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ABSTRACT

Automatic crime scene analysis is an important application area for representation
learning in Video Anomaly Detection (VAD). Effective interpretation of anoma-
lous events requires models to learn rich, disentangled representations that capture
fine-grained, crime-relevant attributes. However, widely used VAD datasets (e.g.,
UCA, CUVA) primarily offer coarse event-level labels and they lack attribute-
level supervision often needed for modeling crime-specific behaviors. To bridge
this gap, we propose an attribute-centric learning framework that explicitly con-
ditions video representations on crime-causing attributes. We extend the UCA
dataset with over 1.5M new attribute-centric annotations generated using carefully
designed prompts and LLMs. These annotations enable supervised fine-tuning
of a curated CLIP-based model, leading to more discriminative, attribute-aware
video representations, and precise event captions. An LLM-based summarizer
then distills these captions into context-rich explanations, facilitating interpretable
scene understanding. Our approach answers three core questions in crime scene
analysis: What? When? How? Extensive experiments show that the proposed
representation learning framework yields significant improvements (≈ 20% ↑)
in attribute-centric crime classification accuracy and (≈ 6.4% ↑) according to
MMEval scores over the baselines. We further analyze and mitigate biases in
MMEval to ensure robustness and fair evaluation. These results highlight the
importance of attribute-conditioned representation learning for interpretable and
reliable VAD.

1 INTRODUCTION

Crime scene analysis using video anomaly detection (VAD) is aimed at indexing and describing
abnormal situations that may arise from unusual activities of actors. Law enforcing agencies can
take its help to identify and localize potential crime incidents through visual surveillance Sultani
et al. (2018); Lu et al. (2013); Wu et al. (2022b); Mahadevan et al. (2010). However, existing VAD
methods Wu et al. (2023); Del et al. (2021) face significant challenges. These methods require (i)
extensive human-annotated data Yuan et al. (2024); Du et al. (2024), making them difficult to use
for large-scale applications, (ii) they primarily focus on coarse-grained anomaly detection, failing
to provide interpretable, attribute-rich descriptions of crime events, and (iii) certain anomalies do
not cause sudden scene change, making them difficult to be detected using traditional VAD tech-
niques Wu et al. (2023); Zhang et al. (2023); Chang & Wang (2023); Joo et al. (2023).

Assume a shooting incident is happening at a public place. The act of firing a gun may not always
cause a significant change in the scene. An arson act may begin with inconspicuous action, such
as pouring accelerant or positioning materials. Detecting such events are challenging using exist-
ing VAD models due to the subtle nature and similarity of such events with non-anomalous traits.
In case of vandalism, the damage may be gradual and less obvious unless accompanied by sud-
den physical destruction Sabokrou et al. (2018). These examples highlight the need for designing
VAD models that can capture underlying, often subtle, cues or attributes associated with the under-
lying behavior to ensure a comprehensive monitoring. Datasets like UCA Yuan et al. (2024) and
CUVA Du et al. (2024) play important roles in training the VLMs to describe anomaly events. How-
ever, generating fine-grained descriptions by leveraging crime-specific attributes, has not yet been
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Figure 1: Attribute-centric Learning: In CUVA Du et al. (2024) dataset, annotations are tasks spe-
cific (focus on broad tasks ignoring subtle and critical attributions). UCA Yuan et al. (2024) dataset’s
annotations are limited, short-sentenced and provide limited interpretation, hindering accurate de-
tection and event description. The proposed method tackles this by first detecting crime-specific
attribute-centric learning, such as firearms. Such learning enriches the annotations with this infor-
mation, and leverage LLM inference to generate detailed and robust crime scene descriptions.

explored. We leverage the advantages of existing datasets and provide an attribute-centric learning
framework for crime scene analysis. It has the following advantages: (i) We are able to generate
attribute-rich, context-sensitive captions using a CLIP-based model and extend it for summarization
using LLMs. (ii) Temporal localization has been enhanced by identifying key-event frames using
similarity scores for a precise (frame-level) classification. (iii) The attribute-centric learning frame-
work has improved crime categorization accuracy by integrating attribute-based features. Overall,
the approach as depicted in Figure 1, has led us to answer the following important questions: What,
When, and How an anomaly is happening?

