean data. Our
evaluation of the poisoning effects on the visual and linguistic modalities shows that both modalities
are vulnerable to poisoning attacks but reflected in different ways. Poisoning the visual modality
leads to a better MinRank, while poisoning the linguistic modality results in higher Hit@K with a
small K (e.g., 1). To mitigate the attacks, we propose two types of defenses. Our evaluation shows
that both defenses effectively mitigate the attacks while preserving the multimodal model utility. To
the best of our knowledge, our defenses are the first to address the data poisoning attack against
multimodal encoders. In the future, we plan to extend our work into more different modalities.
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REPRODUCIBILITY STATEMENT

To be reproducible for the findings of a study means that results and the observations should be
achieved again with a high degree of reliability. Since our attacks only modify the training data
and the training process is open-source, it is easy to conduct the experiments and reproduce our
results. And we have comprehensively evaluated the attacks as well as the defenses across various
dimensions, and it would be enough to follow our setting and conduct new methods based on them.
To make it more reliable, we fix the random seed to 42 in our experiments. Regarding the required
computational resources, since we only fine-tune the pretrained model instead of training it from
scratch, it is relatively easier to follow the same settings as ours.

REFERENCES

Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong Chuang, Shih-Fu Chang, Yin Cui, and Bo-
qing Gong. VATT: Transformers for Multimodal Self-Supervised Learning from Raw Video,
Audio and Text. In Annual Conference on Neural Information Processing Systems (NeurIPS), pp.
24206–24221. NeurIPS, 2021.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning Attacks against Support Vector Ma-
chines. In International Conference on Machine Learning (ICML). icml.cc / Omnipress, 2012.

Min Cao, Shiping Li, Juntao Li, Liqiang Nie, and Min Zhang. Image-text Retrieval: A Survey on
Recent Research and Development. In International Joint Conferences on Artifical Intelligence
(IJCAI), pp. 5410–5417. IJCAI, 2022.

Nicholas Carlini and Andreas Terzis. Poisoning and Backdooring Contrastive Learning. CoRR
abs/2106.09667, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A Simple Framework
for Contrastive Learning of Visual Representations. In International Conference on Machine
Learning (ICML), pp. 1597–1607. PMLR, 2020a.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO Captions: Data Collection and Evaluation Server. CoRR
abs/1504.00325, 2015.

Xinlei Chen, Haoqi Fan, Ross B. Girshick, and Kaiming He. Improved Baselines with Momentum
Contrastive Learning. CoRR abs/2003.04297, 2020b.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale. In International Conference on Learning Representations (ICLR), 2021.

Han Fang, Pengfei Xiong, Luhui Xu, and Yu Chen. CLIP2Video: Mastering Video-Text Retrieval
via Image CLIP. CoRR abs/2106.11097, 2021.

John M. Giorgi, Osvald Nitski, Bo Wang, and Gary D. Bader. DeCLUTR: Deep Contrastive Learn-
ing for Unsupervised Textual Representations. In Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pp. 879–895. ACL, 2021.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum Contrast for
Unsupervised Visual Representation Learning. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 9726–9735. IEEE, 2020.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial Examples Are Not Bugs, They Are Features. In Annual Conference on Neural
Information Processing Systems (NeurIPS), pp. 125–136. NeurIPS, 2019.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and Li Fei-Fei. Vi-
sual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations.
International Journal of Computer Vision, 2017.

10



Under review as a conference paper at ICLR 2023

Iro Laina, Christian Rupprecht, and Nassir Navab. Towards Unsupervised Image Captioning With
Shared Multimodal Embeddings. In IEEE International Conference on Computer Vision (ICCV),
pp. 7413–7423. IEEE, 2019.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H. Hoi. BLIP: Bootstrapping Language-Image
Pre-training for Unified Vision-Language Understanding and Generation. CoRR abs/2201.12086,
2022.

Ron Mokady, Amir Hertz, and Amit H. Bermano. ClipCap: CLIP Prefix for Image Captioning.
CoRR abs/2111.09734, 2021.

Norman Mu, Alexander Kirillov, David A. Wagner, and Saining Xie. SLIP: Self-supervision meets
Language-Image Pre-training. CoRR abs/2112.12750, 2021.

Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. StyleCLIP: Text-
Driven Manipulation of StyleGAN Imagery. CoRR abs/2103.17249, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners. OpenAI blog, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning Transferable Visual Models From Natural Language Supervision. In Inter-
national Conference on Machine Learning (ICML), pp. 8748–8763. PMLR, 2021.

Cyrus Rashtchian, Peter Young, Micah Hodosh, and Julia Hockenmaier. Collecting Image Annota-
tions Using Amazon’s Mechanical Turk. In Workshop on Creating Speech and Language Data
with Amazon’s Mechanical Turk (WCSLD), pp. 139–147. ACL, 2010.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A Unified Embedding for Face
Recognition and Clustering. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 815–823. IEEE, 2015.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership Inference At-
tacks Against Machine Learning Models. In IEEE Symposium on Security and Privacy (S&P),
pp. 3–18. IEEE, 2017.

