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Abstract

Recent advances in self-supervised learning (SSL) using large models to learn
visual representations from natural images are rapidly closing the gap between
the results produced by fully supervised learning and those produced by SSL on
downstream vision tasks. Inspired by this advancement and primarily motivated by
the emergence of tabular and structured document image applications, we inves-
tigate which self-supervised pretraining objectives, architectures, and fine-tuning
strategies are most effective. To address these questions, we introduce REGCLR, a
new self-supervised framework that combines contrastive and regularized methods
and is compatible with the standard Vision Transformer [3] architecture. Then,
REGCLR is instantiated by integrating masked autoencoders [6] as a representative
example of a contrastive method and enhanced Barlow Twins as a representative
example of a regularized method with configurable input image augmentations
in both branches. Several real-world table recognition scenarios (e.g., extracting
tables from document images), ranging from standard Word and Latex documents
to even more challenging electronic health records (EHR) computer screen images,
have been shown to benefit greatly from the representations learned from this new
framework, with detection average-precision (AP) improving relatively by 4.8%
for Table, 11.8% for Column, and 11.1% for GUI objects over a previous fully
supervised baseline on real-world EHR screen images.

1 Introduction

Table objects are a compact representation that humans can easily understand. However, this is not
true for machines since, unlike classic object detection classes, they might have widely disparate
sizes, types, styles, and aspect ratios. In other words, table structure varies greatly between document
domains (e.g., Word vs GUI screen), and a large variety of table styles are feasible even within the
same document format (e.g., borderless vs bordered). In that regard, very few works have started
exploring self-supervised learning (SSL) approaches to the problem of tabular rich document image
domains. DiT [9], for example, directly employs BERT-style BEiT [1] to pretrain in a self-supervised
manner on IIT-CDIP dataset [8] of 42 million document images and then fine-tune on a couple of
classification and detection tasks.

However, to the best of our knowledge, there are several open research problems in developing
SSL methods, particularly for tabular and structured document image domains, that require further
study. Finding simple but effective self-supervised pretraining objectives, architectures, and fine-
tuning strategies are examples of this. Keeping those questions in mind, our paper makes two main
contributions:
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• First, we introduce REGCLR, a new self-supervised framework that combines contrastive-
based masked image modeling3 and regularized methods and is Vision Transformer (ViT)
compatible. It is then instantiated by coupling masked autoencoders (MAE) and enhanced
Barlow Twins (eBT) with configurable image augmentations. MAE loss chooses to ignore
irrelevant details, while eBT loss pushes relevant details to latent vectors (i.e., minimizing
the ignored details), which is highly important for tabular representation learning.

• Second, we pretrain REGCLR on two distinct domains of document image datasets with
rich tabular structures, the publicly accessible TableBank [10] and more challenging internal
EHRBank, and then validate the higher sample efficiency of the learned tabular representa-
tions in finetuning with TableBank and the superior detection performance with EHRBank
in various practical downstream settings.

2 REGCLR Description

To begin with, let X be the input image, (X1,X2,X3) be the augmented or varied views of the image,
and (Y1,Y2,Y3) be the corresponding hidden/latent representation. Our goal is to learn the best
representation Y that retains as much information about the input image X as possible given a
reasonable representation constraint. Denote n be the number of samples, d be the feature dimension,
and Z2,Z3 ∈ Rn×d be the projected features.
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Figure 1: REGCLR’s self-supervised pretraining. REGCLR is consisted of two branches: MAE
and eBT. MAE branch uses weak augmentation and masking to obtain X1 and then follows procedure
introduced in MAE [6] to compute reconstructed loss for unmasked patches as LMAE to obtain X ′

1.
In the eBT branch, strong augmentation is applied twice to get X2 and X3. Through the same ViT
encoder used in the MAE branch, the encoded images are then projected into features Z2 and Z3. The
proposed loss LeBT computes three correlation matrices between Z2 and Z3, attempting to make each
matrix near to an identity matrix. REGCLR’s overall self-supervised pretraining is performed by
jointly minimizing LMAE and LeBT through optimizing both ViT encoder and decoder.

Training Loss Design4 With the cross-correlation matrix R23 between Z2 and Z3 and auto-correlation
matrices R2 and R3 respectively, we have the resulting objective denoted as LeBT given by
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where ν1, ν2, µ1 and µ2 are hyper-parameters controlling diagonal and off-diagonal terms of each
matrix. Combining the LMAE defined in [6], the overall training loss is now straightforward to
compose as:

LREGCLR = LMAE +LeBT. (2)

Self-Supervised Pretraining We use the new objective, LREGCLR in (2), for self-supervised pretrain-
ing, and build the model with two branches, MAE and eBT, as shown in Figure 1. For the MAE

3We follow Yan LeCun’s broader classification of contrastive methods introduced in [7].
4For a detailed loss derivation, see [11].
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branch, we choose to apply weak augmentation to the input image and then randomly mask out the
selected patches. Only unmasked patches are fed into the ViT encoder, and subsequently the masked
patches are reconstructed by the Vit decoder using the MSE calculated over the masked patches as
the loss function LMAE per the original MAE design. Secondly, the eBT branch operates on the cross
embedding of the input image’s two strongly augmented versions X2 and X3.