UCF Crime dataset Sultani et al. (2018) contains 13 classes of anomalies. Certain categories such as
arson, vandalism, or shooting can be described in details using a well-defined set of “crime-causing
attributes”. This makes attribute-centric learning feasible for these categories as compared to other
classes. For example, objects like lighters, matchsticks, or gasoline cans are indicative of arson,
firearms are necessary for shooting, and special tools are needed for vandalism. A few types of
crimes lack distinguishable attributes. For example, a robbery incident does not mandatorily need a
crime causing attribute. Despite this, it is possible to design a generic method that works reasonably
well across all classes, though the effect of “crime-causing attributes” will be limited on certain
classes. To achieve this, we extend the UCA (UCF Crime with Attributes) dataset Yuan et al. (2024)
by integrating detailed attribute annotations for these crimes. Unlike traditional VAD datasets, which
lack attribute-specific information Luo et al. (2017); Wu et al. (2022b), the augmentation improves
descriptive granularity for crime scene analysis. We leverage DeepMAR Li et al. (2018), a pop-
ular Person Attribute Recognition (PAR) model trained on a custom dataset to recognize relevant
crime attributes. This approach enhances scene understanding by focusing on causation-aware fea-
tures, allowing for early detection of criminal activity. For instance, detecting a person handling
flammable materials can serve as an early indicator of arson, even before any fire is visible. In sum-
mary, our focus is on attribute-centric learning for crime scene analysis by analyzing the presence of
distinguishable crime-causing attributes. To accomplish this, we have made the following technical
contributions:

• Attribute-enriched annotations: We extend the event descriptions available in the UCA
dataset by incorporating crime-specific attributes, enabling detailed and interpretable
anomaly detection.

• What? We categorize the crimes among various types, leveraging attribute cues to deter-
mine the specific type in a given video.
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• When? We present a new CLIP-based attribute-centric learning framework for crime frame
localization to identify the frames containing the crime incident for a precise temporal
analysis.

• How? We introduce attribute-centric learning method to improve the summarization capa-
bility for generating focused summary of crime-related incidents.

The remainder of this paper is structured as follows: Prior works are presented in the next section.
We describe the proposed methodology in the following section followed by experiments and results.
Finally, we conclude with a few future directions.

2 PRIOR WORK

Popular anomaly detection works Sultani et al. (2018); Wu et al. (2022b); Majhi et al. (2021); Tian
et al. (2021); Li et al. (2022b); Feng et al. (2021); Leroux et al. (2022); Pang et al. (2020); Li et al.
(2022a); Wu et al. (2022a); Luo et al. (2017); Acsintoae et al. (2022); Liu & Ma (2019); Thakare
et al. (2023) formalize VAD as a binary classification task, leveraging a ranking loss function to
distinguish between normal and abnormal events. Though effective, this approach has limitations,
especially in scenarios, where criminal actions involve subtle and gradual changes that may not
immediately trigger a high anomaly score.

CLIP-based Anomaly Detection and Localization. More recent advancements in VAD, such as
VAD-CLIP Wu et al. (2023), leverage vision-language models like CLIP Radford et al. (2021) and
calculate the cosine similarity between video frames and descriptive textual prompts. Zhang et
al. Zhang et al. (2023) have introduced a CLIP-guided visual-text fusion transformer, merging tex-
tual descriptions with visual data to improve attribute recognition, an essential component for under-
standing nuanced crime scenarios. Similarly, Chang et al. Chang & Wang (2023) have demonstrated
the efficiency of combining CLIP embeddings with temporal attention mechanisms to better capture
frame-level anomaly patterns. Expanding on CLIP-based approaches, Joo et al. Joo et al. (2023)
have proposed CLIP-TSA. It incorporates a temporal self-attention mechanism to enhance weakly-
supervised video anomaly detection. This method effectively captures temporal dependencies and
improves the model’s ability to identify anomalous events. Zanella et al. Zanella et al. (2023) have
explored the CLIP latent space for video anomaly recognition, demonstrating that carefully designed
prompts and feature extraction techniques can significantly boost performance in identifying abnor-
mal events. Kumar et al. Kumar & Singh (2024) have explored a hybrid CLIP model to detect
human-object interactions. It is useful for identifying high-risk actions within a sequence. Despite
these advances, these methods lack temporal sensitivity to handle complex causative attributes at-
tached to crimes.

Causation in VAD. Recent works have introduced causative factors in VAD. Wu et al. Du et al.
(2024) have proposed a benchmark that combines visual and causal cues to predict not only what
happened but also why and how. Such causal insights enable models to detect anomalies even
when visual deviations are subtle but causal indicators suggest criminal activity. Another notable
work by Li et al. Li & Zhou (2024) introduces context-aware causal cues that further enhances
localization accuracy by detecting scene context changes indicative of suspicious behavior. While
promising, these methods do not yet address causative attributes specific to different crime types,
such as “handling flammable materials” or “concealing a weapon,” which are essential for proactive
detection.

Training-free Approaches. Exploration of training-free methods Zanella et al. (2024); Gu et al.
(2024) are recently introduced in VAD. Zanella et al. Zanella et al. (2024) have introduced a novel
approach that harnesses LLMs for video anomaly detection without requiring task-specific training.
While these approaches offer flexibility, they remain limited in fine-grained crime detection due to
the lack of specialized attribute conditioning.