Mingjie Sun, Jian Tang, Huichen Li, Bo Li, Chaowei Xiao, Yao Chen, and Dawn Song. Data
Poisoning Attack against Unsupervised Node Embedding Methods. CoRR abs/1810.12881, 2018.
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A APPENDIX

A.1 DATASET

In the experiments, we utilize 4 image-caption datasets to evaluate our techniques, includ-
ing Flickr30k (Young et al., 2014) (abbreviated as Flickr), PASCAL (Rashtchian et al., 2010),
COCO (Chen et al., 2015), and Visual Genome (VG) (Krishna et al., 2017). Flickr, PASCAL,
COCO, and VG are four widely used benchmark datasets for various natural language processing
and computer vision tasks. To explore the effect of the size of the dataset, we randomly select
50% (25%) samples from each class of COCO’s training data to form the COCO-M (COCO-S)
dataset. We keep the same test dataset for them, i.e., all sharing the same 3,900 images. Note that
we combine Flickr and PASCAL as the training dataset Flickr-PASCAL, since Flickr contains no
label information but has a large number of pairs and PASCAL has only a limited amount of labeled
pairs.

Flickr-PASCAL. The Flickr dataset (Young et al., 2014) is a large-scale benchmark collection for
sentence-based image description and search. It contains captioned images scraped from Yahoo’s
photo album website, Flickr, but has no class labels. The PASCAL dataset (Rashtchian et al., 2010)
is a standard caption evaluation dataset containing 1,000 images with 20 categories. The PASCAL
dataset is a balanced dataset, i.e., each class is represented with 50 images and each image is paired
with 5 text captions. We divide the PASCAL dataset evenly into two parts, training and testing, at a
rate of 1:1, thus keeping the balance at the same time. Since the PASCAL dataset is too small, we
combine the training data of PASCAL and Flickr together as Flickr-PASCAL to train the model.

COCO. The COCO dataset (Chen et al., 2015) is one of the most representative large-scale object
detection, segmentation, and captioning datasets. It has 80 object categories and contains 5 captions
per image. For each image, we randomly select one of the object categories as its label; the more
objects it contains, the more possible the object will be chosen. And we sampled and examined
the label of the images and found them reasonable (Appendix). We count the number of images in
each class in the COCO dataset. To make the dataset more balance, we remove the two classes with
the lowest number, toaster and hair drier, which have 28 and 53 images, respectively. For
the test data, we randomly choose 50 images with their captions from each class, and the test data
contains 3,900 images with 78 classes.

COCO-M/COCO-S. The COCO-M/COCO-S dataset is a subset of the COCO dataset. We randomly
select 50% (25%) samples from each class of COCO’s training data to form the COCO-M (COCO-
S) dataset. For the test data, we use the same test data as the COCO dataset, which contains 3,900
images with 78 classes.

Visual Genome. The Visual Genome (VG) (Krishna et al., 2017) dataset is a widely used region
captions dataset. It contains 94,313 images and 4,100,413 snippets of text (43.5 per image), each
grounded to a region of an image. We randomly select at most 5 texts for each image and form the
training data. Note that we only use this dataset for fine-tuning in the post-training defense.

A.2 MODEL STATISTICS

The statistics of our used CLIP model can be found in Table 9. CLIP-ViT-L/14 is the largest model.
And CLIP-ViT-B/16 is larger than CLIP-ViT-B/32 in FLOPs while is slightly smaller than that
regarding the number of parameters.

Table 9: Model size

Model FLOPs # Params

CLIP-ViT-B/32 4.885G 84.225M
CLIP-ViT-B/16 13.208G 82.456M
CLIP-ViT-L/14 56.255G 258.721M
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A.3 CASE STUDY FOR THE POOR PERFORMANCE OF SOME GOALS ON FLICKR-PASCAL.

As shown in Figure 6, each of image does not belong to person class. However, they all contain
humans as their subjects. Their corresponding captions can even ignore their class. For example,
in Figure 6, (a) is paired with “Two girls in pink and blue outfits.” and “Two women pose beneath
a sign saying Welcome to English Camp.”, (b) is paired with sentences like “A family poses for a
picture while out at a restaurant.”, (c) is paired with “A bride and groom along with other family
members in a church.” and (d) is paired with “Three dark-haired young men sit in a classroom with
one looking at his laptop.”. These kinds of images can be easily found in the dataset, i.e., many
images containing human subjects belong to other classes. Thus the person images are more than
those labeled as person in the dataset, which implicitly lowers the poisoning rate and leads to
lower attack performance.

(a) chair (b) dining table (c) potted plant (d) tvmonitor

Figure 6: Each image does not belong to the person category, but they all have human subjects.
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