Detection via ViT Backbone For detection, we combine a ViT encoder and decoder pretrained in a
self-supervised manner with MIMDet [4] to serve as the detection backbone and leverage Cascade
Mask R-CNN [2], which is the common architecture in supervised state-of-the-art systems. Compared
to previous representative approaches of adapting vanilla ViT for object detection, MIMDet replaces
the pretrained patchify stem with a compact convolutional stem without further upsampling or
redesigns, resulting in a ConvNet-ViT hybrid multi scale feature extractor that requires far fewer
epochs in the fine-tuning procedure.

3 Experiments

We evaluate our methods in the TableBank dataset [10] and an internally collected EHRBank dataset
which consists of screenshots collected by bots as they navigate the EHR systems of ten US health
systems from various EHR providers. A total of 2,537 labeled images are collected for table detection
task, 1,657 for table column detection task, and 28,121 unlabled images for pretraining.

TableBank Dataset The prediction results of the TableBank table detection are shown in Table 1 in
AP (mAP @ IOU [0.50:0.95]) and AP75 (mAP @ IOU 0.75) with the results of two baselines. Our
method REGCLR outperforms the other self-supervised and fully supervised baselines.

Table 1: Results of table detection on the TableBank test set (in AP and AP75). MAE denotes the
representative SSL pretraining baseline, while ResNet [5] stands for the purely supervised baseline
using the ResNet-152 backbone, with Cascade Mask R-CNN. The bold value represents the best
(highest) value for each column metric. All baselines are outperformed by the proposed REGCLR.

Word Latex

AP AP75 AP AP75

ResNet (supervised baseline) 95.42 95.78 97.32 98.62
MAE (self-supervised baseline) 95.94 96.16 97.63 98.70
REGCLR (our method) 96.03 96.22 97.68 98.75

Table 2: Results of GUI elements detection on the EHRBank Table and Column test sets (in
AP and AP75). REGCLR performs best when pretraining with the EHRBank Screenshot dataset,
increasing AP scores relatively by 4.8% for Table and 11.8% for Column over the supervised baseline,
as seen by comparing the first and second rows. Interestingly, despite pretraining with approximately
10% volumes of TableBank, RegCLR fast approaches the best cross-domain transfer results from
TableBank to EHRBank in the last row.

Table Column

Pretrain on Method AP AP75 AP AP75

N/A ResNet 40.53 44.46 61.43 67.07

EHRBank Screenshot REGCLR 42.46 45.32 68.68 75.17
MAE 36.78 39.05 64.67 71.09

TableBank (cross-domain) REGCLR 40.96 43.47 67.77 75.06
MAE 43.99 48.77 69.83 77.29

EHRBank Dataset We then evaluate REGCLR on internal EHRBank dataset which has higher
values in our production scenario. As shown in Table 2, when pretrained on unlabeled EHRBank,
our method outperforms the baselines in both Table and Column detection, increasing relative AP
scores by 4.8% and 11.8% respectively over the supervised baseline, as seen by comparing the first
and second rows. Furthermore, even though pretrained with only around 10% of the TableBbank
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volume, REGCLR quickly approaches the best cross-domain transfer performance from TableBank
to EHRBank, as shown in the last row.

Additionally, it is worth noting that MAE performs worse than even ResNet on Table when pretrained
on EHRBank (by comparing the first and third rows). It does, however, transfer better than REG-
CLR in scenarios involving cross-domain transfer from public TableBank to private EHRBank (by
comparing the last two rows). In the future, we intend to investigate how quickly detection perfor-
mance improves as the unlabeled data volume scales, as well as how effectively pretrained weights
transfer across domains in the context of tabular rich images, so that they can be applicable to other
document format datasets (e.g., Word to GUI and vice versa). More information on the experimental
results can be found in [11].

4 Conclusion

In this paper, we present REGCLR, a brand-new framework combines contrastive and regularized
self-supervised methods and has been pretrained on both public and private domain tabular rich
images. We demonstrate that REGCLR outperforms previous self-supervised pretraining and fully
supervised baselines by a large margin in various real-world contexts, with high sample efficiency
for fine-tuning. We believe that this study is an important step towards semantic comprehension of
real-world document images, and it will be interesting to see how this vision-based framework can be
expanded to include textual content without manual data annotation.
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