LLM-assisted Anomaly Detection. LLMs have also been used to enhance anomaly detection and
explanation. Holmes-VAD Zhang et al. (2024) proposes an LLM-guided framework to achieve un-
biased and explainable VAD. Similarly, AnomalyRuler Yang et al. (2024) introduces a rule-based
reasoning framework for VAD with LLMs. Additionally, HAWK Tang et al. (2024) leverages inter-
active large VLMs to interpret video anomalies precisely, integrating motion modality to enhance
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anomaly identification and constructing an auxiliary consistency loss to guide the video branch to
focus on motion modalities.

Datasets and Limitations. UCA Yuan et al. (2024) stands out for its focus on criminal activi-
ties. It further enhances crime understanding by offering sentence-level prompts, yet it is limited
to general descriptors without attribute-specific granularity needed for precise crime analysis. XD-
Violence Wu et al. (2022b), another critical dataset, extends the scope of anomaly detection by
covering violent events. However, it lacks sufficient crime-specific labels, limiting its application
to broader VAD contexts rather than targeted crime analysis. CUHK Avenue Lu et al. (2013) and
UCSD Pedestrian (Ped1 and Ped2) Mahadevan et al. (2010), both designed for pedestrian anomaly
detection, provide bounding-box annotations but lack the complexity of diverse crime scenarios,
making them less applicable to nuanced crime detection tasks. While these datasets contribute to
anomaly understanding, they exhibit limitations in providing fine-grained temporal, contextual, and
causative annotations necessary for crime-specific VAD tasks.

Our approach addresses the aforementioned gaps in datasets as well as CLIP-based models by in-
troducing causative prompts tailored to high-impact crimes. By combining these cues, the proposed
framework enables frame-level localization and enhanced scene descriptions tailored to different
crime types, achieving improved performance when compared to existing VAD methods. In sum-
mary, by incorporating both visual and causative features, we build on recent advancements in causal
VAD to provide a more holistic understanding of crime scenes by answering the questions: What,
When, and How?

3 PROPOSED METHOD

3.1 PROBLEM FORMULATION

VAD tasks focus on detecting deviations from normal activity patterns in surveillance videos. Inte-
grating textual descriptions with visual features for crime scene analysis has gained traction Du et al.
(2024)Yuan et al. (2024). CLIP models Radford et al. (2021); Zhang et al. (2023) have been utilized
for such tasks Wu et al. (2023), where the similarity score s is computed as shown in Eq. (1),

s =
v · t

∥v∥∥t∥
(1)

where v is video frame embedding and t is the textual prompt embedding. However, CLIP struggles
with context-dependent anomalies like gradual vandalism. For instance, when “a person starts spray
painting and defaces the wall over time,” early frames might not seem anomalous, but cumulatively,
it becomes an act of vandalism. Preparatory actions similarly fail to yield high similarity scores
via standard visual-textual matching. Moreover, preparatory actions may not yield high similarity
scores through the visual-textual approach alone. To address this, we propose integrating causative
attributes. We redefine the anomaly score as shown in Eq. (2),

(xi) = αf(xi) + βg(ci) (2)

where f(xi) captures the visual anomaly score, g(ci) encapsulates causative attribute information,
and α, β are weighting factors.

For scenarios where crime-specific attributes are available, we propose a joint embedding space
by projecting video frames vi and textual prompts tj using projection matrices Wv and Wt, re-
spectively. The similarity score is then computed as sij = cos(Wvvi,Wttj). In this work,
the UCA dataset is enriched with curated prompts refined by LLM, integrating crime-specific
causative attributes into the CLIP-based framework. The final anomaly score thus becomes si =
γ cos(vi, tc,i) + δh(ci), where tc,i denotes crime-specific textual attributes, h(ci) captures causal
cues, and γ, δ are weighting factors.

3.2 DATASET AUGMENTATION

The dataset augmentation works as follows. Let D = {Xi, Yi}Ni=1 denotes the dataset (UCA),
where each video frame Xi is linked to a class label Yi ∈ {yarson, yshooting, yvandalism, yaccident,...}. For
enhancement with attribute-level information, we establish an attribute set A = {a1, a2, . . . , aK},
where each attribute ak denotes a crime-related trait such as “firearm possession,” “arson tools,” or
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Figure 2: Detected anomaly-causing attributes are fed to a pre-trained LLM for enhancing the
anomaly descriptions (upper blue block). Two applications of the proposed pipeline are: (i) fine-
tuning a CLIP model with enhanced captions to detect anomalies based on the highest similar-
ity score between anomalous frames and corresponding captions, and (ii) generating segment-wise
eventful captions, combining them to produce a final, concise description.

“violent behaviour.” Our objective is to map each frame Xi with a corresponding attribute vector
Ai = [ai1, ai2, . . . , aiK ] that denotes the presence or absence of particular attributes. The crime
attribute recognition model functions as a multi-label classifier. For each frame Xi, an attribute vec-
tor Ai = [ai1, ai2, . . . , aiK ] is predicted using a multi-label classifier (DeepMAR Li et al. (2018)),
where the probability of the presence of an attribute is estimated by: pik = σ(w⊤

k ϕ(Xi)+ bk), with
ϕ(Xi) as the frame’s feature representation, wk as the attribute weight vector, bk as bias, and σ(·)
be the sigmoid function.

It enables the model to recognize multiple attributes per frame, enhancing the accuracy in anomaly
descriptions. Post attribute extraction, the initial UCA prompt Pi is enhanced into a detailed prompt
P̃i by passing (Pi,Ai) to an LLM, usually, ChatGPT or Gemini OpenAI (2023); Research (2024)
are used as the gold standard LLMs. They enhance Pi by incorporating attribute details, formulated
as P̃i = LLM(Pi,Ai). This augmentation enriches the dataset into D̃ = {Xi, Yi, P̃i}Ni=1, enabling
context-sensitive anomaly descriptions that significantly boost the efficacy of CLIP-based models.
By integrating attribute vectors Ai into the prompts, the proposed framework significantly enhances
the descriptive richness of the dataset, which is crucial for training the CLIP model to produce
context-sensitive captions. The augmented dataset (D̃) enables training a model to produce detailed,
attribute-aware anomaly descriptions.
3.3 CRIME ANALYSIS FRAMEWORK

The proposed framework, as shown in Figure 2, employs the enhanced UCA dataset to train a CLIP
model, establishing two core applications: (i) generating detailed video descriptions that provide
deeper insights into crime scenes (How?), (ii) identifying specific frames where a typical criminal
activity occurs (When?), and (iii) categorization of the crime (What?). Each application is detailed
below.

3.3.1 CRIME VIDEO DESCRIPTION (HOW?)

The proposed framework generates detailed video descriptions to improve interpretability. The pro-
cess involves generating prompts specific to extracted attributes, selecting the prompts above a pre-
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defined score, and compiling them to produce a cohesive video summary. Prompt Generation and
Similarity Scoring. For each video, we extract a set of attributes A = a1, a2, . . . , aK using an
existing causal attribute recognition method Li & Zhou (2024). Each attribute is then processed by
an LLM to generate descriptive prompts. For an attribute ak, we formulate a descriptive prompt
pk = LLM(“Describe the scene involving ak”), where the LLM produces a contextually tailored
description focused on the specified attribute. Each prompt pk is paired with frames Xi and scored
using CLIP similarity s(Xi, pk) = CLIP(Xi, pk). To filter the most relevant descriptions, prompts
with similarity scores above a threshold τ (i.e., s(Xi, pk) ≥ τ ) are selected to form a set P . Sum-
mary Generation with LLM. The selected prompts, P = pk | s(Xi, pk) ≥ τ , are then passed to
a summarization model, which integrates them into a cohesive video description. The summarizer,
powered by an LLM, produces a comprehensive summary S̃ = Summarizer(P) of the input video,
where S̃ encapsulates a structured narrative of the crime event captured across the frames.

3.3.2 CRIME LOCALIZATION (WHEN?)

To identify the frame where a crime activity is taking place, we utilize crime-specific attributes
obtained from the PAR Li et al. (2018) as a pre-processing step. Let A = a1, a2, . . . , aK rep-
resents the set of attributes associated with relevant crime indicators, such as “firearm posses-
sion”, “arson tools”, etc. Each attribute ak is then mapped to a structured prompt pk in the form
pk = “This frame contains ak”. Similarity Matching with CLIP. Upon generating the prompts
(pk), we input them along with the video frames into the trained CLIP model. Using CLIP, we
compute similarity scores as given in Eq. (3), for every frame Xi.

s(Xi, pk) = CLIP(Xi, pk) (3)
The top-5 frames X∗ with the highest similarity scores within a video segment Dj are identified
using Eq. (4). This allows us to precisely localize crime actions in terms of their start and end
frames.

X∗ = arg max
Xi∈Dj

s(Xi, pk) (4)

3.3.3 CRIME CATEGORIZATION (WHAT?)

The aim of this application is to categorize a crime in a video segment by identifying crime-
relevant attributes in individual frames and mapping them to specific crime categories e.g., ar-
son, shooting, etc. For categorization, we compute the similarity score between each frame fj
and a set of attribute-derived prompts Pi, selecting the prompt with the highest similarity as
Pi∗ = argmaxPi∈P S(fj , Pi). Crime Mapping. This calculation yields the prompt with the
highest similarity score for each frame, and we track the highest overall similarity score across all
frames in the video. We define a mapping function C : A → Crime Categories, where each attribute
ai is associated with a specific crime category, e.g., arson, shooting, vandalism, etc. Based on the
attribute ai∗ corresponding to the most similar prompt Pi∗ , we assign the crime category c using
c = C(ai∗), where C is the attribute-to-crime mapping function.

4 EXPERIMENTS AND RESULTS

4.1 IMPLEMENTATION DETAILS

We use GPT Achiam et al. (2023) to adopt CLIP-L/14 visual encoder and text encoder to find
similarity scores. For attribute recognition, we employ DeepMAR Li et al. (2018), which was pre-
trained and fine-tuned on the PA-100K dataset for person attribute recognition and a custom subset of
UCA attribute annotations for domain adaptation. Details on this process and data splits are provided
in the supplementary. The CLIP model computes cosine similarity between normalized visual and
textual embeddings, which naturally ranges from [−1, 1]. For all thresholding and localization steps,
we rescale this value to [0, 1] via snorm = (scos + 1)/2 for interpretability and score fusion. Further
details about implementation are available in the supplementary document.

4.2 EVALUATION PROTOCOL AND METRICS

MMEval Score. To evaluate the quality of generated textual descriptions, we use the MMEval
metric as proposed in Du et al. (2024), which measures descriptive and semantic alignment between
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Figure 3: Comparisons of different captioning methods for the frame highlighted in red bar in exam-
ple: the initial ChatGPT prompt, the UCA dataset prompt, and the proposed prompt enhancement.
The caption is less than 77 tokens in length. The enhanced prompt offers more comprehensive de-
scriptions of the anomalies, highlighting key elements that improve anomaly detection. Additional
results and analysis are available in the supplementary document.

Dataset Type (Tasks) Frames Attributes Prompts
UCF-Crime Sultani et al. (2018) Crime (13) 13,741,393 No NA
XD-Violence Wu et al. (2022b) Violence (6) 114,096 Yes NA

UCSDPed1-Ped2 Mahadevan et al. (2010) Pedestrian (5) 14,000 No NA
CUHKAvenue Lu et al. (2013) Pedestrian (5) 30,652 No NA

UCA Yuan et al. (2024) Crime (13) 13,741,393 Yes Sentence-level
CUVA Du et al. (2024) Multiple (42) 3,345,097 Yes Free-text

Improved UCA Crime (13) 13,741,393 Yes Attribute-level

Table 1: Comparative analysis of the enhanced UCA dataset
with other VAU datasets.

Captioning MMEval
Method (Score%)
ChatGPT Initial Prompt 70.5
UCA Prompt 75.3
Enhanced UCA Prompt 86.4

Table 2: MMEval scores of vari-
ous captioning methods.

generated captions and ground-truth or human annotations using a large vision language model.
Specifically, for each event, both candidate and reference captions are fed to a state-of-the-art mul-
timodal LLM (e.g., GPT-4V), which assigns a score reflecting the semantic fidelity and detail of
the description. While this allows for comprehensive semantic comparison, the metric’s reliance
on LLMs may introduce a bias favoring longer, more verbose captions. To mitigate confounding
factors, we explicitly analyze the effect of caption length on scores in Sec. 4.2.

Caption Length Bias Analysis. LLM-based evaluators may reward longer outputs. To quantify
this effect, we compute the Pearson correlation coefficient between the number of tokens in captions
and their respective MMEval scores across the benchmarks. We find a mild correlation (r = 0.19),
but this does not fully account for the large gains in MMEval across methods. The observed improve-
ments are primarily due to richer, more relevant attribute content. Furthermore, for fair comparisons,
all captions are length-capped at 77 tokens for evaluation.

Dataset Usage. We evaluate on UCA Yuan et al. (2024) (attribute-augmented and baseline), UCF-
Crime Sultani et al. (2018), and XD-Violence Wu et al. (2022b). For fair comparison, all methods
have been trained and evaluated with the same data splits.

4.3 BENCHMARKING UCA & DATASET COMPARISONS

In Figure 3, we compare different captioning approaches for describing a graffiti vandalism incident
captured by a surveillance camera. The three captions illustrate different levels of descriptive detail:
the initial GPT-generated prompt, the UCA dataset prompt, and the proposed prompt enhancement.
Each prompt aims to describe the actions and context in the scene, and these differences significantly
impact model performance on anomaly detection tasks. The GPT-generated prompts provide a brief
and general description, e.g. “Two individuals caught on security camera engaging in graffiti on a
building’s shutter late at night”. Even though it identifies the core activity, the description lacks de-
tail about the individuals’ clothing, roles, and surroundings, limiting its utility for context-sensitive
anomaly detection. The UCA dataset prompts are slightly more descriptive, noting, “Men in white
and men in black were spray-painting at the entrance of the store, and a car passed by on the road”.
While it highlights the presence of the car and clothing colors, still falls short in specifying the roles
or behaviors of each individual. The enhancement of prompt by the proposed method does a better
job. It integrates additional attributes and offers a more comprehensive description: “Two individu-
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als, one dressed in white and another in black, were caught spray-painting graffiti on the entrance
wall of a closed store late at night. The individual in black concentrated on creating markings on
the metal shutter, while the person in white served as a lookout near the corner. The act of vandal-
ism is evident with spray cans in use and graffiti already covering parts of the wall”. This version
of the prompt not only captures the appearance and actions of each individual but also emphasizes
the coordinated roles in the vandalism, enriching the contextual information available for anomaly
detection.

As presented in Table 2, the enhanced captions significantly improve a model’s performance in terms
of MMEval scores and anomaly precision. The enhanced captions allow the model to better under-
stand complex scenes by distinguishing individual actions and contextual details. This improvement
highlights the importance of integrating attribute-level descriptions in captions for robust anomaly
detection models. The results emphasize that using detailed annotations leads to more effective
detection and interpretation of nuanced actions within surveillance footage.

4.4 ABLATION STUDY

In ablation study, we have evaluated the effectiveness of different components in the proposed frame-
work. We examine (i) the performance of large language models (LLMs) for frame description, (ii)
the comparative impact of the UCF Crime, UCA, and the proposed augmented datasets, (iii) the
influence of attribute-based enhancement on CLIP, (iv) improvements in scene description quality,
and (v) localization accuracy across different crime frame localization methods.

4.4.1 PROMPT GENERATION COMPARISONS

We have evaluated various LLMs, including GPT-4 Achiam et al. (2023), Gemini, Bard, and Llama,
to determine the best-performing model for generating frame descriptions. Table 3 presents the
MMEval Du et al. (2024) scores for each LLM, showing that GPT-4 achieves the highest overall
performance, closely followed by Gemini Research (2024).

LLM Model MMEval Score (%)

Llama 3.1 (8B) Touvron et al. (2024) 76.9
Claude 3.5 Anthropic (2024) 78.6
Gemini 1.5 Research (2024) 82.3
GPT 4.0 Achiam et al. (2023) 84.1

Table 3: MMEval scores for different LLMs
applied for testing prompt generation perfor-
mance.

Crime Category Subcategories Accuracy (%)
Robbery Related Burglary, Shoplifting, Stealing, Robbery 32.11 (↓)
Explosion - 51.45 (↓)
Arson - 92.38 (↑)
Shooting - 86.50 (↑)
Vandalism - 88.41 (↑)
Mean Accuracy - 70.17 (↑)

Table 4: Accuracy trends across various crime-
related anomalies as compared to Multi-Stream
VAD Thakare et al. (2022).

4.4.2 EFFECT OF ATTRIBUTE ENHANCEMENT

To demonstrate the effect of attribute-enhancement, we have evaluated CLIP Radford et al. (2021)
performance on the proposed enhancement of UCA dataset with and without attribute vectors gen-

Figure 4: Performance comparisons
of CLIP Radford et al. (2021) model
with and without the attribute en-
hancement.

Figure 5: Temporal Localization Ac-
curacy (UCF-Crime): Comparison of
IoU@0.3, IoU@0.5, and mAP across
methods.
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erated by DeepMAR Li et al. (2018). As shown in Figure 4, the attribute-enhanced captions yield
significant accuracy gain over multiple epochs, indicating that attribute-level details improve model
interpretability and context sensitivity.

4.5 APPLICATION EXPERIMENTS

4.5.1 SCENE DESCRIPTIONS (HOW?)

We have conducted a comparative evaluation of the quality of scene descriptions generated by the
proposed dataset enhancement (MMEval Score of 86.4%) versus those from the UCA Yuan et al.
(2024) dataset (MMEval Score of 80.5%). Using MMEval as a metric, the results demonstrate that
the enhancement in the dataset significantly improves the quality and relevance of descriptiveness.
This comparison has been conducted only with UCA Yuan et al. (2024) and not CUVA Du et al.
(2024) because CUVA has been tested on a completely different dataset, whereas UCA and our
method are based on the same dataset.

4.5.2 CRIME LOCALIZATION (WHEN?)

We now provide comparisons between the proposed approach and recent crime localization methods.
The methods include TSVLU Sultani et al. (2024), DeepLocalization Rahman et al. (2024), and
VideoChatGPT Maaz et al. (2024). Each of these methods employ a distinct approach to identify
temporal regions of interest associated with crime events. The TSVLU Sultani et al. (2024) method
achieves 46.1% accuracy using the UCA dataset and applies Temporal Sentence Grounding (TSGV)
to match crime descriptions with video segments. DeepLocalization Rahman et al. (2024), which
focuses on SynDD2, uses change-point detection to locate key events in videos, achieving 51.0%
accuracy. VideoChatGPT Maaz et al. (2024), utilizing a custom driving dataset, refines prompt-
based extraction for key points, reaching an accuracy of 57.5%. Our proposed method leverages the
enhanced UCA dataset and implements a frame-by-frame similarity assessment using CLIP-based
feature matching, achieving an accuracy of 63.1%. We also report IoU@0.3, IoU@0.5, and mAP
for temporal localization (see Fig. 5). This aligns with standard evaluation protocols and provides a
more reliable view of model performance.

4.5.3 CRIME CATEGORIZATION METHODS (WHAT?)

These experiments evaluate the performance of the proposed crime categorization method against
prior approaches. Traditional baseline methods, such as those by Sultani et al.Sultani et al. (2018)
and Majhi et al.Majhi et al. (2021), yield lower mean accuracies of 13.9% and 34.1%, respectively,
across broader anomaly categories, without providing class-wise accuracy metrics. The multi-stream
approach by Thakare et al. Thakare et al. (2022) demonstrates improvements, achieving a mean ac-
curacy of 69.56% across 13 crime categories. However, it lacks precision in attribute-based catego-
rization, particularly for visually and contextually distinct crimes. Our proposed approach signifi-
cantly outperforms prior methods in attribute-rich crime categories such as arson (92.38%), shooting
(86.5%), and vandalism (88.41%), with an overall mean accuracy of 89.09% in these categories. As
shown in Table 4, the proposed model exhibits better performance in arson, shooting, and vandalism,
respectively as compared to the multi-stream approach Thakare et al. (2022). These improvements
are notable: 36%, 16%, and 32%, respectively across these categories.

5 CONCLUSION

The research highlights substantial improvements achieved by focusing on crime-causing attributes
for crime video analysis. By concentrating on causal attribute based crimes, we leveraged their
distinct attributes to enhance anomaly descriptions, yielding significant gains in scene quality, local-
ization, and categorization. Even with a limited crime scope, these defined attributes substantially
boosted performance. Future work can aim to adapt this method to include other type of events,
enhancing the versatility and reach of video-based crime scene analysis and work towards crime
prediction.
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A APPENDIX

A.1 INTRODUCTION

This supplementary document provides additional information to complement the main paper. It
includes a link to the enhanced crime attribute-centric annotations dataset, implementation details,
and further qualitative results. Section A.2 presents a Dropbox link to the dataset containing the
enhanced crime attribute-centric annotations. Section A.3 provides further insights into the dataset
creation process. Section B presents additional results and analyses related to our proposed dataset
enhancement.
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A.2 DATASET LINK

For review purposes, we have provided an anonymous Dropbox link to our dataset. The folder
contains the enhanced crime attribute-centric annotations. Please note that the annotation folder has
been anonymized, and any direct or indirect identification of individuals is unintended and does not
reflect the authors’ true identities. You can access the dataset annotations by clicking on this link
(will be given in the camera-ready submission) , which will redirect you to the Dropbox folder.

A.3 IMPLEMENTATION DETAILS

A.3.1 DATASET AUGMENTATION

The UCA datasetYuan et al. (2024) is augmented by generating detailed textual annotations for each
video frame. For each frame Xi, the Deep Multi-Attribute Recognition (DeepMAR)Li et al. (2018)
model extracts an attribute vector Ai, encapsulating contextual elements such as objects, actions, or
scene details. Using the original UCA label Yi, an initial prompt Pi is generated. This prompt is
enriched using a Large Language Model (LLM), which integrates Pi with the extracted attributes Ai

to produce an enhanced prompt P̃i. The augmented dataset D̃ = {Xi, Yi, P̃i}Ni=1 provides granular,
attribute-centric annotations, facilitating advanced video understanding tasks such as crime scene
explanation. This data augmentation process is summarized in Algorithm 1.

Algorithm 1 Dataset Augmentation with Attribute Annotations

1: Initialize UCA dataset D = {Xi, Yi}Ni=1
2: for each frame Xi in D do
3: Extract attribute vector Ai = DeepMAR(Xi)
4: Generate initial prompt Pi from UCA labels
5: Create enhanced prompt P̃i = LLM(Pi,Ai)
6: end for
7: Augmented dataset D̃ = {Xi, Yi, P̃i}Ni=1

A.4 CRIME CAUSING ATTRIBUTE DETECTION

Figure 6: A DeepMAR CNN Architecture used to find crime-causing attributes. Li et al. (2018)

DeepMAR (Deep Multi-Attribute Recognition)Li et al. (2018) employs convolutional neural net-
works to detect and classify multiple attributes within images, making it particularly effective for
analyzing complex crime scene scenarios. In the context of crime-causing attribute detection, the
architecture (Figure 6) is designed to extract relevant features from surveillance images and predict
the presence of specific attributes, such as weapons, suspicious behavior, or other key indicators
associated with criminal activities.

The architecture consists of several key components:

• Feature Extraction: The CNN layers in DeepMAR extract critical features from input
images, learning both low-level features (e.g., edges, textures) and high-level features (e.g.,
objects, people, and contextual elements).

• Multi-Attribute Prediction: Following feature extraction, DeepMAR simultaneously pre-
dicts multiple attributes, such as the presence of weapons, types of activities, or other sig-
nificant details, which aid in interpreting crime scenes.
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• Fusion Layer: Some implementations incorporate a fusion layer to integrate extracted
features and attribute predictions, offering a holistic understanding of the scene’s context
and enhancing crime detection capabilities.

• Training: The model is trained on a large, annotated dataset of images with labeled at-
tributes. This supervised learning approach enables the network to discern meaningful
relationships between visual features and crime-relevant attributes.

By leveraging this architecture, DeepMAR enhances the ability to detect and categorize complex
crime-related events, providing a powerful tool for surveillance systems and law enforcement.

A.4.1 CAN WE TRY WITH OTHER CRIME CATEGORIES ?

These experiments highlight the advantages of the proposed CLIP-based framework and demon-
strate how each component—LLM selection, dataset augmentation, attribute-based enhancement,
and an improved localization—contributes to superior performance in crime analysis. The effective-
ness of the proposed method in harnessing the finer details of attribute-centric crimes such as arson,
vandalism, and shooting has been established through rigorous experiments. Our experiments re-
veal that if the prompts are curated properly, some of the underlying applications will benefit. For
example, categorization of certain types of crime becomes more accurate (∼ 20% ↑), where causal-
attributes are available. However, challenges may arise due to the ambiguity in some attributes. For
instance, consider Figure 7, which depicts a robber (left) and a customer (right) inside a convenience
store. Both individuals exhibit similar visual features. Without additional contextual information,
and absence of causative attributes, the proposed method may not reliably differentiate between
criminal and non-criminal behavior. This necessitates integration of a broader contextual or behav-
ioral information to enhance the accuracy further.

Figure 7: Left image represents robber in a store. Right image represents a normal customer. Can
we find unique and definite set of attributes to identify the robber?

B RESULTS

B.1 EXAMPLES

Figure 8 represents examples for Arson Crime Category. Figure 9 represents examples for Shooting
Crime Category. Figure 10 represents examples for Vandalism Crime Category.

B.1.1 FALSE POSITIVES

False positives present a significant challenge in anomaly detection, particularly when using LLMs
to generate descriptive captions. In the example shown in Figure 11, a frame from the UCA dataset
depicts actions such as spray-painting graffiti on a wall and an individual pointing at the camera.
While these actions suggest vandalism, the enhanced prompt generated by our method includes
specific attributes like “gun” and “spray can.” However, the LLM misinterpreted the act of pointing
at the camera as a shooting incident, resulting in a false positive. This example underscores the
nuanced challenges of aligning detailed descriptions with accurate interpretations. Although our
proposed method enhances the granularity of prompts by incorporating crime-causing attributes,
it can unintentionally introduce misinterpretations when visual cues are ambiguous. Addressing
this issue requires further refinement of prompt generation techniques to balance specificity with
contextual accuracy.
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Figure 8: Comparisons of different captioning methods for frames highlighted by the red bar in each
example include the initial ChatGPT prompt, the UCA dataset prompt, and the proposed prompt
enhancement. These methods are applied to describe arson. The level of detail in each caption sig-
nificantly impacts the model’s accuracy in detecting and interpreting anomalies. Enhanced prompts
consistently provide more comprehensive descriptions of anomaly events across all categories, em-
phasizing critical elements that improve anomaly detection.

Figure 9: Comparisons of different captioning methods for frames highlighted by the red bar in each
example include the initial ChatGPT prompt, the UCA dataset prompt, and the proposed prompt
enhancement. These methods are applied to describe shooting incidents. The level of detail in
each caption plays a critical role in the model’s ability to detect and interpret anomalies accurately.
Enhanced prompts consistently provide more detailed and comprehensive descriptions of anomaly
events across all categories, emphasizing key elements that enhance anomaly detection.
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Figure 10: Comparisons of different captioning methods for frames highlighted by the red bar
in each example include the initial ChatGPT prompt, the UCA dataset prompt, and the proposed
prompt enhancement. These methods are applied to describe vandalism. The level of detail in each
caption significantly affects the model’s ability to detect and interpret anomalies. Enhanced prompts
consistently provide more detailed and comprehensive descriptions of anomaly events across all cat-
egories, emphasizing critical elements that enhance anomaly detection.

Figure 11: Comparisons of different captioning methods for frames highlighted by the red bar in-
clude: (1) the initial ChatGPT prompt, which describes the event as generic vandalism; (2) the UCA
dataset prompt, which identifies multiple actions such as spray-painting and covering the camera
but omits key elements of the threat; and (3) the proposed enhanced prompt. The enhanced prompt
identifies specific attributes, including a gun and a spray can, and describes a more alarming sce-
nario where a masked individual appears to aim a gun at the camera. This level of detail, while
comprehensive, led the LLM to misinterpret the action as a shooting incident, highlighting the in-
herent challenge of balancing specificity with accuracy in anomaly descriptions.
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